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We propose the regularized compressed
double factorization (RC-DF) method to
classically compute compressed represen-
tations of molecular Hamiltonians that en-
able efficient simulation with noisy inter-
mediate scale (NISQ) and error corrected
quantum algorithms. We find that already
for small systems with 12 to 20 qubits, the
resulting NISQ measurement scheme re-
duces the number of measurement bases
by roughly a factor of three and the shot
count to reach chemical accuracy by a fac-
tor of three to six compared to truncated
double factorization (DF) and we see or-
der of magnitude improvements over Pauli
grouping schemes. We demonstrate the
scalability of our approach by performing
RC-DF on the Cpd I species of cytochrome
P450 with 58 orbitals and find that us-
ing the resulting compressed Hamiltonian
cuts the run time of qubitization and trun-
cated DF based error corrected algorithms
almost in half and even outperforms the
lambda parameters achievable with tensor
hypercontraction (THC) while at the same
time reducing the CCSD(T) energy error
heuristic by an order of magnitude.
The run time of algorithms on most of today’s

noisy intermediate scale (NISQ) hardware plat-
forms is largely independent of the anyway shal-
low circuit depth. Instead, it is mostly a function
of the number of distinct circuits that need to be
evaluated and the number of repeated circuit ex-
ecutions because re-programming the quantum
device to perform a different circuit and the time
for measurement and qubit reset dominate the
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overall circuit execution time [1].

Many NISQ algorithms such as the variational
quantum eigensolver (VQE) [2] are essentially
methods to reduce circuit depth at the expense
of requiring many repetitions, also called shots.
In a similar fashion, error mitigation techniques
[3, 4] create a tolerance for the noise of NISQ de-
vices by further increasing the number of shots
needed to obtain a final result. The total number
of shots is thus often the limiting factor on the
path towards quantum advantage.

This is a particularly pressing issue in in
quantum chemistry simulation. Here, molecular
Hamiltonians, which in their second-quantized
form have O(n4) terms, where n is the number of
spatial orbitals, need to be measured with very
high accuracy. Naive measurement schemes re-
quire an extremely fast growing number of dis-
tinct observables and total number of shots [5]
for reaching the required accuracy.

Methods to cope with this problem fall in
two broad classes. First, methods [6, 7, 8]
which, starting from a decomposition of the ob-
servable into Pauli operators, group or other-
wise combine these Pauli operators into sets that
are jointly measurable with no or only mini-
mal increase in circuit depth. Second, meth-
ods which yield a compressed and possibly ap-
proximate representation of the original Hamil-
tonian in the form of a tensor contraction. For
fermionic second-quantized Hamiltonians, these
are mainly density fitting [9], tensor hypercon-
traction (THC) [10, 11, 12], and double factor-
ization (DF) [13, 14] (see [14] for a comparison).
While the Pauli grouping methods are applicable
to general qubit Hamiltonians, the second class
of methods typically yields better performance
when applicable [5].
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These compressed representations also enable
drastic resource reductions in leading fault tol-
erant algorithms for the simulation of chemistry
based on linear combinations of unitaries (LCU)
and qubitization [15, 12, 16, 17, 11]. Here run
time is mainly a function of the so-called lambda
parameter. Its precise definition depends on the
algorithm and will be discussed later, but it can
be thought of as a norm-like quantity that de-
pends on the magnitude of the coefficients of the
representation of the Hamiltonian. THC typi-
cally yields lower lambda parameters than exist-
ing DF schemes. The fact that some tensors in
the THC decomposition are non-square and non-
unitary causes other overheads and complications
[17] which does not make THC a viable option for
typical NISQ quantum algorithms.

In contrast, explicit double factorization (X-
DF) and compressed double factorization (C-DF)
[18, 19, 20, 21, 22] naturally yield a NISQ-friendly
measurement scheme that only requires a linear
depth orbital/Givens rotation circuit before the
final measurements, is compatible with particle
number post selection, and also an LCU repre-
sentation of the Hamiltonian suitable for error
corrected algorithms based on qubitization [23].

The X-DF measurement scheme reduces the
number of distinct measurement bases to at most
n(n + 1)/2 and drastically decreases the number
of shots to reach a target accuracy, when com-
pared to Pauli-based schemes. The number of
bases can be further reduced by truncating the
X-DF representation of the Hamiltonian, thereby
making the representation approximate. This
can reduce the required number of shots, but the
error resulting from the now approximate repre-
sentation of the Hamiltonian quickly outweighs
this. C-DF is designed to overcome this issue
by performing a tighter least-squares numerical
tensor fitting of the molecular Hamiltonian to
truncated double-factorized form. By lifting a
rank constraint in the equation defining the X-
DF Hamiltonian and using the resulting addi-
tional freedom to improve the representation of
the molecular Hamiltonian by means of param-
eter optimization starting from a truncated X-
DF guess, it achieves lower approximation errors
than truncated X-DF. However, when attempt-
ing practical deployment of C-DF in the context
of quantum algorithms, one encounters an addi-
tional major barrier: the optimization of the C-

DF tensor fitting to minimize least squares error
does not consider the variance properties of the
resulting representation. In practice, this means
that the variance of the resulting energy estima-
tor can erratically fluctuate and can be orders of
magnitude higher than the variance of the X-DF
energy estimator and the approximation error of
both X-DF and C-DF.

In this work we propose the regularized com-
pressed double factorization method (RC-DF) to
fix this. RC-DF uses the same functional form of
the compressed Hamiltonian as C-DF but it adds
a regularization term to the C-DF cost function
that is used when optimizing the parameters of
the compressed representation 1. The regulariza-
tion term stabilizes the optimization and reduces
the variance of the resulting NISQ energy estima-
tor as well as the λ parameter determining the re-
sources of fault tolerant quantum algorithms. We
find that RC-DF consistently outperforms both
previous double factorization schemes in terms
of variance, approximation error, and lambda pa-
rameter and even yields lambda parameters lower
than THC.

