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In this paper, we present a quantum com-
putational method to calculate the many-
body Green’s function matrix in a spin or-
bital basis. We apply our approach to
finite-sized fermionic Hubbard models and re-
lated impurity models within Dynamical Mean
Field Theory, and demonstrate the calcula-
tion of Green’s functions on Quantinuum’s H1-
1 trapped-ion quantum computer. Our ap-
proach involves a cumulant expansion of the
Lanczos method, using Hamiltonian moments
as measurable expectation values. This by-
passes the need for a large overhead in the
number of measurements due to repeated ap-
plications of the variational quantum eigen-
solver (VQE), and instead measures the ex-
pectation value of the moments with one set
of measurement circuits. From the measured
moments, the tridiagonalised Hamiltonian ma-
trix can be computed, which in turn yields
the Green’s function via continued fractions.
While we use a variational algorithm to pre-
pare the ground state in this work, we note
that the modularity of our implementation al-
lows for other (non-variational) approaches to
be used for the ground state.

1 Introduction
The Green’s function (GF) is a quantity that allows
access to in principle all single-particle properties, in-
cluding electronic responses, and is therefore useful
for calculating spectroscopic properties, such as pho-
toemission, photoabsorption, and conductivity [1, 2].
It can also be used to capture electronic correlations
in condensed matter and quantum chemical simula-
tions, in addition to being the central quantity in
many quantum embedding methods such as cluster
perturbation theory and Dynamical Mean Field The-
ory (DMFT) [3, 4, 5, 6, 7]. Despite its importance
in these fields, the GF remains a difficult quantity
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to calculate accurately from first principles on classi-
cal computers. The exact GF requires knowledge of
all eigenvalues and eigenvectors of the Hamiltonian,
so its calculation complexity is the same as for full
Hamiltonian diagonalization. There is a long history
of approximate methods for the many body GF in
the classical domain of quantum chemistry, with the
state-of-the art often exhibiting high-degree polyno-
mial scaling [8, 9, 10]. Quantum computation offers a
novel and interesting route to obtain many-body GFs
for strongly correlated systems.

In a previous study [11], an approach based on
the Lanczos method was proposed to obtain the GF
on quantum computers. This approach relies on a
parameterised VQE method to construct the Krylov
space, hence the orthonormal Lanczos basis is cal-
culated iteratively in which a VQE-like algorithm is
applied at each Lanczos iteration. This involves an
overhead in the number of measurements and renders
the approach more susceptible (relative to a typical
ground state calculation) to the potential difficulties
associated with variational optimization (such as bar-
ren plateaus) [12]. This is also the case for recent
proposal based on variational compilation [13]. A
method based on quantum subspace expansion (QSE)
has also been proposed [14], in which the Hamilto-
nian and overlap matrix elements are obtained in a
basis for the ground state and in another basis for
the Krylov states involved in the GF. The basis sets
are prepared using time evolution, and the matrix ele-
ments are subsequently measured on a quantum com-
puter. The Krylov basis and Lanczos coefficients are
then calculated iteratively on a classical computer.
While an interesting approach, we note QSE requires
more resources than VQE, and the reliance on trot-
terised time evolution may lead to a vulnerability to
trotter errors as a function of the time step. A num-
ber of other recent proposals also utilise time evo-
lution to measure the real-time GF [15, 16], as well
as variational methods to capture the imaginary-time
GF [17, 18]. We also note the approach of Kosugi and
Matsushita [19] in which (multi-)controlled operations
between ancillas and state qubits are used to repre-
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sent the ladder operators involved in the (off-)diagonal
elements of the GF matrix, with a subsequent ap-
plication of quantum phase estimation (QPE). Other
recently proposed methods obtain the GF using an al-
gorithm to sample a Fourier series expansion [20], or
using a 3-qubit iTofolli gate [21]. Such approaches are
prohibitive for the noisy intermediate-scale quantum
(NISQ) era in terms of circuit depth scaling. Other
algorithms aimed at greater suitability for near-term
quantum computers have been proposed to obtain the
GF in both the time and frequency domains [22], in
addition to near-term algorithms for linear response
properties of molecules [23] (which require ancillary
qubits in some cases).

As mentioned above, the GF is a central quantity in
quantum embedding methods such as DMFT [5]. In
recent years, a number of quantum computational ap-
proaches to DMFT have been published [24, 25, 26].
These works involve simplifications which increase
tractability, yet decrease generalisability, such as a re-
striction to two sites via the single Anderson impurity
model (SIAM). In this picture the quasiparticle weight
has an analytical form, to which the impurity-bath in-
teraction is related in a simple way, via the limit of
infinite dimensions [5]. Previous works have also mea-
sured the GF in the time-domain to solve the impurity
model in DMFT, which can lead to a large overhead
in the number of measurements per time step [27], or
a reliance on fault tolerant schemes such as QPE [28],
or the use of a simplified sinusoidal form of the GF, or
other techniques [25, 26, 29, 30]. A recent approach
considers low energy expansions of the GF for an al-
ternative embedding scheme based on the rotationally
invariant slave boson method, which does not require
calculating the full GF [31]. We also note recent quan-
tum computational approaches for the DMFT solu-
tion of the Hubbard-Holstein model [32], as well as
novel spectral resolution techniques to measure the
Anderson impurity GF [33]. Finally, a very interest-
ing recent approach adopted fast-forwarding circuit
protocols to time-evolve the impurity state and con-
verge the DMFT loop on noisy hardware [34].

We add to these previous works by providing a
method to quantum compute the GF in the frequency
domain that can be utilised in a hybrid quantum-
classical algorithm for DMFT appropriate for NISQ.
When considering which features of the GF are most
important to capture in practice, the particular appli-
cation of the GF calculation will clearly have an im-
pact. Since the GF is a dynamical quantity, related
to a wide range of real-world applications (such as the
spectroscopic properties mentioned above), this moti-
vates the calculation of frequency-dependent proper-
ties. GFs are also widely used in embedding applica-
tions. Therefore, we consider the following features of
the GF in this work: accessing the frequency depen-
dent spectral function of the GF (requiring an accu-
rate representation of the imaginary part of the GF

along the real frequency axis), and calculating the im-
purity GF in the DMFT embedding method (requir-
ing an accurate calculation of the GF matrix elements
along the imaginary axis to obtain convergence of the
impurity problem).

In this work, a cumulant expansion of the Lanczos
coefficients is utilised to provide measurable quantum
circuits for each moment of the Hamiltonian [35, 36].
These measurable expectation values can be used to
calculate the elements of the tridiagonalised Hamil-
tonian matrix in the Krylov basis, from which the
well-known continued fraction expression of the GF
can be evaluated [5, 7]. Thus, we extend the work
of Vallury et al. [35] by utilising quantum computed
moments to develop a quantum algorithm for calcu-
lating the full GF matrix. As a first example, we
apply our method to the calculation of the GF of the
fermionic Hubbard model. We note recent studies of
the ground state properties of the Hubbard model us-
ing quantum algorithms [37, 38], in addition to ground
state preparation algorithms which rely on fault tol-
erant quantum computation [39, 40, 41]. Rather than
investigating efficient ways to find the ground state,
we instead focus on a quantum approach to calcu-
late GFs for finite chains of Hubbard sites. In ad-
dition, we show that this approach can be applied
to DMFT in a straight-forward manner to iteratively
calculate the quantum computed impurity GF to self-
consistency. Our methodology is implemented in the
InQuanto quantum computational chemistry package
[42, 43].

Our results show that application of this approach
to the H1-1 trapped ion quantum computer [44, 45]
results in spectral features (derived from the imagi-
nary part of the GF) that compare well with ideal
classical simulations, particularly in terms of peak
positions, even without error mitigation techniques.
Hence, expectation values of Hamiltonian moments
are relatively robust to measurement noise for low ly-
ing Lanczos roots, which is consistent with previous
applications of the method to infimum estimates of
the ground state energy [46, 35, 36]. The stability of
this method also extends to iterative calculations of
the impurity GF in the DMFT algorithm, even when
(emulated) circuit based measurements are used to
evaluate the Hamiltonian moments at every DMFT
iteration.

This paper is organised as follows. In section 2
we describe the methods and show how the quantum
computed moments can be used to obtain the GF.
This is followed by a brief overview of DMFT ap-
plied to the Bethe lattice with multiple bath sites [6].
In section 3, we present our results. Starting with
the Hubbard model, we show that our method can
be applied to multiple sites and benchmark our re-
sults against the classical Lanczos method. We then
demonstrate this method on quantum hardware. Fol-
lowing this, we utilise the quantum computed GF in a
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DMFT algorithm. Section 4 provides the concluding
remarks.

