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Marco Castrillón López6, Giannicola Scarpa7, Carlos E. González-Guillén5, and
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3Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), 28049 Madrid, Spain
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Tensor networks, widely used for provid-
ing efficient representations of low-energy
states of local quantum many-body sys-
tems, have been recently proposed as ma-
chine learning architectures which could
present advantages with respect to tradi-
tional ones. In this work we show that
tensor network architectures have espe-
cially prospective properties for privacy-
preserving machine learning, which is im-
portant in tasks such as the processing
of medical records. First, we describe a
new privacy vulnerability that is present
in feedforward neural networks, illustrat-
ing it in synthetic and real-world datasets.
Then, we develop well-defined conditions
to guarantee robustness to such vulnera-
bility, which involve the characterization
of models equivalent under gauge symme-
try. We rigorously prove that such con-
ditions are satisfied by tensor-network ar-
chitectures. In doing so, we define a novel
canonical form for matrix product states,
which has a high degree of regularity and
fixes the residual gauge that is left in the
canonical forms based on singular value
decompositions. We supplement the an-
alytical findings with practical examples
where matrix product states are trained
on datasets of medical records, which show
large reductions on the probability of an
attacker extracting information about the
training dataset from the model’s parame-
ters. Given the growing expertise in train-
ing tensor-network architectures, these re-

sults imply that one may not have to be
forced to make a choice between accuracy
in prediction and ensuring the privacy of
the information processed.

1 Introduction
Vast amounts of data are routinely processed in
machine learning pipelines, every time covering
more aspects of our interactions with the world.
When the models processing the data are made
public, is the safety of the data used for train-
ing it guaranteed? This is a question of utmost
importance when processing sensitive data such
as medical records, but also for businesses whose
competitive advantage lies in data quality.

The gold standard in privacy protection within
machine learning [1, 2] is provided by differential
privacy [3], which consists of inserting carefully
crafted noise either in the training dataset [4, 5],
in the final model parameters [3], in the objec-
tive function [6], or in the gradient updates [7],
in order to hide the presence or absence of any
particular sample in the training dataset. There
exist, however, privacy-related issues that do not
directly fall in this category. Imagine a machine-
learning algorithm designed to diagnose a specific
disease, which uses patients’ records as training
data. Assume that these records have a strong
imbalance in a particular morbidity, but it turns
out that this morbidity has no association to the
disease target of the model. Even if irrelevant for
the final task of the algorithm, knowing this im-
balance may have consequences even at the indi-
vidual level, if just the participation of a patient
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in the study (in contrast with the knowledge of
their full record) is disclosed by other means. As
a first result, we show that this concern is a re-
ality in machine learning architectures based on
neural networks, caused by the driving of the cor-
responding network parameters to erase the in-
formation that is irrelevant.

In regards to the protection of privacy, the
ideal model would only retain from the training
dataset the information that is essential to per-
form well. In this sense, access to the model’s pa-
rameters in one such models would not be more
informative about the data used for training than
having a description of them by means of record-
ing the outputs generated for different inputs.
This is a problem similar in spirit to the pro-
tection of software against Man-At-The-End at-
tacks [8]. As a second contribution, we show that
the characterization of complex physical systems
can provide a fruitful alternative viewpoint on
the problem of privacy in machine learning. Con-
cretely, we rigorously prove that in specific tensor
network architectures [9, 10] —a large family of
architectures inspired by the entanglement struc-
ture of quantum many-body states— it is possi-
ble and easy to find alternative parametrizations
of a model that are as informative as a black-
box access to it. These architectures, known as
matrix product states [10] (MPS), are promis-
ing learning architectures [11, 12] that now com-
pete with [13–15] or even surpass traditional ar-
chitectures in certain tasks, such as anomaly de-
tection [16], sequence modelling [17], or genera-
tive modelling subject to constraints [18]. More-
over, the erasure of information irrelevant for the
task at hand is achieved with no impact on the
model’s performance, in contrast with solutions
based on differential privacy. The core of our
contribution is encompassed Observation 1 and
Theorem 2, which can be informally stated as

Observation 1 (Informal version). If the sets
of parameters that leave a model invariant can
be characterized, then each white-box attack to
a representative of the set is equally performing
(in terms of accuracy) as an attack to the corre-
sponding black box.

Theorem 2 (Informal version). There is a
canonical form for the set of MPS architectures
so that every white-box attack to such canonical-
form set of parameters is “as good” (in terms of

the attack accuracy and its regularity as a func-
tion, which characterizes how hard it is to per-
form the attack) as an attack to the black-box
representation.

Notably, as part of the proof of Theorem 2, we
construct a new canonical form for MPS that has
a high degree of regularity and does not leave any
residual gauge freedoms, in contrast with those
based on singular value decompositions [19].

This work wants to drag focus to physics as a
source of mathematically founded inspiration for
machine learning solutions. Cross-fertilizations
between machine learning and physics are now
commonplace [20]: on the one hand, machine
learning algorithms are routinely used in particle
colliders [21], in the understanding of quantum
matter and its properties [22, 23], or in the exper-
imental control of quantum computers [24, 25];
on the other hand, tools developed within the
umbrella of physics have proven invaluable in the
understanding of the training and performance of
machine learning algorithms, perhaps the most
significant being the theory of the information
bottleneck [26]. It is expected that such improved
understanding leads to new proposals, inspired
by physics, of machine learning architectures or
training algorithms. However, with the very no-
table exception of Boltzmann machines [27–29],
this type of influence of physics in machine learn-
ing has been arguably limited. Our work is one of
such form of influences, the main message being
that tensor-network architectures provide a fa-
vorable framework to develop privacy-preserving
machine learning algorithms.

