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Many fundamental and key objects in quantum mechanics are linear mappings
between particular affine/linear spaces. This structure includes basic quantum ele-
ments such as states, measurements, channels, instruments, non-signalling channels
and channels with memory, and also higher-order operations such as superchannels,
quantum combs, n-time processes, testers, and process matrices which may not re-
spect a definite causal order. Deducing and characterising their structural properties
in terms of linear and semidefinite constraints is not only of foundational relevance, but
plays an important role in enabling the numerical optimisation over sets of quantum
objects and allowing simpler connections between different concepts and objects. Here,
we provide a general framework to deduce these properties in a direct and easy to
use way. While primarily guided by practical quantum mechanical considerations, we
also extend our analysis to mappings between general linear/affine spaces and derive
their properties, opening the possibility for analysing sets which are not explicitly for-
bidden by quantum theory, but are still not much explored. Together, these results
yield versatile and readily applicable tools for all tasks that require the characterisa-
tion of linear transformations, in quantum mechanics and beyond. As an application
of our methods, we discuss how the existence of indefinite causality naturally emerges
in higher-order quantum transformations and provide a simple strategy for the charac-
terisation of mappings that have to preserve properties in a ‘complete’ sense, i.e., when
acting non-trivially only on parts of an input space.
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1 Introduction
Many fundamental objects in quantum mechanics can, at their most basic level, be understood as
(linear) transformations of other basic objects. For example, measurements are transformations of
states to probabilities, while quantum channels are transformations of quantum states to quantum
states. This simple understanding of quantum objects as transformations can straightforwardly
be extended, leading to a whole host of higher-order transformations (see Fig. 1 for an example).
To name but a few, transformations of channels to channels (yielding so-called superchannels [1]),
sequences of quantum channels with memory to quantum channels (yielding so-called quantum
combs [2] and quantum strategies [3]), a sequence of channels to states (yielding so-called multi-
time processes [4]) and collections of channels to probabilities (yielding testers [5–7] and process
matrices [8]) have been devised in recent years, each with their own respective physical motivation.
On the other hand, such higher-order transformations can equivalently be motivated as the correct
descriptor in many physical situations, where states, measurements and channels alone would prove
to be insufficient practical tools. Consequently, they have, amongst others, found active use in the
fields of open quantum system dynamics [4], quantum circuit architecture [2], the investigation of
channels with memory [9], as well as the study of causal indefiniteness [8] and the dynamics of
causal order [10].

Figure 1: Chain of higher-order operations. A pictorial illustration of an exemplary chain of higher-order
operations. Channels describe transformations between states, superchannels describe transformation between
channels, and supersuperchannels describe transformations between superchannels. The methods we provide
allow for the characterization of all mappings in this chain, but more generally all mappings between arbitrary
quantum objects. The precise definition and a characterisation of such objects and the mappings between them
can be found in Sec. 4.

Independent of the respective concrete motivation, in any of these investigations it is, as a first
step, frequently necessary to deduce the structural properties of the considered transformations,
i.e., a characterisation of the transformation in a chosen representation1 that goes beyond its
original definition. For example, for the case of process matrices, one is interested in the structure
of mappings that map pairs of independent quantum channels (or, equivalently, any two-party
non-signalling channel) to unit probability, in order to analyse the set of processes that abide by
causality locally, but not necessarily globally [8]. Having their at hand then does not only allow
one to deduce that this latter set fundamentally differs from the set of causally ordered processes,
but also enables numerical optimisation over causally indefinite processes. On the more axiomatic
side, recent works have discussed the properties of the hierarchy of transformations that emerges
from starting at quantum states and ’going up the ladder’ of transformations, i.e., transformations
of states, transformations of transformations of states, etc. [11–14].

Here, we stay agnostic with respect to the origin of the respective transformations and provide
a general framework to answer the question: What are the properties of linear transformations
between affine/linear spaces? For example, this question directly captures the case of quantum
channels – completely positive mappings of the affine space of matrices with unit trace onto itself
– but also all conceivable transformations between quantum objects alluded to before. Concretely,

1Here, and throughout, unless stated otherwise, we mean a characterisation of the Choi matrix of the transformation
when we consider its ‘properties’.
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we phrase the properties of the respective spaces as well as the transformations between them
in terms of linear projectors and employ their representation as matrices via the Choi isomorph-
ism for their explicit characterisation. The ’projector approach’ and the methods presented here
may be viewed as deeper analysis and a generalisation of the ideas first presented in Ref. [15],
which were developed to present a basis-independent characterisation for process matrices and to
study quantum processes which do not respect a definite causal order. A similar approach to the
characterisation of higher-order maps has, for example, been taken in [10, 13, 14, 16]. Moreover, in-
depth investigations into the structure and type theory of the hierarchy of conceivable higher-order
quantum maps can be found in Refs. [11–14, 17], where, in particular Ref. [14] not only employs
a similar approach to ours, but also provides a detailed analysis of the logical and set-theoretic
structure of the projectors that define the properties of the transformations we analyse.

This current work is more modest in scope; leveraging the link product [5] and the linearity of
the involved transformations, we provide a straightforward, systematic way to derive the properties
of arbitrary transformations between sets that naturally emerge in quantum mechanics. In turn,
this allows us to re-derive the properties of a vast array of relevant quantum transformations
appearing in different parts of the literature in a unified and direct way. We further demonstrate
the effectiveness and ease of this framework by explicitly discussing affine dual sets as well as
probabilistic quantum operations and the signalling structures of quantum maps. As an additional
application of our methods, we analyse the emergence of indefinite causal order in higher-order
quantum operations.

In many cases of interest, a transformation does not only have to preserve certain properties
(like, for example, the trace of a state) when acting entirely on the input space, but also when
acting non-trivially on only a part of it. This is the reasoning behind the introduction of complete
positivity (in contrast to mere positivity), which requires not only positivity of a map C̃, but also
positivity of all of its trivial extensions C̃ ⊗ 1̃, where 1̃ is the identity map on an arbitrary anciliary
space. While most commonly encountered in the context of positivity and complete positivity, the
analogous question can equivalently be raised for other properties of quantum transformations. For
example, it is obvious that C̃⊗1̃ is trace preserving if C̃ is, but it is a priori unclear if ‘completeness’
of properties is automatically implied for more general properties. Even more so, for many relevant
cases, it not even immediate or unique, how a specific property should be extended to a larger input
space. Parts of this question have – in different contexts – been considered in the literature, either
for concrete questions at hand [16, 18, 19], or for specific types of extensions [13, 14, 20, 21]. Here,
using the characterisation of quantum transformations, we provide a simple strategy to derive the
structure of transformations that have to preserve a structural property in a ‘complete’ sense. In
particular, this approach is agnostic to the chosen extension, and allows for the identification of
sufficient conditions under which a transformation is automatically completely admissible. The
versatility and applicability of this approach is then demonstrated by means of concrete examples,
that not only recover known cases from the literature, but also demonstrate how the requirements
imposed by ‘completeness’ fundamentally depend on the chosen extension of a property.

Finally, owing to the simplicity of our approach, we are also able to drop the assumptions
generally fulfilled in quantum mechanics – like, for example, the self-adjointness of the involved
projectors, or the membership of the identity matrix to the respective input and output spaces – and
derive the properties of transformation between general spaces, a result that might be of interest
in its own right. Together, our results provide a unified framework to discuss and characterise
all (quantum) objects and linear transformations thereof as well as the restrictions imposed by
‘completeness’, thus offering a versatile tool for a wide array of problems that naturally occur in
the field of quantum mechanics in beyond.

2 Warming up: quantum states and quantum channels
The fundamental set of objects that quantum mechanics is concerned with are quantum states
ρ ∈ L(H), unit trace (i.e., tr[ρ] = 1), positive semidefinite (i.e., ρ ≥ 0) linear operators acting on a
Hilbert space H. Here, and throughout, we consider H to be finite dimensional, such that H ∼= Cd

for some d ∈ N.
Transformations of quantum states are then described by linear maps T̃ : L(Hi) → L(Ho),
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(a) (b)

Figure 2: Quantum states and Quantum Channels. (a) Quantum state ρ ∈ L(Hi). (b) Quantum channel
C̃ : L(Hi) → L(Ho) that maps quantum states in L(Hi) onto quantum states in L(Ho). Throughout, lines are
labelled by the Hilbert space/space of linear operators they correspond to.

where we adopt the convention of referring to the input space as Hi, the output space as Ho
and maps between operators with a tilde. For better bookkeeping, we always explicitly distinguish
between input and output spaces, even if Hi

∼= Ho.2 A transformation T̃ is a valid quantum channel,
i.e., it represents a deterministic transformation between quantum states that can be physically
implemented, if it is a completely positive (CP)3 and trace-preserving4 (TP) linear map.

While the mathematical characterisation of matrices that represent quantum states ρ is clear,
it is, a priori, unclear, what the corresponding properties of a representation of a quantum channel
– a transformation between sets of quantum states – are. Here, we aim to provide a simple way of
characterising mappings between objects that routinely occur in quantum mechanics. To illustrate
the general concept, we first provide an answer for the well-known case of CPTP maps. To this
end, we exploit the fact that linear maps admit a convenient representation as linear operators
via the Choi-Jamiołkowski isomorphism (CJI) [22–24]: Let {|j⟩}j be the canonical computational
basis for Hi. The Choi operator/matrix T ∈ L(Hi ⊗ Ho) of a linear map T̃ : L(Hi) → L(Ho) is
then defined as

T :=
∑
jk

|j⟩⟨k| ⊗ T̃
[
|j⟩⟨k|

]
. (1)

Direct calculation shows that the action of T̃ can be written in terms of its Choi matrix T as

T̃ [ρ] = tri[(ρτ ⊗ 1o) T ] (2)

where ρτ is the transpose of ρ in the computational basis and tri is the partial trace over Hi.
To characterise the properties of T , we note that a linear map T̃ : L(Hi) → L(Ho) is TP if and

only if, tro[T ] = 1i and CP if and only if T ≥ 0. Hence, CPTP maps (quantum channels) C̃ are
described by a Choi matrix C ∈ L(Hi ⊗ Ho) that satisfies

C ≥0 and tro[C] = 1i. (3)

In anticipation of later considerations, we can phrase this equivalently as

C ≥0 (4)
oC =ioC (5)

tr[C] =di, (6)

where xC := trx[C]⊗ 1x
dx

is the trace-and-replace map and dx is the dimension of Hx. Notice that, for
consistency, one should keep track of the ordering of the operators, for instance, if C ∈ L(Hi ⊗Ho),
iC = 1i

di
⊗ tri[C] and oC = tro[C] ⊗ 1o

do
. Whenever there is risk of ambiguity, or we desire to

emphasise some property, we will use subscripts (rather than explicit ordering) to indicate what
space an object is defined/acts on.

2The only exception to this rule will be the projectors P̃ that we introduce below.
3A linear map T̃ : L(Hi) → L(Ho) is positive when T̃ [ρ] ≥ 0 for every positive semidefinite linear operator

ρ ≥ 0, ρ ∈ L(Hi). A map is CP if it is positive for all trivial extensions, that is, T̃ ⊗ 1̃(σ) ≥ 0 for every positive
semidefinite σ ∈ L(Hi ⊗ Haux) where 1̃ : L(Haux) → L(Haux) is the identity map on an arbitrary finite space Haux,
i.e., 1̃[ρ] = ρ, ∀ρ ∈ L(Haux).

4A linear map T̃ : L(Hi) → L(Ho) is TP when tr[T̃ [ρ]] = tr[ρ] for every linear operator ρ ∈ L(Hi).
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The characterisation of quantum channels given by Eqs. (4)– (6) has an interesting structure,
which will be the starting point to analyse the structure of more general transformations throughout
this work. Eq. (4) is a positivity constraint, Eq. (5) is a linear constraint, and Eq. (6) is an affine
constraint. Consequently, the set of linear operators satisfying Eq. (5) form a linear subspace of
L(Hi ⊗ Ho), and can thus be described by a projective map P̃ : L(Hi ⊗ Ho) → L(Hi ⊗ Ho), where

oC = ioC ⇐⇒ C = P̃ [C] with P̃ [C] := C − oC + ioC . (7)

We can easily verify that P̃ is indeed a projective map, that is, P̃ 2 := P̃ ◦ P̃ = P̃ . Putting
everything together, an operator C ∈ L(H1 ⊗ H2) is the Choi operator of a quantum channel if
and only if

C ≥ 0, (Positive semidefinite) (8)

C = P̃ [C], (Linear subspace) (9)
tr[C] = di, (Fixed trace). (10)

Put differently, besides the positivity and overall trace constraint, the set of quantum channels
is fully defined by the projector P̃ .

While positivity of the Choi matrix simply follows from the requirement of complete positivity
for the map (a property that we will assume throughout), for more general mappings, working out
both the trace constraint and the correct projector can be somewhat cumbersome. For example, it
is a priori unclear what properties a mapping from quantum channels to quantum channels (a so-
called supermap [1] or superchannel) would possess, and similar for any mapping ‘higher up in the
hierarchy’. Below, we extend the above concepts and methods to provide a direct and systematic
way to derive the linear and affine constraints for transformations between general quantum objects
(see Fig. 3 for a graphical depiction).

3 Linear transformations between quantum objects
3.1 Sets of quantum objects
The characterisation (7) of the set of quantum channels via a projector provides a potent way
to derive the structural properties of mappings that occur frequently in quantum mechanics. We
can use this structure to represent a very general class of (deterministic) quantum objects, such as
quantum states, quantum channels, quantum superchannel [1], quantum combs [2, 5], channels with
memory [9], quantum strategies [3], non-Markovian processes [25], causal quantum operations [26],
non-signalling channels [27], process matrices [8, 15], and more generally mappings between any
kinds of linear spaces [11–14, 17]. Before discussing the fully general case, i.e., mappings between
general linear spaces (see Sec. 9), we start with a discussion of scenarios that are commonly
encountered in quantum mechanics.

Definition 1 (Set of quantum objects). A set of linear operators S ⊆ L(H) is a quantum object
set if it can be described by:

A linear operator W ∈ L(H) belongs to S if and only if:
W ≥ 0 (Positive semidefinite),

P̃ [W ] = W (Belongs to a particular linear subspace),
tr[W ] = γ (Fixed trace),

(11a)

(11b)
(11c)

where P̃ : L(H) → L(H) is a linear projective map, that is P̃ 2 := P̃ ◦ P̃ = P̃ .

For example, both quantum states and the set of Choi matrices of quantum channels satisfy
the above definition. For quantum states, we have P̃ = 1̃ (where 1̃ denotes the identity map5) and
γ = 1, while for quantum channels, P̃ is given by Eq. (7) and γ = di.

5The identity map is defined by 1̃[X] = X for all X ∈ L(H).
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Figure 3: General Transformations between affine (quantum) sets All sets Si and So we consider are defined
by a linear constraint (given by P̃i and P̃o, respectively) and in most cases an affine and a positivity constraint.
Our aim is to characterise the set of linear transformations T̃io between them. Predominantly, this characterisation
will be carried out for the Choi matrices T of said transformations, and as it turns out, the corresponding set
of matrices is, again, defined by a projector P̃io, as well as an affine and a positivity constraint. The concrete
construction of P̃io depends on the respective properties of P̃i and P̃o. Thm. 2 provides this construction for
the special case most often encountered in quantum mechanics, while the general case is discussed in Thm. 5.
Likewise, the case where there are no affine constraints on Si and So is discussed in Thms. 4 and 6.

3.2 Transformations between quantum objects
Let us consider two arbitrary sets of quantum objects Si ⊆ L(Hi) and So ⊆ L(Ho) where we use
i and o as general placeholders for ’input’ and ’output’. Our main question then is:

How can the set of quantum transformations T̃io from Si to So be characterised?

Since we require T̃io to map elements from Si to So, we require that for every W ∈ Si, we
have that T̃io[W ] ∈ So, where we use additional subscripts on T̃ to signify its input and output
space. Also, in order to be consistent with the linearity of quantum theory, the transformation T̃io
is required to be a linear map from the linear space spanned by Si to the linear space spanned by
So. Additionally, since all elements of Si and So are positive, we would at least require that T̃io is
positive on all W ∈ Si. In line with standard considerations in quantum mechanics, throughout,
we go beyond this minimal requirement6 and demand that T̃io is a positive map on all of L(Hi).
Finally, similarly to quantum channels acting on quantum states, we desire T̃io to be a valid
transformation even when it is applied to only a part of a larger quantum object, which (at least)
requires that T̃io : L(Hi) → L(Ho) is completely positive. In turn, this implies that all Choi
matrices we encounter throughout are positive semidefinite (see Sec. 3.4).

Definition 2 (Quantum Transformations). Let P̃i : L(Hi) → L(Hi) and P̃o : L(Ho) → L(Ho) be

6Positivity can also be argued for in order to ensure that all probabilistic quantum object (see Sec. 6 for more
details) are mapped to positive objects as well. However, this argument requires that the probabilistic quantum
objects, i.e., all W ♯ ∈ L(Hi) which satisfy W ♯ ≤ W for some W ∈ Si, span the full space L(Hi). This is the case if
Si contains at least one full rank state, which we generally assume (see below).
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linear projective maps and Si ⊆ L(Hi) and So ⊆ L(Ho) be sets of quantum objects defined by

W ∈ L(Hi) belongs to Si iff W ′ ∈ L(Ho) belongs to So iff
W ≥ 0, −→ W ′ ≥ 0,

P̃i[W ] = W , P̃o[W ′] = W ′,
tr[W ] = γi. tr[W ′] = γo.