1 Comparison of factorization meth-
ods
We start from the well known form of the second-
quantized electronic structure Hamiltonian

Ĥ = Ec +
∑
pq

(p|ĥc|q)Êpq

+ 1
2
∑
pqrs

(pq|rs)
(
ÊpqÊrs − δqrÊps

)
, (1)

where

(p|ĥc|q) =
∫

ϕ∗
p(r)(−1

2∇2(r) −
∑
m

Zm

r − rm
)ϕq(r)dr

(pq|rs) =
∫∫

ϕ∗
p(r1)ϕq(r2) 1

r12
ϕ(r1)∗

rϕ(r2)sdr1dr2

are the symmetric one-electron integrals and the
real and 8-fold symmetric two-electron integrals
with Zm and rm the charges and positions of the

1When working out the implications of RC-DF for fault
tolerant quantum algorithms, we became aware that a
similar erratic behavior of the λ parameter of THC had
been observed in [11] and an L1 regularization has been
proposed as a cure there.
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nuclei and ϕ the spacial molecular orbitals, and
Êpq := p̂†q̂+ ˆ̄p† ˆ̄q is the singlet excitation operator.
The exact X-DF representation of the Hamilto-
nian is determined by diagonalizing the modified
one-electron integrals tensor Fpq and doubly di-
agonalizing the two-electron integrals tensor to
obtain

Fpq := (p|ĥc|q) − 1
2
∑

r

(pr|qr) +
∑

r

(pq|rr) (2)

=
∑

k

U∅
pk F∅

k U∅
qk (3)

and

(pq|rs) =
nt∑

t=1
V t

pq gt V t
rs (4)

=
nt∑

t=1

n∑
kl=1

U t
pk U t

qk Zt
kl U t

rl U t
sl, (5)

where the U t
pk result from diagonalizing the V t

pq =∑n
k U t

pkΛkU t
qk and consequently Zt

kl = ΛkgtΛl is,
for every t, a symmetric outer product, hence of
rank one, and the U t

pk are unitary (in fact without
loss of generality special orthogonal). The second
factorization is possible whenever (pq|rs) is real
and 8-fold symmetric (as is always the case for
non-relativistic Coulomb repulsion integrals), as
this is enough to ensure that the V t

pq are not only
orthogonal but also real and symmetric for every
t (see Lemma 1 in Appendix D). With nt equal
to the maximum number n(n + 1)/2 of non-zero
eigenvalues of (pq|rs) the Hamiltonian can then
be written exactly (see Appendix F for the full
derivation) as

Ĥ = E − 1
2
∑

k

F∅
k U∅

(
Ẑk + Ẑk̄

)
(U∅)†

+ 1
8

nt∑
t=1

n∑
kl=1

Zt
klU

t
(
ẐkẐl − δkl + ẐkẐl̄ + Ẑk̄Ẑl + Ẑk̄Ẑl̄ − δk̄l̄

)
(U t)†,

(6)

where

E = Ec+
∑

p

(p|ĥc|p)+ 1
2
∑
pq

(pp|qq)− 1
4
∑
pq

(pq|pq),

(7)
is independent of the state, and U∅ and U t ro-
tate the orbitals for each t according to U t

pk (See

Fig. 1), Ẑk, Ẑk̄ are respectively pauli operators on
qubit 2k and 2k + 1, k ∈ [0, n − 1].
If the sum over t is ordered according to |gt|,

the Hamiltonian can be approximated with a
truncated X-DF representation with fewer terms
(also called leafs).

In (R)C-DF the rank-one constraint on the Zt
kl

is lifted and they are allowed to be arbitrary
symmetric matrices. The orbital rotations U t

pk

and coefficients Zt
kl are then obtained using a

two-step gradient based optimization procedure
by first exponentially parametrizing the orbital
rotations U t

pq := exp(Xt)pq via anti-symmetric
generators Xt

pq and then minimizing the squared
Frobenius norm (in [16] this is called the incoher-

ent error)

1
2

∣∣∣∣∣
∣∣∣∣∣

nt∑
t=1

n∑
kl=1

U t
pk U t

qk Zt
kl U t

rl U t
sl − (pq|rs)︸ ︷︷ ︸

∆pqrs

∣∣∣∣∣
∣∣∣∣∣
2

F

(8)

of the difference between the left and right hand
side of (5) for some pre-set nt ≤ n (n+1)/2 start-
ing from a truncated X-DF initial guess (for de-
tails see [18]).

Irrespective of whether a Hamiltonian repre-
sentation of the form (6) was found via X-DF or
(R)C-DF, the energy can be then be measured
by means of quantum circuit with a linear gate
depth overhead of the form shown in Fig. 1.

The most favorable resource estimates of quan-
tum algorithms for error corrected simulation of
chemistry with qubitization have been obtained
with THC [17, 11]. In this context THC approx-
imates the two-body part of the Hamiltonian ac-

3



Figure 1: DF measurement scheme according to the LCU
decomposition in (6). From each U∅ and U t the param-
eters of a square shaped fabric of givens gates G can be
computed. The results of Ẑ and Ẑ ⊗ Ẑ measurements
in these nt + 1 distinct bases can then be contracted
against the F∅

k and Zt
kl tensors to obtain an energy es-

timator.

cording to

(pq|rs) ≈
M∑

kl=1
χk

p χk
q ζkl χl

r χl
s, (9)

with
∑M

k χk
pχk

q ≤ 1 and M ≤ n2 the THC rank.

