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Machine learning has shown significant break-
throughs in quantum science, where in partic-
ular deep neural networks exhibit remarkable
power in modeling quantum many-body sys-
tems. Here, we explore how the capacity of
data-driven deep neural networks in learning
the dynamics of physical observables is corre-
lated with the scrambling of quantum infor-
mation. We train a neural network to find a
mapping from the parameters of a model to
the evolution of observables in random quan-
tum circuits for various regimes of quantum
scrambling and test its generalization and ex-
trapolation capabilities in applying it to unseen
circuits. Our results show that a specific type
of recurrent neural network can generalize its
predictions within the system size and time
window that it has been trained on across both,
localized and scrambled regimes. Moreover, the
considered neural network succeeds in extrapo-
lating its predictions beyond the time window
and system size that it has been trained on
for models that show localization, but not in
scrambled regimes.

1 Introduction
Non-equilibrium dynamics of quantum many-body
systems [10, 31] plays an essential role in many fields
across physics, ranging from ultra-cold atoms [3, 13]
to strongly correlated electron materials [29], quan-
tum information processing [1], and quantum comput-
ing [4]. Due to the exponential scaling of the Hilbert
space dimension, a complete description of a generic
many-body state requires an exponential amount of
classical resources and thus becomes intractable al-
ready at moderate system sizes. The nature of entan-
glement and correlations together with the way they
spread throughout the system are the main source for
this computational complexity. Hence, substantial re-
search is being conducted to understand the represen-
tational power of classical methods and its relation to
entanglement growth [7, 9, 12, 14, 20].

Classical machine learning algorithms have exhib-
ited an impressive ability to find high-accuracy ap-
proximations for desired quantities of quantum many-
body systems, especially for problems that do not per-
mit numerically exact solutions [8, 15, 18, 36]. In
particular, the challenging task of computing real-
time-evolutions of many-body dynamics has been
addressed using both data-driven learning methods
[2, 16, 27, 28, 34] and direct calculation methods. Es-
pecially for the latter, the neural network wave func-
tion ansatz [5, 15, 21, 26, 35], where neural networks
find an efficient representation for the wave function,
has entailed large interest. In a few recent works, the
representational power of the neural network wave
function ansatz and its connection to the entangle-
ment features of corresponding quantum states has
been explored [9, 12, 20]. However, the role of entan-
glement in the performance of classical data-driven
neural networks remains relatively unexplored. Since
data-driven methods are distinct from neural network
wave functions, the significance of entanglement in
their representational power may also differ signifi-
cantly.

Understanding the connection between the power
of data-driven methods in learning the dynamics of
physical observables and the scrambling of quantum
information in these systems is very important since
these methods eliminate the need for expensive direct
calculations and can thus form a powerful classical
tool to predict the dynamics of observables in quan-
tum many-body systems.

Here we explore this connection in an investigation
of the dynamics generated by random quantum cir-
cuits, which allow us to interpolate between various
regimes of quantum scrambling. We train a neural
network to predict directly the time evolution of phys-
ical observables for given time traces of control fields
and parameters of the model. In this approach, the
neural network finds an efficient representation of the
model just by monitoring the data (e.g. expectation
values of observables for various evolution times) with-
out having information about the underlying physics
or utilizing any explicit assumptions about the consid-
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ered model. We observe that the neural network we
use succeeds in generalizing its predictions, within the
system size and time window that it has been trained
on in both, localized and scrambled regimes. In con-
trast, for extrapolating its prediction beyond the time
window and system size that it has been trained on,
it only succeeds for the many-body localized models.

The paper is organized as follows. We first explain
the physical model, i.e. the quantum circuits, we con-
sider (section II) to confirm and discuss that it in-
deed exhibits regimes of localization and information
scrambling. Section III then explains the learning
strategy that we apply for training the neural net-
work before we present our results for the generaliza-
tion and extrapolation of the network predictions in
section IV. Finally, we present our conclusions and an
outlook.