The article is organized as follows: In Section
2 we mathematically describe the new privacy
vulnerability present in neural networks and we
illustrate it in toy and real-world datasets. In
Section 3 we provide a broad introduction to the
intuitions behind the requirements for robustness
against the vulnerability and to the family of ten-
sor networks known as matrix product states [10],
which will be used later on in the work. Sections
4 and 5 are devoted to the formalization of the
previous intuitions and to proving that the con-
ditions are satisfied by tensor network architec-
tures. In Section 6 we show explicitly the privacy
gains in a scenario where an attacker attempts to
extract information about a training dataset of
medical records from looking at the model’s pa-
rameters. Finally, we conclude in Section 7 with
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a discussion of concrete questions and research
directions that this work opens.

2 A new privacy vulnerability in feed-
forward neural networks

Training neural networks is routinely performed
via optimization based on gradient descent: given
a dataset to be learned and a parametrization
of a family of models, a notion of error between
the evaluation of the function on the dataset and
the expected result is minimized by adjusting the
parameters of the model in the direction given
by the gradient of the error. Also, most model
classes have, at some point in their architecture,
a concatenation of parametrized affine transfor-
mations, of the form y(l) = W (l) · z(l−1) + b(l)

where W (l) is a matrix of weights and b(l) is a
vector of biases, and fixed nonlinear functions,
z(l) = ϕl(y(l)), applied to the data. These pa-
rameters, as we shall see now, contain informa-
tion about the training dataset that, ideally, a
model should not reveal.

For simplicity, let us start considering a hypo-
thetical situation (see Figure 1) where all points
in the dataset that we want to learn have one bi-
nary feature which takes always the same value,
say 1, and the model is a concatenation of these
affine transformation and nonlinearities. Since
all the datapoints in the dataset have the same
value of the binary feature, this information is
of no use for the classification, and thus an ideal
final model shall not depend on it. During train-
ing, the contribution of the biases in the affine
transformations are driven to compensate that
of the corresponding weights, in the attempt of
eliminating the effect of this irrelevant variable
on the final prediction. If the initial data has the
constant value 1, this will make that the corre-
sponding weights and biases are directed towards
taking opposite signs. The situation is the oppo-
site if the binary feature takes the constant value
of −1. In order to minimize the contribution of
the irrelevant feature, in this case the gradient
will drive the parameters towards taking values
with same signs. An attacker that has access to
the model can thus easily recover the nature of
the irrelevant feature just by looking at the par-
ity of a set of weights and biases, as depicted in
Fig. 1b.

In more realistic scenarios the situation is not
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Figure 1: Illustration of the proposed vulnerability.
Each point represents a simple neural network model,
fθ(x) = ϕ (Wrelxrel +Wirrxirr + b) (where ϕ is an ac-
tivation function), that is trained to learn the function
y(x) = sign(xrel). Each model is trained on a different
dataset where xrel ∼ N (0, 1), and xirr is +1 for all dat-
apoints used to train the models depicted by the blue
stars and −1 for the orange circles. The plots show the
values of the neural network weight for the irrelevant
variable, Wirr, and the bias of the output neuron, b,
(a) before and (b) after training on a different, random
dataset for each model. In this architecture, the gradi-
ents of any loss function L are ∂WirrL = xirrϕ

′∂ϕL and
∂bL = ϕ′∂ϕL, implying that ∂WirrL = xirr∂bL. These
gradients will naturally drive the parameters to distin-
guishable regimes, which can be identified after training
as demonstrated in (b). The codes for generating these
figures are available in the computational appendix [30].
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as clear-cut1. It is more common to have fea-
tures which have some imbalance between the
different values it can take. In such situation,
this type of vulnerability is still present, as we
demonstrate in Figure 2d. There, we show an il-
lustration with deep neural networks trained on
real-world data of medical records derived from
the global.health database [31] of COVID-19
cases around the world. The task in which the
neural networks are trained is the prediction of
the outcome of the infection given demograph-
ics, symptoms, and the parity of the date when
the case was recorded (this is the feature irrele-
vant to the task). Then, the attacks follow the
spirit of shadow training [32, 33]: the attacker is
provided with trained models and labels denoting
the majority value of the irrelevant feature in the
corresponding training set, and with them trains
a meta-model that constitutes the attack. Fur-
ther details on the dataset and prediction task
can be found in Appendix A, and details on the
attacks can be found in Appendix B. Notably, for
the case of neural networks, simple logistic regres-
sion meta-models perform well in the attack task.
Despite being performed by an attacker provided
with non-realistic power, these results imply an
important fact. Namely, that information about
the training dataset that is irrelevant to the task
performed by the neural network is learnt in the
training process and stored in the network’s pa-
rameters.

3 Tensor networks as machine learning
architectures with privacy guarantees

The above example is a (rather extreme) illustra-
tion that neural-network architectures store in-
formation about the training set in the way that
the network parameters process its features. In
the remainder of this work, we will see that in
tensor networks [9] this information can easily
be deleted without compromising on model per-
formance.

Continuing with the previous example, it is
clear that there exists a straightforward way to
erase the information about irrelevant features
that does not lead to privacy leaks: simply set-
ting to zero the weights that propagate the in-

1After all, if a feature takes the exact same value in the
whole dataset, it is not reasonable to feed it to the model.

fluence of those features to the initial layer of
the network. In a hypothetical situation where
one fixed such parameters and trained the rest,
the result would be an alternative collection of
weights and biases leading to a model, ideally
equally performing, yet not containing any in-
formation about the training dataset other than
that needed for making the prediction. Thus,
the ability to characterize the sets of parameters
that lead to the same model opens the door to
ways of choosing model parameters which contain
no more information about the training dataset
than what can be inferred from recording the out-
put for different inputs. The first part of our
contribution in this aspect is formally proving
this intuition. The second part is showing that
for the family of matrix-product state architec-
tures [10] (which have recently attracted interest
in machine learning [11, 12]) one can make an
assignment of parameters that has specially suit-
able properties when analyzed under the lens of
privacy in machine learning.