Also here the symmetric ζkl and rectangular χk
p

are found by means of minimizing the Frobenius
norm error. When DF is used with qubitization
[12, 16] it is usually presented and performed ac-
cording to

(pq|rs) =
n2∑

t=1
Lt

pqLt
rs (10)

= 1
2

n2∑
t=1

U t
( n∑

k

λt
k (Ẑk + Ẑk̄)

)2
(U t)†,

(11)

where the Lt
pq can be found with Cholesky de-

composition or eigen decomposition as Lt
pq =√

gtV
t

pq and the scalar λt
k = √

gtΛk are the eigen-
vectors and the U t the diagonalizing unitaries of
the Lt

pq (here gt, V t
pq, and Λk refer to the quan-

tities introduced in the context of X-DF above).
For a NISQ measurement scheme such as that in
Fig. 1 it makes no sense to partially discard a
leaf (because the measurement data is available
for all contributions from a leaf), but in qubitiza-
tion truncation can be done on the level of setting
individual λt

k equal to zero.
The (R)C-DF form of the Hamiltonian, in

which Zt
kl is no longer rank one, can be re-cast

as a sum of operator squares similar to (10). By
taking the matrix square root W t

kl := (
√

Zt)kl

so that Zt
kl =

∑n
i W t

kiW
t
li (we use the implemen-

tation in scipy of the algorithm from [24], which

works also for non-positive Zt
kl matrices, in which

case the W t
ki come out complex, which is compat-

ible with the scheme from [16]) one can write

(pq|rs) =
nt∑
t

n∑
i

(∑
k

U t
pk U t

qk W t
ki

)

×
(∑

l

W t
il U t

rl U t
sl

)
.

(12)

This allows one to run the algorithm of [16] with
(R)C-DF Hamiltonians as input.

The block encoding of the qubitization method
needs the Hamiltonian in the form of an LCU.
The number of ancillary qubits and T gates is
then determined by the number of terms of the
LCU and a sort of normalization factor, called
the lambda parameter [16, 17]. The result of
(truncated) X-DF, C-DF, and RC-DF is itself an
LCU with a lambda factor

λLCU
DF :=

n∑
k

|F∅
k | +

nt∑
t=1

 n∑
k<l

|Zt
kl| + 1

4

n∑
k

|Zt
kk|

 .

(13)

Alternatively, because of (12), one can use the
algorithm from [16], which achieves a contribu-
tion from the two-body part of the Hamiltonian
to lambda of 1/4

∑
t ∥(Lt

pq)pq∥2
1 for Hamiltonians

of the form (10) (where ∥ · ∥1 is the Schatten 1-
norm) and using (12) one can thus obtain

λBurg
DF :=

n∑
k

|F∅
k | + 1

4

nt∑
t

n∑
i

∥∥∥( n∑
k

U t
pkU t

qkW t
ki)pq

∥∥∥2

1

(14)

=
n∑
k

|F∅
k | + 1

4

nt∑
t

n∑
i

(
n∑
k

|W t
ki|
)2

.

(15)

The difference between λBurg
DF and λLCU

DF stems
from the different LCU representation of the
Hamiltonian. The latter uses the equation in (6)
which is evidently an LCU and subsequently its
||.||1 is (13). The former however uses the algo-
rithm and LCU from (13) of [16]. Finallyl, for
THC, Lee et al. [17] have obtained a lambda of

λLee
THC :=

n∑
k

|F∅
k | + 1

2

M∑
kl

|ζkl|. (16)

The precise run times of the algorithms cor-
responding to the different lambda values differ

4
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and depend on factorization-specific quantities
such as the THC rank M but they all scale like
their respective lambda divided by the allowable
phase estimation energy error times the sum of
run times of certain circuit primitives plus loga-
rithmic overheads. The differences between the
lambda values have turned out to outweigh the
influence of other factors when comparing algo-
rithm run times for similar overall target accura-
cies [17].

2 Regularized compressed double fac-
torization

While C-DF allows to reduce the number of leafs
needed for good accuracy from close to n2 for X-
DF to roughly linear in n while maintaining an
approximate but sufficiently accurate represen-
tation of the Hamiltonian, it turns out that the
optimization of C-DF often converges to Zt

kl ten-
sors with very large entries. This is problematic
since the variance of the NISQ energy estima-
tor and both lambda parameters grow with the
number and magnitude of |Zt

kl| values. To solve
this issue, we propose to add to the C-DF cost
function from (8) a regularization term penaliz-
ing large |Zt

kl| via a tensor of weights ρtkl ≥ 0

1
2∥∆pqrs∥2

F +
∑
tkl

ρtkl|Zt
kl|2, (17)

We have tested both weighted L1 and L2 reg-

ularizations of the form (
∑

tkl ρtkl|Zt
kl|γ)

2
γ with

γ ∈ 1, 2 but concentrate on L2 regularization
with uniform regularization strength ρtkl = ρ in
the rest of the main text.

As in C-DF, a joint optimization of the U t
pq

and Zt
pq has unfavorable performance also with

regularization, but the the two-step optimization
of C-DF proposed in [18] can be adopted to the
regularized case. Further, for large n, a very ex-
pensive 6-index matrix inversion can be circum-
vented by carrying it out in a matrix-free manner
with, e.g., a conjugate gradient algorithm (for de-
tails see Appendix A). We have found that this
step benefits from the regularization (L2), as it
improves the conditioning of the matrix. In RC-
DF, initialization can be done either from X-DF
truncated to the target number of C-DF leafs or
one can start from the full X-DF factorization
and put a high penalty on the leafs that are to

be truncated in the end. In practice, contrary to
the difficulties reported in [11, 17] on converg-
ing THC, RC-DF seems to be rather well be-
haved. Convergence may take thousands of iter-
ations, but we had no difficulty converging RC-
DF in large active spaces to much tighter resid-
ual Frobenius norm errors (8) and coupled clus-
ter with singles, doubles, and perturbative triples
(CCSD(T)) energy errors than those reported for
THC [11] (see Appendix A for further details of
the optimization procedure).