2 Methods

2.1 Quantum Computed Moments for Green’s
Functions

In this section, we give a brief overview of the cu-
mulant expansion of the Lanczos method, and its ap-
plication to computing the GF in a quantum com-
putational setting. The Lanczos recursion method
[47] can be viewed as an approximate diagonalisation
scheme, resulting in a tridiagonal form of the Hamil-
tonian matrix which can be efficiently solved. In a
typical classical Lanczos routine, the elements of the
tridiagonalised matrix (referred to as Lanczos coeffi-
cients below) αl = ⟨vl|Ĥ|vl⟩ and βl = ⟨vl+1|Ĥ|vl⟩ =
⟨vl|Ĥ|vl+1⟩ are used to numerically orthonormalise
the vectors |vl+1⟩ = (Ĥ−αl)|vl⟩−βl|vl−1⟩

βl+1
, where l =

1, 2, 3, β0 = 0, and Ĥ is the fermionic Hamiltonian
operator in second quantization. Vallury et al. [35]
showed that this scheme can be re-expressed for a
quantum computational context. The Lanczos coef-
ficients can be expressed using the moments of the
Hamiltonian operator Ĥ with respect to some ini-
tial Lanczos vector, ⟨Ĥn⟩ = ⟨v1|Ĥn|v1⟩. Therefore,
a quantum algorithm that can compute the moments
can be used to generate the Lanczos coefficients. For
example, for the upper 2 × 2 block of the tridiago-
nal matrix, i.e. α1, α2, β1, the quantities obtained
from a quantum algorithm are the expectations val-
ues ⟨Ĥ⟩, ⟨Ĥ2⟩, and ⟨Ĥ3⟩, and the coefficients are cal-
culated as:

α1 = ⟨Ĥ⟩

β1 =
√

⟨Ĥ2⟩ − ⟨Ĥ⟩2

α2 = ⟨Ĥ3⟩ − 2⟨Ĥ⟩⟨Ĥ2⟩ + ⟨Ĥ⟩3

⟨Ĥ2⟩ − ⟨Ĥ⟩2
.

(1)

In general, following the work of Hollenberg et al.
[48, 49], it can be shown that the Lanczos coeffi-
cients αl and βl can be expressed as functions of
{⟨Ĥn⟩}n=1..2l−1 and explicit expressions can be ob-
tained via the cumulant expansion of the Lanczos co-
efficients [35, 48].

Once the Lanczos coefficients are obtained, they can
be used to calculate the zero temperature GF matrix
G(ω) in the continued fraction representation [5, 50].
In this representation, the diagonal elements of the
single particle GF take the following form when de-

composed into particle and hole parts [51]

GL
i,i(ω) = g

(p)
i,i (ω) + g

(h)
i,i (ω)

=
n

(p)
i,i

ω + EGS − α
(p)
1 − β

(p)
1

ω+EGS−α
(p)
2

− . . .

+
n

(h)
i,i

ω − EGS + α
(h)
1 − β

(h)
1

ω−EGS+α
(h)
2

− . . .
,

(2)

where EGS is the ground state energy, and the numer-
ators ni,i (defined below) are related to normalised
states obtained by operating on the ground state with
the fermionic creation (f̂†

i ) and annihilation (f̂i) op-
erators, applied to spin orbital (or qubit) i (Jordan-
Wigner (JW) [52] encoding is assumed throughout
this paper). These normalised states correspond pre-
cisely to the initial Lanczos vector for each diagonal
GF element. Using the particle component g

(p)
i,i (ω) as

an example, we can write

|v1⟩ ≡ |Ψ(p)
i,i ⟩ = f̂†

i |ΨGS⟩√
n

(p)
i,i

, (3)

where n
(p)
i,i = ⟨ΨGS|f̂if̂

†
i |ΨGS⟩, and |ΨGS⟩ is the

ground state represented by a quantum circuit. In
Eq. 2 the Lanczos coefficients α

(p/h)
l , β

(p/h)
l are la-

belled by their particle/hole contributions, according
to whether the initial Lanczos vector is obtained by
operating on |ΨGS⟩ with f̂†

i (p) or with f̂i (h), respec-
tively.

The off-diagonal elements are obtained in an anal-
ogous way using linear combinations of fermionic op-
erators indexed by the matrix element. For example,
this results in an initial Lanczos vector for g

(p)
i ̸=j(ω)

|Ψ(p)
i ̸=j⟩ =

(f̂†
i + f̂†

j )|ΨGS⟩√
n

(p)
i ̸=j

, (4)

where n
(p)
i̸=j = ⟨ΨGS|(f̂i+f̂j)(f̂†

i +f̂†
j )|ΨGS⟩ . Following

through as above, the resulting off-diagonal element
GL

i ̸=j(ω) is not the true off-diagonal element of the
GF, but requires a modification which has a simple
arithmetic form [7], shown in Eq. 5. Utilising the
symmetry of the GF matrix, we finally obtain the GF
off-diagonal element as

Gi ̸=j(ω) = 1
2(GL

i ̸=j(ω) − Gi,i(ω) − Gj,j(ω)), (5)

with Gi,i(ω) = GL
i,i(ω). Thus, a method to quantum

compute the matrix G(ω) is obtained, without the ex-
plicit reliance on multicontrolled ancilla qubits, time
evolution, or phase estimation. On the other hand,
relative to methods involving phase estimation, this
approach in general requires a larger number of mea-
surements due to the increase in the number of Hamil-
tonian moments with Lanczos root index l, hence
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we note trade-off between circuit depth and number
of measurements when choosing between these ap-
proaches. We also note that this method does not
require calling a VQE routine for each Lanczos root,
nor a time-evolved subspace expansion to obtain the
Lanczos basis vectors.

In practical terms, the cumulant expansion of the
Lanczos coefficients combined with the continued
fraction representation of G(ω) implies at least two
strategies for implementation in a quantum algorithm:
i) prepare the initial Lanczos vector explicitly with a
state preparation circuit and measure the moments as
expectations with respect to this circuit, or ii) mea-
sure each moment as the expectation value of an op-
erator built by sandwiching Ĥn with ladder operators
(or sums of ladder operators) indexed according to the
initial Lanczos vector.

As an example, consider the nth moment contribut-
ing to a Lanczos coefficient required for g

(p)
i,i (ω): Using

i) we would prepare |Ψ(p)
i,i ⟩ and measure

⟨Ĥn,(p)
i,i ⟩ = ⟨Ψ(p)

i,i |Ĥn|Ψ(p)
i,i ⟩. (6)

Using ii) we would prepare |ΨGS⟩ and measure

⟨Ĥn,(p)
i,i ⟩ = (1/n

(p)
i,i )⟨ΨGS|f̂iĤ

nf̂†
i |ΨGS⟩. (7)

Thus our methodology requires either |Ψ(p)
i,i ⟩ or

|ΨGS⟩ to be prepared on a quantum circuit, in ad-
dition to the measurement of Hamiltonian moments.
While mathematically equivalent, i) and ii) can lead
to considerable differences in the quantum circuit re-
sources (depending on the state preparation meth-
ods), and catering for both approaches allows for a
useful flexibility in the application of the quantum
Lanczos approach to GFs. As discussed in Ref. [35], a
naive counting of Hamiltonian terms results in an ex-
ponential growth in the number of Pauli strings with
Hamiltonian power n. However, this can be signifi-
cantly improved by the existence of large commuting
sets in the Hamiltonian moment expansions [53]. To
mitigate the rapid growth we measured the commut-
ing Pauli terms with a single measurement circuit.
However, we note there are other efficient techniques
that could be also applied based on the tensor product
basis (TPB) and qubit-wise commutativity [35, 54].

The following paragraphs provide further details on
strategies i) and ii) for executing the quantum Lanc-
zos approach to calculate a GF, followed by an outline
of how the ground state can be prepared.

i) Initial Lanczos Vector Preparation

In the occupation number (ON) vector representation,
the ground state is expressed as

|ΨGS⟩ =
∑

x

cx|x⟩, (8)

where x = {xi} represents a set of occupations of spin
orbitals i for a given number of particles, and each
basis configuration can be written as the ON vector
of Ni spin orbitals

|x⟩ = |x0, x1, . . . , xi, . . . , xNi−1⟩. (9)

Given a circuit representing the ground state, the co-
efficients of the ON vector (Eq. 8) can then be ex-
tracted by calculating the overlap (where ÛGS(θopt)
is a unitary applied to a reference state |Ψref⟩, as is
typical of VQE)

cx = ⟨x|ΨGS⟩
= ⟨x|ÛGS(θopt)|Ψref⟩

(10)

for all x, resulting in a set of cx values, and the corre-
sponding {|x⟩}, hence the ON representation (Eq. 8)
is obtained. The ON representation of |v1⟩ ≡ |Ψ(p)

i,i ⟩
or |v1⟩ ≡ |Ψ(h)

i,i ⟩ is then obtained by applying f̂†
i or

f̂i, respectively, to Eq. 8 and normalising (as in Eq.
3). The resulting expansion of |v1⟩ as a linear com-
bination of basis configurations with real coefficients
can then be prepared on a quantum circuit using con-
trolled Givens rotations as particle-conserving excita-
tions [55]. While the procedure defined by Eqs. 8 - 10
in general exhibits an exponentially scaling overhead
(due to the inclusion of all particle-number preserv-
ing configurations) for the representation of |v1⟩ to be
exact, it is used here to demonstrate the flexibility
of our procedure to allow for arbitrary preparation of
the initial Lanczos vector. Hence future preparation
schemes with better scaling can be easily accommo-
dated.

ii) Sandwiched Moment Expectation

As mentioned above, one can obtain each required
term of the cumulant expansion from the measure-
ment of an expectation, with respect to the Ĥ ground
state, of a sandwiched Hamiltonian moment oper-
ator (see Eq. 7). This requires the preparation
of a quantum circuit representing the ground state,
which can be achieved by a VQE-optimized varia-
tional ansatz. Following the JW transformation of
f̂iĤ

nf̂†
i (and of f̂†

i Ĥnf̂i for the hole part), the cor-
responding Pauli strings can then be measured with
respect to the ground state circuit. In section 3.1.2,
we report Pauli operators representing the measur-
able sandwiched Hamiltonian moments for GF ele-
ments of the Hubbard dimer for Lanczos coefficients
corresponding to l = 2.

