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Quantum networks with multiple sources allow the observation of quantum non-
locality without inputs. Consequently, the incompatibility of measurements is not a
necessity for observing quantum nonlocality when one has access to multiple quantum
sources. Here we investigate the minimal scenario without inputs where one can observe
any form of quantum nonlocality. We show that even two parties with two sources that
might be classically correlated can witness a form of quantum nonlocality, in particu-
lar quantum steering, in networks without inputs if one of the parties is trusted, that
is, performs a fixed known measurement. We term this effect as swap-steering. The
scenario presented in this work is minimal to observe such an effect. Consequently, a
scenario exists where one can observe quantum steering but not Bell non-locality. We
further construct a linear witness to observe swap-steering. Interestingly, this witness
enables self-testing of the quantum states generated by the sources and the local mea-
surement of the untrusted party. This in turn allows certifying two bits of randomness
that can be obtained from the measurement outcomes of the untrusted device without
the requirement of initially feeding the device with randomness.

1 Introduction
Quantum nonlocality is one of the most remarkable features of quantum mechanics that defy our
classical intuitions about the world. It refers to the property of quantum particles to exhibit cor-
relations that seem to occur instantaneously even when they are separated by large distances.
This quantum property was first conceptualized in the celebrated work of Einstein, Podolsky and
Rosen [EPR35]. Based on it, Bell in 1964 [Bel64; Bel66] proposed a theoretical test, known as
Bell’s inequality, that could distinguish between classical and quantum correlations. It was then
experimentally verified [ADR82; AGR81; Giu+15; Sha+15] and is now recognized as a fundamen-
tal aspect of quantum mechanics. The implications of quantum nonlocality are far-reaching, with
potential applications in fields such as cryptography, quantum teleportation, quantum communi-
cation, and quantum computing (refer to [Bru+14] for a review).

Another form of quantum nonlocality, known as quantum steering, allows for one observer to
remotely influence the state of another observer’s quantum system, even if the two observers are
separated by large distances. Quantum steering was first conceptualized by Schrodinger [Sch35]
and was then rigorously introduced in [WJD07]. The major difference between the scenarios to
observe Bell nonlocality and quantum steering is that one of the parties is assumed to be trusted
in the latter one, that is, known to perform fixed measurements.

To observe quantum nonlocality or quantum steering, any party involved in the experiment must
have at least two inputs as incompatible measurements are necessary to witness any of these phe-
nomena. Interestingly, quantum networks allow for witnessing such non-classical features without
the requirement of incompatibility of measurements. The framework to witness quantum nonlocal-
ity in networks was introduced in [BGP10; Bra+12; Fri12]. However, it was first noted in [Bra+12]
and then in [Fri12] that considering independent sources shared between non-communicating par-
ties allows one to observe quantum nonlocality with a single fixed measurement for every party.
Recently, the authors in [Ren+19; RB22; PGR23; Šup+22] explore this phenomenon to construct
scenarios where one can observe genuine quantum network nonlocality.
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One of the intriguing problems in this regard concerns the minimal scenario in which any
form of quantum nonlocality can be observed without any inputs. It was shown in [Ren+19], that
genuine network nonlocality can be observed without inputs if there are three parties with three
independent sources. Inspired by entanglement swapping [Zuk+93], we show here that if one of the
parties is assumed to be trusted then one can observe a form of quantum nonlocality, which we term
as swap-steering, using only two parties and two sources. Unlike most of the considered quantum
network scenarios where one assumes independence of the sources [see nevertheless Ref. [SBB20;
Sar24a]], we relax this assumption and allow the sources to be classically correlated. Moreover, the
swap-steering scenario is the minimal scenario where one can observe a form of quantum nonlocality
without inputs. Further on, there is a lack of witnesses when observing quantum nonlocality without
inputs in networks. This restricts the possibility of testing these phenomena at the operational
level. Interestingly, we find a linear witness to observe swap-steering thus, making our notion of
nonlocality experimentally testable. We further identify some states that are unsteerable in the
standard quantum steering scenario are swap-steerable. In particular, any entangled two-qubit
Werner state is swap-steerable, which can be interpreted as an entanglement-assisted activation of
quantum steering.

As an application of our work, we utilize the above result for one-sided device-independent
(DI) certification where one can completely characterize the states generated by the sources and
the untrusted measurements up to some degrees of freedom. Using the outcomes of the certified
measurement, one can then generate genuine randomness even when an intruder might have ac-
cess to them. This is extremely important for any cryptographic scheme as the security of these
schemes relies on access to random number generators. Moreover, any of the known schemes for DI
certification of states, measurements or randomness requires access to seed randomness, that is, the
measurement devices whose outcomes will be used to generate random numbers, have inputs that
have to be chosen randomly in order for the protocol to be secure [for instance see Refs. [Pir+10;
Ací+16; Góm+19; And+18; Cur+17; FGS13; NPS14; Tav+21; Šup+16; Sar+21; Bor+22]]. Fur-
thermore, DI certification of quantum states and measurements in quantum networks was recently
explored in Refs. [RKB18; ŠB23; Zho+22; Šup+23; Šup+22; SBB23; Sar+23b]. However, all of
these certification schemes require at least two inputs for most of the measurement devices. A
partial certification scheme was proposed in [SBB23] that utilizes the genuine network nonlocal-
ity without inputs in a triangle network [Ren+19]. However, using the proposed scheme [SBB23],
one can only conclude that the sources need to prepare entangled states with at least 2.5 % of
entanglement of formation and one can securely extract randomness of .04 bits. We utilize the
maximal violation of the proposed swap-steering inequality for self-testing the singlet state along
with the Bell basis which is then used for generating secured randomness of two bits without the
requirement to initially feed the devices with random numbers. This is the first instance where the
exact certification of quantum states, measurements, and randomness could be achieved without
inputs.