3 Numerical results

Unless otherwise explicitly stated all results
shown in the following were obtained with L2 reg-
ularization starting from a truncated X-DF guess
and with a uniform regularization factor for all
nt leafs of ρtkl =: ρ.

We first investigate the advantages of RC-DF
over other NISQ measurement schemes. The per-
formance of any such scheme is determined by
both the systematic error introduced in case the
Hamiltonian is approximated and the variance,
Var, of the estimator. We quantify the overall
performance by the mean squared error and take
the square root to obtain a quantity that has

units of energy
√

MSE :=
√

⟨Ĥ − Ĥ ′⟩2 + Var,
where Ĥ ′ is the compressed Hamiltonian ob-
tained with the respective flavor of double factor-
ization and for the Pauli grouping based schemes
Ĥ ′ = Ĥ.

The variance further depends on the state, the
overall shot budget, and the shot distribution.
In the main text we show data for the state be-
ing the complete active space configuration in-
teraction (CASCI) ground state, but the plots
look very similar for representative states along
a VQE optimization trajectory. We consider two
shot distribution schemes: A “uniform” distri-
bution which divides the total number of shots
uniformly among all bases in which measure-
ments need to be preformed, and an “accord-
ing to weights” distribution which distributes the
shots according to the L2 norm of the coefficients
of each group of jointly measurable Pauli opera-
tors. We chose the overall shot budget so that the
best method is able to achieve chemical accuracy
of 10−3 Hartree.
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1 3 5 7 9 11 13 15 17 19 21
nt

10 3

10 2

10 1

100

M
SE

 [E
h]

Measurement method
C-DF
X-DF
RC-DF
Termwise
TensorProductBasis
MinimumCliqueCover
Shot distributor
uniformly distributed
according to weights

Figure 2: Performance of measurement schemes based
on C-DF, X-DF, and RC-DF (with L2 regularization
ρ = 10−6) in comparison with the naive termwise Pauli
scheme as well as the tensor product basis [28] and a
minimum clique cover [6] based Pauli grouping meth-
ods as implemented in [29] for 3 × 105 shots each in
computing a single point energy in the (6e, 6o) CASCI
ground state of para-benzyne on 12 qubits. To reach a
MSE on par with that of RC-DF at nt = 7 would require
over 1.1 × 106 shots with X-DF and nt = 17 and about
3.8×106 shots with the best Pauli grouping scheme. We
also compare shot distribution schemes (see main text)
and find that “according to weights” improves perfor-
mance.

3.1 NISQ measurement of the para-benzyne
ground state

As a first test case we consider the CASCI ground
state in a (6e, 6o) active space of FON-HF/cc-
pVDZ (with fractional occupations determined
with temperature 0.1[1/Eh] and Gaussian broad-
ening within the active space) [25, 26, 27] orbitals
of para-benzyne (see Fig. 2). The weighted shot
distribution yields lower variance than uniform
shot distribution in all cases by directing more
shots to the more important first leafs. RC-DF
beats the second best method (X-DF) by approx-
imately a factor of five and while the maximum
number 21 = 6 (6 + 1)/2 of leafs yields the lowest
MSE, chemical accuracy is consistently achiev-
able with RC-DF from nt = 7 on. The MSE of
C-DF fluctuates widely and while it by chance
achieves a good variance and approximation er-
ror for 8 leafs, this is of limited use for practical
applications. The results are virtually unchanged
over a broad range of ρ values and good values
for ρ can be found in a systematic way even when
running on quantum hardware (see Appendix B).

3.2 NISQ measurement of the singlet-triplet
gap of naphthalene

As a second test case, we investigate the singlet-
triplet energy gap in a (10e, 10o) active space
consisting of the π system of naphthalene con-
structed with AVAS [30] as implemented in
PySCF [31, 32]. The reference state was com-
puted at the HF/def2-SVP[33] level of theory.
We only show data for double factorization based
measurement schemes since the Pauli grouping
based schemes become increasingly less compet-
itive for larger systems. Since the “according to
weights” method is significantly better than uni-
form shot distribution, we use it exclusively in
this case. We compute the factorization once
per nt and then evaluate the energetically low-
est singlet and triplet energies from the same de-
composition. The MSE of the singlet-triplet en-
ergy gap is given by the square of the difference
between the noiseless energy gaps ∆ computed
with the exact and the gap ∆′ from the com-
pressed Hamiltonian plus the sum of the vari-
ances of the singlet VarS and triplet VarT ener-
gies MSE = (∆−∆′)2 +VarS +VarT. We find the
variances VarS and VarT of both states to be very
similar, and for (R)C-DF, the MSE is dominated
by the variance contributions for nt ≥ 8 whereas
for X-DF, the systematic energy error remains
high until nt ≈ 25. Surprisingly, RC-DF reaches
chemical accuracy already at nt = 6 with the as-
signed shot budget and is consistently more ac-
curate than the other two factorization methods
for all nt > 2. By contrast, the variance of C-DF
singlet-triplet gap estimations is quite erratic, as
explained previously. While the accuracy in pre-
dicting the energy gap with X-DF is well con-
trollable, an approximately 12 times larger shot
budget and more leafs would be needed to reach
chemical accuracy. This test case shows the reli-
able performance of RC-DF for medium-sized ac-
tive spaces and indicates that the method could
be employed for other chemical properties such
as activation energies.