(12)

A linear map T̃io : L(Hi) → L(Ho) is a quantum transformation from Si to So if:

i : T̃io is completely positive

ii : ∀W ∈ Si, we have that T̃io[W ] ∈ So

(13a)

(13b)

General linear mappings of this type have previously been employed in the quantum information
literature, for example for the analysis of the dynamics of quantum causal structures [10] as well
as, under the guise of ’admissible adapters’, in the resource theory of causal connection [16], or as
’structure-preserving maps’ [14], in the study of transformations between general quantum objects.
More detailed structural investigations of the hierarchy of transformations such maps engender
have been carried out in [11–14].

Importantly, for the concrete characterisation of T̃io (or, equivalently, its Choi matrix Tio) only
the linear and affine constraints on Si and So play a role. The positive semidefiniteness constraint
on both sets on the other hand only enters in the requirement for T̃io to be CP (or, equivalently,
its Choi matrix Tio to be positive semidefinite). Concretely, this holds true, since in the cases we
consider, the positivity restriction does not alter the span of the sets, i.e., both Si and So span
the same spaces (P̃i[L(Hi)] and P̃o[L(Ho)], respectively) with or without the positivity constraints
imposed on their elements. Consequently, positivity of the respective elements does not enter as an
additional constraint on T̃io. As a result, in what follows, we rarely ever explicitly assume positivity
for the elements of Si and So and mostly consider transformations between affine sets. Positivity
of the respective elements, as well as complete positivity of the maps between Si and So can then
always be imposed by hand without any added complications. On the other hand, while a similar
argument could seemingly be made for the affine constraints – since they generally do not change
the span of Si and So, either – they fix a rescaling factor, in the sense that tr[T̃io[W ]] = γo/γi tr[W ]
for all W ∈ Si, thus playing a crucial role for the specific properties of T̃io.

3.3 Map characterisation of quantum transformations
We now present our first theorem – which has, in slightly different form, already been derived in
Refs. [10, 13, 14, 16] – to characterise quantum transformations. In this first characterisation, we
aim to completely characterise the linear map T̃io without making reference to its Choi operator,
but directly to its map properties.
Theorem 1 (Transformation between affine sets: map version). Let P̃i : L(Hi) → L(Hi) and
P̃o : L(Ho) → L(Ho) be linear projective maps and Si ⊆ L(Hi) and So ⊆ L(Ho) be affine sets
defined by

W ∈ L(Hi) belongs to Si iff W ′ ∈ L(Ho) belongs to So iff
P̃i[W ] = W , −→ P̃o[W ′] = W ′,
tr[W ] = γi. tr[W ′] = γo.

(14)

For γi ̸= 07, a linear map T̃io : L(Hi) → L(Ho) satisfies T̃io[W ] ∈ So, for all W ∈ Si iff

P̃o ◦ T̃io ◦ P̃i = T̃io ◦ P̃i,

and tr ◦T̃io ◦ P̃i = γo

γi
tr ◦P̃i .

(15a)

(15b)

7We emphasise that assuming that tr[W ] ̸= 0 is not a strong restriction, and is quite natural for practical
applications. Since all quantum objects are positive semidefinite, the only traceless object is the zero operator. In
Sec. 9 we discuss a more general version of this theorem.
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Proof. We start by showing that if Eqs. (15a) and (15b) hold, then T̃io[W ] ∈ So, for all W ∈ Si.
Let W ∈ Si. Then, by definition, we have P̃i[W ] = W . Now, since Eq. (15a) holds, for all W ∈ Si
we have

P̃o[T̃io[W ]] = P̃o ◦ T̃io ◦ P̃i[W ] = T̃io ◦ P̃i[W ] = T̃io[W ]. (16)

Additionally, since tr[W ] = γi for every W ∈ Si, from Eq. (15b) we obtain

tr ◦T̃io[W ] = tr ◦T̃io ◦ P̃i[W ] = γo

γi
tr[W ] = γo, (17)

and hence, Eqs. (15a) and (15b) together imply that T̃io[W ] ∈ So, for all W ∈ Si.
For the converse direction, we note that since γi ̸= 0, the affine constraint has no influence on

the span of Si, such that span(Si) = P̃i[L(Hi)]. By assumption, P̃o ◦ T̃io[W ] = T̃io[W ] holds for all
W ∈ Si, and by linearity, we have P̃o ◦ T̃io[M ] = T̃io[M ] for all M ∈ span(Si). For any arbitrary
X ∈ L(Hi) we have M := P̃i[X] ∈ span(Si), and thus

P̃o ◦ T̃io ◦ P̃i[X] = T̃io ◦ P̃i[X]. (18)

Since this holds for arbitrary X ∈ L(Hi), we see that Eq. (15a) is satisfied. Similarly, if T̃io is a
map from Si to So, by linearity, we see that tr[T̃io[M ]] = γo/γi tr[M ] for all M ∈ span(Si). Thus,
for arbitrary X ∈ L(Hi) we have

tr ◦T̃io ◦ P̃i[X] = γo

γi
tr ◦P̃i[X] , (19)

where, again, we have used that P̃i[X] ∈ span(Si). Since the above equation holds for all X ∈ L(Hi),
we thus recover Eq. (15b), concluding the proof.

We emphasise that the above Theorem covers the case where γo = 0, for which we have
P̃o ◦ T̃io ◦ P̃i = T̃io ◦ P̃i and tr ◦T̃io ◦ Pi = 0. However, in this case, imposing positivity on the
elements of So would, unlike in all cases we consider, lead to explicit further simplifications (see
App. A). On the other hand, the scenario γi = 0 is not directly covered by the above theorem
and in principle requires special consideration. For this scenario, it is easy to see that γi = 0
implies γo = 0. Then, one can readily define a new projector P̃ ′

i that projects onto a vector
space of traceless matrices (thus incorporating the requirement γi = 0), such that W ∈ Si iff
P̃ [W ] = W . With this, a map T̃io maps between Si and So if and only if P̃o ◦ T̃io ◦ P̃ ′

i = T̃io ◦ P̃ ′
i

and tr ◦T̃io ◦ P ′
i = 0. The details can be found in App. A. From now on, whenever not explicitly

mentioned, we will exclude both of these scenarios to avoid unnecessary technical complications
and assume γi, γo ̸= 0.

While providing necessary and sufficient conditions for quantum transformations between arbit-
rary quantum sets, Thm. 1 is not particularly insightful when it comes to the structural properties
of T̃io and does not easily allow for an incorporation of the properties that many projectors P̃i
encountered in quantum mechanics have. In the following subsection, we provide a specialised
version of Thm. 1 in terms of the Choi state Tio that takes commonly assumed properties of P̃i
into account and will be of more direct use.

3.4 Choi characterisation of particular quantum transformations
For most of practical cases, the projectors associated to the sets of quantum objects respect ad-
ditional properties which allow us to present a more specialised and useful characterisation of
quantum transformations. In particular, there are three properties which the projector P̃ associ-
ated to a quantum set S ⊆ L(H) often respects

1. Unitality: P̃ [1] = 1

2. Self-adjointness8 P̃ = P̃ †

8Let P̃ : L(Hx) → L(Hy) be a linear operator. Its adjoint is the unique map P̃ † : L(Hy) → L(Hx) respecting
tr[B†P̃ [A]] = tr[P̃ †[B]†A] for all A ∈ L(Hx) and all B ∈ L(Hy).
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3. Commutation with the transposition: P̃ [W τ ] = P̃ [W ]
τ
, for every W ∈ L(H)

We notice that these three properties are respected by the projectors onto the sets of quantum states,
quantum channels, superchannels, quantum combs, process matrices, and non-signalling channels,
to name but a few.9 We now present a characterisation theorem tailored for this particular case
in terms of Choi matrices, while the more general case with no extra assumptions is discussed in
Sec. 9.

As a first step for this characterisation, we recall that the action of a map T̃io : L(Hi) → L(Ho)
in terms of its Choi matrix Tio : L(Hi ⊗ Ho) can be written as (see Eq. (2))

T̃io[Xi] =: tri[(Xτ
i ⊗ 1o)Tio] =: Tio ⋆ Xi, (20)

where we have employed the link product ⋆ (see Sec. 8.2 for more details) and added subscripts
to emphasise what spaces the respective elements are defined on. As mentioned above, complete
positivity of T̃io is equivalent to Tio ≥ 0 [5]. With this, the characterisation of the map T̃io amounts
to a characterisation of the matrix Tio, which can be obtained via a projector, denoted by P̃io. This
characterisation has also been given in Refs. [10, 13, 14, 16] and is provided here in the notation
we employ.10

Theorem 2 (Transformation between affine sets: specialised Choi version). Let P̃i : L(Hi) → L(Hi)
and P̃o : L(Ho) → L(Ho) be linear projective maps and Si ⊆ L(Hi) and So ⊆ L(Ho) be affine sets
defined by

W ∈ L(Hi) belongs to Si iff W ′ ∈ L(Ho) belongs to So iff
P̃i[W ] = W , −→ P̃o[W ′] = W ′,
tr[W ] = γi. tr[W ′] = γo.

(21)

Additionally, we assume that the maps P̃i and P̃o are self-adjoint and unital, and that P̃i commutes
with the transposition map, i.e.,

P̃i = P̃ †
i , P̃o = P̃ †

o ,

P̃i[1] = 1, P̃o[1] = 1,

P̃i[W τ ] = P̃i[W ]τ , ∀W ∈ L(Hi).

(22a)

(22b)

(22c)

For γi ̸= 0, a linear map T̃io : L(Hi) → L(Ho) satisfies T̃io[W ] ∈ So, for all W ∈ Si if and only if

P̃io[Tio] :=Tio − (P̃i ⊗ 1̃o)[Tio] + (P̃i ⊗ P̃o)[Tio] − (P̃i ⊗ 1̃o)[oTio] + ioTio = Tio ,

tr[Tio] =γo

γi
di ,

(23a)

(23b)

holds for its Choi matrix Tio, where 1̃o is the identity map, di is the dimension of Hi, and
P̃io : L(Hi ⊗ Ho) → L(Hi ⊗ Ho) is a self-adjoint, unital projector that commutes with the
transposition.

Proof. The derivation of Eqs. (23a) and (23b) can be found in Sec. 8.3 where we discuss the link
product and the relevant mathematical tools to easily and systematically deal with Choi matrices
of general linear transformations. Here, we show the remaining properties of the projector P̃io,
i.e., that it is self-adjoint, unital, commutes with the transposition and is, indeed a projector. To

9For a quantum set S ⊆ L(H) defined by a unital and self-adjoint projector, it holds that W ∈ S if and only

if W = P̃ (X) + 1
tr (1)

(
γ − tr(X)

)
for some matrix X ∈ L(H), a parametrisation which may be very convenient.

The particular case of this parametrisation for quantum channels was already considered in Ref. [15] to obtain a
projective characterisation of process matrices.

10We remark that the characterisation presented in Ref. [10] differs from ours since it misses two terms that do not
necessarily cancel out.
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Figure 4: Quantum Channels A quantum channel C̃ which maps quantum states ρ onto quantum states ρ’.

see this latter property, first note that a self-adjoint, unital projector P̃x is trace-preserving, since
tr[P̃x[M ]] = tr[P̃x[1x]M ] = tr[M ] for all M ∈ L(Hx) and x ∈ {i, o}. Consequently, x(P̃x[M ]) =
P̃x[xM ] = xM for all M ∈ L(Hx), and thus x ◦ P̃x[M ] = P̃x ◦ x[M ] = xM . Additionally, xxM = xM ,
and, by assumption P̃ 2

x = P̃x for x ∈ {i, o}. With this using Eq. (23a), it is easy to see that

P̃ 2
io = (1̃− P̃i ⊗ 1̃o + P̃i ⊗ P̃o − P̃i ⊗ o + i ⊗ o)2 = P̃io (24)

holds, i.e., P̃ 2
io = P̃io. Finally, since both i

r and o
r are self-adjoint, unital and commute with the

transposition, these properties also hold for P̃io whenever they hold forP̃i and P̃o.

Naturally, the above Theorem is not as general as the one for maps given in Thm. 1, since
it requires additional properties of P̃i and P̃o. However, it allows for a direct characterisation of
the properties of a concrete representation of linear mappings, and applies to most scenarios that
are relevant in quantum mechanics (see Ex. 13 for a concrete example where these properties are
not satisfied, though.). Its generalisation, which is equivalent to Thm. 1, can be found in Sec. 9.
Also in Sec. 9, we provide a version of Thm. 2 for mappings that are not trace-rescaling, that is,
we discuss transformations between linear subspaces instead of affine subspaces, which is both of
independent interest and highlights the role that the affine constraints on the sets Si and So play
for the properties of Tio. As was the case for Thm. 1, the case γi = 0 is explicitly excluded in
the above Theorem. It is discussed in detail in App. B, as a special instance of the general case
(i.e., where we impose no restrictions on P̃i and P̃o). Before discussing this general case in detail
and providing the technical details for the derivation of the above Theorem, we now first show its
concrete application for commonly encountered scenarios in quantum mechanics.

4 Applications to particular quantum transformations and transformations
without a fixed causal order

We now apply Thm. 2 to obtain a quantum set characterisation for several quantum transformations
used in the literature. Later in this section we also discuss the simplest quantum transformation
which may disrespect a standard notion of fixed causal order.

Example 1 (Quantum states to quantum states (Quantum Channels)). In Sec. 2, we derived
the properties of quantum channels C̃ that map quantum states ρ ∈ L(Hi) onto quantum states
ρ′ ∈ L(Ho). Since quantum states are unit trace, we have γi = γo = 1, and there are no linear
constraints on quantum states, such that P̃i = 1̃i and P̃o = 1̃o (i.e., the identity channel). Naturally,
1̃x is unital, self-adjoint, and commutes with the transposition, such that Thm. 2 applies. Employing
Eqs. (23a) and (23a), we directly obtain (for less cluttered notation, we omit the subscripts on Cio):

(Quantum state) (Quantum state)
ρ ∈ L(Hi) belongs to Si iff ρ′ ∈ L(Ho) belongs to So iff

ρ ≥ 0, −→ ρ′ ≥ 0,
P̃i[ρ] := 1̃[ρ] = ρ, P̃o[ρ′] := 1̃[ρ′] = ρ′,

tr[ρ] = 1. tr[ρ′] = 1.

(25)

(Quantum channel)
C ≥ 0,

P̃io[C] := C − oC + ioC = C,

tr[C] = di ,

(26a)

(26b)
(26c)
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Figure 5: A quantum transformation T̃ which maps quantum channels C̃ into quantum states ρ.

which coincides exactly with the properties (5) and (6) derived in Sec. 2. Additionally, demanding
that C̃ is completely positive then imposes Cio ≥ 0, i.e., Eq. (4). For ease of notation, in the
subsequent examples, we denote the projector of Eq. (26b) by P̃ (C) and add subscripts whenever
we want to clarify what spaces it acts on. ■

Example 2 (Quantum channels to states). The next simplest transformation one could consider is
a mapping from quantum channels to quantum states, i.e., transformations of the form T̃ [C12] = ρ3
(see Fig. 5).11 Such transformations are particular types of quantum combs [2, 5], and have been
considered amongst others in the study of open quantum system dynamics with initial correlations
under the name of M-maps [28]. Keeping track of the involved spaces, for this case, we have to
identify Hi

∼= H1 ⊗ H2 and Ho
∼= H3. Since the resulting quantum states ρ3 ∈ L(H3) are unit

trace, while tr[C12] = d1, we have γi = 1 and γo = d1. Additionally, the role of P̃i is now played by
the projector P̃

(C)
12 of Eq. (26b), while P̃o is again given by 1̃3 (since there are no linear restrictions

on quantum states). Given that all involved projectors are self-adjoint, unital and commute with
the transposition, Thm. 2 applies. With this, using Eqs. (23a) and (23b), we obtain for the Choi
state T ∈ L123(H1 ⊗ H2 ⊗ H3) of the map T̃ :

(Quantum channel) (Quantum state)
C ∈ L(H1 ⊗ H2) belongs to Si iff ρ′ ∈ L(H3) belongs to So iff

C ≥ 0, −→ ρ′ ≥ 0,
P̃i[C] := C − 2C + 12C = C, P̃o[ρ′] = 1̃[ρ′] = ρ′,

tr[C] = d1. tr[ρ′] = 1.

(27)

(Quantum channel to quantum state)
T ≥ 0,

P̃io[T ] := T − 3T + 23T = T,

tr[T ] = d2 .

(28a)

(28b)
(28c)

The above coincides with 3T = 23T and tr[T ] = d2 which, in turn, are the causality/trace
constraints of a one-slot comb with a final output line [5] (we discuss causality constraints in more
detail below). Additionally, choosing H1 to be trivial, i.e., H1 ∼= C, we recover the characterisation
of quantum channels. As before, demanding complete positivity from T̃ translates to the additional
requirement T ≥ 0. ■

Example 3 (Quantum channels to quantum channels (Quantum Superchannels)). Let us now
consider the question raised at the end of Sec. 2, namely the characterisation of transformations
T̃ [C23] = C ′

14 that map quantum channels C23 ∈ L(H2 ⊗ H3) onto quantum channels C ′
14 ∈

L(H1 ⊗ H4) (see Fig. 6). In this case, we identify Hi
∼= H2 ⊗ H3 and Ho

∼= H1 ⊗ H4. The
projectors on the input and output space of T̃ are, respectively, given by the projectors P̃

(C)
23 and

P̃
(C)
14 of Eq. (26b), which are self-adjoint, unital, and commute with the transposition, such that

Thm. 2 applies. In addition, for channels, we have γi = tr[C23] = d2 and γo = tr[C ′
14] = d1. Thus,

11Here, and in what follows, whenever there is no risk of confusion, we drop the semantic distinction between
transformations and their respective Choi matrices.
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employing Eqs. (23a) and (23b), we obtain for the properties of T ∈ L(H1 ⊗ H2 ⊗ H3 ⊗ H4):

(Quantum channel) (Quantum channel)
C ∈ L(H2 ⊗ H3) belongs to Si iff C ′ ∈ L(H1 ⊗ H4) belongs to So iff

C ≥ 0, −→ C ′ ≥ 0,
P̃i[C] := C − 3C + 23C = C, P̃o[C ′] := C ′ − 4C ′ + 14C ′ = C ′,

tr[C] = d2. tr[C ′] = d1.