3.1 Matrix product states

The field of quantum many-body physics has
been developing manageable ways of simulating
the states and evolutions of quantum systems
composed of many particles. The so-called tensor
networks, introduced with the advent of quantum
information theory as an architecture capable
of capturing the entanglement content present
in the low-energy sector of quantum many-body
systems [10], have recently gained attention in
machine learning as alternative parametrizations
of high-dimensional, convoluted functions [11–
16]. Matrix-product state (MPS) representa-
tions [34, 35] are the simplest and most widely
used tensor network architecture when studying
quantum many-body systems. In fact, MPS were
later rediscovered in the field of numerical anal-
ysis, under the name of tensor trains [36, 37],
which have been independently used for several
applications in machine learning [38–41].

In the context of machine learning, an MPS ar-
chitecture is best defined when viewing complex
functions as hyperplanes on high-dimensional
feature maps of the input. This is, when we con-
sider (vector) functions f(x) of the input x as
taking the form

f(x) = M · Ψ(x). (1)
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MPS architectures correspond to the family of
functions illustrated in Figure 2b. These are ob-
tained when the vector feature map, Ψ(x) (typ-
ically non-trainable), has a tensor-product form
with one component per dimension of the input,
Ψ(x) = ψ1(x1) ⊗ψ2(x2) ⊗ · · · ⊗ψN (xN ), and the
hyperplane is expressed as a product of in general
complex matrices (hence the name), namely

M ℓ
s1,s2,...,sN

=
∑
{α}

[A1]α1
s1 [A2]α1,α2

s2 · · · [Aj ]αj−1,αj

ℓ · · · [AN ]αN
sN
,

(2)
where ℓ is the free index in Fig. 2b that stresses
the vector character of f(x). These architectures
have a very well-characterized gauge symmetry
group, which determines the sets of parameters
that describe the same function. If between ev-
ery two consecutive matrices one inserts a de-
composition of the identity, 1 = Yj · Y −1

j for an
invertible matrix Yj , the set of matrices given by
[Bj ]sj = Y −1

j ·[Aj ]sj ·Yj+1 produce M as well. Im-
portantly, it is well-known from quantum many-
body physics that these are the only symmetries
of the MPS architectures [34], and that it is possi-
ble to fix a value of the gauge for each MPS. This
fixing is known as choosing a “canonical form”,
and it is generally obtained via singular value de-
compositions (SVD) [34, 35].

4 Privacy from reparametrization in-
variance
Invariance under reparametrizations is com-
monly known as gauge symmetry [42]. This is
a concept that is commonplace in many-body
physics, nuclear and particle physics, or in gen-
eral relativity. In order to rigorously prove that
a complete characterization of gauge symmetries
protects against revealing unintended informa-
tion, we must first define some mathematical ob-
jects. For a fixed learning architecture (this is,
a functional ansatz depending on n parameters),
call W ∈ Cn the set of all possible values of its
parameters. The architecture, along with a point
θ ∈ W, completely determines a model. Thus, we
will refer to W as the set of white-box represen-
tations for a given architecture. In this picture,
training a model amounts to choosing the opti-
mal θ for a specific task. In general, this optimal
value will depend on the data used for training

the algorithm. Analogously, the set of black-box
representations B can be understood as the set
of oracular functions (i.e., seen as input-output
pairs) corresponding to each θ ∈ W. In general,
there exists a function π : W → B that assigns
every white-box representation to its correspond-
ing black-box oracle. In certain cases one can de-
fine a right inverse, α : B → W, that assigns a
set of parameters to a black-box representation.
This function satisfies π◦α = idB→B. This is, the
oracular function associated to a white-box rep-
resentation of a black box is the black box itself.
Due to redundancies in the description, there can
be many θ ∈ W that lead to the same black-box
representation, so in general, even if an α can be
defined, it is not true that α ◦ π = idW→W . A
deterministic function α◦π which takes all white
boxes describing the same black box to the same
element of W is commonly known as canonical
form.

Consider also what an attack is. In the pro-
posed context, an attack is a function applied
on a white-box representation whose output pro-
vides information about features of the training
data. Formally, we can model this as a (smooth)
function f : W → C that maps the parameters of
a model to a complex number.

With these, we can now state formally the idea
behind the motivation of this work:

Observation 1. Consider the set of white-box
representations for some architecture, W ∈ Cn,
and its associated set of black-box representa-
tions, B = π(W). If a right inverse α : π ◦ α =
idB→B can be defined, then for every function f

f(θ̂) = f̂ [π(θ̂)],

where θ̂ = α ◦ π(θ) ∈ W are the parameters de-
noting a canonical form for the model described
by θ and f̂ = f ◦α is the application of f in black
boxes.

Proof. By expanding f(θ̂):

f(θ̂) = f ◦ α ◦ π(θ)
= f ◦ α ◦ idB→B ◦ π(θ)
= f ◦ α ◦ π ◦ α ◦ π(θ)
= f̂ [π(θ̂)],

where we have decomposed the identity in the
space of black boxes as idB→B = π ◦ α.
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The relation above means that the evaluation
of an attack, f , in a set of parameters that de-
scribe the canonical form of a model, θ̂ = α◦π(θ),
coincides with the evaluation of the induced at-
tack, f̂ = f ◦ α, in the associated black box,
π(θ̂) = π(θ). Therefore, an attack f cannot ex-
tract from a canonical form any information that
is not present in the associated black-box.