Ground State Preparation

To prepare the ground state, a number of approaches
have been proposed in recent years based on hybrid
quantum-classical algorithms such as imaginary time
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evolution [56, 57], or VQE [12]. These approaches
generally involve the application of some ÛGS to a ref-
erence state, where ÛGS(θ) is expressed as an ansatz
which depends on parameters θ that are variation-
ally optimized to θopt. For the latter, a wide range
of chemically intuitive (e.g. unitary coupled cluster
(UCC) [58]) and hardware efficient [59] ansätze have
been proposed. In addition, adaptive methods also
exist in which the ansatz is constructed iteratively for
a given problem [60, 61, 62]. We also note the con-
tinuing development of ground state preparation algo-
rithms which rely on fault tolerant quantum computa-
tion [39, 40, 41]. In this work we focus on a quantum
approach to the GF and assume an accurate ground
state has been provided from a separate calculation.
In practice, we prepared the ground state circuit us-
ing a VQE algorithm with a parameterised ansatz, but
our approach also supports the classical calculation of
the ground state (which would exemplify a procedure
that combines classical computing for ground state
properties, with quantum computing for excited state
properties). This can be done as long as the classical
calculation yields an expansion of the state vector in
a basis of occupation configurations, since the latter
in principle can always be prepared using controlled
excitation gates [55], as outlined for strategy i).

2.2 Fermionic Hubbard model

To demonstrate our approach, we quantum compute
the GF of the fermionic Hubbard model, the Hamil-
tonian of which can be written as

ĤHub = − µ
∑

s

∑
σ

f̂†
s,σ f̂s,σ

− t
∑

<r,s>

∑
σ

(
f̂†

r,σ f̂s,σ + f̂†
s,σ f̂r,σ

)
+ U

∑
s

f̂†
s,↑f̂s,↑f̂†

s,↓f̂s,↓,

(11)

where µ, t, and U are the chemical potential, hop-
ping amplitude, and on-site Coulomb interaction, re-
spectively (t = 1 in these calculations, which sets the
energy scale throughout this paper). s labels a site,
<r, s> denotes nearest neighbor pairs of sites, and
spins are labelled by σ = ↑, ↓. To establish consis-
tency with the spin orbital index i of the GF ma-
trix (see section 2.1), we use a linear mapping be-
tween the site-spin index and the spin orbital index
s, ↑ (s, ↓) 7→ i (i + 1) where s = 0, 1, 2, . . . , Ns − 1 and
i = 2s, hence Gsσ, s′σ′ ≡ Gi,j . There are Ns × 1 × 1
Hubbard sites arranged in a linear geometry.

Since we use JW encoding throughout, the spin or-
bital index i also corresponds to a qubit index on a
quantum circuit. Fermionic operators are mapped ac-
cording to JW encoding as

f̂†
i 7→ Xi − iYi

2

i−1∏
d=0

Zd

f̂i 7→ Xi + iYi

2

i−1∏
d=0

Zd

(12)

where i2 = −1 (referring to the non-italic symbol i),
and Pi ∈ {Ii, Xi, Yi, Zi} refers to a Pauli rotation gate
applied to qubit i (for i = 0 the product of Zd over d
is omitted). This results in a qubit representation of
the Hamiltonian as a sum of tensor products of Pauli
operators.

Given the qubit representation of ĤHub, the corre-
sponding GF matrix is obtained using the method-
ology outlined in section 2.1. We assume the half-
filled regime (µ = U/2), set the initial reference state
to the half-filled singlet configuration, and obtain the
ground state using VQE with a parameterized ansatz.
For the latter, we utilise qubit excitations [61] in
the Hard-core Boson representation [63] to obtain the
ground state using significantly fewer 2-qubit gates
than UCC. Consider the Hubbard dimer, correspond-
ing to 4 qubits. The initial reference state of a spin-up
electron occupying site 0 and a spin-down on site 1
(|Ψref⟩ = |1001⟩) can be prepared with Pauli-X gates.
The ground state can then be obtained by applying
two qubit excitation operators, i.e. unitary opera-
tors corresponding to a single-excitation and a double-
excitation which act directly on the qubit Hilbert
space (hence obviating the need for Pauli-Z gates
to maintain fermionic exchange antisymmetry [64])
|ΨGS(θ1, θ2)⟩ = eiθ1Y0X2eiθ2Y0X1X2X3 |Ψref⟩. The dou-
bles excitation portion of this circuit is shown in Fig.
1.

0

1

2

3

V Rz(−2θ2/π) V †

H H

H H

H H

Figure 1: Quantum circuit representation of the double
qubit excitation operator eiθ2Y0X1X2X3 . The V , V †, and
H (Hadamard) gates are for rotation into the desired com-
putational basis (such that HZH = X and V †ZV = Y ),
while the CNOTs and Rz represent the exponentiated Pauli
strings corresponding to the qubit excitation. Here 6 CNOTs
are needed for the double excitation (2 extra CNOTs are also
needed for the singles excitation not shown here, so 8 CNOTs
altogether to express the ground state).
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By utilising particle-hole symmetry, as well as to-
tal spin symmetry (equal number of spin-↑ and spin-↓
electrons at half-filling), the number of 2-qubit gates
for the double-excitation can be reduced as follows:
step 1) treat the double-excitation initially as a single-
excitation involving Pauli operators acting on two
Hubbard sites instead of four spin orbitals (equiva-
lent to using the molecular spatial orbital index in a
chemically aware strategy [63]), step 2) specify the
qubit excitation between sites as the excitation be-
tween qubits representing the same spin on either site
(e.g. for a spin-↑ to spin-↑ excitation in the Hubbard
dimer, this corresponds to a qubit excitation involv-

ing qubits 0 and 2), step 3) reintroduce spin orbital
indexing by applying 2-qubit CNOTs which pair the
relevant even-odd indexed qubits. The net result is a
series of gates which perform the equivalent action of
the double-excitation unitary eiθ2Y0X1X2X3 but with
fewer CNOTs. This replaces the double-excitation cir-
cuit in Fig. 1. Due to spin symmetry and the lack of
(s, ↑) → (r, ↓) cross-spin hopping between sites s and
r ̸= s, only one single-excitation unitary is needed.
The resulting ansatz circuit is shown in Fig. 2. We
also note that all measurable circuits in this work are
compiled for hardware using the architecture agnostic
quantum software compiler t|ket⟩TM [65].

0

1

2

3

|0⟩ X S† V † Rz(2θ2/π) V S V Rz(−2θ1/π) V †

|0⟩

|0⟩ V H Rz(−2θ2/π) H V † H H

|0⟩

Figure 2: Parameterised circuit for eiθ1Y0X2 eiθ2Y0X1X2X3 |Ψref⟩ used to obtain the ground state of the Hubbard dimer, with
an optimized 2-body qubit excitation. The X gate on qubit 0 corresponds to Hubbard site 0 occupied by an even-indexed
electron. The S, S†, V , V †, and H gates are for rotation into the desired computational basis. The CNOTs with qubit 0 (2)
as targets (controls) bracketing the Rz represent the exponentiated Pauli strings corresponding to the qubit excitations. The
3rd and 4th CNOTs translate the action of previous gates to odd-indexed qubits, resulting in a double excitation eiθ2Y0X1X2X3

applied to the initial reference state |Ψref⟩ = |1001⟩, followed by the single excitation eiθ1Y0X2 . Hence in this circuit, 6 CNOTs
are needed to represent the ground state.