(29)

(Quantum superchannel)
T ≥0,

P̃io[T ] :=T − 4T + 34T − 234T + 1234T = T,

tr[T ] =d1d3 ,

(30a)

(30b)
(30c)

It is easy to see that the above is, in addition to tr[T ] = d1d3, equivalent to 4T = 34T and
234T = 1234T , which, in the ordering of spaces we have chosen, coincides with the causality/trace
constraints of a quantum comb with one slot (corresponding to the spaces labelled by 2 and 3),
and an initial input (labelled by 1) and final output (labelled by 4) [29]. This, in turn, reflects the
well-known fact that there are no causally disordered superchannels [1]. Additionally, choosing H1
to be trivial, we recover the conditions (30) on transformations of channels to states from above.

Finally, here, it is insightful to discuss in what way the properties of T would change if
the trace conditions on the elements of Si and So were dropped. Then, the transformation
T̃ ′ : L(H2 ⊗ H3) → L(H1 ⊗ H4) would still have to satisfy (P̃ (C)

14 ◦ T̃ ′)[C23] = T̃ ′[C23] for all
C23 = P̃

(C)
23 [C23], but it is not necessarily trace-rescaling. The corresponding characterisation for

this case will be given in Thm. 4. Using Eq. (119) from Thm. 4 (see Sec. 8.3), one obtains

T ′ = T ′ − P̃
(C)
23 [T ′] + (P̃ (C)

23 ⊗ P̃
(C)
14 )[T ′]

= T ′ − 4T ′ + 14T ′ + 34T ′ − 134T ′ − 234T ′ + 1234T ′,
(31)

with no additional restriction on the trace of T ′. Even setting aside the absence of an additional
trace constraint on T ′, the above Equation is significantly different from Eq. (30b), underlining the
importance of the affine constraints on Si and So for the properties of the transformations between
them. ■

Figure 6: Superchannels. A superchannel T̃ maps a CPTP map C̃ onto a CPTP map C̃′.

Example 4 (Quantum superchannels to quantum channels (Two-slot combs)). Let us now consider
the question of transforming superchannels into channels (see Fig. 7), such mathematical objects
are known in the literature as two-slot quantum combs [1, 2, 5], two-round quantum strategies [3],
and two-slot sequential superchannels [30]. In this case, we identify Hi

∼= H2 ⊗ H3 ⊗ H4 ⊗ H5 and
Ho

∼= H1 ⊗ H6. Thus, employing the projectors from the previous examples, we obtain for the
properties of T ∈ L(H1 ⊗ H2 ⊗ H3 ⊗ H4 ⊗ H5 ⊗ H6):

(Quantum superchannel) (Quantum channel)
C ∈ L(H2 ⊗ H3 ⊗ H4 ⊗ H5) C ′ ∈ L(H1 ⊗ H6)

belongs to Si iff −→ belongs to So iff
C ≥ 0, C ′ ≥ 0,

P̃i[C] := C − 5C + 45C − 345C + 2345C = C, P̃o[C ′] := C ′ − 6C ′ + 16C ′ = C ′,
tr[C] = d2d4. tr[C ′] = d1.

(32)
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(Quantum two-slot comb)
T ≥0,

P̃io[T ] :=T − 6T + 56T − 456T + 3456T − 23456T + 123456T = T,

tr[T ] =d1d3d5.

(33a)

(33b)
(33c)

Figure 7: Two-slot combs. A two-slot comb T̃ maps a superchannel C̃ onto a CPTP map C̃′.

Two-slots quantum combs are known to be causally ordered since they may always be decomposed
as a quantum circuit [1–3, 5], that is, as an ordered sequence of quantum channels, as illustrated
in Fig. 8. As discussed in the next example, this causally ordered property also holds for any
(k + 1)-slot quantum comb, which is a quantum transformation from a k-slot comb into a quantum
channel [5]. ■

Figure 8: Two-slot combs. A two-slot comb T̃ can always be decomposed as a sequence of CPTP maps
{G̃1, G̃2, G̃3}.

Example 5 (Quantum (k−1)-slot combs to quantum channels (k-slot combs)). Let us now consider
the question of transforming (k −1)-slot combs into channels (see Fig. 9), such mathematical objects
are known in the literature as k-slot quantum combs [1, 2, 5], k-round quantum strategies [3], and
k-slot sequential superchannels [30].

Definition 3. A 0-slot quantum comb is a quantum channel. For an arbitrary k ∈ N, a k-slot
quantum comb is recursively defined as a quantum transformation which maps (k − 1)-quantum
combs into quantum channels.

In this case, we identify Hi
∼= H2 ⊗ H3 ⊗ . . . H2k+1 and Ho

∼= H1 ⊗ H2k+2. Thus, employing
the results from previous examples, we obtain for the properties of T ∈ L(H1 ⊗ H2 . . . ⊗ H2k+2):

((k − 1)-slot comb) (Quantum channel)
C ∈ L(H2 ⊗ H3 ⊗ . . . ⊗ H2k+1) C ′ ∈ L(H1 ⊗ H2k+2)

belongs to Si iff −→ belongs to So iff
C ≥ 0, C ′ ≥ 0,

P̃i[C] := C − (2k+1)C + (2k)(2k+1)C − . . . P̃o[C ′] := C ′ − (2k+2)C
′

−3...(2k+1)C + 2...(2k+1)C = C, +1(2k+2)C
′ = C ′,

tr[C] = d2d4 . . . d2k. tr[C ′] = d1.

(34)
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(Quantum k-slot comb)
T ≥0

P̃io[T ] :=T − (2k+2)T + (2k+1)(2k+2)T − (2k)(2k+1)(2k+2)T +
. . . − 23...(2k+2)T + 12...(2k+2)T = T,

tr[T ] =d1d3d5 . . . d(2k+1) ,

(35a)

Figure 9: k-slot combs. A k-slot comb T̃ maps a (k − 1)-slot comb C̃ onto a CPTP map C̃′.

All k-slots quantum combs may be decomposed as a quantum circuit [1–3, 5], that is, as an
ordered sequence of quantum channels, as illustrated in Fig. 8. ■

Figure 10: k-slot combs. A k-slot comb can always be decomposed as an ordered sequence of quantum channels.

4.1 Transformations without a fixed causal order
All quantum transformations addressed in previous could be decomposed in terms of an ordered
quantum circuit. For this reason, they are referred to as objects with a fixed causal order. As
proven in Ref. [5], a quantum transformation admits a decomposition as a fixed ordered quantum
circuit if it is a quantum k-slot comb. This motivates the definition of transformations with a fixed
order.

Definition 4. A quantum transformation T̃ has a fixed causal order if it can be written as a k-slot
comb for some well-suited dimensions, where we may also set some of the dimensions to be one.

While the concept of fixed causal order is well-established, there are non-equivalent definitions
for which transformations have a definite causal order. One of the first articles to define definite
causal order considered the scenario of process matrices which transform a pair of independent
channels to unit probability [8] (this case is discussed in the next example). There, a quantum
transformation does not have a definite causal order if it cannot be written as a convex combin-
ation of quantum transformations with fixed order, a definition which is well-established for this
‘bipartite’ process matrix scenario. When more general quantum transformations are considered,
e.g., transformations of a pair of quantum channels into a channel, different arguments led to al-
ternative notions of indefinite causal order [31, 32]. Additionally, when more than two parties
are involved, the concept of classical dynamical control of causal order plays a non-trivial role [33].
Here, we will stay clear of these (important) subtleties in the definition of causal definiteness, and
only examine if the obtained transformations can lie outside the set of fixed causal order processes,
i.e., outside the set of quantum combs.

Example 6 (Non-signalling channels to unit probability (Process Matrix)). As a pertinent example,
let us consider the well-studied case of (bipartite) process matrices [8, 15], i.e., the set of transforma-
tions T̃ that map pairs of CPTP maps to unit probability (this, in turn, implies that they constitute
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(a) (b)

Figure 11: (a) Process Matrix. As a mapping from two independent channels R̃ and Ñ to the number 1 (b)
Process Matrix. As a mapping from a channel R̃ to a one-slot superchannel Q̃′ without past and future.

the dual affine set of the set of (bipartite) non-signalling CPTP maps, see Sec. 7). Specifically,
let R12 and N34 be the Choi states of CPTP maps R̃ : L(H1) → L(H2) and Ñ : L(H3) → L(H4).
Then, the set of process matrices is given by all linear maps T̃ : L(H1 ⊗ H2 ⊗ H3 ⊗ H4) → C

such that T̃ [R12 ⊗ N34] = 1 for all CPTP maps R12, N34. In this case, the input space is given
by Hi = H1 ⊗ H2 ⊗ H3 ⊗ H4, while Ho = C. The corresponding projectors simply follow from
the previous examples as P̃i = P̃

(C)
12 ⊗ P̃

(C)
34 and P̃o = 1̃ (these are, again, self-adjoint and unital

projectors that commute with the transpose, such that Thm. 2 can be applied). More explicitly, we
have

P̃i[M ] =P̃
(C)
12 ⊗ P̃

(C)
34 [M ] (36)

=P̃
(C)
12 [M − 4M + 34M ] (37)

=(M − 4M + 34M) − 2(M − 4M + 34M) + 12(M − 4M + 34M) (38)
=M − 4M + 34M − 2M + 24M − 234M + 12M − 124M + 1234M. (39)

With this, we can employ Eqs. (23a) and (23b) to obtain the properties of process matrices
T ∈ L(H1 ⊗ H2 ⊗ H3 ⊗ H4) that send pairs of CPTP maps to unit probability:

(Non-signalling channel) (Complex number)
M ∈ L(H1 ⊗ H2 ⊗ H3 ⊗ H4) belongs to Si iff c ∈ L(C) belongs to So iff

M ≥ 0, c ≥ 0,
P̃i[M ] := M − 2M − 4M + 24M + 34M− −→ P̃o[c] := c,

234M + 12M − 124M + 1234M = M, tr[c] = 1.
tr[M] = d1d3.

(40)

(Process matrix)
T ≥ 0,

P̃io[T ] := 2T + 4T − 24T − 34T + 234T − 12T + 124T = T,

tr[T ] = d2d4 .

(41a)

(41b)
(41c)

The above properties of T exactly coincide with the characterisation of process matrices given in
Ref. [15]. ■

In particular this latter result is of interest, since the set of process matrices can be considered
the dual affine set of the set of all tensor products of CPTP maps, where the dual affine of a set
are all operators that map the elements of the set to 1.12 Such dual affine sets play an important
role in quantum mechanics (and more generally, linear algebra), and evidently, the projectors

12More generally, any process matrix T will map any matrix of the form
∑

i
λiM

(i) ⊗ N(i), where
∑

i
λi = 1,

and M(i), N(i) CPTP to 1. Since the set of all valid CPTP maps that can be decomposed in this way is the set
of non-signalling maps [34, 35], process matrices form exactly the dual set of non-signalling maps. We will further
investigate this connection in Sec. 7.
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we introduced can be used to characterise them comprehensively. Below, we will analyse the
characterisation of dual sets (affine or not) in more detail. Before doing so, we provide an alternative
characterisation of process matrices.

Example 7 (Quantum channels to superchannels without initial input and final output (Process
matrices revisited)). As a penultimate example, let us consider process matrices from a different
perspective. Interestingly, they can be characterised in an alternative (yet equivalent) way, namely
as mappings that map quantum channels (say, R̃ : L(H1) → L(H2)) to one-slot combs with no
initial input and final output, i.e., superchannels with trivial input and output space (see Fig. 11(b)).
Concretely, this requirement reads T̃ [R] = Q̃′, where Q̃′ is a one-slot comb whenever R̃ is a CPTP
map. Since such one-slot combs are special cases of superchannels, they are characterised by the
projector of Eq. (30b) and they have a fixed causal order, that is, they can be represented by a
causally ordered quantum circuit. This latter fact, in turn, chimes nicely with the intuitive definition
of process matrices as mappings that obey local but not necessarily global causality [8]; considering
the slot corresponding to H1 and H2 as Alice’s laboratory, independent of what deterministic
operation (i.e., CPTP map) she performs locally, Bob (i.e., the slot corresponding to H3 and H4)
will always encounter a causally ordered scenario (given by the one-slot comb Q̃′). Naturally, one
would obtain the same definition of process matrices with the roles of Alice and Bob reversed.

Let us now show that this alternative definition of process matrices indeed leads to the same
characterisation as the one provided in the previous Example. First, since R12 ∈ L(H1 ⊗ H2) and
Q′

34 ∈ L(H3 ⊗ H4), we identify Hi
∼= L(H1 ⊗ H2) and Ho

∼= L(H3 ⊗ H4). The projector P̃i is given
by the projector P̃

(C)
12 on the space of channels, while P̃o follows directly from the projector onto

the set of superchannels provided in Eq. (30b) by setting H1 ∼= H4 ∼= C, such that P̃o[T ] = 4T .
Additionally, we have that γi = tr[R] = d2, while γo = tr[Q′] = d3 (see Eq. (30)). Since all involved
projectors are self-adjoint, unital, and commute with the transposition, Thm. 2 applies, and we
obtain the characterisation of T as

(Quantum channel) (Superchannel without past and future)
R ∈ L(H1 ⊗ H2) belongs to Si iff Q′ ∈ L(H3 ⊗ H4) belongs to So iff

R ≥ 0, −→ Q′ ≥ 0,
P̃i[R] := R − 2R + 12R = R, P̃o[Q′] := 4Q′ = Q′,

tr[R] = d1. tr[Q′] = d3.

(42)

(Process matrix revisited)
T ≥ 0,

P̃io[T ] := 2T + 4T − 24T − 34T + 234T − 12T + 124T = T,

tr[T ] = d2d4 ,

(43a)

(43b)
(43c)

which coincides exactly with the characterisation of process matrices given in Eq. (41). Besides
yielding an equivalent characterisation of process matrices, the above derivation also sheds an
interesting light on the emergence of causal indefiniteness; graphically, a mapping from CPTP
maps to one-slot combs is very similar to a mapping from CPTP maps to CPTP maps (i.e.,
superchannels), with the only difference that the incoming and outgoing wires of the former case are
inverted with respect to the latter (to see this, compare Figs. 6 and 11(b)). This graphical similarity
notwithstanding, all one-slot superchannels have a fixed causal order, while process matrices do not
always have an ordered quantum circuit decomposition (since the projector in Eq. (43b) is not onto
the space of 2-slot combs). In particular, process matrices can be causally non-separable, that is,
they cannot be written as a convex combination of ordered quantum circuits, or even as a quantum
circuit with classical dynamical order [33], and may even violate causal inequalities [8, 36].

Finally, let us remark that the equivalence between the two characterisations of process matrices
ceases to hold if the trace-rescaling property is dropped. In this case, the requirement that process
matrices map non-signalling maps to C(i.e., the case considered in the previous Example) yields
no restrictions on the corresponding map T ′, i.e., P̃io = 1̃io (as can be seen by direct insertion
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into Eq. (119) in Sec. 8.3). On the other hand, dropping the trace-rescaling conditions on maps
that map CPTP maps to the space spanned by one-slot combs (i.e., the ones considered in this
Example), we obtain, using Thm. 4:

T ′ = 2T ′ + 4T ′ − 24T ′ − 12T ′ + 124T ′, (44)

which is a non-trivial constraint on the map T ′. ■

Example 8 (Superchannels to superchannels). We now discuss an a priori more involved case
that features less prominently in the literature: mappings from superchannels to superchannels
(see Fig. 12). Above, we already derived the projector onto the space of superchannels as well
as their trace (see Eqs. (30)). Here, proper bookkeeping of the involved spaces becomes slightly

Figure 12: Superchannel to superchannel. The higher-order quantum map T̃ (with Choi matrix T ∈
L(H0 ⊗H1 ⊗H2 ⊗H5 ⊗H6 ⊗H3 ⊗H4 ⊗H7) maps superchannels S̃ (with Choi state S ∈ L(H1 ⊗H2 ⊗H3 ⊗H4))
onto superchannels S̃′ (with Choi state S′ ∈ L(H0 ⊗ H5 ⊗ H6 ⊗ H7)).

involved, but the respective properties of mappings from superchannels to superchannels can be
readily deduced, using Thm. 2. Specifically, following the labelling convention of Fig. 12, we set
Hi := H1 ⊗ H2 ⊗ H3 ⊗ H4 and Ho := H0 ⊗ H5 ⊗ H6 ⊗ H7. Consequently, for the Choi matrices S
(S′) of the input (output) superchannels we have S ∈ L(Hi) (S′ ∈ L(Ho) ), while the Choi matrix
T of the transformation between them acts on Hi ⊗ Ho. Now, using Thm. 2, we obtain

(Superchannel) (Superchannel)
S ∈ L(H1 ⊗ H2 ⊗ H3 ⊗ H4) ∈ Si iff S′ ∈ L(H0 ⊗ H5 ⊗ H6 ⊗ H7) ∈ So iff

S ≥ 0, −→ S′ ≥ 0,
P̃i[S] := S − 4S + 34S, P̃o[S′] := S′ − 7S′ + 67S′,

−234S + 1234S = S, −567S′ + 0567S′ = S′,
tr[S] = d1d3. tr[S′] = d0d6.