2 Physical Model
As we are interested in exploring the correlation be-
tween the capacity of data-driven deep neural net-
works in learning the dynamics and the scrambling of
quantum information, we design our 1D random cir-
cuit such that it can produce dynamics in two distinct
regimes: one regime for which quantum information
localizes and another regime where quantum informa-
tion is scrambled. Scrambling for closed quantum sys-
tems describes a process for which initially localized
quantum information spreads out throughout the sys-
tem and randomizes the quantum state such that it
makes the quantum information inaccessible to local
observables [23]. In contrast, for many-body localized
systems, information about the initial state can be
extracted from a subsystem.

In Fig. 1a, we show the schematic representation
of our circuit which is made of P modules, shown as
blue cells, described with unitary operators Up with
p = 1, 2 . . . ,P,

U =
P∏

p=1
Up, where Up =

N∏
i=1

e−i π
4 σα

i σα
i+1e−i π

4 σz
i e−iθi

pσx
i

(1)

where the index i labels the qubits and we consider
closed boundary conditions. N denotes the number
of qubits. Each cell is made of three layers. The first
layer is made of two-body gates e−i π

4 σα
i σα

i+1 , for which
we consider the two cases α = z, that we call circuit
I, and α = x, that we call circuit II. The second and
third layers are formed by single-qubit gates e−iθi

pσx
i

and e−i π
4 σz

i . The rotation angles θi
p ∈ [0, π] are our in-

put parameters, which are chosen at random and can
thus introduce disorder. We consider cases where the
θi

p are inhomogeneous in both, space and time, and
where they are just inhomogeneous in time but homo-
geneous in space (θi

p = θj
p). To generate the random

trajectories for the θs, we use a random Gaussian pro-
cess [22], see supplemental material information Sec.
I for more details.

Circuit I with α = z creates many-body localized
(MBL) dynamics, while circuit II with α = x creates
thermalizing dynamics, where information scrambling
happens. MBL and thermalized systems have unique
characteristics that distinguish them. Here we check
a few of these, for both choices of two-body gates,
circuit I and circuit II, to confirm that the dynamics
of our circuit is scrambled or localized.

MBL phases are characterized by an exponential
decay of two-body correlations [19] while such cor-
relators do not decay when the system thermalizes.
Localized dynamics is also characterized by a slow,
power-law relaxation of local (e.g. single qubit) ob-
servables towards stationary values that are highly
dependent on the initial condition [37]. In contrast,
local observables decay exponentially towards station-
ary values with only weak dependence on initial con-
ditions where information scrambling occurs. More-
over, MBL systems are characterized by slow loga-
rithmic growth of entanglement entropy starting from
a low entanglement or product state and they satu-
rate to a value that obeys a volume law. In contrast,
when the system thermalizes, the entanglement en-
tropy grows linearly and saturates to a value that is
system-dependent and obeys a volume law.

To monitor how correlations build up in our cir-
cuits, we investigate the evolution of two-point corre-
lators Cγβ(i, l) = |⟨σγ

i+ℓσ
β
i ⟩ − ⟨σγ

i+ℓ⟩⟨σ
β
i ⟩|2 where the

expectation values are taken over the wave function
at each circuit depth, γ, β = x, y, z, and we chose the
input parameters homogeneous in space, θi

p = θj
p . For

circuit I, the evolution of Cxx exhibits localization in
space indicating that the wave function becomes local-
ized in some region of space and decays exponentially
far away from that region, see Fig. 1 (b). This lo-
calization persists almost for the entire shown circuit
depths. On the other hand, for circuit II, long-range
correlations build up already after very short circuit
depth. As for local observables, we look at the mag-
netization calculated as Mz = 1

N

∑N
i=1 σ

z
i where N

denotes the number of qubits. Fig. 1 (c) shows the
average of magnetization over 20 realizations for both
types of circuits. The magnetization collapses poly-
nomially with the circuit depth for circuit I while it
decays exponentially for circuit II.