2.3 Dynamical Mean Field Theory
We also apply our approach to quantum compute the
impurity GF within the DMFT solution of the single
band Hubbard model on a Bethe lattice [6]. In the
limit of infinite connectivity, the GF of this model can
be interpreted as the impurity-site GF of an Anderson
model Hamiltonian [5, 66]

ĤAnd = Ĥimp

+
Ns+Nb∑
b=Ns

∑
σ

ϵb,σ f̂†
b,σ f̂b,σ

+
Ns+Nb∑
b=Ns

∑
σ

Vb,σ

(
f̂†

σ f̂b,σ + f̂†
b,σ f̂σ

)
,

(13)

in which Ĥimp = ĤHub(Ns = 1), and baths sites are
indexed by b. ϵb,σ and Vb,σ are variational parame-
ters corresponding to the on-site bath energies and
impurity-bath interactions, respectively. Here, we set
ϵb,↑ = ϵb,↓ and Vb,↑ = Vb,↓, and the Hamiltonian is
constrained by particle-hole symmetry. We use the
same topology for the Anderson impurity model as
[27].

Solving for the eigenspectrum of ĤAnd yields the
GF of the impurity+bath system, the upper 2 × 2
block of which corresponds to the impurity-site GF
matrix Gimp (with elements Gimp

i,j ). Since there is only
1 impurity site and no spin-flipping terms, impurity-
related quantities such as Gimp are 2 × 2 diagonals
and reduce to scalar functions of frequency in this
case, however we write these as matrices in a basis of
impurity spin orbitals i, j for consistency in notation
and to emphasise generalisability. We solve for the
Gimp

i,j elements using the methodology of section 2.1.

The dynamical interaction between the impurity
and bath is governed by the U = 0 GF of the Ander-
son impurity model [6], the inverse of which is called
hybridisation ∆, with elements

∆i,j(iωk) =
(

iωk+µ−
∑

σ

Nbath∑
b

V 2
b,σ

iωk − ϵb,σ

)
Ii,j , (14)

where Ii,j is an element of the identity matrix, and iωk

is the kth Matsubara frequency. The Anderson model
can also be related to Gimp by a self-consistency con-

Accepted in Quantum 2024-06-15, click title to verify. Published under CC-BY 4.0. 6



dition [5, 6]

∆sc
i,j(iωk) =

(
iωk + µ

)
Ii,j −

Gimp
ij (iωk)

2 (15)

(with corresponding matrix ∆sc). We note that strict
self-consistency can only be obtained for Nbath = ∞.
This limit can be numerically approximated by a finite
bath by varying the bath parameters to minimise the
cost function

C({ϵb,σ}, {Vb,σ})

= 1
Nω + 1

Nω∑
k=1

|∆sc(iωk) − ∆(iωk)|2F,
(16)

thereby fitting ∆ to ∆sc, where | . |F denotes the
Frobenius norm. Here, Nω is the number of fitting
frequencies, and we note that all DMFT fitting is
performed on a grid of imaginary Matsubara frequen-
cies iωk = iπ(2k+1)

β
where β is an inverse tempera-

ture which sets a frequency grid cutoff above iωk = 0.
In our applications, we run the DMFT algorithm on
1, 2, and 3 bath sites, corresponding to 4, 6, and 8
qubits, respectively. For 1 bath site, bath fitting is
performed on 26 imaginary frequencies and β = 8.
While for 2 and 3 bath sites, bath fitting is performed
on 64 imaginary frequencies with β = 16. Numer-
ical minimisation of C results in a new set of bath
parameters {ϵb,σ}, {Vb,σ}, which in turn define a new
ĤAnd, which leads to a new Gimp via the approach
described in section 2.1. Eqs. 13 - 16 therefore sug-
gest an iterative algorithm, which can be terminated
at a threshold value of the convergence error τ . For
τ , we use the Frobenius norm of the change in ∆sc

between iterations m and m + 1, summed over Nω

imaginary frequencies

τ = 1
Nω

√√√√Nω∑
k=1

|∆sc
m+1(iωk) − ∆sc

m(iωk)|2F . (17)

We assume the half-filled regime, hence µ is set to
U/2 which corresponds to 1 electron on the impurity
site in the ground state. To find the number of elec-
trons in the bath, the following is performed: after
finding the ground state of ĤAnd for a given set of
bath parameters, the total number of electrons Ne is
obtained from the expectation of the total number
operator. Bath sites are then filled according to the
number of bath electrons = Ne − 1. The resulting
occupation state is then used to initialise the Lanczos

procedure to solve for the impurity GF using the ap-
proach outlined in section 2.1. This procedure can be
summarised by noting that we consider the Anderson
impurity model to be in thermodynamic equilibrium
with a reservoir of particles, hence it is treated as a
grand canonical ensemble with the number of elec-
trons in the Hubbard impurity set by particle-hole
symmetry. In order to find the ground state of ĤAnd
at each DMFT iteration, the UCCSD [58] ansatz is
optimized using the VQE [12].

3 Results
3.1 Green’s Functions of Hubbard Chains
In Fig. 3 we compare a statevector simulated (noise-
less) quantum GF to the classically calculated GF
(throughout this work, results labelled ‘classical ED’
correspond to classical exact diagonalisation used to
obtain the GF in the Lehmann representation at zero
temperature [7]), for the non-interacting (U = 0), in-
termediate (

∣∣U
t

∣∣ = 2), and strongly correlated (
∣∣U

t

∣∣ =
8) regimes of the Hubbard dimer. In Fig. 3, the
spectral function and real part of a diagonal element
of the GF are plotted. The spectral function (which
counts the number of states per energy normalised by
π) is obtained from the imaginary part of the diagonal
elements of the GF matrix

A(ω) = − 1
π
ImG(ω + iδ). (18)

where δ is a broadening term, and we set δ = 0.01.
Both strategies i) and ii) (described in section 2.1) are
used in Fig. 3, showing their equivalence in terms of
physical results. In terms of the circuit resources used
in either case, interesting differences arise due to the
differences in state preparation and operator expec-
tation measurement. In this case, the exact solution
is obtained (i.e. the continued fraction GF matches
the GF calculated from exact diagonalisation (ED))
for maximum l = 2. This corresponds to a maxi-
mum Hamiltonian moment of n = 3, as in Eq. 1. In
Fig. 4 the spectral function is calculated for a 4-site
Hubbard model, with an increasing number of Lanc-
zos roots (i.e. increasing dimensionality of the Krylov
space). This shows that at 8 Lanczos roots, reason-
able accuracy is obtained in the position of spectral
peaks (energies which exhibit poles of the GF), with
most of the deviation relative to the exact result ex-
hibited in the weights (rather than positions) of the
peaks near ω ∼ ±2 (throughout this paper, ω is in
units of t, and we set t = 1).
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Figure 3: Noiseless simulations of quantum computed Green’s function versus ω (in units of t) for the Hubbard dimer when
U = 0 (top panels),

∣∣U
t

∣∣ = 2 (middle panels), and when
∣∣U

t

∣∣ = 8 (bottom panels), using two different initialisation strategies
for the quantum Lanczos routine: blue ‘+’ corresponds to strategy i), while red ‘×’ represents strategy ii). In the legend, spin
orbital indexes ij have been omitted and Ĥn,(p) = f̂ Ĥnf̂†, Ĥn,(h) = f̂†Ĥnf̂ . Left panels show the spectral function (number
of states per unit energy normalised by π, defined in Eq. 18), and right panels show the real part of the G0,0 element (in units
of 1

t
where we use t = 1). We note that in this case the Lanczos routine reproduces the GF obtained from ED.

Accepted in Quantum 2024-06-15, click title to verify. Published under CC-BY 4.0. 8



Figure 4: Spectral function of the the 4-site Hubbard model when
∣∣U

t

∣∣ = 2, using noiseless simulations of quantum computed
Green’s functions, using strategy ii) for the quantum Lanczos routine. Convergence towards the ED result of the quantum
computed spectral function with respect to the number of Lanczos roots (maximum value of l) is observed. Peak positions
are reasonably converged for ≥ 8 Lanczos roots. Dashed black line shows the result from exact diagonalisation. Dimension of
spectral function (defined in Eq. 18) is number of states per unit energy normalised by π.