3.3 Combination with fluid fermionic frag-
ments

We further explore how X-DF and RC-DF can
be combined with the fluid fermionic fragments
(FFF) [21] technique to further reduce shot bud-
gets. The FFF technique exploits the fact

6



2 4 6 8 10 15 20 25 30 35 40 45 50 55
nt

10 3

10 2

10 1

M
SE

 [E
h]

Scheme
C-DF X-DF RC-DF

Figure 3: Square-root of the MSE for the singlet-triplet
energy gap of naphthalene on 20 qubits (i.e., (10e, 10o)
active space, shown in the inset). For each factorization
method, 2 × 106 shots were used in total for the singlet
and triplet state, distributed according to weights. A
regularization factor of ρ = 10−3 was used for RC-DF.
RC-DF reaches chemical accuracy with only nt = 6 leafs.
X-DF would require at least nt = 25 leafs and at least
12 × 106 shots to achieve the same accuracy as RC-DF
with only nt = 6 leafs.

that certain quadratic terms of the Hamiltonian,
called fluid fermionic fragments, can be taken
care of in different parts of the energy estima-
tor. FFF minimizes the variance by optimiz-
ing how these terms are spread over the differ-
ent possible locations (for more details see Ap-
pendix G). The variance can thereby either be
approximated with that of a mock state whose
variance can be classically efficiently computed or
it can for example be estimated with part of the
shot budget or from a classical shadow [34, 35],
which can then also be used for the energy esti-
mation. In any case, the final form of the FFF op-
timized energy estimator is then state dependent
and optimized to have low variance for certain
states. We find (see Figure 8 in Appendix G)
that for the cases considered RC-DF and FFF
nicely complement each other. Using RC-DF as
initial point for FFF yields the lowest shot bud-
gets and that the FFF optimization converges
faster when started form RC-DF than from X-
DF and that the state independent distribution
of the fluid fermionic fragments corresponding to
the Hamiltonian as written in (6) is a good initial
guess for the FFF coefficients.

10 7 10 6 10 5 10 4 10 3 10 2 10 1

CCSD(T) error [Eh]

200

250

300

350

400

450

500

la
m

bd
a

Scheme
RC-DF
X-DF
Trunc. DF
THC
nt or M
30
40
50
60
70
80
90

100
150
200
300
400
500
600
800
Conv. Tol.
10 4

10 3

10 2

10 1

nt = 100

Figure 4: Comparison of the achievable CCSD(T) error
heuristic and lambda values λBurg

DF for the truncated DF
method based on (10), X-DF and RC-DF, as well as
λLee

THC for THC. The color scheme represents the number
of leafs nt for double factorization schemes, or the THC
rank M . The active space Hamiltonian of the Cpd I
model of cytochrome P450 and the data for THC and
truncated DF were taken from [11]. The encircled THC
data point was used for the resource estimates there.
To compare different levels of convergence we vary the
squared Frobenius norm error (8) at which we abort the
RC-DF optimization (Conv. Tol.) and use ρ = 10−3.
The data is tabulated in Appendix E.

3.4 RC-DF for error corrected quantum com-
puting

We now turn to exploring the usefulness of
RC-DF for error corrected algorithms based
on qubitization. As example we take the
(34α+29βe, 58o) active space of the Cpd I species
of cytochrome P450 proposed in [11]. As this sys-
tem is beyond the regime accessible with CASCI,
we use, as in [17, 11], the CCSD(T) energy error
as a heuristic to assess the quality of the com-
pressed representation. Computational details
can be found in Appendix E.

The aim is then to find compressed representa-
tion of the Hamiltonian that achieves both a low
CCSD(T) error and a low lambda value. We find
λBurg

DF < λLCU
DF in all cases and thus only display

and compare the former. As can be seen in Fig. 4,
RC-DF outperforms both previous DF methods
and THC by a substantial amount. Compared to
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truncated DF or X-DF we can almost cut λBurg
DF

in half, and thereby also the run time of the quan-
tum computer, while at the same time achieving
a CCSD(T) error smaller than 5 × 10−5, which
was not reached with THC [11]. Further com-
paring with THC, we can reduce the CCSD(T)
error by an order of magnitude and the lambda
value by roughly one third or, alternatively, RC-
DF can achieve a λBurg

DF that is only 60% of λTHC
at comparable CCSD(T) error. This improve-
ment becomes even more noteworthy when rec-
ognizing that when qubitizing the RC-DF Hamil-
tonian one need not worry about the compli-
cations caused by the non-orthogonal nature of
THC that had to be worked around in [17] (see
Section III of [17]). Converging the best RC-DF
data point with nt = 100 took 2944 L-BFGS it-
erations and approximately 11 hours on a sin-
gle GPU and our not highly optimized JAX [36]
based implementation.

To investigate the scaling of the achievable
lambda values with system size we considered
the hydrogen chain benchmark in the STO-6G
basis previously proposed in [12, 17]. Also there
we find that at n = 100 orbitals (corresponding
to 100 hydrogen atoms) RC-DF achieves values
of λBurg

DF that are lower than previously reported
values for λTHC and we find, as for THC, an ap-
proximately linear scaling of λBurg

DF with n if nt is
chosen such that the CCSD(T) error per particle
is constant (see Appendix C for details).

It should be clear that the lambda values, while
highly significant for determining the quantum
resources of fault tolerant algorithms, are not the
only relevant quantity and we do not claim that
our analysis constitutes a comprehensive compar-
ison of the quantum resources required for dif-
ferent methods. We also leave to future work
the possibility of regularizing methods such as
RC-DF or THC with quantities more directly
related to the required quantum resources than
the norm-like term in (17), which could more di-
rectly steer the optimization towards factoriza-
tions with low qubit or T gate count, as desired.

4 Conclusions

We proposed the regularized compressed dou-
ble factorization (RC-DF) method which, from a
unified framework yields both a NISQ compat-
ible measurement scheme with only linear cir-

cuit overhead and can be used in conjunction
with qubitization in error corrected quantum al-
gorithms for the simulation of chemistry. We
found that in both of these scenarios RC-DF
leads to lower quantum run times when compared
to previous double factorization (DF) and tensor
hypercontraction (THC) schemes. Contrary to
THC, the Hamiltonian in DF form can also be
used to construct trotter schemes that need to
alternate between a very small number of non-
commuting operators. It will be interesting to
compare the quantum resources (e.g. number of
Toffoli gates) required for phase estimation based
on THC and RC-DF via qubitization with RC-
DF and trotterization.