To study the growth of entanglement, we calcu-
late the von Neumann entropy of the reduced den-
sity matrix ρr for half of the circuit defined as Sv =
−Tr[ρr ln ρr]. We also calculate entropy defined as
S = −

∑N
i=1 Pi lnPi where Pi = |⟨ψ|i⟩|2 represents

the probability of finding the state |ψ⟩ of the system
in the i-th computational basis state |i⟩. We com-
pare for each regime the entropy of our circuit with
the entropy of a perfect Porter-Thomas distribution
which equals M ln(2) − 1 − γ with γ representing the
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Figure 1: Physical model: (a) Schematic representation of the random circuit. The circuit is made of modules shown as blue
cells. Each module is made of three layers shown at the bottom. (b) Two-point correlators Cxx(i, ℓ) = |⟨σx

i+ℓσx
i ⟩−⟨σx

i+ℓ⟩⟨σx
i ⟩|2

versus circuit depth and distance ℓ for the two different choices of two-body gates, circuit I (left) and circuit II (right), for
N = 10. (c)-(e) Magnetization, von-Neumann entropy, and entropy versus circuit depth for different system sizes for both,
circuit I (left column) and circuit II (right column). Each curve represents an average over 20 circuit realizations. Dashed lines
in panel (e) present the entropy of the ideal Porter-Thomas distribution. All shown results are for realizations of the circuits
that are homogeneous in space, where Cxx(i, ℓ) is the same for all qubits i.

Euler’s constant [4]. The Porter-Thomas (PT) distri-
bution is characteristic of chaotic dynamics for which
the fractional of the configurations that have proba-
bilities in a given range [p, p + dp] decays exponen-
tially as p22Ne−2N pdp and it is unlikely to simplify
a circuit substantially when its probability distribu-
tion converges to PT [4]. An entropy S converging to
the entropy of PT distribution implies that thermal-
ization occurs and dynamics become chaotic.

For circuit I, the von-Neumann entropy (Fig. 1 (d))
starts with rapid linear growth for a quite small cir-
cuit depth and then is followed by slow logarithmic
growth before it eventually saturates. The saturation
value κL appears to obey a volume law with κ smaller
than its maximum value of ln 2, where L = N/2 is the
length of the partition. The inset shows the growth
of von-Neumann entropy for a larger circuit depth
(semi-log scale) where saturation for the shown sys-
tem sizes can be seen clearly. The duration of loga-
rithmic growth increases with system size. Here we
look at the dynamics before saturation occurs. For
circuit II, the von-Neumann entropy shows a fast lin-
ear growth which then rapidly saturates to κL. The
linear growth of the von Neumann entropy reflects the
spreading of correlations at a finite speed before sat-
urating because of the finite size of the system. The

saturation value follows a volume law with κ being
close to its maximum value of ln 2 which is a signature
of thermalization and chaos meaning that all degrees
of freedom become highly entangled with each other
throughout the quantum evolution.

For circuit I, it is also evident that, the larger the
system size gets, the deviation of the probability dis-
tribution of the circuit from the PT distribution at
large circuit depths becomes more evident, see Fig. 1
(e). In contrast, for circuit II, the entropy converges
to the entropy of the perfect PT distribution quite
fast after a few modules, see Fig. 1 (e).

3 Learning strategy
We now explore the learning capacity of a data-driven
learning approach in which a neural network learns to
predict the physical observables directly, rather than
learning the wave function. Our choice is motivated
by the fact that finding an efficient representation
for the quantum state is computationally expensive,
while for many goals, we do not need the full wave
function but only the expectation values of a selected
subset of observables. Moreover, the existence of an
efficient representation of the quantum state does not
imply that physical observables can be calculated ef-
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ficiently, since the latter may involve complex index
contractions [12]. Our direct training on physical ob-
servables forgoes such needs to deal with the exponen-
tially large state vector itself.

In general, learning the dynamics from partial ob-
servations without having access to a full representa-
tion of the wave function is a non-trivial task. The
reason is that, for a generic many-body model, the
evolution of each observable depends on the evolution
of many or even all other observables, as becomes evi-
dent from the Heisenberg picture equations of motion.
From this point of view, one would expect that pre-
dicting the dynamics of one observable can require
knowledge of the full wave function. In contrast, the
neural network approach we use aims at finding an ef-
fective representation of the equations of motion just
by observing a subset of observables (Fig. 2 (a)). The
first question that we are interested in answering here
is whether a neural network succeeds in finding such
an effective representation for models with different
levels of complexity. By complexity, we mean the way
that information is scrambled. The next interesting
question is whether the representation found by the
neural network for a given system size and time win-
dow can even be used to predict the dynamics for
larger system sizes and longer times than the network
has been trained on despite the typical generation of
entanglement between increasingly distant regions as
time progresses. We observe that such extrapolations
are only successful when information scrambling oc-
curs slowly, which is the characteristic of the many-
body localized models.