2 The scenario
In this work, we consider the simplest scenario consisting of two parties namely, Alice and Bob in
two different labs far away from each other. Both of them receive two subsystems from two different
sources S1, S2 that might be classically correlated to each other. Now they perform a single four-
outcome measurement on their respective subsystems where the outcomes are denoted as a, b =
0, 1, 2, 3 respectively for Alice and Bob. Alice is trusted here implying that the measurement per-
formed by her on her subsystems is known (see Fig. 1). We consider here that she performs the mea-
surement corresponding to the Bell basis given byMA = {|ϕ+⟩⟨ϕ+| , |ϕ−⟩⟨ϕ−| , |ψ+⟩⟨ψ+| , |ψ−⟩⟨ψ−|}A1A2

where

|ϕ±⟩A1A2
= 1√

2
(
|0⟩A1

|0⟩A2
± |1⟩A1

|1⟩A2

)
|ψ±⟩A1A2

= 1√
2

(
|0⟩A1

|1⟩A2
± |1⟩A1

|0⟩A2

)
. (1)
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Figure 1: Swap-steering scenario. Alice and Bob are spatially separated and each of them receives two subsystems
from the sources S1, S2. On the received subsystem they perform a single four-outcome measurement. Alice
is trusted here, meaning that she is known to perform the Bell-basis measurement. They are not allowed to
communicate during the experiment, however, the sources might classically communicate with each other. Once
it is complete, they construct the joint probability distribution {p(a, b)}.

Here A1/A2, B1/B2 denote the two different subsystems of Alice and Bob respectively. Notice that
in the particular case when the sources generate the singlet state, the above scenario is equivalent
to entanglement swapping.

Now, Alice and Bob repeat the experiment enough times to construct the joint probability
distribution (correlations) p⃗ = {p(a, b)} where p(a, b) denotes the probability of obtaining outcome
a, b with Alice and Bob respectively. These probabilities can be computed in quantum theory as

p(a, b) =
∑
j

pj Tr
[
(Ma ⊗N b)ρjA1B1

⊗ ρjA2B2

]
(2)

where Ma, N b denote the measurement elements of Alice and Bob which are positive and
∑
aM

a =∑
bN

b = 1 and
∑
j pj = 1. It is important to recall here that Alice and Bob can not communicate

with each other during the experiment.

3 Swap-steering
Suppose that there are some variables λi that are being sent by the sources Si as depicted in Fig.
2. Further on, as Alice is known to perform quantum measurements, the variable she receives is
some quantum state ρλ1,λ2 , however, there is no such restriction on Bob. Let us now state the two
assumptions, namely outcome-independence and separable quantum sources, that must be satisfied
if Bob is classical, or equivalently if the correlations are not swap-steerable from Bob to Alice.

Assumption 1 (Outcome-independence). The outcomes of two parties are independent of each
other if one has access to the hidden variables λi.

In the scenario considered in this work, Bob’s outcome b being independent of Alice’s outcome
a means that for any a, b, λ1, λ2,

p(b|λ1, λ2, a) = p(b|λ1, λ2). (3)

This is a weaker definition of locality when compared to Bell’s assumption of locality, or the notion
of locality in the standard quantum steering scenario.
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Figure 2: Difference between SOHS and NLHV model in the minimal scenario. (left) Alice and Bob can explain
the observed correlations p(a, b) using a SOHS model. Alice is trusted and thus receives quantum states from
the sources but there is no restriction over Bob. The grey box denotes an unknown source of classical random
variables that might correlate the sources S1, S2. (right) Alice and Bob can explain the observed correlations
p(a, b) using a NLHV model.

Assumption 2 (Separate quantum sources). Two sources Si (i = 1, 2) generating a joint quantum
state ρλ1,λ2 are separate if the state ρλ1,λ2 is separable for any λ1, λ2.

Notice that the in above assumption 2, we impose on the sources is weaker when compared
to independent quantum sources. As a matter of fact, the above assumption allows the sources
to communicate classically with each other or equivalently the sources might generate classically
correlated states. Now, given two sources Si for i = 1, 2 that generate some (for now hidden) states
λi, we can always express the probability p(a, b) as

p(a, b) =
∑
λ1,λ2

p(λ1, λ2)p(a, b|λ1, λ2). (4)

Using Bayes rule and the fact that Alice is known to be performing quantum measurements, we
can express the above expression as

p(a, b) =
∑
λ1,λ2

p(λ1, λ2)p(a|ρλ1,λ2)p(b|λ1, λ2, a). (5)

Assuming outcome-independence, we arrive at

p(a, b) =
∑
λ1,λ2

p(λ1, λ2)p(a|ρλ1,λ2)p(b|λ1, λ2). (6)

Now, assuming separable quantum sources [assumption 2] we express ρλ1,λ2 using pure state
decompositions to arrive at the following expression of p(a, b)

p(a, b) =
∑
λ1,λ2

p(λ1, λ2)
∑
pj

λ1,λ2

pjλ1,λ2
p(a|

∣∣∣ψjλ1

〉 ∣∣∣ψjλ2

〉
)p(b|λ1, λ2). (7)

If correlations p⃗ admit the form (7), then they are describable using a separable outcome-independent
hidden state (SOHS) model. A simple example of the SOHS model would be that sources S1, S2
locally toss a coin, that is, λ1/2 = {1(head),2(tail)} based on which they send a state ρλ to Alice
and the outcome of the toss to Bob.

To witness swap-steering, a functional W can be constructed which depends on p⃗ as

W (p⃗) =
∑
a,b

ca,bp(a, b) ≤ βSOHS (8)
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where ca,b are real coefficients and βSOHS denotes the maximum value attainable using assemblages
admitting a SOHS model (7). For the purpose of this article, we consider only functionals that are
linear over p⃗.