In the NISQ setting, this advantage is a conse-
quence of the fact that the regularization guides
the optimization towards compressed representa-
tions of the Hamiltonian with smaller coefficients,
which reduces the variance of the resulting energy
estimator. In qubitization schemes, the smaller
coefficients reduce the norm-like lambda parame-
ter of the Hamiltonian on which the T gate count
depends in a multiplicative fashion.

Avoiding a six-index intermediate quantity
during the RC-DF optimization and adopting a
two step gradient based scheme previously de-
veloped by some of us for non-regularized com-
pressed DF, we were able to make RC-DF scale
well into the regime where quantum computers
may provide an advantage over classical meth-
ods. More work is needed to understand the pre-
cise scaling of RC-DF with active space and basis
set size and to explore other options for regular-
ization.

Data Availability

The data supporting the findings of this
manuscript have been uploaded to Zenodo with
the DOI 10.5281/zenodo.7866658 [37], includ-
ing instructions on how to load the data using
Python.
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Appendix A: RC-DF optimization procedure
The RC-DF cost function is

C(X, Z) := 1
2∥∆pqrs∥2

F +
∑
tkl

ρtkl|Zt
kl|γ , (18)

with regularization tensor ρtkl and γ = 1 in the L1 case and γ = 2 in the L2 case. Just like C-DF
as outlined in [18], also for RC-DF it is advisable to use a nested two-step optimization process to
minimize C with respect to X and Z following these steps:

1. Update the Xt
pq for fixed Zt

kl. This can be done with a gradient based optimizer using the gradient

∂C

∂Xt
pq

= ∂∥∆pqrs∥2
F

∂Xt
pq

=
∑
mn

∂C

∂U t
mn

∂U t
mn

∂Xt
pq

. (19)

2. Determine the optimal Zt
kl given the updated Xt

pq by solving

∂C

∂Zt
kl

= 0. (20)

The gradient with respect to the orbital rotations’ generators Xt
pq for a given Zt

pq is independent of
the regularization and stays unchanged compared to the original C-DF as the U t

pq do not appear in
the regularization contribution to the cost function. Therefore

∂C

∂U t
mn

= −4
∑
qrsl

∆mqrsU t
qnZt

nlU
t
rlU

t
sl. (21)

Let us now look at the second step. In the L2 case (20) yields

∂C

∂Zt
kl

= −
∑
pqrs

∆pqrsU t
pkU t

qkU t
rlU

t
sl + ρt

klZ
t
kl = 0, (22)

by replacing ∆pqrs by its expression in 8, we have

∑
pqrs

(pq|rs)U t
pkU t

qkU t
rlU

t
sl = ρt

klZ
t
kl +

∑
omn

[∑
p

U t
pkUo

pm

] [∑
q

U t
qkUo

qm

]
Zo

mn

[∑
r

U t
rlU

o
rn

] [∑
s

U t
slU

o
sn

]
.

(23)

Note that the left-hand side of the equation is independent of Zo
mn i.e constant, and the right-hand

side can be written as a linear combination of the unknowns Zo
mn. Therefore, we have a system of

linear equations of the form

bt
kl((pq|rs), U t

pq) =
∑
omn

Atkl
omn(U t

pq, ρt
kl)Zo

mn (24)

with

b((pq|rs), U t
pq)tkl =

∑
pqrs

(pq|rs)U t
pkU t

qkU t
rlU

t
sl (25)

and

A(U t
pq,ρt

kl)tkl,omn =
∑
omn

([∑
p

U t
pkUo

pm

] [∑
q

U t
qkUo

qm

] [∑
r

U t
rlU

o
rn

] [∑
s

U t
slU

o
sn

]
+ δ(omn,tkl)ρtkl

)
.

(26)
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In the L1 case, (20) yields

∂C

∂Zt
kl

= −
∑
pqrs

∆pqrsU t
pkU t

qkU t
rlU

t
sl + ρt

klsign(Zt
kl) = 0, (27)

which implies

∑
pqrs

(pq|rs)U t
pkU t

qkU t
rlU

t
sl − ρt

klsign(Zt
kl) =

∑
omn

[∑
p

U t
pkUo

pm

] [∑
q

U t
qkUo

qm

]
Zo

mn

[∑
r

U t
rlU

o
rn

] [∑
s

U t
slU

o
sn

]
(28)

which is again a system of equations of the form

bt
kl

(
(pq|rs), U t

pq, ρt
kl, Zt

kl

)
=
∑
omn

Atkl
omn(U t

pq)Zo
mn. (29)

with

bt
kl((pq|rs), U t

pq, ρt
kl, Zt

kl) =
∑
pqrs

(pq|rs)U t
pkU t

qkU t
rlU

t
sl − ρt

klsign(Zt
kl) (30)

A(U t
pq)tkl,omn =

∑
omn

[∑
p

U t
pkUo

pm

] [∑
q

U t
qkUo

qm

] [∑
r

U t
rlU

o
rn

] [∑
s

U t
slU

o
sn

]
. (31)

So in both cases one can find the optimal Zt
kl by pseudo-inverting Atkl,omn. While pseudo-inverting the

six-index tensor Atkl,omn to determine the Zt
kl can be done for medium size systems, it is intractable for

large systems. To circumvent this problem, the inversion can be carried out in a matrix-free manner
with, e.g., a conjugate gradient algorithm. This procedure only requires the matrix-vector product and
the matrix diagonal rather than the dense matrix. Lastly, any gradient-descent based optimization
algorithm can be used. For the result presented in this work, we have used the L-BFGS [38] algorithm
as implemented in SciPy [39]. All time critical routines for the steps above were just-in-time compiled
and ran on an NVIDIA Tesla V100 with the help of JAX [36].