Neural network architecture: We apply a particular
type of recurrent neural network called a long-short-
term memory (LSTM) neural network for this task.
Our choice is motivated by the fact that this architec-
ture naturally respects the fundamental principle of
causality, which makes them well-suited to represent
differential equations (equations of motion). More-
over, this architecture is known for capturing both
long-term and short-term dependencies which gives
it the power to handle complex non-Markovian dy-
namics. Importantly, it also permits extrapolation in
time as it can be used for varying input sizes. To
explore the possibility of extrapolating the dynamics
of the observables to larger system sizes, we combine
our LSTM network with a convolutional neural net-
work so-called convolutional long-short-term memory
(CONVLSTM) neural network [38].

Training: In Fig. 2 (c) and (d), we represent the
schematic of our LSTM and CONVLSTM networks,
respectively. We feed as input p and the parameters
θi

p, which determine the gates applied to the qubits see
Eq. (1). In both cases, the neural network provides
as output the desired observables for the considered
circuit depth. See Ref. [28] for more details about
LSTM and COVLSTM architectures and how they
decide the flow of information in and out at each step.

We always start from a product state where all
qubits are prepared in the +1 eigenstate of the σz

operator. As an example, we here train the network
on first and second-order moments of spin operators
(⟨σα

i ⟩, ⟨σα
i σ

β
i+ℓ⟩) with α, β = x, y, z as many interest-

ing physical observables can be obtained from these
quantities. Also, these observables can be measured in
experiments meaning that one can even train the neu-
ral network on data obtained from experiments. The
cost function that we use to train our neural network
is defined as

MSE = |⟨O⟩NN(p) − ⟨O⟩true(p)|2 (2)

where the bar shows the average over all samples and
circuit depths. ⟨O(p)⟩ denotes the expectation value
of the desired observables at circuit depth p. Note
that for the case where we combine our LSTM net-
work with CNN, we feed our input with a spatio-
temporal structure to the network.

Our approach differs from works that apply recur-
rent or convolutional neural networks to learn the
wave function [2, 16] as our neural network directly
learns the dynamics of physical observables and there-
fore can also be applied to large system sizes, for
which storing an entire wavefunction requires exceed-
ing amount of memory. There are some other works
that also use neural networks to predict the dynamics
of physical observables. But these consider only a sin-
gle qubit [11] or aim to learn the dynamics of a single
qubit by considering all other qubits as a quantum
environment [24]. In contrast, our network learns the
dynamics of all qubits simultaneously. Another differ-
ence is that in most of these works, the neural network
learns to predict the dynamics for longer times by
having the short-time evolution of a system as input
[2, 24], and that mostly works fine where parameters
of the model do not change with time. In contrast,
in our strategy, the neural network finds a mapping
from the parameters (θi

p) of the model, that are always
inhomogeneous in time, to the dynamics of physical
observables. More important than that there is no
systematic study to discuss how the learning capacity
of a data-driven method in learning many-body dy-
namics is connected with the scrambling of quantum
information and where are the regimes that the repre-
sentation found by the neural network is still reliable
beyond the system size and the time-window that it
has been trained on.