Now, consider the following functional

W = p(0, 0) + p(1, 1) + p(2, 2) + p(3, 3) ≤ βSOHS (9)

Recall here that Alice is trusted and performs the measurements with elements given in (1). Let
us now find the maximum value that can be achieved using correlations that admit a SOHS model
(7).

Fact 1. Consider the swap-steering functional W (9). The maximum value βSOHS that can be
achieved using correlations that admit a SOHS model (7) of W is βSOHS = 1

2 .

Proof. The proof follows the exact same lines as presented in [SSA22; Sar23; Sar+23a]. Let us
consider the steering functional W in Eq. (9) and express it in terms of the SOHS model (7) as

3∑
a=0

∑
λ1,λ2

p(λ1, λ2)p(a|ρλ1,λ2)p(a|λ1, λ2) ≤
∑
λ1,λ2

p(λ1, λ2) max
a

{p(a|ρλ1,λ2)} (10)

where we used the fact that
∑
a p(a|λ1, λ2) = 1 for any λ1, λ2. Now, maximising over ρλ1,λ2 gives

us ∑
λ1,λ2

p(λ1, λ2) max
a

{p(a|ρλ1,λ2)} ≤
∑
λ1,λ2

p(λ1, λ2) max
ρλ1,λ2

max
a

{p(a|ρλ1,λ2)}. (11)

Now, using the fact that
∑
λ1,λ2

p(λ1, λ2) = 1 for i = 1, 2 allows us to conclude that

βSOHS ≤ max
|ψ⟩A1

,|ψ⟩A2

max
a

{p(a| |ψ⟩A1
, |ψ⟩A2

)}. (12)

As the steering functional W is linear, without loss of generality we consider the maximization
only over pure states. Now, putting in the measurement of the trusted Alice (1), which locally
acts on qubit Hilbert spaces, and thus optimizing over pure states |ψ⟩A1

, |ψ⟩A2
∈ C2 gives us

βSOHS ≤ 1
2 . This bound can be saturated when the sources prepare the maximally mixed ρi =

1
2 (|00⟩⟨00| + |11⟩⟨11|)AiBi

and the measurement with Bob is {|00⟩⟨00| , |01⟩⟨01| , |10⟩⟨10| , |11⟩⟨11|}.
This state clearly has a SOHS model and thus we get the desired SOHS bound.

Consider that the sources prepare the state |ψi⟩ = |ϕ+⟩AiBi
and Bob performs the same mea-

surement as Alice, that is, MB = {|ϕ+⟩⟨ϕ+| , |ϕ−⟩⟨ϕ−| , |ψ+⟩⟨ψ+| , |ψ−⟩⟨ψ−|}B0B1 where the corre-
sponding states are given in (1). Using these states and Bob’s measurement one can simply evaluate
the steering functional W in (9) to get the value 1, which is the quantum bound of W . Notice that
this is also the algebraic value of W .

Let us also show here that one can not observe Bell-type non-locality with only two parties
without inputs. Without loss of generality, we consider here the scenario similar to one depicted
in Fig. 1 such that Alice and Bob perform a measurement with arbitrary number of outcomes on
subsystems sent by two independent or classically correlated sources. However, unlike the previous
scenario, Alice is untrusted. If the correlations p⃗ = {p(a, b)} admit a network-local hidden variable
(NLHV) model [Ren+19; Šup+22], then they can be represented as

p(a, b) =
∑
λ1,λ2

p(λ1)p(λ2)p(a|λ1, λ2)p(b|λ1, λ2) (13)

for any a, b. Let us state the following fact which is simple to prove.

Fact 2. Consider the scenario depicted in Fig. 2. The correlations p⃗ = {p(a, b)} obtained by Alice
and Bob can always be described by an NLHV model (13).
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Proof. It is well-known that if Alice and Bob do not have inputs in the standard Bell scenario,
then any joint correlation can be represented using an LHV model of the form

p(a, b) =
∑
λ

p(λ)p(a|λ)p(b|λ). (14)

Now, let us consider the scenario depicted in Fig. 2 and consider that Alice and Bob’s outcomes
are independent of the source S2 , that is, p(a|λ2) = p(a) and p(b|λ2) = p(b). Now, Eq. (14) can
be rewritten using λ2 and the fact that

∑
λ2
p(λ2) = 1 as

p(a, b) =
∑
λ,λ2

p(λ)p(λ2)p(a|λ, λ2)p(b|λ, λ2) (15)

which is the form (13).

The above fact can be straightforwardly generalized to the scenario with arbitrary number of
sources between Alice and Bob. It is then well-known that one can not observe any non-locality
without inputs when there is a single source distributing subsystems to Alice and Bob. Thus, to
observe any form of quantum non-locality in the minimal possible scenario, in the sense that there
are no inputs and only two parties, one has to trust either of the parties. Consequently, quantum
steering can also be observed in scenarios where one can not observe Bell non-locality. Let us
now show that a class of states that is unsteerable in the standard quantum steering scenario is
swap-steerable.

3.1 Entanglement assisted activation of steerability
Let us now consider the Werner state given by

ρW (α) = α |ϕ+⟩⟨ϕ+| + (1 − α)14 . (16)

The above state is separable iff α ≤ 1
3 [Wer89]. As proven in [WJD07; Bow+16], the above state

is steerable in the standard quantum steering scenario iff α > 1
2 . Thus, in the range of 1

3 < α ≤ 1
2 ,

the Werner state is unsteerable but entangled. We show here that the Werner state when coupled
with the maximally entangled state is swap-steerable. Thus when assisted with entanglement,
unsteerable states can be activated to display steerability without inputs.