Note that the only requirement of Observa-
tion 1 is that the function α can be defined. In
particular, there are no requirements on the de-
gree of regularity, or smoothness, of α. Thus, in
general, the degree of regularity of the black-box
attack f̂ will depend on the regularity of both f
and α. In the next section we prove that, for the
case of MPS, α can indeed be taken as smooth
as possible: namely holomorphic. This implies
that the degree of regularity of the white-box and
black-box attacks is the same, and therefore, that
MPS are strong candidates for privacy-preserving
machine learning architectures.

5 Univocal canonical form in MPS

From the result in the previous section we know
that if a canonical form can be defined, then the
information about the training dataset stored in
the model’s parameters is the same information
that is stored in the corresponding black box.
However, it could still be possible that extracting
information present in the model is easier when
having access to its parameters. In this section
we prove that this is not the case for MPS archi-
tectures.

It is important to note that the notion of
canonical form defined in the previous section re-
quires that all white boxes describing the same
black box element are assigned univocally to the
same element of W. This already implies the
existence of a function α : B → W so that
α ◦ π : W → W is the canonical form. The
known canonical forms for MPS do not assign the
same white box element to all models equivalent
under gauge symmetry. For instance, the stan-
dard SVD-based canonical form of MPS [34, 35]
presents a residual U(1) × · · · × U(1) gauge free-
dom [19]. However, there are other decomposi-
tions of MPS that do not leave this residual free-
dom.

Thus, in the following we will show that a
canonical form based on the skeleton decompo-

sitions of Ref. [43] is (i) univocal, so all gauge-
equivalent models are mapped to the same canon-
ical form, but also (ii) holomorphic, and hence
possessing the highest degree of smoothness, and
(iii) global, so the exact same procedure can be
applied to any point in W (with the potential
exception of subsets of measure zero). This will
imply the same properties for the induced map
α : B → W. Then, since holomorphy implies
that the composition of any function with α pre-
serves its regularity, any attack at the white-box
level, f : W → C, can be upgraded to an at-
tack at the black-box level, f̂ = f ◦ α : B → C,
with the same regularity. Therefore, for every
white-box attack to our canonical-form represen-
tation not only there exists a black-box attack
with the same performance (as we showed in Ob-
servation 1), but also with the same regularity.
This is, for MPS, not only the canonical form
stores as much information as the black box, but
also extracting such information is equally hard
in both cases.

Recall that MPS architectures process the in-
put x via f(x) = M ·Ψ(x), where Ψ(x) is a (typ-
ically non-trainable) feature map with a tensor-
product form and M was described in Eq. (2)
with each entry of the A tensors in the left-hand
side being a trainable parameter. Thus, when
considering MPS architectures, the set W is a
subset of Cn (where typically n = Nb2d for some
number of sites N , bond dimension b, and physi-
cal dimension d)2 given by all the possible values
of all the elements of the A tensors in the right-
hand side of Eq. (2). The function π that maps a
white-box representation of an MPS to its corre-
sponding black box is, precisely, Eq. (2). Then,
the set B is defined as π(W), i.e., the subset of
Cn′

(with n′ = dN ) defined by all allowed values
of the entries of the M tensor in the left-hand
side of Eq. (2).

Since removing a zero-measure set will have no
effect in the applicability of the properties of the
canonical form (the matrices obtained after the
training process will never belong to that set), we
will consider a canonical form global if W can be
taken as the whole Cn except maybe for a proper,
closed, smooth manifold of dimension strictly less
than n, meaning in particular that W is open and

2See Refs. [10, 19] for descriptions of these quantities
and their connections with the simulation of quantum
many-body systems.
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its complementary set in Cn has measure zero.

The description of an univocal, global and
holomorphic canonical form is done in the fol-

lowing theorem. For simplicity we assume that
the dimension of all legs in the tensors are the
same. However, it is easy to obtain a version of
it with different dimensions.

Theorem 2. For an MPS defined by a collection of tensors {Aj}N
j=1, a univocal, global, holomorphic

canonical form is given by the skeleton decomposition defined by the tensors Â1 = 1, ÂN = 1, and
[Âj ]βj−1,βj

sj =
∑

γ [Lj ]βj−1,γ
sj [Cj ]γ,βj

, where

[Lj ]βj−1,γ
sj =

∑
{α}

[A1]α1
1 · · · [Aj−2]αj−3,αj−2

1 [Bj ]αj−2,αj+1
βj−1,sj ,γ [Aj+2]αj+1,αj+2

1 · · · [AN ]αN
1 ,

[Bj ]αj−2,αj+1
βj−1,sj ,γ =

∑
αj−1,αj

[Aj−1]αj−2,αj−1
βj−1

[Aj ]αj−1,αj
sj [Aj+1]αj ,αj+1

γ ,

Cj = (Lj)−1, with [Lj ]γ,βj
= [Lj ]1,βj

γ .

This function induces a global, holomorphic map α : B → W.

Following the usual graphical notation for tensor
networks (for its definition see, for instance, the
explanations in Figure 2 or Ref. [10]), the decom-
position described in Theorem 2 is

Â = L C , (3)

with

L

sj

βj−1 γ =

1 11 1

... ...1 j − 2 j − 1 j j + 1 j + 2 N

sjβj−1 γ

,

C =

(
L1

)−1

,

1

i
= δi,1 .