Appendix B: Tuning of the regularization
The regularization tensor ρtkl is a hyper-parameter that controls how much effort is put on achieving
small |Zt

pq| versus reducing the Frobenius norm error. A good balance must be found to obtain both
a small systematic energy error and a small variance and lambda value. We concentrate only the case
that after truncating some number of nt leafs the regularization is chosen uniformly ρtkl =: ρ.

In the main text we have quantified the overall performance of the measurement scheme by means
of the MSE, which combines the systematic error in the energy because of the approximation of the
Hamiltonian and the statistical error due to variance and shot noise. Here let us look at those two
contributions separately. We consider the same data underlying Figure 2 from the main text.
In Figure 5 we show only the systematic error that results from RC-DF approximating the two

body part of the Hamiltonian and represents what is achievable in the limit of infinitely many shots.
The energy approximation error grows roughly linearly with ρ/10 and when the number of leafs is
increased it seems to become easier for the optimizer to find Zt

kl that are not too much distorted by
the regularization and thus represent the (pq|rs) tensor well leading to a smaller energy error.
In Figure 6 we show the standard deviation

√
Var of the ground state energy estimator, quantifying

how far from the infinite shot budget limit a measured energy value is likely to lie. Larger regularization
factors ρ manifestly reduce the standard deviation. If the shot distribution takes into account the
weight of the leafs this effect is greatly enhanced. Very strong regularization does not seem to help.
Increasing or decreasing the total shot budget would simply move the data point up and down according
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Figure 5: RC-DF systematic ground state energy approximation error of para-benzyne as a function of the regular-
ization factor ρ with different numbers of leafs nt.
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Figure 6: Standard deviation of the ground state energy estimator of para-benzyne for a budget of 300.000 shots as
a function of ρ for different numbers of leafs nt.

to the well known one over square root raw. As can be nicely seen there is a rather large window
between ρ ∈ [10−6, 10−2] where both errors (and thus their sum) is well below 10−3. In practice one
find a good ρ by estimating the standard deviation on a quantum device starting from a comparably
large regularization and then reduce the regularization to reduce the systematically error until the
variance becomes too large to be compensated for by the affordable shot budget.

Appendix C: Lambda scaling with system size

To investigate the scaling of the lambda parameters achievable with double factorization in the large
system size limit we use the hydrogen chain benchmark previously employed in the context of qubiti-
zation combined with low rank factorization in [12] and with THC in [17]. In this benchmark system
neutral hydrogen atoms are placed with 1.4 Bohr distance on a line and represented in the STO-6G
basis, which has one spatial orbital per hydrogen so that the size of the complete active space n is
equal to the number of hydrogen atoms.

The lambda factor of the qubitization scheme from [12] is the sum of a one-body contribution λT and
a two-body contribution λW and is strongly dominated by the latter. Between n = 10 and n = 100 the
authors find that λW grows roughly proportional to n2.5 to values up to about 2 × 105 (see Fig 11(a)
in [12]).

In [17] a THC based qubitization scheme is proposed that improves over what the authors call
the “näıve” approach. In Fig 20 of that work the two-body contribution λ2 of these two schemes is
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compared, again for 10 ≤ n ≤ 100. The “näıve” λ2 is found to grow approximately proportional to
n3.16 to values well beyond 5 × 106. The λ2 achievable with the non-orthogonal basis THC based
qubitization proposed in [17] (which corresponds to the two-body part of λLee

THC) is found to only grow
approximately proportionally to n1.16 and reaches approximately 4×102 at n = 100. Fig 9 of the same
work compares the full lambda values (including the one-body contribution) for different factorization
methods including THC (the main focus of that work and the most competitve of the factorization
methods in this plot) and the Cholesky based DF described around (10). The parameters of these
methods are chosen to yield a CCSD(T) correlation energy error per atom of at most 50 micro Hartree,
amounting to 0.5 × 10−3 Hartree at n = 100. The authors find a scaling of roughly n1.88 for DF and
of n1.11 for THC and at n = 100 values of λ > 2 × 103 for DF and λ ≈ 5 × 102 for THC.

With a regularization of ρ = 5 × 10−5 and even just a linear number of leafs nt = ⌊(n + 1)/2⌋ (red
line in Fig. 7) we find that RC-DF (with two norm regularization γ = 2) is able to yield a constant
Frobenius norm error and an absolute CCSD(T) error per atom |∆CCSD(T)|/n in line with the 50 micro

Hartree per atom used in Fig 9 of [17] (see the green line in Fig. 7b). At these parameters λBurg
RC−DF

is found to scale approximately like n1.08±0.10 (fit through the values for 70 ≤ n ≤ 100) and reaches
approximately 2.5 × 102 at n = 100, roughly a factor of two better than the THC results from [17].
Compared to X-DF (which requires nt to grow faster than linearly to obtain acceptable accuracy (see
the blue and yellow lines in Fig. 7b), RC-DF yields roughly one order of magnitude lower lambda
values at n = 100, mostly owing to the fact that we find that the X-DF lambda values scale roughly
quadratic with n. λBurg and λLCU seem to have a similar scaling for all double factorization schemes
considered here.

Appendix D: Necessary and sufficient condition for the symmetry of the V t
pq

In this section we present a proof that shows that 8-fold symmetry of the (pq|rs) tensor is a sufficient
condition for the V t

pq to be symmetric for every t where the eigenvalue gt ̸= 0. Hence, the Zt
pq are

real, which is required for the X-DF procedure to work, and the U t
pq are orthogonal (and thud can be

chosen to be special orthogonal without loss of generality), which is essential for their implementation
on a quantum computer by means of a fabric of givens rotations. Slightly abusing notation, in the
following lemma, we use (pq|rs) for a four index tensor that does not necessarily arise from electron
overlap integrals, but has the stated properties.