Fact 3. The Werner state ρW (α) (16) with the maximally entangled state is swap-steerable for
any α > 1

3 .

Proof. Consider the scenario presented in Fig. 1. Now, suppose that the source Si generates the
state ρWAiBi

(αi) for i = 1, 2. Bob again performs the Bell basis measurement MB . Given these states
and measurements, let us again evaluate the steering functional W in (9) to obtain

W = 3α1α2 + 1
4 . (17)

As proven above in Fact 1, if W > 1
2 then the state is swap-steerable from Bob to Alice. Thus, we

have from (17) that the Werner state (16) is steerable if 3α1α2+1
4 > 1

2 . Consequently, for any value
of α1α2 >

1
3 , the Werner states are swap-steerable. Let us now observe that if α1 = 1, that is, the

source S1 generates maximally entangled state, then for any α2 >
1
3 the Werner state becomes

swap-steerable.

Thus, some states that are unsteerable in the standard quantum steering scenario can be ac-
tivated using the maximally entangled state and shown to be swap-steerable. However, we also
notice that to observe swap-steering, the states generated by both sources can not be unsteerable
simultaneously. Let us now find some necessary conditions to observe swap-steering.
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3.2 Necessary conditions for swap-steering
Consider again the scenario depicted in Fig. 1. Notice that one of the trivial necessary conditions
to observe swap-steering is that the trusted party, here Alice, needs to perform an entangled
measurement. Let us now restrict to the case when the number of outcomes on Bob’s side is a
composite number, that is, b = b0b1 where b0, b1 are positive integers. Now, Bob’s measurement
{N b} with b = b0b1 prepares a set of positive operators on the trusted Alice’s side, known as
assemblage, denoted as {σb} where σb =

∑
j pj TrB(1A ⊗N bρjA1B1

⊗ ρjA2B2
). Now, we show that if

the assemblage is of a particular form, one can never observe swap-steering.

Fact 4. Consider the swap-steering scenario depicted in Fig. 1 where Alice and Bob share the
states ρA1B1 , ρA2B2 . Let us assume that Bob performs a n−outcome measurement which prepares
the assemblage {σb0b1} on the trusted Alice’s side. If σb0b1 is separable for b0 = 0, 1, . . . , n1−1, b1 =
0, 1, . . . , n2 − 1,then there exists a SOHS model for both the states ρA1B1 , ρA2B2 .
Proof. Let us first notice that∑

b0,b1

σb0b1 =
∑
b0,b1,j

pj TrB(1A ⊗N bρjA1B1
⊗ ρjA2B2

)

=
∑
j

pjρ
j
A1

⊗ ρjA2
(18)

which also allows us to conclude that
∑
b0,b1

Tr(σb0b1) = 1. Consider now the assemblage {σb0b1}
is separable, that is, the operators σb0b1 =

∑
j σ

j
b0

⊗ σjb1
. Notice that the following states

ρ̃jAiBi
= 1

Ni,j

ni−1∑
bi=0

σjbi,Ai
⊗ |bi⟩⟨bi|Bi

(19)

where Ni,j =
∑
bi

Tr
(
σjbi

)
and Bob performing a measurement of the form

M̃b0b1 = |b0⟩⟨b0|B1
⊗ |b1⟩⟨b1|B2

(20)

for bi = 0, 1 . . . , ni−1 give the same assemblage on Alice’s side as the states
∑
j pjρ

j
A1B1

ρjA2B2
and

the measurement Mb = {N b}. It is straightforward to observe that the states ρ̃AiBi
are separable

and thus the ρAiBi
admit a SOHS model.

Consequently, one can observe from Fact 4 that if Bob performs a product measurement, then
the states are not swap-steerable from Bob to Alice. Further on, both states prepared from the
sources are needed to be entangled to observe swap-steering. Thus, to observe swap-steering both
the states and measurements must be entangled.

4 Self-testing and randomness certification
Let us now utilise the above swap-steering inequality (9) for self-testing the quantum realisations
suggested after Fact 1. Self-testing in the 1SDI scenario was first defined in Ref. [ŠH16; GWK17].
Inspired by [SSA22; Sar+23a; Sar23], we present a general definition of self-testing in the 1SDI
scenario in quantum networks without inputs with one trusted party. Interestingly, we do not
require assuming a pure underlying state or projective measurements. For a note, we express the
measurements of both parties in the observable picture and represent it as A0, B0. For a discussion
on observables refer to Appendix A.

Let us revisit the previous experiment in which Alice and Bob conduct measurements on the
states ρAB prepared by the sources Si (i = 1, 2) and observe the correlations p(a, b). It is important
to note that Alice’s observables A0 is fixed, whereas Bob’s observables B0 is arbitrary. Now, let us
examine a reference experiment that reproduces the same statistics as the actual experiment but
involves the states ρ̃AB and observables represented by B̃0, which both parties wish to validate.
The states ρAB and the observables B0 are self-tested from {p(a, b)} if there exists a unitary
UB : HB → HB such that

(1A ⊗ UB)ρAB(1A ⊗ U†
B) = ρ̃AB′ ⊗ ρB′′ , (21)
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UB B0 U
†
B = B̃0 ⊗ 1B′′ , (22)

where HB decomposes as HB = HB′ ⊗ HB′′ such that HB′′ denotes the junk Hilbert space. The
states ρB′′ and 1B′′ denote the junk state and the identity acting on HB′′ .

Let us now state our self-testing statement but before proceeding, let us define Alice’s observable
corresponding to the Bell basis as

A0 =
4∑
k=1

i
k |ϕk⟩⟨ϕk| . (23)

where |ϕ1⟩ = |ϕ+⟩ , |ϕ2⟩ = |ψ+⟩ , |ϕ3⟩ = |ϕ−⟩ , |ϕ4⟩ = |ψ−⟩.