Now, let us proceed with the proof:

Proof. The function {A} 7→ {Â} described is well
defined whenever the L matrices are invertible.
When this is the case, the only non-trivial oper-
ation is the computation of such inverses. This
is an holomorphic operation in the elements of
the matrix. The matrices L, at every step in the
procedure, are just a projection on specific sites
of the original MPS. While the projected states
are not invertible in all MPS, the set for which
this is not the case is an algebraic variety of di-
mension strictly less than n (n being the total

number of parameters). Note that this argument
is independent of the particular projection cho-
sen. This is, one could have chosen a projection
different from δi,1, and even different projections
for different sites of the MPS, and the results
would still hold. This shows that the canonical
form is global. Moreover, standard algebraic cal-
culations lead to verifying that π({Â}) = π({A}).
Note also that the canonical form obtained in this
way will be the same for all MPS that are related
by a gauge transformation, and hence univocal.
This means that this canonical form indeed in-
duces a well-defined map α : B → W so that π◦α
is precisely the canonical form map {A} 7→ {Â}.

It thus remains to show that such α is also
holomorphic. In order for this statement to be
meaningful, or even to define what it means for
an attack on black boxes to be smooth, one needs
to endow the set B with a smooth structure;
more specifically, with a complex manifold struc-
ture. Note that W is trivially a complex mani-
fold, since it is an open subset of some Cn.

There are a priori two ways to see B as a com-
plex manifold. One is as a submanifold, gener-
ated by the π given by Eq. (2) as B = π(W) and
embedded in the ambient (exponentially large)
complex vector space of all possible input-output
relations. The other is as the space of orbits de-
fined by the gauge symmetries. This is, if we call
SMPS to the complex Lie group of gauge symme-
tries, the space of orbits is nothing but the quo-
tient set W/SMPS, where a natural complex man-
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ifold structure can be defined whenever the sym-
metry group action is reasonably good (holomor-
phic, free and proper). One can see, using well-
known results in the theory of complex manifolds,
that both ways to describe B are equivalent. For-
mally, the complex manifolds W/SMPS and B are
biholomorphic, and thus we write B = W/SMPS
from now onwards. The analysis of these man-
ifolds has been done in full detail for the set of
“full-rank” MPS in Ref. [19], where we also refer
to for the necessary definitions and background.
Due to our additional condition of the matrices
L being invertible, our sets W and B are (full
measure) subsets of those considered in Ref. [19],
and the exact same proof applies.

By the way the complex manifold structure is
defined in the space of orbits W/SMPS, for any
holomorphic map W → W that is invariant un-
der the action of the gauge group SMPS —as
it is the case for the canonical form defined—
the uniquely defined associated map α : B =
W/SMPS → W is also holomorphic. All details
can also be found in Ref. [19] and the references
therein.

Summarizing, we have proved that the skele-
ton decomposition of Ref. [43] leads to a univocal,
holomorphic and global canonical form for MPS
architectures. The existence of such a canoni-
cal form implies that the MPS parameters ob-
tained after computing the canonical form store
no more information than the information al-
ready available in a black-box oracular access to
the model, and that such information is equally
hard to extract in both cases. Importantly, the
sets of parameters generated by the gauge free-
dom all describe the exact same function, and
thus the reparametrization to a canonical form
does not have an impact on the performance of
the model. This is in stark contrast with ap-
proaches based on differential privacy to protect
the privacy in neural networks, where noise is
added to the training dataset or the final param-
eters, resulting in a tradeoff between the model’s
utility and the protection of the dataset.

In particular, for the type of examples dis-
cussed earlier on features that are irrelevant to
the target task, and in the ideal scenario in which
the model learns perfectly, this means that the
MPS parameters obtained after computing the
canonical form would have no dependence at all
on these irrelevant features. This is indeed what

is observed in realistic scenarios such as that il-
lustrated in Figure 2d when using the univocal
canonical form described in Theorem 2, denoted
there in the figure as MPS+U.

It is important to clarify that our Theorem 2 is
just a proof-of-principle illustration of the power
of this approach to obtain privacy-preserving ma-
chine learning algorithms based on tensor net-
works. We have focused on preserving regularity,
but for any other property that one is interested
in, in order to obtain a similar reduction from
white boxes to black boxes, all that one needs is
to find a canonical form that preserves such prop-
erty. In particular, it is important to note that
the canonical form described in Theorem 2 differs
from that in the standard literature of MPS algo-
rithms, based on a sequence of singular value de-
compositions [34, 35]. As stated earlier, the SVD-
based canonical form of MPS presents a residual
U(1) × · · · × U(1) gauge freedom [19], and it is
not clear how to perform a global fixing of this
residual gauge in an holomorphic manner. Fig-
ure 2d indicates that some information, albeit not
as much as in the parameters obtained straight
out from training, is still present in that free-
dom. However, one can a priori expect at least
some degree of privacy protection from the SVD-
based canonical form. Indeed, relaxing a bit the
mechanism, the process of computing the canon-
ical form of an MPS via SVD, and afterwards
choosing randomly a representative of the resid-
ual gauge orbit, is equivalent to first computing
the canonical form described in Theorem 2, and
then computing the SVD-based canonical form
of this MPS and randomly choosing a represen-
tative of the gauge orbit. The latter process has
all the privacy guarantees described in this work
because of the application of the canonical form
in Theorem 2 in the first step, and therefore so
does the former. The red curve with pentagon-
like markers denoted by MPS+C+S in Figure 2d
confirms that this argument also holds in numer-
ical experiments, although the direct application
of the univocal canonical form of Theorem 2 leads
to a lower variance. This argument illustrates
the power of our proof technique, since demon-
strating that randomizing over the residual gauge
after SVD is a procedure that makes it equally
hard to extract information from white-box and
black-box access requires to be able to analyze
regularity properties of stochastic functions.
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6 Experiments