4 Results
In this section, we discuss the performance of the neu-
ral network in learning the many-body dynamics for
the two circuits introduced in Sec. 2. We first eval-
uate the performance of the network on unseen real-
izations of the circuit for the circuit depth and sys-
tem size that it has been trained on to evaluate its
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Figure 2: Schematic representation of the applied learning strategy. (a) The neural network learns a simple and efficient
representation for the equations of motion when provided with the parameters of the model (shown with θ⃗) just by observing a
subset of physical observables but without knowing the unitary operator that describes the model. (b) The propagation of
information in a many-body system forms a light cone. For MBL models the radius of the light cone grows logarithmically while
it propagates polynomially for scrambled models. Two qubits do not affect each other if one lies outside of the light cone of the
other. The representation learned by the neural network is reliable beyond the system size and time window that it has been
trained on where information scrambles slowly (logarithmically) and the dynamics is localized. (c) Schematic representation
of the LSTM neural network. The input of the network at each circuit depth p is a set of random parameters θp as well as
the circuit depth p. At each circuit depth p the network provides as output the dynamics of desired observables ⟨O(p)⟩. (d)
Schematic representation of the 1D CONVLSTM neural network. The input of the network at each circuit depth p is shown in
the green rectangle which includes the parameter θi

p for different qubits as well as the circuit depth p. At each circuit depth p
the network provides as output the dynamics of the desired observables ⟨O(p)⟩. The horizontal blue arrows in (c) and (d)
indicate the content of the internal neural memory being passed to the next time step.

generalization power. Then we explore the power of
our neural network in extrapolating its prediction to
system sizes and circuit depths that it has not been
trained on.

Generalization: We train and evaluate our neural
network on a system of size N = 8 for random realiza-
tions of each circuit separately, where p ∈ [1, 40]. For
both circuits, the parameters θi

p are chosen inhomoge-
neous in time but homogeneous in space ( θi

p = θj
p),

hence ⟨σα
i ⟩ and ⟨σα

i σ
β
i+ℓ⟩ where α, β = x, y, z are equal

for all qubits i. The neural network is trained simul-
taneously on the dynamics of 30 observables (3 first-
order moments and 27 second-order moments of spin
operators). See the supplemental material for more
information about the training set size and the neural
network structure. In Fig. 3, we show the predicted
and true dynamics of ⟨σz

i ⟩ and ⟨σx
i σ

z
i+ℓ⟩ for one typ-

ical realization of the circuit. As can be seen, the
network is able to learn the dynamics of these observ-

ables with high precision for both implementations of
the circuit. Yet the precision of predictions at larger
circuit depths is higher for circuit I in comparison to
circuit II. The lower panels show the MSE, defined in
Eq. (2), where we average over 1000 realizations of
each circuit.

In the context of these results, one should note
that the capability of classical learning methods in
sampling from random quantum circuits in different
regimes has been explored demonstrating that clas-
sical learning tools fail in sampling in the regime
where the probability distribution converges to a PT
distribution and quantum information is scrambled
[17, 32, 33]. It is thus interesting to see that our learn-
ing strategy using a recurrent neural network succeeds
in learning the dynamics of desired physical observ-
ables in this regime. This is particularly relevant as
learning observables can be even more useful.

Extrapolation in circuit depth: We also investigate
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Figure 3: Generalization power of the LSTM network: Two
separate LSTM neural networks are trained independently
for circuits I and II, using random realizations of each circuit
with N = 8 qubits and p ∈ [1, 40]. Subsequently, they are
evaluated independently to predict the dynamics of observ-
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in predicting ⟨σz

i ⟩ and ⟨σx
i σz
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both circuits is shown. The lower panels show the MSE (c.f.
Eq. (2)), averaged over 1000 realizations of the circuit. For
each realization of the circuit, the neural network is trained
on 30 observables (3 first-order moments and 27 second-order
moments of spin operators) simultaneously. Both circuits are
chosen to be homogeneous in space (θi

p = θj
p), hence ⟨σz

i ⟩
and ⟨σx

i σz
i+ℓ⟩ are equal for all qubits i.

the power of our LSTM neural network in extrapolat-
ing the dynamics of monitored physical observables to
larger circuit depths than it has been trained on. Here
we observe that the trained neural network succeeds
in extrapolation just for circuit I where MBL occurs.
We train the neural network simultaneously on the
dynamics of observables for p ∈ [1, 20] and evaluate it
on unseen realizations θi

p of the circuit with p ∈ [1, 40].
In Fig. 4, the blue highlighted regions present circuit
depths that the neural network has not been trained
on and thus extrapolates to. We interpret the ob-
served behavior as follows.