(45)

(Mapping between superchannels)
T ≥ 0,

P̃io[T ] := T − 7T + 47T + 67T − 347T − 467T − 567T + 2347T

+ 3467T + 4567T − 12347T − 23467T − 34567T + 123467T,

+ 234567T − 1234567T + 01234567T = T.

tr[T ] =d0d6d2d4 .

(46a)

(46b)
(46c)

While not a priori particularly insightful (albeit indispensable when numerically optimising over
transformations of superchannels) in its own right, Eq. (46b) allows one to directly deduce that
transformations from superchannels to superchannels do not necessarily display a fixed causal order,
i.e., they are not limited to quantum combs and cannot necessarily be implemented by means of a
quantum circuit. In particular, counting input and output spaces, if T corresponded to a supermap
with a fixed causal order, it would have to satisfy the properties of a 3-slot comb (see Fig. 12). For
example, for the space H7 to be the final output space of such a 3-slot comb, T would have to
satisfy 7T = x7T , where x ∈ {0, 2, 4, 6}. From Eq. (46b), we directly see that this is not the case
for any x, and, for instance, we have 7T − 47T = 67T − 467T − 567T + 4567T ̸= 0 and analogously
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for x = 0, 2, 6. In a similar vein, this can be checked for the other potential final output spaces
{1, 5, 3}, with the same result. Consequently, there exists valid general maps from superchannels to
superchannels which do not have a fixed causal order. ■

Example 9 (Unital channels to unital channels). As a last example, we will now consider
transformations mapping unital channels to unital channels. A linear map C̃ : L(Hi) → L(Ho) is
unital if it preserves the identity operator, i.e., C̃(1i) = 1o, in Choi picture if C ∈ L(Hi ⊗ Ho)
is the Choi operator of the channel C̃, C̃ is unital if and only if tri(C) = 1o. Quantum channels
which are unital are also referred to it as bistochastic channels. Transformations between them
were first analysed in Ref. [37], where the authors introduced the “quantum time flip”, object which
was explored in an experimental context in Ref. [38, 39].

Here, it is important to notice that, since unital maps do not span the set of all CPTP maps, the
most general quantum transformation mapping unital channels into unital channels may transform
quantum channels into objects which are not quantum channels. For concreteness, we now illustrate
this fact with the example discussed in Ref. [37]. Let Hi := H1 ⊗ H2 and Ho := H0 ⊗ H3, and
T̃ : L(Hi) → L(Ho) be defined as T̃ (C) = FCF †, where F : H1 → H2 is the flip operator
(also known as swap operator) defined as F :=

∑
ij |ij⟩⟨ji|. We notice that, if we apply T̃ on

unital channels B ∈ L(Hi), the output T̃ (B) is a quantum channel. However, if we apply the
map T̃ to non-unital channels, such as a trace and replace one C = 11 ⊗ |0⟩⟨0|, we have that
T̃ (11 ⊗ |0⟩⟨0|2) = |0⟩⟨0|1 ⊗ 13, which is not a quantum channel, because tr3(|0⟩⟨0|0 ⊗ 13) ̸= 10.
Hence, such class of transformations go beyond the process matrix formalism [8] but can still be
characterised via Thm. 2, illustrating the generality of our methods.

Similarly to the other cases, we now invoke Thm. 2, to obtain

(Unital channel) (Unital channel)
C ∈ L(H1 ⊗ H2) ∈ Si iff C ′ ∈ L(H0 ⊗ H3) ∈ So iff

C ≥ 0, −→ C ′ ≥ 0,
P̃i[C] := C − 1C − 2C + 212C = C, P̃o[S′] := C ′ − 0C ′ − 3C ′ + 203C ′ = C ′,

tr[S] = d1. tr[S′] = d0.

(47)

(Mapping between unital channels)
T ≥ 0,

P̃io[T ] := T −0 T +01 T +02 T − 2012T −3 T +13 T +23 T − 2123T

+03 T −013 T −023 T + 30123T = T

tr[T ] =d0d3 .

(48a)

(48b)
(48c)

When compared to the appendix “Characterisation of the operations on bistochastic chan-
nels” of Ref. [37], the equations above provide an alternative (but equivalent) characterisation of
transformations between unital channels ■

5 ‘Completeness’ of Quantum properties
5.1 Completely admissible transformations
Up to this point, we have discussed the properties of transformations T̃io whenever they act non-
trivially on the full input space L(Hi). However, just like in the case of positivity, one may
wonder if a transformation is also admissible (in a sense to be defined below) when only acting
non-trivially on a part of an input object Wia ∈ L(Hi ⊗ Ha). To give a simple concrete example,
a trace-preserving map T̃io is also trace preserving when only acting non-trivially on a part of a
quantum state ρia ∈ L(Hi ⊗ Ha), i.e., tr[T̃io ⊗ 1̃a[ρia]] = tr[ρia] for all auxiliary spaces L(Ha). A
priori, though, it is unclear if, and even in what sense, this ‘completeness’ holds for more involved
cases, like the ones discussed in the previous section. To tackle this question, we first require the
notion of an extension of a projector:
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Definition 5 (Extension of a projector). For a given projector P̃x on L(Hx), we call a family of
projectors {P̃xa}a on the respective spaces L(Hx ⊗Ha) an extension of P̃x if it satisfies P̃xa

∼= P̃x when
Ha

∼= C. Additionally, whenever P̃x is self-adjoint (unital, commuting with the transposition), all
projectors of the extension are assumed to be self-adjoint (unital, commuting with the transposition)

Whenever there is no risk of confusion, we also call the individual projectors P̃xa an extension
of P̃x, with the understanding that they are an element of a whole set of projection operators. A
priori, the above definition occurs somewhat void of meaning, since it does not really restrict the
set of extensions {P̃xa}a. We emphasise that this is by design, since we aim to remain agnostic
with respect to how one chooses a particular extension in a concrete physical scenario; choosing
a more restrictive definition of an extension13 might exclude many cases of interest. Since this
level of generality does not pose any additional technical issues, we thus postpone more explicit
definitions of the extensions to the examples below (see Exs. 10 and 11).

For the moment, as a concrete simple example, one can consider the set of quantum states
on L(Hx) ≡ L(H1) defined by the projector P̃x = 1̃1. The natural extension of this projector to
projectors on the spaces L(H1 ⊗ Ha) for arbitrary auxiliary spaces L(Ha) is the set {1̃1 ⊗ 1̃a}a.

Analogously, considering the set of CPTP maps T̃ : L(H1) → L(H2) defined by the projector
P̃x[T ] = T − 2T + 12T , with Hx ≡ H1 ⊗ H2, we obtain the ‘natural’ extension to projectors onto
the sets of CPTP maps T̃ : L(H1 ⊗ Ha1) → L(H2 ⊗ Ha2) acting on an extended space as

{P̃xa|P̃xa[X] = X − 2a2X + 1a12a2X, ∀X ∈ L(Hx ⊗ Ha)}a, (49)

where Ha ≡ Ha1 ⊗ Ha2 .
Intuitively, P̃xa can be considered as the ‘version of’ P̃x on a larger space. However, the concrete

choice of extension is not always unique and can depend on the physical situation that is considered
(see Ex. 11 below). In the literature, the question of completeness has already appeared under the
name of ‘completely admissible’, and it was shown that different well-motivated extensions lead
to different sets of completely admissible transformations [16]. While considering more restricted
scenarios, the question of completely admissible was addressed for bipartite process matrices with
process and future applied on local bipartite channels [18] and for performing measurements on
quantum channels [19]. Additionally, different ways to extend and compose quantum systems were
introduced, as so-called non-signalling extensions P̃x → P̃x ⊗ P̃a for some projectors P̃a [14], the
’prec’ ≺ extension [14], as well as full signalling ’par’

&

extension [13] and others [13]. While these
mentioned examples fit into Def. 5, here, for the moment, we shall not assume an explicit functional
form of P̃xa with respect to P̃x and rather leave their explicit structure a priori unspecified. With
this, we are now in a position to define the notion of ’completely admissible’ with respect to an
extension and generalise the definition first presented at Ref. [16]:

Definition 6 (Completely admissible). Let P̃i : L(Hi) → L(Hi) and P̃o : L(Ho) → L(Ho) be linear
projective maps with respective extensions {P̃ia}a and {P̃oa}a. Let Sia ⊆ L(Hia) and Soa ⊆ L(Hoa)
be sets of quantum objects defined by

Wia ∈ L(Hia) belongs to Sia iff W ′
oa ∈ L(Hoa) belongs to Soa iff

Wia ≥ 0, −→ W ′
oa ≥ 0,

P̃ia[Wia] = Wia, P̃oa[W ′
oa] = W ′

oa,
tr[Wia] = γia. tr[W ′

oa] = γoa.

(50)

for all auxiliary spaces Ha. A linear map T̃io : L(Hi) → L(Ho) is completely admissible with respect
to the extensions {P̃ia}a and {P̃oa}a if:

i : T̃io is completely positive

ii : ∀Wia ∈ Sia, we have that (T̃io ⊗ 1̃a)[Wia] ∈ Soa

(51a)

(51b)

13A seemingly obvious additional restriction would be of the form tra ◦P̃xa ∝ P̃x. While this is the case in all the
examples we provide, this assumes a particular relationship between all the spaces defined by {P̃xa}a, which we do
not fundamentally require for our proofs/constructions.
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In principle, depending on the respective extensions {P̃ia}a and {P̃oa}a, this definition might
not yield any transformations T̃io that satisfy it. However, for all cases we consider (and all
relevant cases in the literature), this is not the case, and we thus opt for the notational simplicity
the generality of the above definition provides.

Notably, Def. 6 restricts the transformations T̃io⊗1̃a similarly to the requirements of a quantum
transformation imposed in Def. 1. Consequently, we can use a similar reasoning as the one that
led to Thm. 2 to obtain the properties of T̃io ⊗ 1̃a:

Lemma 1 (Completely admissible transformations: specialised Choi version). Let P̃i : L(Hi) →
L(Hi) and P̃o : L(Ho) → L(Ho) be linear projective maps with respective extensions {P̃ia}a and
{P̃oa}a. Let Sia ⊆ L(Hia) and Soa ⊆ L(Hoa) be sets of quantum objects defined by

Wia ∈ L(Hia) belongs to Sia iff W ′
oa ∈ L(Hoa) belongs to Soa iff

P̃ia[Wia] = Wia, −→ P̃oa[W ′
oa] = W ′

oa,
tr[Wia] = γia. tr[W ′

oa] = γoa.
(52)

Additionally, we assume that all the maps P̃ia and P̃oa are self-adjoint and unital, and that P̃ia
commutes with the transposition map, i.e., for all Ha we have

P̃ia = P̃ †
ia, P̃oa = P̃ †

oa,

P̃ia[1] = 1, P̃oa[1] = 1,

P̃ia[W τ
ia] = P̃ia[Wia]τ , ∀Wia ∈ L(Hia).

(53a)

(53b)

(53c)

A linear map T̃io : L(Hi) → L(Ho) is completely admissible with respect to the extensions {P̃ia}a

and {P̃oa}a if and only if

(P̃ia ⊗ 1̃oa′)[Tio ⊗ Φ+
aa′ ] = (P̃ia ⊗ P̃oa′)[Tio ⊗ Φ+

aa′ ],

and (P̃ia ⊗ 1̃o)[oaTio] = ioaTio & tr[Tio] = γoa

γia
di

(54a)

(54b)

holds for its Choi matrix Tio for all Ha, where Ha
∼= Ha′ , Φ+

aa′ is the Choi matrix14 of the identity
map 1̃a and P̃oa′ ∼= P̃oa.

The proof of the above Lemma follows along the same lines as that of Thm. 2 and can be found
in App. D. For improved clarity, here, in contrast to Thm. 2, we have split the properties of the
transformation Tio into two parts: Eq. (54b), which stems from the trace-rescaling properties, and
Eq. (54a), which concerns the remaining structural requirements. We emphasise that Eq. (54b)
directly implies that γoa/γia = γo/γi has to hold for all Ha in order to allow for the existence of an
admissible transformation Tio. This requirement will be fulfilled in all the examples we consider
below, and we will assume it throughout.

While only providing the constraints on Tio ⊗ Φ+
aa′ , in many relevant cases, Lem. 1 allows one

to directly deduce a characterisation of Tio alone. To see this, we make the following Observation:

Observation 1. Let T̃io be a completely admissible transformation (with respect to the extensions
{P̃ia}a and {P̃oa}a) with tr[Tio] = γo/γi · di. For a given Ha, Eqs. (54a) and (54b) yield a set of
linear constraints on Tio via

Ωa[Tio] := (P̃ia ⊗ 1̃oa′ − P̃ia ⊗ P̃oa′)[Tio ⊗ Φ+
aa′ ] = 0 ⇔

d4
a∑

α=1
R(α)

a ⊗ ∆(α)
aa′ = 0, (55)

Ξa[Tio] := (P̃ia ⊗ 1̃o)[oaTio] − ioaTio = 0 ⇔
d4

a∑
β=1

Q(β)
a ⊗ ∆(β)

aa′ = 0, (56)

14The concrete form of Φ+
aa′ depends on the basis that is chosen for the CJI. In the examples below, this choice

will always be clear from context.
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where {∆(α)
aa′ }d4

a
α is an orthonormal Hermitian basis of L(Ha ⊗ Ha′), while R

(α)
a = traa′ [∆(α)Ωa[Tio]]

and Q
(β)
a = traa′ [∆(β)

aa′ Ξa[Tio]]. In principle, this leads to a set of 2d4
a linear equations

R(α)
a = 0 and Q(β)

a = 0, ∀α, β, Ha, (57)

that can often be phrased as restrictions on Tio for every space Ha, implying a potentially infinite
number of linear constraints (that might not be satisfiable simultaneously). As we will see in the
concrete examples below, in most practical cases, the physically motivated extensions {P̃ia}a and
{P̃oa}a are such that a) Eq. (57) can indeed be read as a direct requirement on Tio, b) the ensuing
restrictions on Tio can be satisfied concurrently, and c) it suffices to compute them for an arbitrary
(non-trivial) fixed extension space Ha.

Let us illustrate the above considerations with some concrete examples.

Figure 13: Complete trace preservation. A superchannel T̃ should map TP maps to TP maps, even when only
acting non-trivially on a part of them (here, the spaces H1 and H2). For the particular case of superchannels,
this requirement does not yield any additional constraints on T̃ .

Example 10 (Superchannels revisited: Completely trace preserving maps15). For the case of
superchannels, a natural requirement of completely admissibility is to demand that a superchannel
T̃ yields a TP map even when acting non-trivially on only a part of a TP map C̃ : L(H1 ⊗ Ha1) →
L(H2 ⊗ Ha2) (see Fig. 13). Thus, we have Hi = H2 ⊗ H3, Ho = H1 ⊗ H4, and Ha = Ha1 ⊗ Ha2 .
As mentioned above, the projectors P̃ia and P̃oa′ are of the form

P̃ia[X] = X − 3a2X + 2a13a2X and P̃oa′ [Y ] = Y − 4a′
2
Y + 1a′

14a′
2
Y, (58)

where Ha1
∼= Ha′

1
and Ha2

∼= Ha′
2
. The Choi state of the identity channel 1̃aa′ is given by

Φ+
aa′ := Φ+

a1a′
1

⊗ Φ+
a2a′

2
, where Φ+

a1a′
1

(Φ+
a2a′

2
) is the maximally entangled state in the computational

basis of Ha1 (Ha2). We have γia = d2da1 and γoa = d1da1 , such that γoa/γia = d1/d2 = γo/γi holds
and we have tr[T ] = d1d3. In addition, Eq. (54a) yields

(−4T + 34T ) ⊗ Φ+
a1a′

1
⊗ 1a2a′

2
/da2 + (14T − 134T − 234T + 1234T ) ⊗ 1a1a′

1a2a′
2
/(da1da2) = 0. (59)

By comparing linearly independent terms, as detailed in Obs. 1, we see that this implies:

−4T + 34T = 0 and 14T − 134T − 234T + 1234T = 0. (60)

It is easy to deduce that this is equivalent to

T = T − 4T + 34T − 234T + 1234T, (61)

which corresponds exactly to the projector onto the set of superchannels derived in Eq. (30b).
Following the same logic, from the trace-rescaling property Eq. (54a) we obtain 14T = 134T , which
is already implied by Eq. (61).

Consequently, in this case, the trace-rescaling property does not add any additional restrictions
on admissible superchannels. Overall, we thus obtain the (well-known) fact that superchannels
as considered in Ex. 3 are already completely admissible (in this case, completely TP-preserving).
However, previous proofs of this fact either had to – additionally – demand complete positivity (in

15Although not discussed in detail, App. C of Ref. [18] uses related, but different methods, to obtain the same
results as in this example.
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which case superchannels can be represented by a causally ordered circuit, making them completely
TP preserving), or finding other bespoke ways to prove this statement. Here, using Lem. 1 and
Obs. 1, we can derive the projector onto the set of completely admissible superchannels in a
direct and systematic manner. Additionally, by treating the different requirements on completely
admissible superchannels individually, we see that demanding a superchannel to be completely
trace-rescaling does not yield any additional restrictions on Tio. Interestingly, this is in stark
contrast to the derivation of the properties of superchannels (without the demand of complete
admissibility), where the projector onto the set of superchannels would differ from Eq. (30b) if one
did not demand the trace-rescaling property. ■

To see that complete admissibility can, indeed, add new restrictions on transformations, as well
as depend on the choice of extension, we provide a second explicit example, this time considering
process matrices.