Fact 5. Assume that the steering inequality (9), with trusted Alice choosing the observable A0 (33),
is maximally violated by a separable state ρAB acting on C2 ⊗C2 ⊗ HB and Bob’s observable B0.
Then, the following statements hold true:

1. Bob’s measurement is projective with his Hilbert space decomposing as HB = (C2)B′
1

⊗ (C2)B′
2

⊗
HB′′

12
for some auxiliary Hilbert space HB′′

12
= HB′′

1
⊗ HB′′

2
.

2. There exist unitary transformations, Ui : HB → HB, such that

(1A ⊗ UB)ρAB(1A ⊗ U†
B) =

∣∣ϕ+〉〈
ϕ+∣∣

A1B′
1

⊗
∣∣ϕ+〉〈

ϕ+∣∣
A2B′

2
⊗ ρB′′

1 B
′′
2
, (24)

where B′′
i denotes Bob’s auxiliary system, and

UB B0 U
†
B = A0 ⊗ 1B′′

1 B
′′
2

(25)

where UB = U1 ⊗ U2.

The proof of the above fact is given in Appendix A. An interesting application of the above self-
testing statement is that the untrusted Bob’s measurement device can generate true randomness
that is secure against adversaries. For this purpose, we consider an eavesdropper, Eve, who cannot
directly read Bob’s outcomes but may have correlations with him that she can exploit to infer his
results. Consequently, we consider a state ρABE which is shared among Alice, Bob and Eve. As
Eve’s dimension is unrestricted, we can purify the state as |ψABE⟩ such that TrE ψABE = ρAB
where ρAB is separable.

Now, to certify whether the measurement outcomes as observed by Bob is truly random, we
consider that Eve wants to guess the outcome of Bob’s measurement. In order to do so, she performs
a measurement Z = {Ee} on her part of the shared states. Here the outcome e is Eve’s best guess
of Bob’s outcome. However, any operation by Eve should not alter the statistics p⃗ = {p(a, b)}
observed by Alice and Bob, that is,

p(a, b) = ⟨ψ|Ma ⊗Nb ⊗ 1E |ψ⟩ . (26)

This is extremely important as the adversary Eve would like to remain invisible to Alice and Bob.
The number of random bits that can be securely generated from Bob’s measurement is quan-

tified as Hmin = − log2 G(y, p⃗) [Pir+10], where G(y, p⃗) is known as the local guessing probability
which can be computed as,

G(p⃗) = sup
S∈Sp⃗

∑
b

⟨ψ|1A ⊗Nb ⊗ Eb |ψ⟩ , (27)

where Sp⃗ is the set of all Eve’s strategies comprising of the shared states and her measurement
that reproduce the probability distribution p⃗ as expected by Alice and Bob.

Let us now suppose that the swap-steering inequality (9) is maximally violated by p⃗. As proven
above in Fact 5, this implies that the state shared by Alice, Bob, and Eve up to local unitary
operations is, |ψABE⟩ =

∣∣∣ϕ+
A1B′

1

〉 ∣∣∣ϕ+
A2B′

2

〉 ∣∣auxB′′
12E

〉
as well as Nb = |ϕb⟩⟨ϕb| ⊗ 1B′′

12
where |ϕb⟩ are

given above Eq. (33). Putting these states and measurement in the formula (27) we obtain

G(p⃗) =
∑
b

〈
ϕ+∣∣ 〈

ϕ+∣∣ (1A ⊗ |ϕb⟩⟨ϕb|)
∣∣ϕ+〉 ∣∣ϕ+〉

⟨aux|1B12′′ ⊗ Eb |aux⟩ . (28)
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Now for all b, ⟨ϕ+| ⟨ϕ+| (1A ⊗ |ϕb⟩⟨ϕb|) |ϕ+⟩ |ϕ+⟩ = 1/4 which allows us to conclude from (28) that

G(p⃗) = 1
4

∑
b

⟨aux|1B12′′ ⊗ Eb |aux⟩ = 1
4 . (29)

Consequently, − log2 G(p⃗) = 2 bits of randomness can be certified from Bob’s measurement out-
comes using our self-testing scheme.

It is important to note here that the generation of secure randomness is based on the assumption
that the sources can only be correlated in a classical way. However, the adversary can always guess
the outcomes of Bob if she manages to entangle the sources. For instance, (i) she can prepare both
devices beforehand or (ii) she herself could perform an entangled measurement on the systems
arriving on Bob’s side and then send the outcome to Bob. This problem would persist in any security
protocols involving two different constrained sources. However, the second type of attack (ii) can
be avoided if Bob randomly chooses not to perform a measurement in some runs of the experiment.
Since Eve is unaware of this fact, she would still entangle both sources and can be detected by
Alice. It will be extremely interesting if Alice and Bob can perform some local operations on their
subsystems to figure out whether the received subsystems are generated from separable sources or
not.

5 Discussions
The idea of quantum steering in networks was introduced recently in [Jon+21]. However, the
scenario considered in this work was not dealt with in Ref. [Jon+21]. Further on, the notion of
quantum steering in networks [Jon+21] required the trusted party to perform a full tomography
which implied that the trusted party has inputs. Contrary to this, in the swap-steering scenario
described above even the trusted party performs a single fixed measurement. This also makes
our scheme experimentally friendly as one has to consider less number of correlations in order to
witness quantum steering in networks. However, the measurement elements of the trusted party
are maximally entangled and thus it would be beneficial to explore the possibilities of observing
swap-steering with less entangled measurements.