Even though the dynamics is unitary and invert-
ible, the information about the initial state becomes,
in scenarios where information scrambling occurs, in-
accessible to local observables and recovering that in-
formation would require measuring global operators
[23]. Therefore, the neural network fails here in ex-
trapolating the dynamics of local observables as it
loses locally information about the past. In contrast,
in regimes where MBL happens, the information en-
coded in the initial state is retained in local observ-
ables which therefore can govern the dynamics at
longer times. In such models, an extensive set of local

-1

1

0

-0.2

0.2
0

-0.5

0.5

0

0 20 40

True

Predicted

M
SE

10-4

10
-2

σ
x i

σ
z i

σ
x i
σ
z i+

4

p

Circuit I

Figure 4: Extrapolation power of the LSTM neural network
in circuit depth for circuit I. The LSTM neural network is
trained on the physical observables for random realizations of
the circuit I on system size N = 8 with p ∈ [1, 20]. It is then
evaluated on unseen realizations of the circuit with N = 8 and
p ∈ [1, 40]. The performance of the network in generalization
(p ∈ [1, 20]), as well as extrapolation in circuit depth (high-
lighted with blue, p ∈ [20, 40]) for a typical realization of the
circuit, is shown. The lower right panel shows the MSE (c.f.
Eq. (2)) averaged over 1000 realizations of the circuit. For
each realization of the circuit, the neural network is trained
on 30 observables simultaneously (3 first-order moments and
27 second-order moments of spin operators). The circuit is
chosen to be homogeneous in space (θi

p = θj
p), hence ⟨σz

i ⟩,
⟨σx

i ⟩ and ⟨σx
i σz

i+4⟩ are equal for all qubits i.

integrals of motion describes the dynamics. There-
fore, success in extrapolation may suggest that the
neural network learns such local integrals of motion
just by observing a subset of local observables. This
can explain why the neural network succeeds in pre-
dicting the dynamics for larger circuit depths than it
has ever been trained on despite the typical generation
of entanglement between increasingly distant regions
as time progresses. It is computationally hard to fur-
ther inspect this conjecture, that the neural network
may learn the local integrals of motion. The reason is
that calculating the local integrals of motion for our
model is very complicated. Also, it is very challenging
to inspect what exactly the neural network learns.

Extrapolation in system size: For exploring the pos-
sibility of extrapolating the predictions of the neu-
ral network to system sizes beyond those that it has
been trained on, we choose our circuit to be inhomo-
geneous both in time and space (θi

p ≠ θj
p). We also

combine our LSTM neural network with a 1D CNN
network [40]. This architecture is designed for data
with spatio-temporal structure [38], where the CNN
is applied to deal with the spatial structure of the in-
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put and the LSTM keeps track of the evolution. See
Supplemental Material of Ref. [28] for more technical
details about this architecture.

Obviously, the dynamics of a given qubit is affected
by increasingly many other qubits as time progresses.
One might thus expect that it should be challenging
for a neural network to find some effective descrip-
tion that can include the influences of more qubits
than it has been trained on. We observe that the
neural network succeeds in generalizing and extrap-
olating the dynamics to larger system sizes for cir-
cuit I where MBL occurs while it fails for circuit II
where scrambling occurs. However, even for circuit I,
the precision of the neural network in learning local
observables that contain σx

i is generally lower than
other observables, and the neural network can only
learn their dynamics for smaller circuit depths. This
can be clearly seen in Fig. 5 where a CONVLSTM is
trained on system size N = 8 with p ∈ [1, 20] and is
evaluated on N = 10, 12, 20, 24 with p ∈ [1, 40] for a
few typical realizations of the circuit I.

j

1

40

10

1 5 9 1 5 9
1

40

10

j

Circuit I Circuit II

0

40

20

Figure 6: Light-cone spreading of quantum information. The
top panels show

∥∥[
σz

5 , σz
j (p)

]∥∥
F

and the lower panels show∥∥[
σx

5 , σx
j (p)

]∥∥
F

for N = 9 averaged over 40 realizations for
each panel. Both circuits are inhomogeneous in time and
space (θi

p ̸= θj
p).