3.1.1 Strategy i) Initial Lanczos Vector Preparation:
Hubbard Model

Following the noiseless VQE optimization of the
ground state ansatz (Fig. 2), the ground state of the
interacting Hubbard dimer exhibits the following ex-
pansion in terms of ON basis vectors

|ΨGS⟩ = c1100|1100⟩ + c1001|1001⟩
+ c0110|0110⟩ + c0011|0011⟩,

(19)

where the coefficients depend on U and t Hubbard
parameters, with c1100 = c0011, c1001 = −c0110 due to
symmetry and fermionic exchange, and for the non-
interacting U = 0, t = 1 case, |c1100| = |c0011| =
|c1001| = |c0110| = 1/2. Taking the diagonal element
of the particle and hole GFs g

(p)
0,0 and g

(h)
0,0 as an ex-

ample, which require preparation of Lanczos vectors
|Ψ(p)

00 ⟩ = f̂†
0 |ΨGS⟩√

n
(p)
00

and |Ψ(h)
00 ⟩ = f̂0|ΨGS⟩√

n
(h)
00

to measure the

⟨Ĥn,(p)
ii ⟩ and ⟨Ĥn,(h)

ii ⟩, respectively, the following ex-
pansions for these Lanczos vectors are obtained after
applying the ladder operators to the ground state

|Ψ(p)
00 ⟩ = c0110√

n
(p)
00

|1110⟩ + c0011√
n

(p)
00

|1011⟩, (20)

|Ψ(h)
00 ⟩ = c1100√

n
(h)
00

|0100⟩ + c1001√
n

(h)
00

|0001⟩. (21)

The quantum circuits representing Eqs. 20 and 21
(in addition to the off-diagonal terms) can then be
prepared using multicontrolled Given’s rotations to
obtain arbitrary (particle-conserving) linear combina-
tions of basis states [55]. In strategy i), in contrast
to strategy ii), we do not measure the expectation
of sandwiched moments with respect to the ground
state, but rather take the expectation of the moments
Ĥn with respect to the Lanczos vectors. Hence, the
Pauli strings to be measured for each GF element do
not change with the element index of the GF matrix.
The Pauli strings take the following form after JW
encoding the fermionic Hamiltonian moments (using
Hubbard parameters U = 2, t = 1 as an example)
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Ĥ1 7→ 1
2

(
Z0Z1 + Z2Z3 − X0Z1X2 − Y0Z1Y2

− X1Z2X3 − Y1Z2Y3

)
,

(22)

Ĥ2 7→ 1
2

(
3I − X0X1Y2Y3 + X0Y1Y2X3 + Y0X1X2Y3

− Y0Y1X2X3 + Z0Z1Z2X3 − Z0Z2 − Z1Z3

)
,

(23)

Ĥ3 7→ 1
2

(
X0X1X2X3 + X0Y1X2Y3 − 3X0Z1X2

+ 2X0X2Z3 + Y0X1Y2X3 + Y0Y1Y2Y3 − 3Y0Z1Y2

+ 2Y0Y2Z3 + 2Z0X1X3 + 2Z0Y1Y3 + 2Z0Z1

− Z0Z3 − 3X1Z2X3 − 3Y1Z2Y3 − Z1Z2 + 2Z2Z3

)
.

(24)

(with I ≡ I0I1I2I3). However, the circuits corre-
sponding to the Lanczos vectors do change with GF
matrix element index, and grow rapidly with the size
of the system. Considering the scaling of the num-
ber of terms in Eq. 19 with respect to the number of
qubits, the number of terms required to exactly repre-
sent the Lanczos vectors (Eqs. 20 and 21) scales expo-
nentially. Hence, the feasibility of strategy i) largely
depends on how the Lanczos vectors are prepared on
the quantum circuit.

A well known issue with the Lanczos method is the
degradation of the Lanczos basis due to floating point
precision [51]. Typically, this degradation occurs for
large values of l, where βl tends to become small and
hence numerical noise is amplified when dividing by
βl to normalise |vl⟩. In classical schemes, this is typ-
ically treated by re-orthogonalising the current |vl⟩
to the set of previously calculated vectors {|vk<l⟩}.
However, quantum noise and the statistical nature of
circuit measurements required for the evaluation of
Hamiltonian moments can also affect the Lanczos ba-
sis and associated Lanczos coefficients calculated from
the measured moments.

To study this, the imaginary part of a diagonal ele-
ment of G for the Hubbard dimer is obtained from
measurements of expectations of Hamiltonian mo-
ments corresponding to the particle (g(p)

0,0 ) and hole
(g(h)

0,0 ) contributions to G0,0. The results are obtained
from the Quantinuum H1-1 emulator, a classical de-
vice emulator with a noise model corresponding to the
noise profile of the H1-1 device [45]. These emulated
experiments correspond to one of the 14 measurable
circuits to be described in section 3.2, representing the
upper diagonal elements of the particle and hole GF

matrices, both with 23 (7) total (2-qubit) gates and
depth 13. These are plotted alongside the normalised
absolute errors in αl and βl resulting from measure-
ments, and the diagonal and off-diagonal components
of the overlap matrix elements calculated classically
from the Lanczos vectors which in turn are built from
the measured αl and βl. Since the ED result for the
Hubbard dimer GF is recovered for maximum l = 2,
only α1, α2, and β1 are used in this case, and we av-
erage the error in αl. Hence the errors in the Lanczos
coefficients are calculated as

|∆α(p/h)| = 1
2

(∣∣∣∣α(p/h)
1 − α

(p/h)
1,exact

α
(p/h)
1,exact

∣∣∣∣+∣∣∣∣α(p/h)
2 − α

(p/h)
2,exact

α
(p/h)
2,exact

∣∣∣∣)
(25)

|∆β(p/h)| =
(∣∣∣∣β(p/h)

1 − β
(p/h)
1,exact

β
(p/h)
1,exact

∣∣∣∣) (26)

where α
(p/h)
l,exact, β

(p/h)
l,exact are noiseless ideal values of the

Lanczos coefficients. The next Lanczos vector |v2⟩ is
then constructed from these measured Lanczos coef-
ficients, and its norm ⟨v2|v2⟩ and overlap with v1 are
obtained classically (since the ground state parame-
ters are obtained from an ideal noise free calculation,
and the vector norms are calculated classically, the
first Lanczos vector v

(p/h)
1 = |Ψ(p/h)

00 ⟩ has unity norm
by construction). The results of 4 separate emula-
tor runs, corresponding to 4 separate sets of measure-
ments, are shown in Fig. 5. It can be observed that,
for a given set of measurements, the error in βl result-
ing from the quantum noise correlates to the deviation
from unity norm of v2, which is not unexpected since
βl governs the normalisation of the Lanczos vectors.
This error in normalisation also translates to the de-
viation of spectral peak heights from the exact result,
which gives a qualitative understanding of the effect of
quantum noise in βl on the resulting GF: within each
plot of Fig. 5, a larger |∆β(p/h)| results in a worse rel-
ative peak height (compared to ED) for g

(p/h)
0,0 , where

superscript "p" ("h") denotes contribution to the pos-
itive (negative) frequency spectral peaks.

Also, quantum noise at the circuit level can have
a cumulative effect on the orthogonalisation of the
Lanczos vectors at higher roots, the study of which
requires measurements of corresponding higher mo-
ments of the Hamiltonian with respect to the ground
state for models larger than the Hubbard dimer.
Such measurements require circuits too deep for the
current NISQ era, as errors due to gate infidelities
and qubit decoherence would accumulate and domi-
nate the measurements of associated Pauli operators.
Hence, we leave the effect of quantum noise on the
orthogonalisation of Lanczos vectors for higher lying
roots as an open question for future studies, although
we note the investigation of Vallury et. al. [35] into
the effect of noise and device errors on the arithmeti-
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cal operations involved in the assembly of cumulants,
in which it was found that infimum estimates of the
ground state energy are improved in accuracy and
more robust to device noise relative to variational ap-

proaches to optimizing ⟨Ĥ(θ)⟩ [36]. The relation be-
tween numerical errors in the Lanczos basis and quan-
tum noise could have interesting implications for error
mitigation, which we briefly discuss in the conclusion.

Figure 5: Imaginary part of G(ω)0,0 obtained from the Quantinuum H1-1 emulator, from 4 separate runs. For each run,
the associated errors in Lanczos coefficients are shown, along with the norms of the Lanczos vector constructed from the
(moment-)measured coefficients.

3.1.2 Strategy ii) Sandwiched Moment Expectation:
Hubbard Model

Using the particle GF with U = 2, t = 1 as an exam-
ple, the first, second, and third powers of the Hamilto-
nian, sandwiched between ladder operators, and con-
tributing to the diagonal element g

(p)
0,0 , are mapped to

the following sums of Pauli operator strings via JW
encoding.

f̂0Ĥ1f̂†
0 7→

(
− 1

4Z0X1Z2X3 − 1
4Z0Y1Z2Y3 − 1

4Z0Z1

+ 1
4Z0Z2Z3 − 1

4X1Z2X3 − 1
4Y1Z2Y3 − 1

4Z1 + 1
4Z2Z3

)
,

(27)

f̂0Ĥ2f̂†
0 7→

(
3
4I + 3

4Z0 − 1
4Z0Z1Z2Z3 − 1

4Z0Z1Z3

+ 1
4Z0Z2 − 1

4Z1Z2Z3 − 1
4Z1Z3 + 1

4Z2

)
,

(28)

f̂0Ĥ3f̂†
0 7→

(
− 3

4Z0X1Z2X3 − 1
2Z0X1X3 − 3

4Z0Y1Z2Y3

− 1
2Z0Y1Y3 − 1

2Z0Z1 − 1
4Z0Z1Z2 + 1

2Z0Z2Z3 + 1
4Z0Z3

− 3
4X1Z2X3 − 1

2X1X3 − 3
4Y1Z2Y3 − 1

2Y1Y3 − 1
2Z1

− 1
4Z1Z2 + 1

2Z2Z3 + 1
4Z3

)
(29)