Constructing witnesses to observe quantum nonlocality in networks has been extremely difficult
mainly due to the fact that the network-local polytope might not be convex as shown in [BGP10]
[see nevertheless Ref. [Sar24a]]. In this work, we find that assuming one of the parties to be trusted
allows constructing linear witnesses to observe a form of quantum nonlocality in networks. One
of the interesting follow-up directions would be to explore the structure of the set of correlations
admitting the SOHS model. We showed in this work that any entangled Werner state can be used to
witness swap-steering. An interesting follow-up question is whether every entangled state violates
the notion of swap-steering. This problem has now been resolved for every bipartite entangled
state in [Sar24b]. Another direction to explore will be toward generalizing the notion of swap-
steering to more parties and outcomes. It is known that quantum steering is asymmetric, that
is, there are quantum states that are steerable from Alice to Bob but not the other way around.
It will be interesting to find similar properties of quantum states when considering the notion
of swap-steering. Furthermore, we used swap-steering for the certification of randomness without
seed randomness. It will be highly desirable to generalize the above scheme to the DI regime where
no party is trusted. Another direction would be to generalize the scheme presented in this work
to certify an unbounded amount of randomness. Moreover, it would be interesting to investigate
whether the randomness certification can be made robust to experimental imperfections.
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A Self-testing
In quantum theory, it is advantageous to express the correlations {p(a, b)}in terms of expectation
values rather than probability distributions. When dealing with d-outcome measurements, a useful
technique is to utilize the two-dimensional Fourier transform of the conditional probabilities p(a, b)
as

⟨A(k)
0 B

(l)
0 ⟩ =

d−1∑
a,b=0

ωak+blp(a, b), (30)
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where ω is the d-th root of unity ω = exp(2πi/d) and k, l = 0, . . . , d− 1 and A
(k)
0 , B

(l)
0 are known

as observables. Using the inverse Fourier transform of (30), we obtain that

p(a, b) = 1
d2

d−1∑
k,l=0

ω−(ak+bl)⟨A(k)
0 B

(l)
0 ⟩. (31)

The expectation value appearing on the left-hand side of Eq. (30) can be simply represented as
⟨A(k)

0 B
(l)
0 ⟩ = Tr

(
A

(k)
0 ⊗B

(l)
0 ρAB

)
for some state ρAB with {A(k)

0 } and {B(l)
0 } are operators defined

as

A
(k)
0 =

d−1∑
a=0

ωakP (a), B
(l)
0 =

d−1∑
b=0

ωblQ(b). (32)

where P (a), Q(b) represent the measurement elements of Alice, Bob respectively. As proven in
[Kan+19], the observables A(k)

0 have the following properties (same for B(l)
0 ): A(d−k)

0 = (A(k)
0 )† and

A
(k)
0 (A(k)

0 )† ≤ 1. For the special case of projective measurements, the observables A(k)
0 are unitary

and A
(k)
0 = (A(1)

0 )k = Ak0 . As Alice performs the Bell-basis measurement whose corresponding
measurement elements for the rest of the manuscript will be denoted as |ϕ1⟩ = |ϕ+⟩ , |ϕ2⟩ =
|ψ+⟩ , |ϕ3⟩ = |ϕ−⟩ , |ϕ4⟩ = |ψ−⟩ and the corresponding observable using (32) is given as

A0 =
4∑
k=1

i
k |ϕk⟩⟨ϕk| . (33)

Let us first revisit the swap-steering inequality (9) and then using (31), the above steering
inequality can be simply represented as

W = 1
4

3∑
k=0

⟨Ak0 ⊗B
(4−k)
0 ⟩ ≤ βLHS (34)

The quantum bound of the above steering inequality is 1 which is also the maximum algebraic
value of W . Consequently, we observe from (34) that the maximum value can be attained iff each
term is 1, that is, for k = 0, 1, 2, 3

⟨Ak0 ⊗B
(4−k)
0 ⟩ = 1. (35)

Now, using Cauchy-Schwarz inequality we get that

Ak0 ⊗B
(4−k)
0 ρAB = ρAB . (36)

Recalling that ρAB is separable, we can express it as ρAB =
∑
j pj ρ

j
A1B1

⊗ ρjA2B2
which using its

eigendecomposition can be expressed as ρAB =
∑
s,s′ ps,s′ |ψs,A1B1⟩⟨ψs,A1B1 | ⊗ |ψs′,A2B2⟩⟨ψs′,A2B2 |.

Consequently, we get from the above expression Eq. (38) that∑
s,s′

ps,s′Ak0 ⊗B
(4−k)
0 ψ1

s ⊗ ψ2
s′ =

∑
s,s′

ps,s′ ψ1
s ⊗ ψ2

s′ (37)

where for simplicity, we represent the states |ψs,AiBi
⟩⟨ψs,AiBi

| as ψis. It is now straightforward to
observe from the above relation that for all s, s′

Ak0 ⊗B
4−k
0,ss′

∣∣ψ1
s

〉 ∣∣ψ2
s′

〉
=

∣∣ψ1
s

〉 ∣∣ψ2
s′

〉
(38)

Here B0,ss′ is the projection of B0 on the support of TrA ψ1
s ⊗ TrA ψ2

s′ . The above relations are
sufficient to self-test the state ρAB and Bob’s measurement B0. Before proceeding toward the self-
testing result, it is important to recall the assumption that the local states are full-rank as the
measurements can only be characterized on the local support of the states. For a note, we closely
follow the techniques introduced in [SSA22].
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Fact 5. Assume that the steering inequality (34), with trusted Alice choosing the observable A0
(33), is maximally violated by a separable state ρAB acting on C2 ⊗C2 ⊗ HB and Bob’s observable
B0. Then, the following statements hold true:

1. Bob’s measurement is projective with his Hilbert space decomposing as HB = (C2)B′
1

⊗ (C2)B′
2

⊗
HB′′

12
for some auxiliary Hilbert space HB′′

12
= HB′′

1
⊗ HB′′

2
.