(a) (b)

Figure 14: Completely admissible process matrix. (a) A (bipartite) process matrix maps pairs of channels
to unit probability (with corresponding projector P̃o = 1̃ : C → C). When acting non-trivially only on a part
of those channels, the resulting object is a mapping Z̃(a) : L(Ha1 ⊗ Ha3 ) → L(Ha2 ⊗ Ha4 ). One possible
extension P̃

(TP)
oa follows from the requirement that Z̃(a) is a valid channel. Another, more restrictive option for

P̃
(NS)
oa would be the projectors onto channels Z̃(a) that are non-signalling a1 ↛ a4 and a3 ↛ a2. Both are valid

extensions and, depending on the physical situation that is considered can be the ‘correct’ choice. (b) The
only process matrices that are completely admissible with respect to P̃

(NS)
oa are state preparations followed by a

discarding of the output system.

Example 11 (Process matrix revisited: Completely trace preserving and/or completely non-sig-
nalling preserving). We have already discussed (bipartite) process matrices in Ex. 6 as the set of
transformations that map products of channels R̃ : L(H1) → L(H2) and Q̃ : L(H3) → L(H4) (and
thus (bipartite) non-signalling channels16) to unit probability. The corresponding projector P̃i on
L(Hi) := L(H1 ⊗H2 ⊗H3 ⊗H4) is given in Eq. (41). Its natural extension is the projector P̃ia onto
the set spanned by non-signalling channels L(Ha1 ⊗ H1 ⊗ H3 ⊗ Ha3) → L(Ha2 ⊗ H2 ⊗ H4 ⊗ Ha4)
with 1a1 ↛ 4a4 and 3a3 ↛ 2a2 (see Fig. 14(a)). It can be obtained by the replacement x 7→ axx
for x ∈ {1, 2, 3, 4} in Eq. (41), which yields

P̃ia[X] := X − a22X − a44X + a22a44X + a33a44X − a22a33a44X

+ a11a22X − a11a22a44X + a11a22a33a44X
(62)

While this extension is natural (albeit not the only possible way), the extension of the output
projector P̃o := 1̃ : C → C is, a priori, not unique. Letting T̃ act non-trivially on only a part of
‘extended’ channels R̃(a) ⊗ Q̃(a), with R̃(a) : L(H1 ⊗Ha1) → L(H2 ⊗Ha2) and Ñ (a) : L(H3 ⊗Ha3) →
L(H4 ⊗ Ha4), yields a map Z̃(a) : L(Ha1 ⊗ Ha3) → L(Ha2 ⊗ Ha4). The minimum requirement one
could ask for, is that Z̃(a) is trace-preserving, yielding the extended output projector

P̃ (TP)
oa [X] = X − a2a4X + a1a3a2a4X. (63)

16See Sec. 7.2 for a detailed discussion of non-signalling channels in the bi- and multi-partite case.
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On the other hand, one might be more explicitly interested in the signalling properties of Z̃(a), and
require that it is non-signalling17 a1 ↛ a4 and a3 ↛ a2, yielding the alternative projector extension

P̃ (NS)
oa [X] := X − a2X − a4X + a2a4X + a3a4X − a2a3a4X + a1a2X − a1a2a4X + a1a2a3a4X, (64)

which is obtained from Eq. (41) via the replacement x 7→ ax for x ∈ {1, 2, 3, 4}. Both of these
choices satisfies γoa/γia · di = γo/γidi = d2d4 as well as P̃

(TP)
oa = P̃

(NS)
oa = 1̃ = P̃o for Ha = C,

and are thus, depending on the physical scenario one aims to investigate, valid extensions of P̃o.
The resulting structural requirements on Tio (besides Tio ≥ 0 and tr[Tio] = d2d4) can, again, be
computed using Lem. 1 and Obs. 1.

For the case where the resulting map Z̃(a) only needs to be trace-preserving, employing P̃ia and
P̃

(NS)
oa in Eq. (54a) and comparing the linearly independent terms according to Obs. 1 yields

T = 4T + 2T − 24T, 34T = 234T, 12T = 124T

and T = 2T + 4T − 24T − 34T + 234T − 12T + 124T.
(65)

It is easy to see that the latter of these conditions implies the former three, and coincides with
Eq. (41), which defined the projector onto the set of process matrices. Analogously, using Eq. (54b)
and Obs. 1, we see that the trace-rescaling property yields

T = 2T + 4T − 24T − 34T + 234T − 12T + 124T, (66)

which coincides with the third condition in Eq. (65), and thus provides no new restrictions.
Consequently, as also pointed out in Ref. [18], process matrices as derived in Ex. 6 are also
completely admissible with respect to the extensions P̃ia and P̃

(TP)
oa .

However, this changes drastically when the extension of P̃o is taken to be P̃
(NS)
oa . Now, employing

Eq. (54a) and Obs. 1 yields the set of equations

T = 2T, T = 4T, T = 24T, T = 4T − 34T + 234T, T = 2T − 12T + 124T,

and T = 2T + 4T − 24T − 34T + 234T − 12T + 124T.
(67)

Evidently, all of the above equations follow directly from the third one, T = 24T , implying that T is
of the form T = ρ13 ⊗124, where ρ13 ∈ L(H1 ⊗H3) is a quantum state; that is, T corresponds to the
situation where the two parties share a quantum state, and their respective outputs are discarded
(see Fig. 14(b)). Since the requirements stemming from the trace-rescaling property only depend
on P̃ia, here, they are the same as in Eq. (66) above, and thus yield no new restrictions, since
Eq. (66) is already implied by T = 24T . Thus, process matrices T that are completely admissible
with respect to the extensions P̃ia and P̃

(NS)
oa are of the form ρ13 ⊗ 124, which is a strict subset of

all process matrices defined in Ex. 6. ■

Lem. 1 and Obs. 1 provide a systematic way to derive the requirements that follow from complete
admissibility for many relevant cases. As we have seen, in some cases, complete admissibility does
not impose any additional constraints, while in others it does. This raises the question, under what
circumstances the extensions P̃ia and P̃oa yield new restrictions on Tio.

5.2 Sufficient conditions for complete admissibility
In many cases considered in the previous Section, there is a simple relationship between the project-
ors P̃i and P̃o and their respective extensions P̃ia and P̃oa that allows for the direct computation
of the properties of completely admissible maps T̃io. For example, in Ex. 11, P̃ia is obtained from
P̃i via the replacement x

r 7→ axx
r for x ∈ {1, 2, 3, 4}. The relationship between the projectors and

their respective extensions allows one to decide whether the requirement of complete admissibility
yields additional restrictions on the transformation T̃io. Concretely, this question can be decided
via the following two lemmata, where, for convenience, we consider the trace-rescaling property
separately.18

17For example, such a signalling constraint has been used in Ref. [16] (in a slightly more general form) to define
the notion of ‘completely admissible’ transformations of process matrices.

18We emphasise that, as mentioned above, we always assume γoa/γia = γo/γi in what follows, since it is otherwise
impossible for a transformation to be completely trace-rescaling.
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Lemma 2 (Sufficient condition for complete trace-rescaling). Let P̃i : L(Hi) → L(Hi) be a linear,
self-adjoint and unital projective map that commutes with the transposition, and let {P̃ia}a be its
extension. If for all auxiliary spaces Ha we have

P̃ia[Xi ⊗ 1a] = P̃i[Xi] ⊗ 1a ∀Xi ∈ Hi, (68)

then complete trace-rescaling does not add any new restriction over ‘normal’ trace-rescaling.

Proof. Assuming Eq. (68) to hold, we obtain

(P̃ia ⊗ 1̃o)[oaTio] = (P̃i ⊗ 1̃oa)[ioaTio]. (69)

Now, if Tio is trace-rescaling, we obtain from Eq. (54b) in Lem. 1 (by setting Ha
∼= C) that

P̃i[oTio] = ioTio holds. Inserting this into the above equation yields

(P̃ia ⊗ 1̃o)[oaTio] = ioaTio, (70)

which implies that Tio is completely trace-rescaling.

For example, the assumptions of this Lemma are satisfied for the case of superchannels (see
Ex. 10), where the extended input projector is of the form P̃ia[Xia] = Xia − 3a2Xia + 2a13a2Xia,
which satisfies Eq. (68) for all Xi ∈ L(H2⊗H3). The same holds true for the projector extension P̃ia
of Ex. 11, where we considered complete admissibility for process matrices. We emphasise though,
that this doe not have to hold in general. For example, when considering the set of channels that
leave a fixed state ηi ≠ 1i/di invariant (say, for instance, Gibbs-preserving channels [40, 41]), the
(non-unital) projector onto the input space is given by P̃i[Xi] = tr[η′

iXi]η′
i, where η′

i := ηi/ tr[η2
i ]

(see also Ex. 13). A possible extension of this projector would be P̃ia[Xia] = tr[(η′
i⊗ξ′

a)Xio](η′
i⊗ξ′

a),
where ξ′

a = ξa/ tr[ξ2
a ] and ξa ̸= 1a/da is some quantum state on Ha. Evidently, this projector

extension does not satisfy Eq. (68) and might thus add new restrictions to the trace re-scaling
property.

With respect to the remaining restrictions that come due to the ‘completeness’ requirement,
we have the following Lemma:

Lemma 3 (Sufficient conditions for complete admissibility). Let P̃i : L(Hi) → L(Hi) and
P̃o : L(Ho) → L(Ho) be linear, self-adjoint and unital projective maps that commute with the
transposition, and let {P̃ia}a and {P̃oa}a be their respective extensions. If for all auxiliary spaces
Ha we have Pia = P̃i ⊗ P̃a and Poa = P̃o ⊗ P̃a, where P̃a is a projector that commutes with the
transposition, then the requirement of complete admissibility does not add any new restrictions.

The proof of the Lemma follows directly from Lem. 1 and can be found in App. E. Here, we
emphasise that the extensions P̃i 7→ P̃i ⊗ P̃a and P̃o 7→ P̃o ⊗ P̃a correspond exactly to the ‘no-
signalling composition’ considered in Ref. [14]. If, additionally, the projectors P̃a are unital (which
we generally assume), then this extension also satisfies the assumptions of Lem. 2, explaining why
such an extension will never lead to additional restrictions on T̃io when complete admissibility is
required.

We emphasise that the above condition is only sufficient, but not necessary for T̃io to be
completely admissible with respect to the extensions {P̃ia}a and {P̃oa}a. For example, when
considering the complete admissibility of process matrices in Ex. 11, the extensions P̃ia and P̃

(TP)
oa

satisfied neither of the conditions of the above Lemma, yet requiring complete admissibility did –
in total – not add any new restrictions on the set of process matrices.

Together, the results of the present and the previous Section provide a simple framework to
incorporate ‘completeness’ into physical considerations, and to decide whether this addition leads
to new sets of valid transformations. Importantly, complete admissibility is not a well-defined
property per se, but is contingent on the respective projector extensions that are chosen, which,
in turn, depend on the physical property one aims to preserve completely. Following the methods
presented in Sec. 9, the above results on complete admissibility can readily be extended to more
general projectors P̃i and P̃o that are, for example, not self-adjoint, non-unital, or do not commute
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with the transposition. In particular the non-unital case, alluded to below Lem. 2 can readily
be treated by slightly changing Lem. 2 alone. Here, since they are less frequently encountered
in relevant physical setups, we will not consider complete admissibility for these more general
scenarios explicitly. Rather, we now shift our attention to probabilistic quantum transformations.

6 Probabilistic quantum transformations
In the previous sections, we have – except for short comments on the consequences of dropping
trace rescaling conditions – only addressed deterministic quantum transformations, i.e., transform-
ations that occur with unit probability. Specifically, these are transformations that are ‘built up’
from quantum states (which can be prepared with unit probability); then, CPTP maps (transform-
ations from states to states), superchannels (transformations from quantum channels to quantum
channels), process matrices (transformations from channels to number 1) are all deterministic,
since they have a deterministic element as their ’base object’. More abstractly, here, we consider a
transformation to be deterministic if it maps between affine quantum sets Si and So with γi, γo ≠ 0.

However, quantum theory also admits probabilistic quantum transformations. For example,
when considering quantum states, probabilistic transformations are described by quantum instru-
ments [42, 43]. Concretely, let ρ ∈ L(Hi) be a quantum state, then a quantum instrument is a
set of CP maps {C̃(i)}i – each of them corresponding to a possible measurement outcome – with
C̃(i) : L(Hi) → L(Ho) which add up to a quantum channel, that is, C̃ :=

∑
i C̃(i) is CPTP. When

the quantum instrument {C̃(i)}i is applied on the state ρ, with probability tr
[
C̃(i)[ρ]

]
, the classical

outcome i is obtained and the state ρ is transformed to

ρ′ := C̃(i)[ρ]
tr

[
C̃(i)[ρ]

] . (71)

In a similar vein, all deterministic quantum transformations (in particular, all the quantum
transformations we discussed above) have their probabilistic counterpart, given by sets of CP maps
that add up to a deterministic quantum transformation.

Definition 7 (Probabilistic Quantum Transformations). Let P̃i : L(Hi) → L(Hi) and P̃o :
L(Ho) → L(Ho) be linear projective maps and Si ⊆ L(Hi) and So ⊆ L(Ho) be sets of quantum
objects defined by

W ∈ L(Hi) belongs to Si iff W ′ ∈ L(Ho) belongs to So iff
W ≥ 0 −→ W ′ ≥ 0

P̃i[W ] = W P̃o[W ′] = W ′

tr[W ] = γi tr[W ′] = γo

(72)

The set {T̃
(i)
io }i, T̃

(i)
io : L(Hi) → L(Ho) represents a probabilistic quantum transformation from Si

to So when:
i : T̃

(i)
io is completely positive for every i

ii : ∀W ∈ Si, we have that
∑

i

T̃
(i)
io [W ] ∈ So

(73a)

(73b)

When a probabilistic quantum transformation {T̃
(i)
io }i, T̃

(i)
io : L(Hi) → L(Ho) is performed on

a quantum object W ∈ Si, with probability p(i) = tr
[
T̃

(i)
io [W ]

]
, the classical outcome i is obtained

and W is transformed to

W ′ := T̃
(i)
io [W ]

tr
[
T̃

(i)
io [W ]

] . (74)
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Expressed in terms of Choi matrices, any T
(i)
io for which there exists a deterministic transforma-

tion Tio such that T
(i)
io ≤ Tio is a valid probabilistic transformation. In general, this latter require-

ment does not impose many restrictions on the structure of probabilistic elements. For example,
if there exists a deterministic transformation Tio ∝ 1io (which is the case for all examples we have
considered so far), then for any T

(i)
io ≥ 0 there exists λ ≥ 0, such that λT

(i)
io ≤ Tio. For more general

cases, except for an irrelevant scaling factor λ, the only requirement for probabilistic transforma-
tions is that they entirely lie in the support of the deterministic transformations, i.e., P̃S[T (i)

io ] = T
(i)
io ,

where P̃S is the projector onto the space S := span(
⋃

{supp(Tio)|Tio deterministic transformation}).

7 Measuring quantum objects: dual affine sets, POVMs, and testers
A particularly important set of probabilistic quantum transformations are measurements, i.e., prob-
abilistic transformations with output space C. Considering measurements naturally leads to the
concept of dual affine sets, which play a pivotal role in quantum mechanics (and beyond), and can
also be characterised using the techniques we introduced in the previous sections.

Physically speaking, a quantum measurement is a process which allows one to extract classical
outcomes from quantum objects. For instance, if ρ ∈ L(H) is a quantum state, measurements on ρ
are described by means of a Positive Operator Valued Measure (POVM), which is a set

{
M (i)}

i
of

positive semidefinite operators M (i) ∈ L(H) that add up to the identity, i.e.,
∑

i M (i) = 1. When
the POVM

{
M (i)}

i
is performed on a quantum state ρ, the outcome i is obtained with probability

tr
[
M (i)ρ

]
. In similar spirit, one can also perform measurements on different quantum objects, for

instance, one can perform measurements on quantum channels by means of the tester formalism
[2, 5, 7], also referred to as process POVMs [6].

Before going to more general scenarios, we present a brief discussion on how quantum testers
can be used to measure a quantum channel. Let C ∈ L(Hi ⊗ Ho) be the Choi operator of a
quantum channel and {T (i)}i, T (i) ∈ L(Hi ⊗ Ho) be a set of operations such that the probability
of measuring i on the channel C is given by p(i) = tr

[
T (i)C

]
. In order for {p(i)}i to be a

positive number for every positive operator19 C, we need T (i) ≥ 0 for all i, and in order to ensure
normalisation for every quantum channel C, we need that

∑
i tr[T (i)C] = 1, which is equivalent

to imposing tr[TC] = 1 for every channel C, where T :=
∑

i T (i). The set of all operators T
respecting tr[TC] = 1 for every channel C is the dual affine set of the set of quantum channels,
and a set of operators {T (i)}i respecting

T (i) ≥0 (75)∑
i

tr[T (i)C] =1, for every channel C (76)

is called a tester. Interestingly, all quantum testers may be realised within standard quantum
circuits, that is, for any tester {T (i)}i, T (i) ∈ L(Hi⊗Ho) there always exist a state ρ ∈ L(Hi⊗Haux)
and a POVM {M (i)}i, M (i) ∈ L(Haux ⊗ Ho) such that tr[T (i)C] = tr

[
M (i)

(
C̃ ⊗ 1̃aux[ρ]

)]
.

Although we might not always have a quantum circuit realisation for other quantum objects (such
as process matrices), the concept of dual affine imposes the minimal normalisation constraint
required by measuring general quantum objects and plays a fundamental role in general quantum
measurements [7, 14, 44] and general quantum assemblages [45].

Definition 8 (Dual Affine set). Let S ⊆ L(H). An operator W ∈ L(H) belongs to S, the dual
affine set of S if 20

tr[W †
W ] = 1, ∀W ∈ S. (77)

19Here, the operator C is assumed to be an arbitrary positive semidefinite operator, which may not satisfy the
constraints of a quantum channel. This is because we require the quantity tr[T (i)C] to be non-negative not only on
channels, but also instrument elements or when acting non-trivially only on a part of a quantum channel (this is
similar to a complete positivity argument for the case of quantum channels).