We illustrate the protective power of the canon-
ical form of MPS in Figure 2. Figure 2c depicts
the training of one of these MPS architectures in
the real-world dataset used in the demonstration
with neural networks (the prediction of the out-
come of COVID-19 infections given demograph-
ics, symptoms, and the parity of the date of the
record). Figure 2d shows the probability of suc-
cess of attacks based on shadow training [32, 33],
both before and after computing different canon-
ical forms. This sort of attacks provides upper
bounds to the efficacy of realistic ones because
it allows the attacker to have much more infor-
mation than reasonable. Details on the training
and attacks can be found in appendices A and B,
respectively. Both types of models (neural net-
works and MPS architectures) perform very sim-
ilarly in the target task (see Figure 2c), while the
vulnerability to attacks is markedly different: as
can be seen in Figure 2d, both neural networks
and MPS architectures straight out from train-
ing are equally vulnerable, but MPS in canonical
form are not. For instance, at 80% imbalance
of the irrelevant feature, attacks on both mod-
els have around 78% of accuracy, while in the
canonical-form description of the MPS via SVD
the accuracy drops down to around 56%, close to
the limit of random guessing, but demonstrating
that some information still remains in the resid-
ual gauge left by the SVD. The limit of random
guessing is achieved by randomly sampling the
residual gauge freedom (this is the curve denoted
by MPS+C+S) via adding decompositions of the
identity in the form of diagonal matrices with
random entries in {−1, 1}, or by using the univo-
cal canonical form described in Theorem 2 (cor-
responding to the curve denoted by MPS+U).
Notably, as described in Appendix B, the pro-
tection happens despite the attacks performed to
MPS architectures being more general than those
performed to neural networks: while linear re-
gression models were able to extract the informa-
tion on the irrelevant feature in the case of neural
networks, in the case of MPS architectures the
accuracy of the extraction is not matched even
when using more powerful, deep neural networks
as attack models.

One could be tempted to attribute the differ-
ence in robustness to the attacks to the difference
in number of parameters of the models. As ex-

plained in Appendix A, the neural network mod-
els contain 614 trainable parameters, while the
MPS models contain only 40. This could, in
principle, lead to neural network models having
a larger capacity that makes them more vulner-
able. However, the line corresponding to MPS
models without post-processing (orange circles)
in Fig. 2d demonstrates that this is not the case:
if the parameters of the MPS models are not
brought to a canonical form, the models are vul-
nerable to the attacks in a way analogous to the
neural network models.

7 Discussion

As machine learning permeates through more
layers in society, it is increasingly important
to shift the focus from prediction accuracy to
greater goals such as privacy and fairness. This
work shows that global information about the
training dataset is hidden in the parameters of
deep learning models, even if this information
is irrelevant for the task at hand. More impor-
tantly, it points at physics, and more concretely
at the tensor networks used in quantum many-
body physics, as a favourable framework where
to find architectures that are robust to privacy
leaks. In this second aspect, our results are en-
compassed in Observation 1 and Theorem 2.

We have shown that the key of the protection
comes from the ability to characterize all sets of
parameters that produce the same trained model.
Once this set is characterized, making the final
choice of parameters in a way that is independent
of the training dataset (i.e., choosing a canonical
form) implies that the final parameters contain
no more information about the training dataset
than the strictly necessary to produce the out-
put. For neural networks, one could imagine ob-
taining a canonical form by proceeding in the
spirit of model extraction attacks [44, 45]. While
one would need to study carefully whether the
requirements for robustness are satisfied in this
scenario, one should bear in mind the increased
computation time and amount of necessary data
(after all, a second model must be trained from
input-output queries to the vulnerable one, ide-
ally using datapoints not used in the training of
the first), and the potential loss of accuracy en-
tailed by the process.

The standard in privacy protection within ma-
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Figure 2: Comparison between deep neural networks and MPS architectures when learning a model predicting the
outcome of COVID-19 infections given demographics and symptoms. Figures of merit are computed as a function of
the percentage of dominant value in the irrelevant feature, namely the parity of the day of reporting. For every such
percentage, several trainings are run for each of several different datasets, and statistics are computed over the full
ensemble of resulting models. Figures (a) and (b) show the neural network and MPS architecture used throughout the
experiments. In (b), each element is a tensor with as many dimensions as legs. The purple squares in the lower row
represent the parameters of the MPS. They are arranged in three-dimensional tensors, which are multiplied by their
neighboring tensors and by the input. This is encoded in the one-dimensional vectors depicted by the yellow squares
in the top row. The final tensor after multiplications via Eq. (2) is a vector encoding the output, because the bottom
leg of the orange square in the bottom row is free. The gauge symmetry that allows to erase information about
irrelevant features is the decomposition of the identity, represented by the green diamonds, in invertible matrices that
are later absorbed by the original tensors. Figures (c) and (d) show, respectively, the performance and vulnerability
of neural networks and MPS trained on the COVID dataset, as a function of the imbalance between the two values of
the irrelevant feature in the training set. The codes for generating these two figures are available in the computational
appendix [30]. Figure (c) depicts the average accuracy in the whole database from which the different training sets are
generated. The fact that models trained on datasets biased towards different values of the irrelevant feature perform
equally indicates that the feature is indeed irrelevant. Figure (d) represents the accuracy of attacks attempting to
predict the majority value of the irrelevant feature in the training dataset. Importantly, the MPS not expressed in
canonical form are vulnerable in a similar way to the neural networks, and some information remains in the residual
gauge freedom not fixed by the SVD-based canonical form (the green curve denoted by MPS+C). This information is
erased when randomizing over the residual freedom (the red curve denoted by MPS+C+S), or by using the univocal
canonical form of Theorem 2 (the purple curve denoted by MPS+U), which completely fixes the gauge.

chine learning is provided by differential privacy.
While now having become the standard in the in-
dustry in regards to privacy-preserving machine
learning [1, 2], adding the noise needed for en-
suring differential privacy imposes a tradeoff be-
tween the level of privacy and the utility of the

model. Moreover, the vulnerability illustrated re-
gards global properties of the dataset rather than
individual datapoints. Therefore, whether differ-
ential privacy protects against the vulnerability
demonstrated remains to be understood.