At variance to strategy i), in strategy ii) the measur-
able Pauli strings contributing to each GF element
change with matrix element index. This is exempli-
fied for 2, 3, and 4 Hubbard sites (4, 6, and 8 qubits,
respectively) in Fig. 6, in which the number of Pauli
strings in f̂0Ĥnf̂†

0 , and in (f̂0 + f̂2)Ĥn(f̂†
0 + f̂†

2 ) (con-
tributing to the off-diagonal element g

(p)
0,2 ), are plotted

as a function of n.
Interestingly, the total number of individual Pauli

terms does not necessarily increase with the Hamil-
tonian power. This effect manifests in two ways: 1)
The concatenation of Pauli strings that occurs when
taking the power can result in the collapse of prod-
ucts into smaller equivalent strings; this is evident for
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smaller numbers of qubits where the number of Pauli
strings can oscillate for even and odd powers of Ĥ,
however the importance of this decreases rapidly as
the system size grows (see Fig. 6). 2) In general,
the maximum number of Pauli strings for N qubits
is 4N , however the Hamiltonian will have less terms
than this (depending on the interactions of the model)
for a given N which will affect the number of individ-
ual strings that result from n powers of Ĥ; our results
show that the number of Pauli strings for the Hubbard
Hamiltonian saturates for values of n large enough for
the Lanczos procedure to sufficiently cover the Hilbert
(sub)space of the model (in general of lower dimen-

sionality of the full Hilbert space of N qubits due to
symmetry), which occurs at large enough values of
the Lanczos index l defined in section 2.1.

The resulting manageable number of Pauli terms of
small models, in addition to the optimized qubit exci-
tation ansatz circuit for the ground state presented in
section 2.2 (in this strategy, the circuits corresponding
to the bra and ket of ⟨Ĥn,(p/h)

ii ⟩ do not change with GF
matrix index, unlike strategy i)), facilitate the quan-
tum calculation of the full GF matrix of the Hubbard
dimer on Quantinuum’s H1 ion-trap machine, the re-
sults of which are presented in the next section.

Figure 6: Number of Pauli strings in sandwiched moment operators (for diagonal and off-diagonal elements) versus Hamiltonian
moment index n, using 4, 6, and 8 qubits, for non-interacting U = 0 (left panels) and interacting | U

t
| = 2 Hubbard models.

For an interacting case of 4 qubits, oscillations in the number of Pauli strings are observed for even and odd n; the magnitude
of these oscillations rapidly decrease as the system size increases. For larger numbers of qubits, the shape of the curve (semilog
plot) is characteristic of polynomial scaling, and indicates a roughly convergent number of Pauli strings as a function of n as
the Lanczos procedure approaches the full dimensionality of the Hilbert space (or symmetry-reduced subspace thereof). For 8
qubits, dotted lines are shown to indicate saturated numbers of Pauli strings.
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3.2 Green’s Functions Calculated from Hard-
ware Experiments
3.2.1 Hubbard Model

In Fig. 7, the spectral function of the Hubbard dimer
is obtained from the H1-1 trapped ion quantum com-
puter. In addition, results from the Quantinuum H1-1
emulator (H1-1E) (with its noise model calibrated to
the noise profile of H1-1 [45]) are also shown. Both
the particle and hole GF matrices contain 16 elements,
which immediately reduces to 10 elements each due to
symmetry about the diagonal [7]. This would naively
result in 20 measurable circuits for the full GF (10
for both particle and hole GFs): one circuit per ma-
trix element for particle and hole matrices (despite
particle-hole symmetry, we explicitly calculate both
the particle and hole matrices to more comprehen-
sively test the performance on hardware). Due to
certain elements within the particle and hole GF ma-
trices being identical for the Hubbard dimer in this
regime, the final total number of measurable circuits
for the Hubbard dimer is 14. The total number of
(2-qubit ZZ) gates per circuit ranges from 23 to 27 (7
to 9), with depth ranging from 13 to 18. Measure-
ments of each circuit are performed with 8192 shots.
Excellent agreement is observed in the spectral peak
positions, indicating an accurate description of the
excitation energies involved in the particle/hole tran-
sitions, when compared to the ideal classical simula-
tion. Previous investigations have demonstrated the
robustness of this method to quantum measurement
noise and device errors for infimum estimates of the
ground state energy [46, 35, 36], while other recent
studies have also shown the robustness to noise of
quantum subspace algorithms in general for access-
ing low lying eigenvalues [67, 68]. Our results are
consistent with these previous works. The quality of
the results is also indicative of low device errors on
the H1-1 trapped ion quantum computer, since mea-
surements of Hamiltonian moment expectations were
performed without error mitigation. We also note the
excellent agreement between H1-1 and its emulator.

The heights of the two central peaks in Fig. 7
are underestimated with respect to ED by an aver-
age (between positive and negative frequency peaks)
of approximately 17% for H1-1. Repeated runs on
the emulator H1-1E shows this is roughly consistent
(Fig. 8), yielding a mean underestimation of 15% over
the 5 runs for the two central peaks. With regard to
the peak positions along the real frequency axis, the
hardware results from H1-1 (Fig. 7) yield an average
error relative to ED in the low lying peak frequency
(at absolute frequency |ω| = 1.236 in the exact GF) of
0.5% (averaged over positive and negative frequency
peaks), whereas the higher lying peaks (at |ω| = 3.238
in the exact GF) exhibit a frequency-averaged error
of 1.3%. The repeated runs of the emulator (Fig. 8)
yield a roughly similar average error of 0.6% in the

low lying peak positions, and an average higher lying
peak position error of 1.5%.

We note that the H1-1 device currently exhibits
typical one-qubit and two-qubit gate error rates of
4×10−5 and 2×10−3, respectively, and a typical state
preparation and measurement error rate of 3 × 10−3

[45]. With this in mind, and to further investigate the
impact of noise on our results, we performed boot-
strapping of H1-1 hardware measurements to gen-
erate ensembles of GFs resampled from the original
measured results. Statistical analysis of these boot-
strapped samples provide effective error bars on the
position and weight of peaks of the spectral function,
thereby demonstrating the impact of random varia-
tions (e.g. due to device error) on the final output
GF along the real frequency axis.

To perform such an analysis of the hardware-
calculated GF, the local spectral maxima A(ωpeak)
were sampled at the transition frequencies (ωpeak, of
which there are 4 for the Hubbard dimer, located
at frequencies ωpeak = −3.238, −1.236, 1.236, 3.238
in the exact GF) for each bootstrapped GF. Each
of these local maxima were then averaged over the
ensemble, with their spread and standard deviations
also obtained. A similar procedure was carried out
for the positions of spectral peaks along the real fre-
quency axis (the ω value for which A(ω) has a peak
near ω = ωpeak), sampling the frequencies at which
the spectrum has local maxima for each of the boot-
strapped GFs. For the real part of the GF matrix
element (right panel of Fig. 10), the value of the posi-
tive and negative extrema centred at the ωpeak values
were sampled over the ensemble. Fig. 9 shows the
variation of spectral peak positions and heights with
respect to the number of samples, showing reason-
able convergence of the statistics at 500 bootstrapped
samples. The ensemble of 500 bootstrapped GFs is
plotted in Fig. 10. We observe that the low lying
transition energies are well reproduced with respect
to the exact result, with very small variation (stan-
dard deviation approximately 0.2% - 0.4% normalised
to the ensemble average at 500 samples as shown in
Fig. 9) between bootstrapped samples. For the higher
lying spectral peaks (ωpeak ≈ ±3.238), standard de-
viations of the transition energy are larger (approxi-
mately 0.8% - 1% at 500 samples in Fig. 9) which is
unsurprising given the diminished accuracy of higher
eigenspectra for truncated Krylov spaces, and is con-
sistent with the results shown in Fig. 5.

In section 3.1.1 we discussed how noise in the mea-
sured moments translate to errors in the normalisa-
tion of Lanczos vectors, which in turn translates to
errors in the peak heights. Here we see that these
errors exceed (in proportion) errors in the peak posi-
tion frequencies (this is reflected in the larger average
error relative to ED for the peak heights, in addition
to the larger spread of spectral weights, compared to
the transition frequencies). Hence variations due to
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device error seem to have a larger impact on spectral
weights compared to errors in the values of transi-
tion frequencies. However spectral weights of low and
high lying peaks are qualitatively in proportion with
respect to exact diagonalisation: the dominance of
low lying peaks over higher lying excitations is main-
tained even in the presence of quantum noise. This
combined with the relatively accurate peak positions
empirically demonstrates that our quantum Lanczos

approach can reproduce important frequency depen-
dent features of the GF in the presence of noise on
the H1-1 quantum computer.

Whether the observed errors are large enough to
prevent application of this quantum GF approach to
more elaborate simulations, such as quantum embed-
ding within DMFT, remains an interesting question.
In the next section, we address this issue and demon-
strate the usefulness of this technique for DMFT.