20In this work we are mostly interested in self-adjoint operators, hence, when W = W †, we have tr[W †
W ] =

tr[W W ].
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Naturally, for any set S, its dual affine set is indeed affine, since
∑

i λi tr[W (i)†
W ] = 1 for all

W
(i) ∈ S and W ∈ S if

∑
i λi = 1. If the set S itself is affine, then we can derive the properties of

elements in S in a straightforward way.
We now present a Theorem – also obtained in an independent way in Ref. [14] – that allows us

to obtain a simple characterisation for dual affine sets of quantum objects.

Theorem 3. Let P̃ : L(H) → L(H) be a linear projective map and S ⊆ L(H) be an affine set
defined by

W ∈ L(H) belongs to S iff

W = P̃ [W ]
tr[W ] = γ.

(78a)

(78b)
(78c)

where P̃ is self-adjoint, unital, and commutes with the transposition i.e.,

P̃ = P̃ †

P̃ [1] =1

P̃ [W τ ] = P̃ [W ]
τ
, ∀W ∈ L(H) ,

(79a)

(79b)

(79c)

and γ ̸= 0. An operator W ∈ L(H) belongs to the dual affine set S if and only if

W = W − P̃ [W ] + tr
(
W

) 1
d

tr[W ] = d

γ
,

(80a)

(80b)

where d = dim(H).

Proof. This Theorem can be shown in two separate ways. On the one hand, since P̃ satisfies the
requirements of Thm. 2, we can directly use it to prove the above Theorem. Secondly, we can show
it directly. Since this proof has merit in its own right, we start with this latter approach. To this
end, we first note that, as we discuss in detail in Sec. (8.2), if a linear operator P̃ is self-adjoint and
commutes with the transposition, then tr[AP̃ [B]] = tr[P̃ [A]B] for all A, B. Thus, for any W that
satisfies Eqs. (80a) and (80b), we have

tr[WW ] = tr
[(

W − P̃ [W ] + 1

γ

)
W

]
= tr[(WW ) − tr[WP̃ [W ]] + 1

γ
tr W = 1, (81)

where we have used P̃ [W ] = W and tr W = γ for all W ∈ S.
To prove the converse, first note that, since P̃ is a self-adjoint and unital projector, it is also

trace-preserving, and we have P̃ [M ] ∈ S for all M ∈ L(H) which satisfy tr[M ] = γ. The set of all
such matrices M spans L(H). Now, for any W that satisfies tr[WW ] = 1 for all W ∈ S, we have

tr[WP̃ [M ]] = tr[P̃ [W ]M ] = 1 = 1
γ

tr[M ] , (82)

where we have used tr[M ] = γ. Now, since the above equation holds for a full basis of L(H), we
have

P̃ [W ] = 1
γ
1 ⇒ tr[W ] = d

γ
. (83)

Together, the two statements in the above equation yield Eqs. (80a) and (80b), completing the
proof.

As mentioned, and as already implicitly done in Ex. 6, we can also prove this statement by
directly employing Thm. 2. To do so, we note that in the considered case, the output space Ho and
output projector P̃o are trivial, while we have the rescaling factor γo/γi = 1/γ, such that Eqs. (23a)
and (23b) of Thm. 2 are directly equivalent to Eqs. (80a) and (80b) of the above Theorem.
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We emphasise that adding a positivity constraint to the objects in the set S, as is often naturally
the case in quantum mechanics, would yield the same linear constraints on the dual set S. As
already outlined, the characterisation of the dual affine set is simply a special case of the overall
characterisation of trace-rescaling linear maps between spaces that are defined by projectors P̃i
and P̃o. In particular, denoting the corresponding map by T̃ [W ] = 1, we have W

τ = T , where
T is the Choi matrix of T̃ and the additional transposition rτ appears due to the convention we
chose for the Choi formalism. Since dual sets play a prominent role in quantum mechanics, here
we chose to discuss this important case explicitly.

While the above Theorem only applies for self-adjoint, unital projectors that commute with
the transposition, it can easily be phrased for more general situations (see Sec. 9).

7.1 Quantum measurement and its relationship with probabilistic transformations
From the above discussion, we can now consider quantum measurements on quantum objects in a
more general way. We start by presenting their definition.

Definition 9. Let Si ⊆ L(H) be a set of quantum objects and Si its dual affine. A general quantum
measurement on Si is given by a set of operators {M (i)}i, with M (i) ∈ L(H) respecting,

M (i) ≥ 0 (84)∑
i

M (i) ∈ Si, (85)

and the probability of obtaining an outcome i when measuring the object W ∈ Si is p(i) = tr[M (i)W ].

General measurements are the largest set of measurements which is in principle allowed by
quantum theory, and may be used to perform measurements on general quantum objects such
as process matrices, as in Ref. [46] where the authors used general measurements to discriminate
between process matrices with indefinite causal order. Similarly to other general transformations
discussed in this manuscript, it may be the case that a general measurement may not be realised
by quantum circuits (due to indefinite causality), or it might even be the case that one can never
obtain a ’fair’ physical implementation for some general measurements (due to some other physical
principle, e.g., a reversibility preserving principle [18, 47] or the requirement of logically consistent
processes [48, 49]). However, any set greater than the one defined above is certainly forbidden by
quantum theory.

We remark that the set of general quantum measurements is closely related to the set of
probabilistic transformations. Similarly to quantum instruments, a probabilistic transformation
may be viewed as a description of a quantum measurement and a post-measurement state. Hence,
every probabilistic transformation corresponds to a quantum measurement. More precisely, if
{C(i)}i is a probabilistic quantum transformation from Si to So, its associated general measurement
operators are given by M (i) := C̃(i)†[1o]. Indeed,

tr[M (i)W ] = tr[C̃(i)†[1o]W ] (86)

= tr[1iC̃(i)[W ]] (87)

= tr[C̃(i)[W ]] (88)
= p(i), (89)

which is precisely the probability of obtaining the outcome i. Also, every quantum measurement
may be viewed as a probabilistic transformation from a quantum object set Si to the trivial
set So = {1} ⊆ L(C) ∼= C, which contains only the unit scalar. More precisely, if {M (i)}i is
a general quantum measurement on Si, one can always define the probabilistic transformation
C̃(i)[W ] := tr[M (i)W ], where C̃(i) : L(H) → L(C). It is immediate to verify that the map
C̃(i)[W ] = tr[M (i)W ] is completely positive and respects

∑
i C̃(i)[W ] = 1 for all W ∈ Si.
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7.2 Non-signalling channels and multipartite process matrices
We now use the concept of dual affines to return a final time to the case of process matrices as
the dual affine set of the set of non-signalling channels. Here, for generality, we consider the k-
party case (also considered in Ref. [15]). To this end, let us first define non-signalling channels.
Informally, non-signalling channels are multipartite quantum channels which cannot be used for

Figure 15: Multipartite non-signalling channels. Each input party iℓ can at most send signals to its
corresponding output party oℓ. Here, this is depicted for the party i1, where a blue arrow denotes the possibility
to send a signal, while the red lines signify that no signal can be sent. Since the party i1 can only send signals
to o1, discarding said outcome then amounts to directly discarding the input i1 (depicted in the figure). In
terms of the Choi state C of C̃, this corresponds to the requirement o1 C = i1o1 C of Eq. (92) and analogously
for all other pairs {iℓ, oℓ}.

exchanging information between distinct parties. Let k ∈ N be an integer. The Hilbert spaces
corresponding to the total input and output, respectively, of such a non-signalling map are given
by

Hi :=Hi1 ⊗ Hi2 ⊗ . . . ⊗ Hik
(90)

Ho :=Ho1 ⊗ Ho2 ⊗ . . . ⊗ Hok
. (91)

Then, a multipartite quantum channel C̃ : L(Hi) → L(Ho) is non-signalling if its Choi state C
respects,

oℓ
(C) =iℓoℓ

C, ∀ℓ ∈ {1, 2, . . . , k}. (92)

Intuitively, the above property implies that discarding the output of party ℓ amounts to directly
discarding its input, which implies that the only signalling of party ℓ happens from iℓ to oℓ, but
not to any other output oℓ′ (see Fig. 15 for a graphical depiction).

The requirements of Eq. (92) are equivalent to stating that the map C̃ : L(Hi) → L(Ho) can
be written as an affine combination of independent channels, that is C̃ =

∑
α γ(α)C̃(α)1 ⊗ C̃

(α)
2 ⊗

. . . ⊗ C̃
(α)
k , where γ(α) ∈ R,

∑
α γ(α) = 1, and all maps C̃

(α)
ℓ : L(Hiℓ

) → L(Hoℓ
) are quantum

channels [34, 35].
From this, we obtain a simple characterisation of non-signalling quantum channels. To this

end, we define the projectors:

P̃ (ℓ) : L(Hiℓ
⊗ Hoℓ

) → L(Hiℓ
⊗ Hoℓ

), ℓ ∈ {1, 2, . . . , k}, (93)

P̃ (ℓ)[C] := C −oℓ
C +iℓoℓ

C, ℓ ∈ {1, 2, . . . , k}, (94)

P̃NS : L(Hi ⊗ Ho) → L(Hi ⊗ Ho), (95)

P̃NS := P̃ (k) ◦ . . . ◦ P̃ (2) ◦ P̃ (1). (96)

We emphasise that, here, the order in which the projectors P̃ (ℓ) are applied in Eq. (96) does not
matter, since they all commute (making a construction of P̃NS via concatenation possible in the
first place). Hence, a linear operator C ∈ L(Hi ⊗ Ho) is a non-signalling quantum channel if and
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only if

C ≥ 0 (97)

P̃NS [C] = C (98)
tr[C] = do. (99)

Since the multipartite process matrices lie in the dual affine set of non-signalling channels, Thm. 3
provides a simple characterisation of multipartite process matrices for an arbitrary number of
parties.

Example 12 (Multipartite process matrices). Using the projectors for multipartite non-signalling
channels defined in Eqs. (94) and (96) and Thm. 3, we obtain a simple characterisation for
multipartite process matrices for any numbers of parties k.

(Multipartite non-signalling channel) (Complex number)
C ∈ L(Hi ⊗ Ho) belongs to Si iff c ∈ L(C) belongs to So iff

C ≥ 0, c ≥ 0,
C = P̃NS [C], −→ P̃o[c] := c,
tr[C] = di. tr[c] = 1.

(100)

(Multipartite process matrix)
W ≥0,

W = W − P̃NS [W ] + tr[W ] 1io

dido
,

tr[W ] =do .

(101a)

(101b)

(101c)

We emphasise that this characterisation of multi-partite process matrices has also been provided in
equivalent form in App. B3 of Ref. [15]. Here, it follows straightforwardly from the (readily derived)
properties of non-signalling channels, and the fact that process matrices form their dual affine set.■

8 Link product and key concepts
The proofs of Thm. 2 as well as its generalisations rely on only a handful of simple mathematical
concepts, which we now discuss. Predominantly, we will rely on three main ingredients: The
Choi-Jamiołkowski isomorphism (CJI), which allows us to phrase all statements on maps in terms
of matrices; the link product, which translates the concatenation of maps to the corresponding
manipulation on the level of Choi matrices; and the fact that linear operators with particular
properties can be moved around freely in the link product.

8.1 Link Product
We start by discussing the link product ⋆, already informally introduced in Eq. (20), which captures
the action of maps in terms of the CJI [5]. Concretely, for any linear maps T̃xy : L(Hx) → L(Hy),
Ṽyz : L(Hy) → L(Hz) and arbitrary matrices Mx ∈ L(Hx), we have

Choi[T̃yz ◦ Ṽxy] =: Vyz ⋆ Txy ∈ L(Hx ⊗ Hz) and T̃xy[Mx] = Txy ⋆ Mx ∈ L(Hy) , (102)

where Choi[ r] transforms a map to its corresponding Choi matrix. In particular, the link product
of two arbitrary matrices Txy : L(Hx ⊗Hy) and Vyz : L(Hy ⊗Hz) is given by a trace over the spaces
they are both defined on and a partial transpose over the same space21, i.e.,

Txy ⋆ Vyz := trz[(Txy ⊗ 1z)(1x ⊗ V
τy

yz )] , (103)

21The concrete form of the link product – in particular the presence of partial transposes – depends on the
convention of the CJI one employs. The form of the link product we present here is in line with the convention
chosen in Eq. (1).
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where rτy denotes the partial transpose with respect to the computational basis of Hy. As has been
shown in Refs. [5], the link product of positive semidefinite (Hermitian) matrices is again positive
semidefinite (Hermitian), and it is both associative and – for all cases we consider – commutative
(up to a re-ordering of tensor factors, which we always tacitly assume). Additionally, it is easy to
see that the link product satisfies

A ⋆ B = A′ ⋆ B ∀B ⇔ A = A′, (104)

since A ⋆ B and A′ ⋆ B are equal to Ã[B] and Ã′[B], respectively, and if two linear maps agree on
all elements they act on, they coincide, i.e., Ã = Ã′ and thus A = A′ (the converse direction in
Eq. (104) holds trivially).

Importantly, the link product allows us to re-phrase the question of finding the properties of
(trace-rescaling) mappings T̃io between sets Si and So defined by projectors P̃i and P̃o, respectively,
in terms of Choi matrices. The requirements that T̃io[Wi] ∈ So and tr[T̃io[Wi]] = γo/γi tr[Wi] for
all Wi ∈ Si can now be phrased as

(1̃i ⊗ P̃o)[Tio ⋆ Wi] = Tio ⋆ Wi and tr[Tio ⋆ Wi] = γo

γi
tr[Wi] (105)

for all Wi = P̃ [Wi] and tr[Wi] = γi. In order to deduce the structural properties these two
equations engender for Tio, all constraints need to be ‘moved onto’ Tio. Consequently, we now
discuss how to ‘move around’ linear maps in the link product.

8.2 Linear operators in the link product
The final property of the link product that we will make frequent use of is the fact that linear maps
that act on one of the factors in the link product can be ‘moved around’(this is akin to finding
their adjoint action). In order to obtain simplifications for the special case of self-adjoint, unital
maps that commute with the transposition – the case most frequently encountered in quantum
mechanics – we first recall some (well-known) pertinent properties of such maps:

Lemma 4 (Properties of linear maps). Let P̃ : L(H) → L(H) be a linear map. The following
statements hold:

1. If P̃ is self-adjoint, then it is Hermiticity preserving.

2. If P̃ is self-adjoint and unital, then it is trace-preserving.

3. If P̃ is self-adjoint, then it commutes with the transposition iff it commutes with complex
conjugation (with respect to the same basis).

4. If P̃ is self-adjoint and commutes with the transposition (or complex conjugation), then
tr[M ′P̃ [M ]] = tr[P̃ [M ′]M ] for all M ′, M ∈ L(H).

5. If P̃ is Hermiticity preserving, then tr[H ′P̃ [H]] = tr[P̃ [H ′]H] for all Hermitian H ′, H ∈ L(H).

All the proofs follow by direct insertion and are provided in App. C for completeness. With
these properties of linear maps P̃ in hand, we can now investigate how linear maps can be ‘moved
around’ in the link product.

Lemma 5. Let Aio ∈ L(Hi ⊗ Ho) and Bi ∈ L(Hi), and let P̃i : L(Hi) → L(Hi) be a linear
operator. Then

Aio ⋆ P̃i[Bi] = P̃ †
i [A∗

io]∗ ⋆ Bi =: P̃ τ
i [Aio] ⋆ Bi. (106)

If P̃i is self-adjoint and commutes with the transposition (or complex conjugation), then

Aio ⋆ P̃i[Bi] = P̃i[Aio] ⋆ Bi (107)

holds.
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Proof. First, we note that, if Eq. (106) holds, then, due to the properties provided in Lem. 4,
Eq. (107) follows directly when P̃ is self-adjoint and commutes with the transposition (or complex
conjugation). For the proof of Eq. (106), we first recall that the action of any linear operator
P̃i : L(Hi) → L(Hi) can be written as P̃i[ r] =

∑
α L

(α)
i

rR(α)†
i for some matrices L

(α)
i , R

(α)†
i ∈ Hi.

With this, from the definition of the adjoint, it is easy to see that P̃ †
i [ r] =

∑
α L

(α)†
i

rR(α)
i holds.

Now, using the definition of the link product, we obtain

Aio ⋆ P̃i[Bi] = tri[Aio(P̃i[Bi]τ ⊗ 1o)] =
∑

α

tri[Aio(R(α)∗
i Bτ

i L
(α)τ
i ⊗ 1o)] (108)

=
∑

α

tri[(L(α)†
i A∗

ioR
(α)
i )∗(Bτ

i ⊗ 1o)] = P̃ †
i [A∗

io]∗ ⋆ Bi , (109)

We note that it is easy to see that, if P̃i[ r ] =
∑

α L
(α)
i

rR(α)†
i , then P̃ τ

i [ r ] := P †
i [ r∗]∗ =

L
(α)τ
i

rR(α)∗
i . Importantly for our purposes, Eqs. (106) and (107) allow us to move linear operators

around freely in the link product, which we will now exploit to deduce the properties of Tio.