We interpret these observations as follows. For ob-
servables, for which the neural network can extrapo-
late the dynamics, the support of their operators in a
Heisenberg picture representation remains well local-
ized. Therefore, qubits that are far apart (in compari-
son to the localization length) do not contribute signif-
icantly to the dynamics of these local observables. In
this case, increasing the system size does not affect lo-
cal observables notably even though the entanglement
entropy may still grow. To confirm our interpretation,
we calculate the out-of-time-order correlator (OTOC)
for an operator O defined as ∥[O0(0),Oj(p)]∥F where
Oj(p) = UOj(0)U† and ∥.∥F represents the Frobe-
nius norm. This OTOC is often used to characterize
the information scrambling and chaos. For a local-
ized model, the propagation of information forms a
light cone where the OTOC is non-negligible inside
this light cone whose radius is proportional to log(t)
and decays exponentially with distance outside the
light cone. In contrast for the cases where scrambling
occurs the OTOC shows a power-law light cone [30].

In Fig. 6, we show
∥∥[
σα

5 , σ
α
j (p)

]∥∥
F

for α = x, z and
N = 9 with j = 1, 2, 3, ..., 9. As can be seen for circuit
I, σx

i spreads faster after a short circuit depth which
explains why the neural network learns the dynamics
of σx

i observables with lower precision and for smaller
circuit depth in comparison with other observables
such as σz

i which remains well localized. In the right
column, we also show the same for circuit II where
scrambling happens. It is obvious that after a short
circuit depth, both observables spread fast.
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5 Conclusion and outlook
In this work, we show that data-driven recurrent
neural networks succeed in learning the dynamics of
many-body systems— within the trained time win-
dow and system size— in both MBL and scrambled
regimes. Learning the dynamics of physical observ-
ables for scrambled dynamics is of special interest as
classical learning tools are known to fail in sampling
from the output of quantum circuits in this regime.
Our results show that while neural networks fail to
learn the full information about the wave function
they can still learn the dynamics of desired physical
observables, a capability that is even more valuable
than predicting the wave function in many applica-
tions. We also observe that a trained convolutional re-
current neural network succeeds in extrapolating the
predictions beyond the trained time window and sys-
tem size for cases where MBL occurs while it fails
in regimes where information scrambling occurs. We
attribute this observation to the fact that for MBL
models the dynamics is governed by local integrals
of motion which do not change in time and have a
localized support in a Heisenberg picture representa-
tion so that distant qubits do not contribute to local
observables’ dynamics.

Further explorations of the potential of data-driven
methods in learning many body dynamics could incor-
porate transformers [39, 41] or integrate recurrent neu-
ral networks with transformers. Transformers, with
their attention mechanisms, may be useful in address-
ing the challenges posed by scrambled dynamics. This
mechanism could empower transformers to more ef-
fectively capture long-range dependencies, potentially
surpassing LSTMs in such scenarios. Nevertheless,

empirical evidence for the success of this idea would be
needed via thorough investigation, especially within
the framework of data-driven methods.

In this work, we trained our neural network on the
data generated from numerical simulations. An in-
teresting perspective for future work would thus be
to train the neural network on the data generated by
actual experiments. We briefly comment on the re-
sources required for such an investigation in the sup-
plemental material Sec. II.
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Supplemental Material

In this Supplemental Material, we briefly explain the Gaussian random process to generate the random
realization of our quantum circuits as well as the cost for a hybrid implementation of our scheme. We also
provide details related to the layout of the network architectures that we applied.

1 Gaussian random process to gener-
ate random circuits
There are different methods to generate Gaussian
random functions [22]. We will explain in de-
tail the one we use. We define a vector θ =
(θ(0), θ(1), θ(2), ..., θ(2))T and build up the correla-
tion matrix C with elements Cnm = ⟨θnθm⟩ =
c0 exp[−(n − m)2/2σ2)], where we assumed a Gaus-
sian correlation function with a correlation length σ
(though other functional forms could be used). Be-
ing real and symmetric, C can be diagonalized as
C = QΛQT , where Λ is a diagonal matrix containing
the eigenvalues and Q is an orthogonal matrix. Hence,

we can generate the random parameter trajectory as
θ = Q

√
Λx, where the components of x are inde-

pendent random variables drawn from the unit-width
normal distribution (⟨xn⟩ = 0 and ⟨xnxm⟩ = δnm),
which can be easily generated.