2. There exist unitary transformations, Ui : HB → HB, such that

(1A ⊗ UB)ρAB(1A ⊗ U†
B)

=
∣∣ϕ+〉〈

ϕ+∣∣
A1B′

1
⊗

∣∣ϕ+〉〈
ϕ+∣∣

A2B′
2

⊗ ρB′′
1 B

′′
2
, (39)

where B′′
i denotes Bob’s auxiliary system, and

UB B0 U
†
B = A0 ⊗ 1B′′

1 B
′′
2

(40)

where UB = U1 ⊗ U2.

Proof. Let us first show that Bob’s measurement is projective. For this purpose, we consider the
relations (36) for k = 1 and then multiply it with A3

0 ⊗B0 to obtain

1A ⊗B0B
(3)
0 ρAB = A3

0 ⊗B0 ρAB (41)

where we used the fact that A4
0 = 1A. Notice that the right-hand side of the above expression (41)

can be simplified using the relation (36) for k = 3 to obtain

1A ⊗B0B
(3)
0 ρAB = ρAB . (42)

Thus, taking a partial trace over Alice’s subsystem and recalling that B(3)
0 = B†

0 gives us

B0B
†
0 ρB = ρB (43)

where ρB = TrB ρAB . As the local states are full-rank, they are invertible too and consequently
one can arrive at

B0B
†
0 = 1B . (44)

Similarly, one can also find that B†
0B0 = 1B . Both these relations of Bob’s observable suggest that

the observable B0 and unitary, and thus Bob’s measurement is projective. In a similar manner,
considering the relation (38) one can observe that B0,ss′ for all s, s′ are unitary.

Let us now consider the relation Eq. (38) and characterize the states
∣∣ψ1
s

〉
,
∣∣ψ2
s′

〉
that satisfy

the relation (38). For simplicity, we drop the indices s, s′ for now. As the local states on Alice’s
side belong to C2, using Schmidt decomposition we represent

∣∣ψ1〉
,
∣∣ψ2〉

as∣∣ψi〉 =
∑
j=0,1

λj,i |ej,i⟩ |fj,i⟩ (45)

where λj,i ≥ 0 and {|ej,i⟩}, {|fj,i⟩} form an orthonormal basis for each i. Now applying a unitary
Ui on these states such that Ui |fj,i⟩ =

∣∣e∗
j,i

〉
gives us∣∣ψ̃i〉 = Ui

∣∣ψi〉 =
∑
j=0,1

λj,i |ej,i⟩
∣∣e∗
j,i

〉
. (46)

Now, notice that the state on the right-hand side can be represented as∣∣ψ̃i〉 = Pi ⊗ 1Bi

∣∣ϕ+〉
(47)

where

Pi =
√

2
∑
j=0,1

λj,i |ej,i⟩⟨ej,i| . (48)
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Notice that Pi is full-rank as states that are separable between Alice and Bob can not violate the
swap-steering inequality (9). Putting the state (47) in the relation (38) gives us

A0(P1 ⊗ P2) ⊗ B̃†
0

∣∣ϕ+〉 ∣∣ϕ+〉
= P1 ⊗ P2

∣∣ϕ+〉 ∣∣ϕ+〉
(49)

where B̃0 = U†
1 ⊗ U†

2 B0 U1 ⊗ U2. Now, using the fact that∣∣ϕ+〉
A1B1

∣∣ϕ+〉
A2B2

=
∣∣ϕ+

4
〉
A1A2|B1B2

(50)

where
∣∣ϕ+

4
〉

is the maximally entangled state of local dimension four. This allows us to conclude
from (49) that

(P−1
1 ⊗ P−1

2 )A0(P1 ⊗ P2) ⊗ B̃†
0

∣∣ϕ+
4

〉
=

∣∣ϕ+
4

〉
. (51)

Now, using the fact that R ⊗ Q |ϕ+⟩ = RQT ⊗ 1 |ϕ+⟩, where T denotes the transpose in the
computational basis, gives us

(P−1
1 ⊗ P−1

2 )A0(P1 ⊗ P2)B̃∗
0 ⊗ 1B

∣∣ϕ+
4

〉
=

∣∣ϕ+
4

〉
. (52)

Taking the partial trace over B′s subsystem allows us to conclude that

(P−1
1 ⊗ P−1

2 )A0(P1 ⊗ P2)B̃∗
0 = 1A (53)

which eventually leads us to Bob’s measurement being

B̃T0 = (P−1
1 ⊗ P−1

2 )A0(P1 ⊗ P2). (54)

As B̃0 is unitary and P1, P2 are Hermitian, we get from the above condition that

(P−1
1 ⊗ P−1

2 )A0(P1 ⊗ P2)2A†
0(P−1

1 ⊗ P−1
2 ) = 1A. (55)

Rearranging the terms we obtain that

A0(P1 ⊗ P2)2 = (P1 ⊗ P2)2A0 (56)

which is equivalent to

[A0, (P1 ⊗ P2)2] = 0. (57)

Now, notice that if two matrices commute then they share the same basis. However, the matrix A0
has an entangled basis and the matrix P1 ⊗ P2 have a product basis. Thus, the only instance for
these two matrices to commute is when P1 ⊗P2 = 1 which imposes that P1 = P2 = 1. Going back
to Eq. (47) allows us to conclude that the states

∣∣ψ1〉
,
∣∣ψ2〉

are the maximally entangled state,
that is,

1A ⊗ Ui
∣∣ψi〉 =

∣∣ϕ+〉
i = 1, 2 (58)

and Bob’s measurement using (54) is

U†
1 ⊗ U†

2 B0 U1 ⊗ U2 = AT0 = A0. (59)

Let us now bring back the indices s, s′ and rewrite the states and measurements as∣∣ψis〉 = 1√
2