With this work we want to shift the focus to-
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wards a promising class of architectures for ma-
chine learning. Our contribution is a founda-
tional step in that direction, where many open
questions still lie ahead. We have provided only
an exemplary family of architectures, that of
matrix product states, which we prove to ad-
mit parametrizations that are no more informa-
tive than a black-box access to a trained model.
Our results nevertheless apply to any architec-
ture where different parametrizations lead to the
same model and where a global, smooth, and
one-to-one mapping can be defined between the
space of black-box representations and a repre-
sentative of every possible model. If such map-
ping exists, one can use it to eliminate infor-
mation that the final model should not have.
This part of the proof is not restricted neither
to MPS architectures, to general tensor-network
architectures, nor even to neural networks. How-
ever, given all the expertise of the community of
quantum many-body physics, it is expected that
model classes that satisfy the required conditions
are easier to find within the tensor-network fam-
ily [46]. Finding such architecture classes, which
are also enough expressive and easy to train, will
constitute a very important task. A promising
family is that of canonical polyadic decomposi-
tions of tensors, which are commonplace architec-
tures [40, 41] that are known to be invariant un-
der suitable rescalings and for which, under mild
conditions, a unique factorization exists [47].

In contrast with defenses based on differen-
tial privacy, the canonical form guarantees that
defense in tensor-network architectures can be
achieved with comparably little computational
overhead (namely only that required for comput-
ing the canonical form) and without compromis-
ing on prediction accuracy. However, tensor net-
work architectures can also be trained using dif-
ferentially private mechanisms, thus adding pri-
vacy of individual datapoints on top of the canon-
ical form. Still, more effort must be put into
the optimization of training of tensor-network ar-
chitectures, which only recently are finding ad-
vantages over state-of-the-art deep neural net-
work architectures [16–18]. For this, it is fun-
damental to develop tensor-network models be-
yond the highly structured ones developed within
the physics community (which, nevertheless, al-
ready cover large families of interesting architec-
tures [46]). A good source of inspiration is the

“tensorization” of popular deep learning mod-
els, a field that is rapidly gaining traction [48–
50]. More broadly, both neural-network and
tensor-network architectures can easily be com-
bined [14, 51, 52], so it is not unreasonable
to imagine having hybrid architectures where
tensor-network layers take care of some privacy
aspects, and neural-network layers do the heavy-
lifting on private data.

Going beyond machine learning, the equiva-
lence between black-box and white-box access to
functions described by MPS that we have proven
in this work has also the potential of having im-
portant impacts in cryptography. Indeed, equiv-
alence between black and white boxes is the fun-
damental concept in obfuscation [53]. Usually
discussed in the context of programs or circuits,
obfuscation refers to providing an alternative ob-
ject that performs the same task but whose de-
scription is “unintelligible”, meaning that any-
thing that could be understood from this descrip-
tion could as well be understood just from input-
output behavior. The line of argument drawn
by Observation 1 and Theorem 2 follows a spirit
very similar to a proof of obfuscation, motivating
a deeper exploration of the relations between ten-
sor networks and Boolean circuits, and describ-
ing a path for proofs of obfuscation in restricted
classes of circuits.
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A Dataset and training of models

To illustrate the fact that neural networks
are vulnerable to irrelevant feature leaks
and MPS are not, we have trained both
architectures in a real-world dataset, that
is part of the global.health database of
COVID-19 cases [31]. This is a very large
database that allows us to make small par-
titions, so that we can train shadow models
when illustrating the attacks. We take the
dataset available on March 22nd 2021, use
the data of two countries, Argentina and
Colombia, for generating our database. The
database built only contains the columns
location.country, events.outcome.value,
events.confirmed.date,
demographics.ageRange.start,
demographics.gender, and symptoms.status
from the whole dataset, and all datapoints where
at least one of these entries is empty are dis-
carded. As a first balancing between countries,
we take all entries for Argentina and, evenly,
one out of every seven (which is approximately
the ratio between the number of datapoints for
each country) points for Colombia’s cases where
the column events.outcome.value takes the
value Death, and the same amount for the cases
where events.outcome.value takes any other
value. As a second balancing, now between cases
with odd and even registration dates, we take all
cases where the column events.outcome.value
takes the value Death (a total of 21 503), and
the first 5 375 cases for each combination of
country and parity from the subset of points
where the column events.outcome.value takes
the value Recovered. We provide the computer
codes, written in Python, for generating the
database from the global.health dataset in the
computational appendix [30].

The classification task in which both, neural
networks and MPS, are trained, is predicting the
value for events.outcome.value when provided
the rest. While all features are discrete in nature,
we treat the age feature as continuous. As irrel-

evant feature, we choose the parity of the report
date, extracted from events.confirmed.date.
While this quantity is indeed expected to be ir-
relevant for the classification, we check that it is
sufficiently uncorrelated with the remaining fea-
tures (see Table 1).