Note that we use qiskit [25] for simulating the dy-
namics of physical observables for random realizations
of our circuits.

2 Hybrid Implementation
Here we briefly comment on the resources required
to train our neural network on the data generated
by actual experiments. To calculate the time evolu-
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tion of any observables at each circuit depth p, the
experiment needs to be repeated n times for each re-
alization of our random circuit for obtaining an error
of ∼ 1/

√
n. Hence nPNs runs are required where Ns

is the number of training samples and P is the circuit
depth. Assuming Ns ∼ 5 × 104, P ∼ 50 and n ∼ 104

(for a 1 percent projection noise error) on the order
of 25 × 109 runs are required. For a superconducting
qubit platform where a single run takes on the order of
only a few microseconds, the total run will be on the
order of a couple of hours. Note that the number of
runs can be still reduced for example by using efficient
learning strategies relevant to training the neural net-
works on noisy measurement data or pre-training the
network on simulated data.

3 Neural networks layout
In this section, we present the layout of the architec-
tures that we applied for the dynamics prediction task.
We have specified and trained all these different ar-
chitectures with Keras [6], a deep-learning framework
written for Python.

3.1 LSTM neural network
In Table. 1, we summarize the details related to the
layout of our LSTM network. This architecture is uti-
lized for the homogeneous (in space) version of both
circuits I and II, where θi

p = θj
p. The training set size

for most of the cases that we explored is 60,000. For
the last layer, the activation function is “linear”. As
an optimizer, we always use “adam”.

Layers # Neurons Activation function
Input LSTM 2 -
Hidden LSTM 200 -
Hidden LSTM 200 -
Hidden LSTM 200 -
Ouput Dense 9[ N−1

2 ] + 3 Linear

Table 1: The layout of LSTM neural network for homoge-
neous circuits where θi

p = θj
p. In this case the input to

the neural network has a shape of (number of samples, 2).
Each input sample consists of the parameter θp for
each circuit depth p and the corresponding value of
p. The output of the neural network has a shape of
(number of samples, number of observables). The number
of observables includes 3 first-order moments and 9

⌊
N−1

2

⌋
second-order moments, where ⌊·⌋ denotes the floor function,
rounding down to the nearest integer.

3.2 CONVLSTM neural network
In Table. 2, we present the layout of our 1D-
CONVLSTM network. Note that we apply the CON-
VLSTM for the inhomogeneous scenarios (θi

p ̸= θj
p)

for the circuit I.

Layers Filters Kernel size
CONVLSTM1D 70 3
CONVLSTM1D 100 3
CONVLSTM1D 100 3
CONVLSTM1D 70 3
CONVLSTM1D # observables 3

TimeDistributed(Global max pooling)

Table 2: The layout of the 1D-CONVLSTM. CONVLSTM
layers capture the temporal-spatial dependencies of the input.
TimeDistributed is a wrapper that applies a layer to every
temporal slice of an input. We use this wrapper with the
global max pooling to transfer the input with the temporal-
spatial structure to the output with the temporal structure.
The input of our 1D-CONVLSTM has a shape defined by
(number of samples, number of circuit modules, number of
qubits, and number of features). The feature set comprises
two elements: the parameter θp for each circuit depth p
and the corresponding value of p. The output of the neural
network has a shape defined by (number of samples, number
of circuit modules, number of observables). The number
of qubits and number of modules are specified to "None"
denoting variable spatial and temporal dimension enabling
extrapolation in size and circuit depth. In this case, in which
the circuit is inhomogeneous (θi

p ̸= θj
p), the network is trained

on a selected subset of first and second-order moments of
observables. This subset encompasses 3⌊N/2⌋ first-order
moments and 9⌊(N − 1)/2⌋) second-order moments.
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