Figure 7: Quantum computed GF obtained from the H1-1 trapped ion quantum computer. Solid black line shows the result
from classical ED. Dimension of spectral function (defined in Eq. 18) is number of states per unit energy normalised by π.

Figure 8: Quantum computed GF obtained from the classical emulator of the H1-1 trapped ion quantum computer, with a
noise model calibrated to current hardware data. Solid black line shows the result from classical ED. Dimension of spectral
function (defined in Eq. 18) is number of states per unit energy normalised by π.
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Figure 9: Analysis of bootstrapped GFs derived from measurements obtained on the H1-1 trapped ion quantum computer,
showing the variation of results with respect to the number of bootstrap samples. Top left panel shows spectral peak
heights averaged over each number of samples (Ā(ωpeak)), and bottom left panel shows the peak height standard deviations.
Top right panel shows transition frequency (or energy) positions of the 4 peaks of the Hubbard dimer spectral function
averaged over the number of samples ( ¯ωpeak)), and bottom right panel shows the peak position standard deviations. All
standard deviations σ here are expressed as a percentage normalised to the ensemble average for a given number of samples
%σ(X, nsample) = σ(X, nsample)/X̄(nsample) × 100, where X = A(ωpeak), ωpeak. Dimension of spectral function (defined in Eq.
18) is number of states per unit energy normalised by π.

Figure 10: Bootstrapped spectral functions derived from quantum computed GF corresponding to 500 samples, with original
measurements obtained from the H1-1 trapped ion quantum computer. On the left panel, blue (red) error bars denote the
standard deviations (minimum-maximum spreads) of Aωpeak, centred on the mean, while green (orange) error bars denote the
standard deviations (minimum-maximum spreads) of ωpeak values. All error bars are centred on the ensemble mean. The right
panel shows the corresponding information for the real part of the G0,0 matrix element (in units of 1

t
where we use t = 1).

Solid black line shows A(ω) from classical ED. In this figure, all standard deviations are in units of the corresponding quantity,
i.e. blue bars represent units of A(ω) while green bars represent units of ω. Dimension of spectral function (defined in Eq.
18) is number of states per unit energy normalised by π.
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3.2.2 DMFT

The quantum computed moments approach is also
used to obtain the GF of the impurity site in a DMFT
algorithm. Running the DMFT procedure with the
impurity GF (corresponding to 1 bath site) obtained
from quantum computed moments at the ideal, noise-
less statevector level reproduces the ED result (in
which the impurity GF is calculated using classical ex-
act diagonalisation at each DMFT iteration) exactly,
corresponding to the black line in Fig. 11. Also in
Fig. 11 the impurity GF corresponding to 1 bath
site is quantum computed at the final DMFT step
in which the Hamiltonian corresponds to converged
bath parameters (where convergence was obtained us-
ing ideal noiseless simulations of the quantum GF at
each DMFT iteration), using measurements of expec-
tations of Hamiltonian moments performed on the H1-
1 trapped ion quantum computer (green circles cor-
respond to real hardware [45] in Fig. 11). In this
case 2 Lanczos roots were used, which reproduces ED
(consistent with the Hubbard dimer). For 1 bath site,
14 circuits were measured (corresponding to 14 impu-
rity+bath GF matrix elements, similar to the Hub-
bard dimer), ranging from 58 (22) to 67 (25) gates
(2-qubit gates), with depths ranging from 44 to 51.
The larger number of gates compared to the Hub-
bard dimer is a result of the reduced symmetry of the
impurity-bath Hamiltonian for DMFT. Each circuit
is measured with 8192 shots.

Excellent agreement is observed between the hard-
ware, emulator, and noiseless simulations, and we
comment here on the observed robustness to error.
At 8192 shots per circuit the absolute error in the
expectation values of Hamiltonian moments due to
shot noise (i.e. only from measurement sampling) is
approximately 0.0062 for the first and second power,
and 0.0127 for the third power (2 Lanczos roots re-
quires up to the third power of the Hamiltonian).
However, the GF matrix elements involve continued
fractions of polynomials of Pauli strings which can
lead to partial error cancellation when grouping Pauli
terms into commuting sets: once the Pauli commuting
sets are found, the measurement sampling algorithm
[69] can associate certain Pauli operator expectations
with both αl and βl, hence errors in those Pauli ex-
pectations can cancel when evaluating the αl and βl

terms. We note that this is an interesting effect re-
lated to the combination of Krylov basis construction
using Pauli-encoded Hamiltonian moments along with
elements of the resulting tridiagonal matrix to build
a Green’s functions via continued fractions (the latter
being the novelty of this work).

To investigate the impact of noise on DMFT conver-
gence of the impurity GF, the final impurity GF ob-
tained from the quantum computed moments method
was calculated using a simple noise model and com-
pared to the ideal noiseless result. To this end, bath
parameters were first obtained by converging the im-

Figure 11: Quantum computed impurity GF, in which the
H1-1 trapped ion quantum computer is used to compute the
impurity GF at the final DMFT iteration, following classical
impurity GF computations for the previous iterations. Solid
black line shows the final impurity GF obtained from classical
ED. Dimension of spectral function (defined in Eq. 18) is
number of states per unit energy normalised by π.

purity GF at the ideal statevector level to τ = 0.
Using these bath parameters, the impurity GF was
then re-computed at the circuit level using a simu-
lated noiseless backend [70] with 8192 shots per cir-
cuit, and with a range of values of a noise parameter
λ. Focusing on two-qubit gate errors, our simplified
noise model introduces a depolarising channel to all
two-qubit gates in the circuit, where each two-qubit
gate error can be expressed by the error channel E as

E(ρ) = (1 − λ)ρ + λTr[ρ]I4 (30)

which maps a corresponding state ρ to its linear com-
bination with a maximally mixed state. This depo-
larising channel yields a corresponding error in the
impurity GF. To quantify the latter, we re-use the
threshold for DMFT convergence, τ , defined in Eq.
17. We calculate the additional error in the impu-
rity problem due to depolarising noise as the value of
τ resulting from comparing the ideal noiseless (stat-
evector) converged ∆sc (related to the impurity GF
by the Anderson model self-consistency condition, see
Eq. 15), ∆sc

ideal, to its value obtained in the presence
of depolarising error channel E (with the same ground
state and bath parameters), labelled as ∆sc

noise.

τE = 1
Nω

√√√√Nω∑
k=1

|∆sc
noise(iωk) − ∆sc

ideal(iωk)|2F . (31)

The error in ∆sc as a function of λ is plotted in Fig.
12. A non-zero τE at λ = 0 is due to finite sampling
of the measurement distributions. We observe that
in this range of λ, τE increases monotonically with λ,
and for small λ (≲ 0.01) reasonably small errors in
the impurity GF matrix on the order of 10−3 − 10−4

are obtained. We also note that for this impurity
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Figure 12: Error in ∆sc, as defined in Eq. 31, versus two-
qubit gate depolarising error. At λ = 0 corresponding to
zero noise, τE = 0.000254 which is close to the value of τ
obtained from the H1-1 emulator after 20 DMFT iterations.

GF errors of this magnitude do not change the num-
ber of GF poles and maintain the dominance of the
two central peaks of the spectral function, as was ob-
served in Fig. 11. While not directly equivalent to the
two-qubit gate infidelity of the H1-1 device (2 × 10−3

[45]), we expect two-qubit error rates on H1-1 to cor-
respond to λ well below 0.01, which could translate to
the ability to converge the DMFT procedure to corre-
spondingly small errors in the impurity GF. As a step
further, and to test this hypothesis, a hardware em-
ulator in which the noise model is calibrated to H1-1
was also used to quantum compute the GF at each it-
eration of DMFT, for 20 iterations. The value of τ at
each DMFT iteration is plotted in Fig. 13. Starting
with random bath parameters, the initial error in ∆sc

is τ = 0.00865. After 20 iterations this error reduced
to τ = 0.000237, a value sufficiently low as to obtain
a reasonably accurate solution to the impurity prob-
lem. We also notice that this value of τ is slightly
less than the λ = 0 value of τE shown in Fig. 12
(0.000254), indicating that the impurity GF error be-
tween DMFT iterations near convergence performed
on the H1-1 emulator does not exceed the error (rela-
tive to the ideal noiseless DMFT result) introduced by
measurement sampling errors (without noise), for this
case. The resulting spectral function is shown in Fig.
14. Hence the error due to quantum noise from the
H1-1 emulator was sufficiently low to run the DMFT
algorithm applied to 1 impurity site and 1 bath site
for multiple iterations towards convergence. We also
compute the impurity GF corresponding to converged
bath parameters for 2 bath sites in the DMFT algo-
rithm, in which 8 Lanczos roots are calculated. This
is estimated to be reasonably accurate for 2 and 3
bath sites, in accordance with Fig. 4 in which it was
shown that 8 Lanczos roots provide a good approxi-
mation to exact diagonalisation for 4 Hubbard sites.
Results for 2 bath sites are shown in Fig. 15. Initially,
the DMFT algorithm was run in an ideal fashion, in

Figure 13: Error in ∆sc, as defined in Eq. 17 (which sets the
threshold for DMFT convergence) at each DMFT iteration,
in which the H1-1E emulator is used to quantum compute
the impurity GF at each iteration.