∑
j=0,1

|j⟩ |fj,i,s⟩ (60)

where U†
s,i |j⟩ = |fj,i,s⟩ and

B0,ss′ = Us,1 ⊗ Us′,2 A0 U
†
s,1 ⊗ U†

s′,2 (61)
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for all s, s′. From Theorem 1.1 of [SSA22], we can express B0 as

B0 = B0,ss′ ⊕ Ess′ (62)

where Ess′ are unitary matrices.
Let us now denote Bob’s local support of the states

∣∣ψis〉 as Vi,s = span{|f0,i,s⟩⟨f0,i,s| , |f1,i,s⟩⟨f1,i,s|}
for all i, s. Further on, we will show that the supports Vi,l, Vi,l′ are orthogonal for any l, l′. For this
purpose, we first express the product of the states

∣∣ψ1
s

〉 ∣∣ψ2
s′

〉
as∣∣ψ1

s

〉 ∣∣ψ2
s′

〉
= 1

2
∑

i,j=0,1
|ij⟩ |fi,1,s⟩ |fj,2,s′⟩ (63)

which can equivalently be expressed using the Bell basis as

∣∣ψ1
s

〉 ∣∣ψ2
s′

〉
= 1

2

4∑
i=1

|ϕi⟩
∣∣giss′

〉
(64)

where |ϕi⟩ are given just above Eq. (33) and∣∣g1
ss′

〉
= 1√

2
(|f0,1,s⟩ |f0,2,s′⟩ + |f1,1,s⟩ |f1,2,s′⟩)∣∣g2

ss′

〉
= 1√

2
(|f0,1,s⟩ |f1,2,s′⟩ + |f1,1,s⟩ |f0,2,s′⟩)∣∣g3

ss′

〉
= 1√

2
(|f0,1,s⟩ |f0,2,s′⟩ − |f1,1,s⟩ |f1,2,s′⟩)∣∣g4

ss′

〉
= 1√

2
(|f0,1,s⟩ |f1,2,s′⟩ − |f1,1,s⟩ |f0,2,s′⟩) (65)

Let us again utilize the relation (38) and apply the state (64) to it to observe that

4∑
i=1

ωi |ϕi⟩B3
0

∣∣giss′

〉
=

4∑
i=1

|ϕi⟩
∣∣giss′

〉
. (66)

Multiplying with ⟨ϕi| on both sides of the above expression gives us

ωiB3
0

∣∣giss′

〉
=

∣∣giss′

〉
∀i. (67)

As B0 is unitary, we can conclude from the above formula (67) that

⟨gjll′
∣∣giss′

〉
= 0 i ̸= j (68)

for any i, j, l, l′, s, s′. Let us now consider Eq. (68) with l = s, j = 1 and expand it using (65) to
obtain the following conditions for i = 2, 3, 4 as

⟨f0,2,l′ |f0,2,s′⟩ − ⟨f1,2,l′ |f1,2,s′⟩ = 0 (69a)

⟨f0,2,l′ |f1,2,s′⟩ + ⟨f1,2,l′ |f0,2,s′⟩ = 0 (69b)
⟨f0,2,l′ |f1,2,s′⟩ − ⟨f1,2,l′ |f0,2,s′⟩ = 0. (69c)

From Eqs. (69b) and (69c), it is straightforward to observe that ⟨f0,2,l′ |f1,2,s′⟩ = ⟨f1,2,l′ |f0,2,s′⟩ = 0.
Let us now recall that

∣∣ψ2
l′

〉
and

∣∣ψ2
s′

〉
are orthogonal as they correspond to two different eigenvectors

of ρAB which gives us an additional condition

⟨f0,2,l′ |f0,2,s′⟩ + ⟨f1,2,l′ |f1,2,s′⟩ = 0. (70)

It is again straightforward to observe from (69a) and (70) that ⟨f0,2,l′ |f0,2,s′⟩ = ⟨f1,2,l′ |f1,2,s′⟩ = 0.
Thus, the local supports V2,s′ and V2,l′ are orthogonal for any s′, l′ such that s′ ̸= l′. Proceeding
the same way as above, we can also conclude that the local supports V1,s and V1,l are orthogonal
for any s, l such that s ̸= l. Consequently, the local supports Vss′ = V1,s ⊗ V2,s′ are mutually
orthogonal for any s, s′.
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The local supports Vss′ being mutually orthogonal imply that Bob’s Hilbert space admits the
following decomposition

HB =
⊕
s

⊕
s′

Vss′ =
⊕
s

V1,s ⊗
⊕
s′

V2,s′ . (71)

As dimV1,s = dimV2,s′ = 2 for any s, s′, we can straightforwardly conclude that HB = (C2)B′
1

⊗
(C2)B′

1
⊗ HB′′

12
where HB′′

1
⊗ HB′′

2
for some Hilbert spaces HB′′

i
.

The rest of the proof is exactly the same as step 3 in Theorem 1.2 of [SSA22], which allows us
conclude that there exist unitary transformations, Ui : HB → HB , such that

(1A ⊗ U1 ⊗ U2)ρAB(1A ⊗ U†
1 ⊗ U†

2 ) =
∣∣ϕ+〉〈

ϕ+∣∣
A1B′

1
⊗

∣∣ϕ+〉〈
ϕ+∣∣

A2B′
2

⊗ ρB′′
1 B

′′
2
, (72)

where ρB′′
1 B

′′
2

denotes Bob’s auxiliary state which is separable with

Ui =
⊕
s

Us,i i = 1, 2 (73)

and

U1 ⊗ U2 B0 U
†
1 ⊗ U†

2 = A0 ⊗ 1B′′
1 B

′′
2
. (74)

This completes the proof.
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