8.3 Proving statements using the link product
Now, using the link product, we can easily provide the proofs for the statements made in Secs. 3
and 7. As mentioned, for any linear map T̃io that maps Si onto So, we have

(1̃i ⊗ P̃o)[Tio ⋆ Wi] = Tio ⋆ Wi and tr[Tio ⋆ Wi] = γo

γi
tr[Wi] ∀Wi ∈ Si (110)

Let us start by providing the structural properties of Tio for the case of self-adjoint, unital projectors
P̃i and P̃o that commute with the transposition. To do so, we first make use of (1̃i ⊗P̃o)[Tio ⋆Wi] =
(1̃i⊗P̃o)[Tio]⋆Wi = Tio⋆Wi for all Wi ∈ Si. Importantly, since span(Si) does generally not coincide
with the full space L(Hi), this equation does not allow us to deduce that (1̃i ⊗ P̃o)[Tio] = Tio.
However, it is easy to see (since P̃i is a projection) that for every M ∈ L(Hi) with tr[W ] ̸= 0 (for
the case γi = 0 see App. B) we have P̃i[M ] ∈ span(Si). Consequently, we obtain

(1̃i ⊗ P̃o)[Tio] ⋆ P̃i[M ] = Tio ⋆ P̃i[M ] ∀M ∈ L(Hi) (111)

Now, we can use the second part of Lem. 5 to move the projector P̃i inside the link product, such
that

(P̃i ⊗ P̃o)[Tio] ⋆ M = P̃i[Tio] ⋆ M ∀M ∈ L(Hi) , (112)

which, since it holds for all M ∈ L(Hi), implies (P̃i ⊗ P̃o)[Tio] = P̃i[Tio]. This, in turn, can be
phrased in terms of a projector on Tio as

Tio = Tio − P̃i[Tio] + (P̃i ⊗ P̃o)[Tio] , (113)

where the signs in the above definition are chosen such that P̃i[Tio] = (P̃i ⊗ P̃o)[Tio] still holds
(which can be seen by direct insertion into (113) and using that P̃i is a projector).

In a similar vein, we can analyse the trace-rescaling property tr[Tio ⋆ Wi] = γo/γi tr[W ] for all
W ∈ Si. Following the same argument (and using the fact that 1i is the Choi state of tri), we
obtain

P̃i[tro Tio] ⋆ M = γo

γi
1i ⋆ M . (114)

Again, this equality holds for all M ∈ L(Hi), and thus implies

P̃i[tro Tio] = γo

γi
1i . (115)
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Since P̃i is unital and self-adjoint, it is trace-preserving (see Lem. 4), and we see that tr[Tio] =
γo/γi · di. With this, by taking the tensor product of Eq. (115) with 1o/do, we obtain P̃i[oTio] =
ioTio, such that Eqs (115) and (114) can equivalently be written as

Tio = Tio − P̃i[oTio] + ioTio and tr[Tio] = γo

γi
di . (116)

Now, inserting this into Eq. (113), we obtain

Tio = Tio − P̃i[Tio] + (P̃i ⊗ P̃o)[Tio] − P̃i[oTio] + ioTio =: P̃io[Tio] and tr[Tio] = γo

γi
di , (117)

which coincides exactly with Eqs. (23a) and (23b) of Thm. 2. For the converse direction, we first
note that a self-adjoint, unital projector P̃o is trace-preserving, such that P̃o[oM ] = o ◦ P̃o[M ] = oM

holds. With this, by direct insertion, it is easy to see that Eq. (117) implies P̃i[oTio] = ioTio and
thus Eqs. (116) and (113); together with Eq. (117), these latter two equations directly lead to
Eq. (110), thus proving Thm. 2. We emphasise, that this converse direction crucially requires the
properties of P̃o (i.e., self-adjointness and unitality), while the forward direction also holds without
these assumptions on P̃o.

Finally, if we dropped the trace-rescaling property on T̃io (and thus Tio), such that we only
demand P̃o[Tio ⋆ Wi] = Tio ⋆ Wi for all Wi = P̃i[Wi](but not tr[Tio ⋆ Wi] = γo

γi
tr[Wi]), following

the above derivation, we arrive at

Theorem 4 (Transformation between linear spaces: specialised Choi version). Let P̃i : L(Hi) →
L(Hi) and P̃o : L(Ho) → L(Ho) be linear projective, self-adjoint and unital maps that commute
with the transposition (or conjugation) and Si ⊆ L(Hi) and So ⊆ L(Ho) be linear spaces defined by

W ∈ L(Hi) belongs to Si iff −→ W ′ ∈ L(Ho) belongs to So iff
P̃i[W ] = W . P̃o[W ′] = W ′.

(118)

A linear map T̃io : L(Hi) → L(Ho) satisfies T̃io[W ] ∈ So, for all W ∈ Si if and only if

Tio = Tio − (P̃i ⊗ 1̃o)[Tio] + (P̃i ⊗ P̃o)[Tio] =: P̃
(ntr)
io [Tio] , (119)

holds for its Choi matrix Tio, and P̃
(ntr)
io : L(Hi ⊗ Ho) → L(Hi ⊗ Ho) is a self-adjoint, unital

projector that commutes with the transposition.

Proof. The proof proceeds along the same line as the previous one, minus the additional requirement
of a trace-rescaling property, i.e., it stops at Eq. (116), which coincides with Eq. (119) of the
Theorem. Conversely, it is easy to see that the above equality implies P̃o[Tio ⋆ Wi] = Tio ⋆ Wi for
all Wi = P̃i[Wi], independent of the properties of P̃o (besides being a linear projector), proving
Thm. 4.

Importantly, the above Theorem in not simply a special case of Thm. 2, particularly, it does not
coincide with it up to the affine constraint, but the respective constraints on Tio are structurally
different. This is a generalisation of the structural differences of, e.g., CP and CPTP maps; the
former are not just equal to the latter up to a trace condition, but CPTP maps have an additional
structural property, that is absent in CP maps (namely, that the trace over the output degrees of
freedom yields the identity matrix on the input space.).

In addition, we note that Thm. 4 covers the case γi = 0 of Thm. 2. As detailed in App. B, in
this case, both γi and γo are equal to zero, such that both spaces Si and So are entirely defined
by linear projectors onto a vector space of traceless operators, which is a special instance of the
scenario discussed in the above theorem.

With this, we have considered all pertinent scenarios including projectors that are self-adjoint,
unital, and commute with the transposition. We conclude this paper with the general case, where
we impose no constraints on P̃i and P̃o, besides them being linear projectors.
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9 General approach
While physically the most relevant case, it is not necessary that the projectors P̃i and P̃o defining
the sets Si and So, respectively, are self-adjoint, unital, and commute with the transposition. As a
guiding example for a case where these properties fail to hold, consider the case where P̃i is given by
a projector on the off-diagonal element |m⟩⟨n| (with m ̸= n), i.e., it acts as P̃i[B] = ⟨m|B|n⟩|m⟩⟨n|.
Naturally, the thusly defined P̃i is a projector (since it satisfies P̃ 2

i = P̃i), but it is neither self-
adjoint, unital, nor does it commute with the transposition.

To derive the properties of maps T̃io between sets defined by such general projectors P̃x, we
can directly employ Lem. 5, which informs us how to move general linear operators around in the
link product. With this, we deduce the concrete form of transformations Tio in the same vein as
the derivation for Thm. 2 provided in Sec. 8.3.

Theorem 5. Let P̃i : L(Hi) → L(Hi) and P̃o : L(Ho) → L(Ho) be linear projections and
Si ⊆ L(Hi) and So be affine spaces of matrices defined by

W ∈ L(Hi) belongs to Si iff W ′ ∈ L(Ho) belongs to So iff
P̃i[W ] = W , −→ P̃o[W ′] = W ′,
tr[W ] = γi. tr[W ′] = γo.

(120)

For γi ̸= 0, a linear map T̃io : L(Hi) → L(Ho) satisfies T̃io[W ] ∈ So for all W ∈ Si if and only if

Tio = Tio − P̃ τ
i [Tio] + (P̃ τ

i ⊗ P̃o)[Tio] =: P̃io[Tio],

P̃ τ
i [(tro Tio)] = γo

γi
P̃ τ

i [1i] .

(121a)

(121b)

Before providing a proof, we emphasise that the fact that we allow for non-unital, non-self-
adjoint projectors implies that the respective sets Si and So do not have to contain an element
that is proportional to the identity matrix. The membership of the identity matrix facilitates many
considerations in the literature when dealing with transformations between quantum objects (see,
for example, Ref. [14]). The relative ease with which the link product can be manipulated allows
us to go beyond this case without much added difficulty (see Ex. 13).

Furthermore, we stress that the above Theorem exactly coincides with Thm. 2 for the case
of self-adjoint, unital projectors P̃i that commute with the transposition. In this case, it is easy
to see that Eq. (121a) amounts to Tio = Tio − P̃i[Tio] + (P̃i ⊗ P̃o)[Tio], while Eq. (121b) implies
P̃i[tro Tio] = γo/γi1i, which are exactly the properties we used in the proof of Thm. 2.

Proof. The proof of Thm. 5 proceeds along the same lines as that of Thm. 2 with the difference
that now the assumptions on the involved projectors are weaker. First, we note that, since γi ̸= 0,
we have span(Si) = P̃i[L(Hi)]. Then, from P̃o[Tio ⋆ Wi] = Tio ⋆ Wi for all Wi ∈ Si we obtain

P̃o[Tio ⋆ P̃i[M ]] = (P̃ τ
i ⊗ P̃o)[Tio] ⋆ M = Tio ⋆ P̃i[M ] = P̃ τ

i [Tio] ⋆ M (122)

for all M ∈ L(Hi), where P̃ τ
i has been defined in Eq. (106). From this, we directly obtain Eq. (121a).

From the fact that tr[Tio ⋆ Wi] = γo for all Wi ∈ Si, it then follows that tr[Tio ⋆ P̃i[M ]] =
γo/γi tr[P̃i[M ]] for all M ∈ L(Hi). Using the fact that 1x is the Choi matrix of trx, this can be
written as tr[Tio ⋆ P̃i[M ]] = 1i ⋆ P̃i[M ]. Employing Lem. 5 and using the fact that this equality
holds for all M ∈ L(Hi) then directly yields Eq. (121b). The fact that the resulting linear operator
P̃io = 1̃io − P̃ τ

i + P̃ τ
i ⊗ P̃o is indeed a projector can be seen by direct insertion and using the fact

that, P̃i = P̃ 2
i implies P̃ τ

i = (P̃ τ
i )2.

In the converse direction, using P̃ τ
i = (P̃ τ

i )2, by direct insertion, it is easy to see that Eq. (121a)
implies P̃o[Tio ⋆ Wi] = Tio ⋆ Wi for all Wi ∈ Si.

As for the previous Theorems, the case γi = 0 needs to be discussed in slightly more detail and
is provided in App. B.
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Example 13 (Gibbs-preserving maps). To see a concrete application of Thm. 5, consider the case of
transformations that have a given fix point, e.g., the Gibbs state η1 = exp (−βH)/ tr[exp (−βH)] ∈
L(H1) for some given inverse temperature β and some Hamiltonian H. In this case, we have
T̃ [η1] = η2 ∈ L(H2) for some Gibbs state η2. The projector on the input space is given by P̃i[X] =
tr[Xη′

1]η′
1 =: η1Y , while the projector on the output space is given by P̃o[Y ] = tr[Y η′

2]η′
2 =: η2Y ,

where η′
x := ηx/

√
tr[η2

x ] (for x ∈ {1, 2}), and we have γi = γo = 1. Assuming that the Choi
isomorphism on L(H1) is performed with respect to the eigenbasis of η1, we have P̃ τ

i = P̃i and
P̃ τ

i [11] = η1/ tr[η2
1 ] ̸= 11 for η1 ̸= 11. Consequently, the projector on the input space is non-unital,

and we must apply Thm. 5 (instead of Thm. 2) to deduce the properties of Tio. Employing
Eqs. (121a) and (121b), we obtain

T = T − η1T + η1η2T & tr[T (η′
1 ⊗ 12)] = 1/

√
tr[η2

1 ]. (123)

These two constraints (together with T ≥ 0) entirely characterise the set of transformations that
leave the Gibbs state invariant. Unsurprisingly, they do not enforce trace preservation (they
only guarantee trace preservation on the span of η1). Adding this as an additional constraint
trivialises the second term of the above equation and leads to the following set of trace-preserving
Gibbs-preserving transformations:

T = T − η1T + η1η2T =: P̃ (GP)[T ] & T = T − oT + ioT =: P̃ (TP)[T ]. (124)

Since P̃ (GP) and P̃ (TP) do not commute, this cannot be further combined into a single projector of
the form P̃ (GP) ◦ P̃ (TP) or P̃ (TP) ◦ P̃ (GP). ■

Similarly to Thm. 4, one can also drop the trace-rescaling property (i.a., the trace constraints
on the elements of Si and So) for general projectors. In this case, one would simply have to drop
Eq. (121b) in the above theorem to obtain the properties of Tio:

Theorem 6 (Transformation between linear spaces: Choi version). Let P̃i : L(Hi) → L(Hi) and
P̃o : L(Ho) → L(Ho) be linear projections and Si ⊆ L(Hi) and So be linear spaces of matrices
defined by

W ∈ L(Hi) belongs to Si iff −→ W ′ ∈ L(Ho) belongs to So iff
P̃i[W ] = W . P̃o[W ′] = W ′.

(125)

A linear map T̃io : L(Hi) → L(Ho) satisfies T̃io[W ] ∈ So for all W ∈ Si if and only if

Tio = Tio − (P̃ τ
i ⊗ 1̃o)[Tio] + (P̃ τ

i ⊗ P̃o)[Tio] =: P̃io[Tio]. (126)

As was the case for Thm. 4, we note again, that this theorem also covers the case γi = 0 for
the case where additional trace constraints are required of Si and So(see App. B).

Example 14 (Projectors on off-diagonal terms). To provide a second concrete example for the
above Theorems for the case of projectors that do not preserve Hermiticity, let us return to the
simple case mentioned at the beginning of this Section, where P̃i is given by a projection on the
off-diagonal term |m⟩⟨n| (where m ̸= n), i.e., it acts as P̃i[M ] = ⟨m|M |n⟩|m⟩⟨n|, and let P̃o be a
projector on the off-diagonal term |α⟩⟨β| ∈ L(Ho), where α ̸= β. With this, the set Si consists of all
matrices Wi that are proportional to |m⟩⟨n| and the output space So consists of all matrices Wo that
are proportional to |α⟩⟨β| (by construction, all elements of Si and So are traceless automatically
due to the properties of P̃i and P̃o). It is easy to see (assuming that {|m⟩}m and {|α⟩}α constitute
the canonical computational basis of Hi and Ho, respectively) that the action of P̃ τ

i is given by
P̃ τ

i [M ] = |m⟩⟨m|M |n⟩⟨n|, while P̃o[M ′] = |α⟩⟨α|M ′|β⟩⟨β|. Then, the properties of the Choi matrix
Tio of a transformation T̃io : Si → So follow directly from Eq. (126) of Thm. 6 as

Tio = Tio − |m⟩⟨m|Tio|n⟩⟨n| + |mα⟩⟨mα|Tio|nβ⟩⟨nβ| . (127)
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With this, for any λ|m⟩⟨n| ∈ Si (where λ ∈ C), we have

Tio ⋆ λ|m⟩⟨n| = λ tri[Tio|n⟩⟨m|]
= λ tri[(Tio − |m⟩⟨m|Tio|n⟩⟨n| + |mα⟩⟨mα|Tio|nβ⟩⟨nβ|)|n⟩⟨m|]
= ⟨mα|Tio|nβ⟩|α⟩⟨β| ∈ So ,

(128)

i.e., T̃io maps any element of Si onto an element of So. ■

To finish this section, we provide a characterisation of the dual set S for the case of general
projectors, i.e., the generalised version of Thm. 3:

Theorem 7 (Dual affine for arbitrary projectors). Let S be a set defined by

W ∈ L(H) belongs to S iff

W =P̃ [W ],
tr[W ] =γ ,

(129)

(130)
(131)

where P̃ is a projector and γ ̸= 0. An operator W ∈ L(H) belongs to the dual affine set S if and
only if it satisfies

P̃ τ [W τ ] = 1
α

P̃ τ [1] , (132)

where P̃ τ [W τ ] := P †
i [W †]∗.

Proof. The proof follows directly from Thm. 5 in Sec. 9, where we derive the property of trace-
rescaling mappings T̃ : L(Hi) → L(Ho) (with rescaling factor γo/γo) between spaces defined by
general linear projector P̃i and P̃o. For this case, we have (see Eqs. (121a) and (121b))

Tio = Tio − P̃ τ
i [Tio] + (P̃ τ

i ⊗ P̃o)[Tio] (133)

and P̃ τ
i [(tro Tio)] = γo

γi
P̃ τ

i [1i] . (134)

For the case considered in the above Theorem, we have γo/γi = 1/γ, P̃i = P̃ , and Ho = C, such
that Eq. (133) becomes the trivial statement Tio = Tio. As mentioned above, for the convention of
the CJI that we choose, we have W = T τ . With this, Eq. (134) coincides exactly with Eq. (132) of
the Theorem.

Naturally, Thm. 7 contains Thm. 3, where the properties of dual matrices for the case of self-
adjoint, unital projectors that commute with the transposition were presented as special cases.
To see this, recall that P̃ is self-adjoint, unital, and commutes with the transposition it is also
trace-preserving, such that Eq. (132) of Thm. 7 implies tr[W ] = d

α [i.e., Eq. (80b)]. Together with
Eq. (132), this yields Eq. (80a) and we thus recover Thm. 3.

10 Applications for numerical computation and code availability
As discussed previously, the projective characterisation of quantum objects analysed in this ma-
nuscript is also useful for tackling several problems by means of semidefinite programming. This
approach was first presented at Ref. [15], where the authors derive an SDP for witnessing and quan-
tifying indefinite causality in quantum theory. Since then, such methods have been employed in
various other works and contexts, ranging from detecting indefinite causal order [36, 50], analysing
quantum causal relations [51] and transforming quantum operations[30, 52–54], to the quantifica-
tion of causal connection [16] and channel discrimination[7, 55].