The neural network model used is depicted in
Figure 2a and consists of a five-layer architecture
with structure 16-16-8-4-2, totalling 614 train-
able parameters. Each intermediate layer has a
rectified linear unit as activation. Training opti-
mizes the cross-entropy between the predictions
and the labels in batches of 8 datapoints, using
the Adam optimizer with learning rate of 3 ·10−4

and ℓ2 regularization of magnitude 6 · 10−3, for
at most 1 250 epochs. The final model picked
is that along the training history that achieves
higher accuracy in a held-out validation set com-
posed of 5 000 samples of the original database.

The matrix product state model is depicted in
Figure 2b and consists of six tensors where all the
dimensions have cardinality 2. This is, the left-
most and rightmost purple squares in Figure 2b
are 2 × 2 matrices, and the remaining purple
squares and the orange square are tensors of di-
mensions 2×2×2. All entries in all tensors (a to-
tal of 40) are free, trainable parameters. Training
optimizes the cross-entropy between the predic-
tions and the labels in batches of 100 datapoints,
using the Adam optimizer with learning rate of
10−1, for 20 epochs.

The encoding of categorical variables in the in-
put is different for both architectures. For neural
networks we perform a traditional one-hot en-
coding. In contrast, for MPS we perform a noisy
encoding, in such a way that for each datapoint
the class is encoded in a random value in ei-
ther

[
0, 1

2 − ϵ
]

or
[

1
2 + ϵ, 1

]
, with ϵ = 5 · 10−2.

Then, every dimension of the input is encoded
in a different two-dimensional vector via ψ(x) =
(1−x, x), and these are the objects that are input
to the MPS (the yellow squares in Figure 2b). For
the demographics.ageRange.start column, a
min-max normalization is performed before pro-
ducing the input vector. The different encod-
ing of the variables for neural networks and MPS
does not have severe impacts in the vulnerabil-
ity of the models: as demonstrated in Figure 2d,
the MPS architectures are still vulnerable if no
protection is applied.

The computation of representatives of the or-
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parity country age gender symptoms recovery
parity 1 0.005 0.001 0.001 −0.012 −0.002

country 1 0.059 0.033 0.161 −0.055
age 1 −0.010 0.128 −0.707

gender 1 0.004 0.078
symptoms 1 −0.143
recovery 1

Table 1: Pearson correlation coefficients between the columns of the dataset used for training the
neural network and MPS models. The columns in the table correspond to the columns (in or-
der) events.confirmed.date, location.country, demographics.ageRange.start, demographics.gender,
symptoms.status, and events.outcome.value of the original database.

bits of parametrizations of a same model is done
in three different ways: via singular value decom-
positions (the green curve, denoted by MPS+C
in Fig. 2d), sampling uniformly over the resid-
ual gauge freedom after computing the singular
value decomposition (the red curve, denoted by
MPS+C+S), and using the prescription devel-
oped in Theorem 2 (the purple curve, denoted
by MPS+U). As we commented in Section 5, it
is left for future work to analyse whether the
SVD-based canonical form fulfills similar regular-
ity properties as the new one we construct here
for the proof of Theorem 2. In any case, the anal-
ysis on Figure 2 indicates that, in practice, the
canonical form obtained via SVD guarantees a
significant degree of privacy, although some in-
formation is still encoded in the residual gauge
freedom left by the SVD that can be erased via
randomization.

B Attacks

The attacks we consider are in the spirit of
shadow modeling attacks [32, 33], whereby the
attacker is provided with a large collection of
models trained on datasets that share the statis-
tics of the dataset where the victim model has
been trained on. This is a situation where the
attacker has much more power than what is real-
istic, so the results are upper bounds to realistic
attacks.

In order to produce Figure 2d, we generate, for
every percentage of the majority class in the ir-
relevant variable, a total of 200 datasets (100 for
each majority class) with that proportion, ran-
domly sampled from the original dataset. On
each of these datasets, a total of 100 models are

trained according to the prescription described
in the previous section. This produces, for each
of the percentages (the horizontal axis of Fig-
ure 2d), 20 000 trained models. Out of all of
them, those corresponding to 80 of the datasets
are provided to the attacker along with their cor-
responding majority class, while the models for
the remaining 20 datasets will be those to be at-
tacked.

The attacker, depending on the type of mod-
els, does a different kind of attack: for neural
networks the attack consists of a logistic regres-
sor over the full set of models’ weights and biases
after a proper normalization, with ℓ2 regulariza-
tion and using the LBFGS solver. This attack
is arguably simple, but this only reinforces the
argument that neural networks are very vulner-
able to leaking the nature of irrelevant features.
Removing parameters and keeping those in the
initial layer, or doing PCA to reduce dimension-
ality, did not offer advantages to using the full
set of model parameters as input.

For MPS architectures, the attacker trains a
deep feedforward neural network that is input
the model weights (after a proper normalization)
and outputs the corresponding label. This was
done to provide the attack with more general-
ity, so it could hopefully extract more informa-
tion from the parameters of the model. The at-
tack neural network consists of six layers with
structure 20-20-10-10-2-2, using rectified linear
units as activation functions for the intermediate
layers. Training optimizes the cross-entropy be-
tween the predictions and the labels in batches
of 1 000 datapoints, using the Adam optimizer
with learning rate of 10−3 and ℓ2 regularization
of magnitude 10−4, for at most 1 000 epochs.
The set of 80 datasets is split randomly in an
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80-20 proportion as to generate a validation set
for early stopping.

In order to provide statistics, we train and eval-
uate the attacks for several random choices of the
80 datasets given to the attacker. We do a total
of 1 000 of these repetitions, which provide the
confidence intervals in Figure 2.
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