Figure 14: Quantum computed impurity GF after 20 DMFT
iterations, in which the emulator of the H1-1 trapped ion
quantum computer is used to compute the impurity GF at
each iteration. Black line shows the final impurity GF ob-
tained from classical ED. Dimension of spectral function (de-
fined in Eq. 18) is number of states per unit energy nor-
malised by π.

which the impurity GF was calculated using a noise-
less classical (statevector) simulation of the quantum
computed moments. In this setting, full DMFT con-
vergence (τ = 0) was achieved after 14 DMFT iter-
ations. This is shown by the green line in Fig. 15.
For comparison, a DMFT run was also performed in
which classical ED was used to obtain the impurity
GF at each DMFT iteration (again achieving conver-
gence after 14 iterations), shown by the black line in
Fig. 15. This compares well with the noiseless ap-
proach for 8 Lanczos roots. Following this, the H1-1
emulator (H1-1E) [45] was used to quantum compute
the impurity GF using the statevector-converged bath
parameters (blue squares in Fig. 15). For 2 bath sites,
65 circuits were measured (emulated hardware) at the
final DMFT iteration to obtain the impurity+bath
GF, ranging from 193 (81) to 204 (86) total gates (2-
qubit gates), with depths of 212 to 214. The spectral
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function is shown in Fig. 15. In this case 3 separate
applications of the quantum method are applied to
the emulator H1-1E, in order to simulate 3 separate
hardware runs and assess the variation of results. We
observe that the energy positions of low lying spectral
peaks generally agree well with the exact result, and
are also stable against statistical variations in mea-
surements. Higher lying spectral peaks differ in po-
sition from the exact result more significantly, while
peak heights (associated with normalisation of Lanc-
zos vectors) are also less accurate and are more sen-
sitive to variations due to measurement statistics.

Figure 15: Quantum computed impurity GF of DMFT with
1 impurity and 2 bath sites, in which the emulator of the
H1-1 trapped ion quantum computer is used to compute the
impurity GF at the final DMFT iteration, following statevec-
tor computations for the previous iterations. Solid green line
shows the converged impurity GF from ideal noiseless quan-
tum computed moments. Solid black line shows the con-
verged impurity GF when classical ED is used at each DMFT
iteration. The emulator H1-1E is applied in 3 separate cal-
culations of the quantum computed moments impurity GF
(using bath parameters obtained from the noiseless run), to
simulate 3 separate hardware runs and assess variation of re-
sults. Dimension of spectral function (defined in Eq. 18) is
number of states per unit energy normalised by π.

Finally, ideal simulations of this approach, in which
the Hamiltonian moment expectations are evaluated

in an noiseless statevector fashion at all DMFT it-
erations, are performed for 3 bath sites. As in the
previous case, we also ran a variant of the DMFT al-
gorithm in which the impurity GF is obtained from
classical ED at each DMFT iteration. In both the
quantum (statevector) and classical ED runs for 3
bath sites, the impurity GF was iterated to conver-
gence (τ = 0) after 14 DMFT iterations. The result-
ing spectral functions are shown in Fig. 16. Disagree-
ments arise in the total number of spectral peaks, and
in the weight of low energy poles (consistent with ob-
servations made for the spectral function of the 4-site
Hubbard model, see section 3.1 and Fig. 4). In this
case, disagreements with classical ED are due to the
continued fraction representation of the GF in Lanc-
zos method; While the Lehmann representation of the
GF used in the classical ED is exact for all temper-
atures T including the limit T → 0, this is not the
case for the Lanczos calculated GF. In the latter, the
exponential factor containing the inverse temperature
β is discarded. Hence, despite the common practice,
it is strictly an approximation to use a finite β in the
fitting of the Lanczos-calculated impurity GF. How-
ever, this practice is justified by the common observa-
tion that the discrepancies between the Lanczos and
ED impurity GFs vanish at sufficiently high β (suffi-
ciently low T). We note that full DMFT convergence
is achieved for the quantum Lanczos computed im-
purity GF, as well as for the classical ED GF, hence
the DMFT algorithm finds slightly different solutions
corresponding to the differences arising from approx-
imations in the Lanczos computed GF. We choose a
relatively low value of β for quicker convergence of
the impurity GF, however we expect the differences
between Lanczos and ED impurity GFs to vanish as
β → ∞. Hence, discrepancies here are not due to er-
rors from quantum noise or measurements, and these
results show that this quantum approach in principle
works for multiple bath sites in DMFT.

Figure 16: Quantum computed impurity GF for 3 bath sites,
calculated to full convergence of the DMFT algorithm. Solid
green line shows the converged impurity GF from ideal quan-
tum computed moments. Solid black line shows the con-
verged impurity GF when classical ED is used at each DMFT
iteration. Dimension of spectral function (defined in Eq. 18)
is number of states per unit energy normalised by π.
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4 Conclusions

In this paper, a quantum computational approach has
been presented to calculate the single particle Green’s
function in a spin orbital basis, using a cumulant ex-
pansion of the Lanczos procedure involving quantum
computed moments. This is implemented in the In-
Quanto package [42, 43], and is an extension of a re-
cent work which presented the quantum computed
moments approach to obtain infimum estimates of
the ground state energy [46, 35, 36]. In our work,
we utilise quantum computed moments to obtain the
Lanczos coefficients, which in turn can be used to ob-
tain the Green’s function in the continued fraction
representation.

Following a brief outline of the method, we show
that our implementation allows for multiple strate-
gies to initialise and run the Lanczos procedure; we
present two separate strategies, one involving the ex-
plicit preparation of the first Lanczos vector on a
quantum circuit (strategy i)), the other involving
measurements of Pauli terms representing the Hamil-
tonian moments sandwiched between ladder operators
indexed by the corresponding Green’s function matrix
element (strategy ii)). While strategy i) allows for a
flexibility in the choice of representation of the Lanc-
zos vector, we focus on strategy ii) for application of
the method on trapped ion quantum computers due
to the "NISQ-friendly" number of measurable Pauli
terms for small sized Hubbard models.

Using our approach, we computed the GF matrix of
the Hubbard dimer on the H1-1 trapped ion quantum
computer, showing excellent agreement with the ideal
noiseless result in terms of spectral peak positions.
We also note the good agreement between H1-1 and
H1-1E in Fig. 7, which also indicates the accurate
approximation of hardware results when applying the
emulator to larger models in section 2.3. Following
the GF of the Hubbard Hamiltonian, we then apply
our approach to obtain the impurity GF in a DMFT
algorithm with up to 3 bath sites. Hardware results
again show good agreement with the ideal noiseless
result when applied to the final DMFT iteration, and
emulated hardware results indicate that errors in the
GF due to quantum noise do not prevent convergence
of the DMFT algorithm when the GF is quantum
computed at all DMFT iterations.

We note that our approach does not require ancil-
lary qubits (only the ground state or Lanczos vector
state circuits, and the Hamiltonian as a sum of Pauli
operators). We also emphasise that no error mitiga-
tion has been applied to the hardware or emulator
results in this paper. This is in contrast to a re-
cent interesting work which utilised error mitigation
to calculate linear response properties of molecules,
and which would require ancillas for non-symmetric
cases [23]. In addition, another recent work also in-
vestigated a Lanczos recursion method to obtain the

GF from quantum computers [71]. In the latter, a
state-preserving quantum counting algorithm is used
to find the Lanczos coefficients. This quantum count-
ing algorithm [71] relies on ancillary qubits and a
QPE block, which likely render this approach diffi-
cult for near-term applications. This is in contrast to
our approach which utilizes a cumulant expansion of
the Lanczos coefficients in terms of the Hamiltonian
moments, rather than a counting algorithm which re-
quires QPE.

We also studied the scaling of the number of mea-
surable Pauli terms with respect to the Hamiltonian
moment index, for the sandwiched moment operators
required for strategy ii), indicating polynomial scal-
ing and a saturation for high-lying moments. Finally,
we mention our investigation of errors in the Lanc-
zos basis and corresponding coefficients arising from
quantum noise, and how these can impact elements
of the GF matrix. As mentioned in section 3.1.1,
an accurate description of the relation between quan-
tum noise and errors in the Lanczos basis could lead
to very useful techniques to correct for these errors.
For example, knowledge of this relation could be used
to design error mitigation protocols in which noisy
measurements of Hamiltonian moments, or the result-
ing errors in the Lanczos coefficients, could be cor-
rected/mitigated by known calibration data of a par-
ticular device. This could potentially widen the ap-
plication domain of quantum computed Green’s func-
tions by allowing for larger system sizes, represented
by larger, more error prone circuits. We consider this
a fruitful direction for future work.
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