We have implemented all projective maps discussed in this manuscript and various other useful
related functions in Matlab, and all our code is publicly available in an online repository [56]. It
can be directly used for SDP problems on higher-order quantum problems and other corresponding
SDP problems involving transformations between linear and affine sets.
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11 Comparison with prior works
General quantum transformation from a single quantum channel to a single quantum channel were
first discussed in [1] in terms of deterministic quantum supermaps (here, quantum superchannels).
Ref. [1] proves that all (one-slot) superchannels admit a decomposition in terms of a fixed ordere
quantum circuit. Later, this concept of general transformations was extended to multipartite
quantum channels which may be implemented as a sequential circuit, objects also referred to as
causal-channels and channels with memory, or sequential channels. These ideas are discussed and
detailed in Refs. [2, 5], where a formalisation of k-slot quantum combs, the most general fixed order
quantum transformations, can be found.

Later, Ref. [35] considered more general quantum transformations, and analysed maps from
bipartite non-signalling channels to quantum channels (due to linearity, this is equivalent to requir-
ing that pairs of independent quantum channels being mapped to quantum channels). Ref. [35]
presented the quantum switch, a quantum transformation which does not have a fixed causal order.
In similar vein, Ref. [8] considered the scenario of transforming a pair of independent channels to
unit probability (due to linearity, this is equivalent to transforming independent quantum instru-
ments into probability distributions). Ref. [8] is also the first paper to define definite causality in
terms of convex combination of quantum transformations with fixed ordered.

The first work which characterised quantum transformations by means of projective maps is
Ref. [15]. This work focuses on the case of transformations of N independent quantum channels to
unit probability (this is equivalent to transforming N -partite non-signalling channels to unit prob-
ability), and presents a general method to obtain a projective characterisation for these scenarios.
Later, this method was also adapted in Ref. [18] to consider transformations from non-signalling
channels into general channels. Subsequently, this method was used in Ref. [10] to characterise
general transformations between bipartite process matrices.

In order to derive a resource theory of causal connection, Ref. [16] introduced the concept
of adapters, transformations between general sets of quantum objects. More precisely, this work
focuses on transformations of quantum objects which can be written as independent quantum
channels (due to linearity, equivalent to non-signalling channels) and arbitrary process matrices.
The set of admissible adapters (Def. 1 of [16]) is a special case of the set of quantum transformations
we characterise in Thm. 2. Similarly to our work, Ref. [16] characterises these transformations by
means of linear projectors, but the corresponding formalism and proofs do not directly apply to all
quantum sets, in particular not to many of the scenarios covered in Sec. 3 as well as those discussed
in Sec. 9.

In a similar vein to our considerations, Ref. [14] has considered the question of characterising
‘structure-preserving maps’, i.e., transformations between quantum sets. The resulting character-
isation of structure-preserving maps (Prop. 3 of Ref. [14]) is equivalent to Thm. 2 presented in this
work. Our results go beyond the cases considered in Ref. [14] and cover a larger set of relevant
quantum objects, specifically those characterised by non-unital projectors, and which do not obey
the restrictions discussed in the beginning of Sec. 3.4 (i.e., self-adjointness and commutation with
the transposition). Consequently, all results from Sec. 9 are novel and not covered by the methods
of [14] or other previous works. Additionally, our work also includes various proofs and techniques
using the link product operation, considerably simplifying all derivations, which we believe to be
of independent interest beyond their initial motivation.

Although not explored in greater generality, the concept of completely admissible transforma-
tions appears in Ref. [18], where the requirement that linear map which transforms process matrices
to process matrices should be completely trace preserving is imposed. In a similar vein, Refs. [57, 58]
discussed the concepts of ‘completely uniformity preserving’ and ‘completely unital-channel pre-
serving’ superchannels, while Ref. [19] introduced the concept of completely trace non-increasing
maps to show that quantum testers (see Sec. 7) are indeed the most general method to measure
quantum channels. In Ref. [16], completely admissible transformations are identified for a par-
ticular choice of projectors and projector extensions, and it is demonstrated that the additional
‘completeness’ requirement indeed changes the set of admissible transformations. In regard to ‘com-
pleteness’ of properties, our work provides two main novel contributions: Our work formalises the
concept of ‘completeness’ for admissible transformations and provides a systematic way to deduce
their properties. We also present novel sufficient conditions for a transformation to be completely
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admissible.
Finally, the question of how to transform general quantum sets was also studied from a type-

system [11, 12], category theory [59], and linear logic [13, 14] perspective. While these works
consider very similar questions to the ones of this manuscript, their methodological approach is
different from ours, which is exclusively based on standard linear algebra.

12 Discussion
In this work, we have provided a systematic way to derive the properties of transformations between
quantum sets. While a priori an abstract endeavour, such characterisations play an important role
for many questions in quantum information theory – in particular the study of causal order – and
our results offer a handy tool to deal with such problems in a simple and streamlined manner.
We have demonstrated the versatility of our approach by explicitly showing its usefulness for a
wide array of concrete examples of higher-order quantum maps, as well as the derivations of the
properties of dual sets and probabilistic quantum operations.

In addition, going beyond the cases generally considered in the literature, we have employed our
approach to derive the properties of general transformations when, in addition, ‘completeness’ of
their admissibility is required. Here, as for the derivation of our main result, using the properties of
Choi states and the link product allows one to straightforwardly deduce the properties of completely
admissible transformations in a systematic way. In particular, we provided a concrete strategy to
this end, and showed its versatility and applicability by means of concrete examples, simultaneously
highlighting the dependence on the chosen extension of input and output projectors.

Importantly, our results solely rely on the properties of the link product, and do not require the
respective sets we transform between (and, in particular, the projectors that define them) to have
any particular properties. Owing to this simplicity, we not only recovered structural properties of
objects frequently encountered in quantum mechanics, but our results can readily be applied to
any situation where the properties of a linear transformation are to be deduced from those of its
input and output space. One such more general example, where, for example, the maximally mixed
state is not a member of the quantum set Sx (thus making the corresponding projector non-unital)
is the set of Gibbs-preserving maps, which can readily be characterised using our approach.

Inferring the structural properties of their Choi matrices is a generic task when dealing with
higher-order maps and/or trying to optimise an objective function over them. As such, the The-
orems we derived in this work are of direct use to a whole host of problems in this field and
substantially simplify the associated considerations. Additionally, the manipulation of the link
product we introduce in order to derive the dual action of a map is a fruitful technique in its own
right and can readily be employed to obtain more intuitive insights into a problem via its dual
version, whenever its primal is somewhat opaque. Together, our results thus provide a powerful
toolbox that is of direct applicability in a wide array of fields.
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A Thm. 1 for γi = 0
For the case γi = 0, the affine constraint tr[W ] = γi = 0 on Si becomes a linear one, making Si
a vector space (in the absence of the positivity constraint on the elements on Si, that is). Since
the mapping T̃io is linear, and we demand that T̃io[W ] ∈ So for all W ∈ Si, we see that the only
possibility for γo = tr[T̃io[W ]] is γo = 0, making So a vector space as well. For any other choice of
γo, the desired mapping T̃io does not exist when γi = 0.

Now, to derive the properties of T̃io (for the case when it exists), we first define a projector
onto Si. Since Si is a vector space, such a projector P̃ ′

i always exists, and W ∈ Si is equivalent
to P̃ ′

i[W ] = W . More concretely, we have Si = span({P̃i[X]| tr[P̃i[X]] = 0}). There exists a
Hermitian orthogonal basis {σα} of Si with tr[σασβ ] = δαβ , and the projector on Si is given by

P̃ ′
i[X] =

∑
α

tr[σαX]σα. (135)

We emphasise that, in general, P̃ ′
i[X] ̸= P̃i ◦ Ñi and P̃ ′

i[X] ̸= Ñi ◦ P̃i – where Ñi is the projector
onto the vector space of traceless matrices – since P̃i and Ñi do not necessarily commute.

With these preliminary definitions out of the way, following the same argument that led to the
proof of Thm. 1 it is easy to see that

T̃io[W ] ∈ So ∀W ∈ Si ⇔ P̃o ◦ T̃io ◦ P̃ ′
i = T̃io ◦ P̃ ′

i and tr ◦ T̃io ◦ P̃ ′
i = 0. (136)

Finally, let us comment on the additional positivity constraint one would generally impose on the
elements of the sets Si and So. Whenever γi, γo ≠ 0, positivity has no impact on the respective
spans of Si and So and thus no influence on the properties of T̃io (beyond the complete positivity
constraint, which we impose either way whenever dealing with actual quantum objects). In contrast,
for the case that the elements of Si and So are traceless, positivity yields an actual simplification,
since the only traceless positive semidefinite matrix is the zero matrix 0. For this case then, we
would have Si = {0} and So = {0}, which would make any linear map (that maps between the
correct spaces L(Hi) and L(Ho)) admissible, since all linear maps map the zero element to the
zero element.

B Thms. 2 and 5 for γi = 0
As was the case in App. A, for the case γi = 0, the affine constraint on Si becomes a linear one,
and, due to the linearity of T̃io, the only case we have to consider is γo = 0. In this case, following
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the same logic as in App. A, we can define a linear projector P̃ ′
i onto a vector space of traceless

objects, such that W ∈ Si iff P̃ ′
i[W ] = W . A priori, this projector does not have to be self-adjoint

and unital, or commute with the transposition, even if the original projector P̃i did. Consequently,
using the same steps that led to the proof of Thm. 5, we see that T̃io[W ] ∈ So ∀W ∈ Si iff

Tio = Tio − P̃ ′τ
i ⊗ 1̃o[Tio] + P̃ ′τ

i ⊗ P̃o[Tio]′ and P̃ ′τ
i [(tro Tio)] = 0. (137)

Analogously, one could also define a linear projector P̃ ′
o onto a space of traceless matrices, such that

W ′ ∈ So if and only if W ′ = P̃ ′
o[W ′] = W ′ (i.e., the projector directly incorporates the requirement

γo = 0), and re-write Eq. (137) equivalently as

T̃io[W ] ∈ So ∀W ∈ Si ⇔ Tio = Tio − (P̃ ′τ
i ⊗ 1̃o)[Tio] + (P̃ ′τ

i ⊗ P̃ ′
o)[Tio]′ , (138)

which is in line with the results of Thm. 6, where transformations between linear spaces defined
by general projectors were characterised.

C Properties of linear maps
To prove the first statement of Lem. 4, that self-adjoint maps P̃ are Hermiticity preserving, note
that for any Hermitian matrix H ∈ L(H) we have

⟨i|P̃ [H]|j⟩ = tr[|j⟩⟨i|P̃ [H]] = tr[P̃ [|i⟩⟨j|]†H] = tr[P̃ [|i⟩⟨j|]H]∗ = ⟨j|P̃ [H]†|i⟩∗ , (139)

i.e., P̃ [H] is Hermitian whenever H is Hermitian. Similarly, if, in addition, P̃ is unital, then we
have for arbitrary matrices M ∈ L(H)

tr[P̃ [M ]] = tr[P̃ [1]M) = tr[M ] , (140)

i.e., P̃ is trace preserving. To prove the third statement, that for self-adjoint maps, commutation
with the transposition is equivalent to commutation with complex conjugation (in the same basis),
let us first show that this holds for Hermitian matrices H ∈ L(H). In this case we have

P̃ [H]∗ = P̃ [Hτ ]† = P̃ [Hτ ] = P̃ [H∗] , (141)

where we used commutation with the transposition for the first equality, and Hermiticity preserva-
tion for the second one. Now, any matrix M can be written as M = H + iH ′, where both H and
H ′ are Hermitian. Consequently, using the linearity of P̃ , we obtain

P̃ [M ]∗ = (P̃ [H] + iP̃ [H ′])∗ = (P̃ [H∗] − iP̃ [(H ′)∗]) = P̃ [H∗ − i(H ′)∗] = P̃ [M∗] . (142)

The proof of the converse direction follows along the same lines. For the fourth statement, if P̃ is
self-adjoint and commutes with the transposition, then for all matrices M ′, M ∈ L(H) we have

tr[M ′P̃ [M ]] = tr[P̃ [M ′†]†M ] = tr[P̃ [M ′]M ] , (143)

where we have used the self-adjointness of P̃ and the fact that linear maps that commute with the
transposition also commute with complex conjugation (and thus with the Hermitian conjugate).
Finally, if P̃ is Hermiticity preserving, then we have

tr[H ′P̃ [H]] = tr[P̃ [H ′†]†H] = tr[P̃ [H ′]H] , (144)

for all Hermitian matrices H ′, H ∈ L(H) (in fact, Hermiticity of H ′ would have sufficed).22

22Note that, since most maps in quantum mechanics preserve Hermiticity and the matrices that are considered are
Hermitian, one can often find the definition of an adjoint map as tr[M ′P̃ [M ]] = tr[P̃ †[M ′]M ] and self-adjointness
via tr[M ′P̃ [M ]] = tr[P̃ [M ′]M ] in the quantum information literature.
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D Proof of Lem. 1
Here, using the link product approach discussed in Sec. 8.3, we prove Lem. 1, i.e., we derive the
structural properties on transformations T̃io that are completely admissible with respect to the
extensions P̃ia and P̃oa. First, let the sets Sia and Soa be defined via

Wia ∈ Sia ⇔ P̃ia[Wia] = Wia & tr[Wia] = γia

and Woa ∈ Soa ⇔ P̃oa[Woa] = Woa & tr[Woa] = γoa

In order for T̃io to be completely admissible with respect to P̃ia and P̃oa, it has to satisfy

P̃oa[Tio ⋆ Wia] = Tio ⋆ Wia and tr[Tio ⋆ Wia] = γoa ∀Wia ∈ Sia. (145)

By introducing the identity channel 1̃a→a′ with corresponding Choi state Φ+
aa′ , where Ha

∼= Ha′ ,
the first of these two conditions can equivalently be phrased as

P̃oa′ [(Tio ⊗ Φ+
aa′) ⋆ P̃ia[Mia]] = (Tio ⊗ Φ+

aa′) ⋆ P̃ia[Mia] ∀Mia ∈ L(Hia), (146)

where P̃oa′ : L(Ho ⊗ Ha′) → L(Ho ⊗ Ha′) and P̃oa′ ∼= P̃oa. Now, the operator Tio ⊗ Φ+
aa′ acts

non-trivially on all of Wia, thus allowing one to deduce its properties in the same way as was
done for the proof of Thm. 5 (see Sec. 8.3): Since the projector P̃ia is assumed to be self-adjoint,
and commutes with the transposition, it can be ‘moved around’ in the link product, such that the
above equation amounts to

(P̃ia ⊗ P̃oa′)[Tio ⊗ Φ+
aa′ ] = (P̃ia ⊗ 1̃oa′)[Tio ⊗ Φ+

aa′ ], (147)

which is exactly Eq. (54a) from Lem. 1. A priori, there is a freedom in the sense that the explicit
form of the Choi state Φ+

aa′ of the identity channel 1̃a→a′ depends on the choice of basis with respect
to which the Choi isomorphism is carried out. While the above equation holds independent of the
respective choice, its concrete form (i.e., what basis to choose for the Choi isomorphism) will always
be clear from context/the concrete physical setup that is considered.

Since P̃ia is self-adjoint and unital, it is also trace preserving, such that, in a similar vein to
the previous consideration, we see that the second part of Eq. (145) is equivalent to

(P̃ia ⊗ 1̃o)[tro[Tio] ⊗ 1a] ⋆ Wia = γoa ∀Wia ∈ L(Hi ⊗ Ho), tr[Wia] = γia. (148)

This implies (P̃ia ⊗ 1̃o)[tro[Tio] ⊗ 1a] = γoa/γia · 1ia. Multiplying both sides by 1o/doda, we see
that the above equation coincides with

(P̃ia ⊗ 1̃o)[oaTio] = ioaTio & tr[Tio] = γoa

γia
, (149)

which is exactly Eq. (54b) from Lem. 1.

E Proof of Lem. 3
To prove Lem. 3, let us assume that P̃ia = P̃i ⊗ P̃a and P̃oa = P̃o ⊗ P̃a for all Ha and projectors P̃a
that commute with the transposition. Additionally, let T̃io be admissible for Ha = C, i.e.,

(P̃i ⊗ 1̃o)[Tio] = (P̃i ⊗ P̃o)[Tio]. (150)

Now, tensoring both sides of this equation with Φ+
aa′ and applying P̃a ⊗ P̃a′ (where P̃a′ ∼= P̃a) yields

(P̃i ⊗ P̃a ⊗ 1̃o ⊗ P̃a′)[Tio ⊗ Φ+
aa′ ] = (P̃i ⊗ P̃a︸ ︷︷ ︸

=P̃ia

⊗ P̃o ⊗ P̃a′︸ ︷︷ ︸
=P̃oa′

)[Tio ⊗ Φ+
aa′ ] (151)
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Now, it is easy to see that (1̃a ⊗ P̃a′)[Φ+
aa′ ] = (P̃a ⊗ 1̃a)[Φ+

aa′ ] for projectors P̃a′ that commute with
the transposition. With this, using that P̃ 2

a = P̃a, the above Equation yields

(P̃i ⊗ P̃a︸ ︷︷ ︸
=P̃ia

⊗1̃oa′)[Tio ⊗ Φ+
aa′ ] = (P̃ia ⊗ P̃oa′)[Tio ⊗ Φ+

aa′ ], (152)

implying (according to Lem. 1) that Tio is completely admissible according to the extensions
P̃ia = P̃i ⊗ P̃a and P̃oa = P̃o ⊗ P̃a. We emphasise that the additional restriction that P̃a commutes
with the transposition can be dropped, by using the results of Sec. 9 to derive a generalisation of
Lem. 1 that also holds for projectors that do not commute with the transposition.
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