Lemma 1. Let (pq|rs) be any real, symmetric, i.e., (pq|rs) = (rs|pq) tensor of shape n × n × n × n.
By grouping the indices pq and rs, let (gt)t be its n2 eigenvalues, V t

pq its diagonalizing unitary and let
T+ = {t : gt > 0}, T− = {t : gt < 0}, and T := T+ ∪ T−. Then (pq|rs) can be written in the form

(pq|rs) =
∑
t∈T

V t
pq gt V t

rs. (32)

Further, if and only if (pq|rs) is in addition 8-fold symmetric, i.e., (qp|rs) = (qp|sr) = (pq|sr) =
(pq|rs) = (rs|pq) = (sr|pq) = (sr|qp) = (rs|qp) the matrices (V t

pq)pq are symmetric, i.e., V t
pq =

V t
qp ∀t ∈ T , and |T | ≤ n(n + 1)/2.

Proof. That symmetry of the V t
pq implies 8-fold symmetry of (qp|rs) can be verified directly from (32)

and whenever the V t
pq are symmetric, since they are also orthogonal for different values of t, there can

be at most n (n + 1)/2 of them and thus the bond on the size |T | of T holds.
To show that 8-fold symmetry implies symmetry of all V t

pq with t ∈ T let us first define

(pq|rs)± :=
∑

t∈T±

V t
pq gt V t

rs (33)

|(pq|rs)| :=
∑
t∈T

V t
pq |gt| V t

rs. (34)
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Figure 7: Comparison of lambda values achievable with X-DF and two-norm (γ = 2) RC-DF with regularization
ρ = 5 × 10−5 and convergence tolerance ||∆pqrs||F ≤ 10−5 for the hydrogen chain benchmark in the STO-6G basis
previously use in [12, 17] (panel a). The black triangles are the lambda values eyeballed from Fig. 9 of [17]. The thin
lines are power law fits to the date for 70 ≤ n ≤ 100 used to estimate the exponents stated in the text and displayed
in the figure. Two different scalings of nt with n were chosen such that the CCSD(T) error per particle |∆CCSD(T)|/n
(panel b) is approximately below 50 micro Hartree per atom for all cases execpt X-DF with linear number of leafs.
The Frobenius norm error of the two-body tensor ∥∆pqrs∥F (panel c) seems to be well correlated with |∆CCSD(T)|
for X-DF (panel d) but their magnitues can differ by several orders for other methods, so care needs to be taken when
drawing conlusions base on ∥∆pqrs∥F (The RC-DF data points are on a vertical line because ∥∆pqrs∥F ≤ 10−5 was
used as an abort criterion for the RC-DF optimization).
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so that we have (pq|rs) ± |(pq|rs)| = 2 (pq|rs)±. Since we also have |(pq|rs)| = (pq|rs) R with

R :=
∑
t∈T

V t
pq sign(gt) V t

rs. (35)

symmetric and invertible, 8-fold symmetry of (pq|rs) implies 8-fold symmetry of |(pq|rs)| and thereby
8-fold symmetry of both (pq|rs)+ and (pq|rs)− individually. The symmetry (pq|rs)± = (qp|rs)± then
implies that ∑

t∈T±

(V t
pqV t

rs − V t
qpV t

rs) gt = 0 ∀p, q, r, s. (36)

For p = r and q = s we can specialized this to∑
t∈T±

gtV t
pqV t

qp =
∑

t∈T±

gt(V t
pq)2 ∀p, q. (37)

The symmetry (pq|pq)± = (qp|qp)± together with (32) implies∑
t∈T±

gt(V t
pq)2 =

∑
t∈T±

gt(V t
qp)2 (38)

and thus the left and right hand side of (37) can be identified to be the left and right hand side of the
Cauchy-Schwarz inequalities of the inner product of the vectors (√gt

∗V t
pq)t∈T± and (√gtV

t
qp)t∈T± :

( ∑
t∈T±

(√gt
∗V t

pq)∗√
gtV

t
qp

)2
= (39)

( ∑
t∈T±

gt V t
pqV t

qp

)2
≤
∑

t∈T±

|gt|(V t
pq)2 ∑

t∈T±

|gt|(V t
qp)2 (40)

=
∑

t∈T±

±|gt|(V t
pq)2 ∑

t∈T±

±|gt|(V t
qp)2 (41)

=
∑

t∈T±

gt (V t
pq)2 ∑

t∈T±

gt (V t
qp)2 (42)

=
( ∑

t∈T±

gt (V t
qp)2

)2
∀p, q, (43)

where in the last step we have used (38). Thus (37) implies that these Cauchy-Schwarz inequalities are
indeed fulfilled with equality, which is the case if and only if the two vectors in the Cauchy-Schwarz
inequality are identical up to a prefactor, i.e., for each p, q there must exists a scalar α such that

√
gt

∗V t
pq = α

√
gtV

t
qp ∀t ∈ T± (44)

⇔ V t
pq = ±α V t

qp ∀t ∈ T± . (45)

Since (pq|rs) = (qp|rs), we further have

(pq|rs) =
∑

t∈T±

V t
pqgtV t

rs = ±α
∑

t∈Tpm

V t
qpgtV t

rs (46)

=
∑

t∈T ±
V t

qpgtV t
rs = (qp|rs), (47)

which is possible only if ±α = 1. Thus we have as claimed V t
pq = V t

qp ∀t ∈ T .
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Appendix E: Computational methodology for Cpd I test case

The active space integrals for Cpd I were obtained from the deposited data [40] of Ref. [11]. The system
under consideration here is labelled “X” in Ref. [11], and consists of a (34α+29β, 58o) active space. We
factorized the two-body integrals using RC-DF with nt ∈ {30, 40, 50, 60, 70, 80, 90, 100, 150, 200} and
additional nt = 400, 800 with X-DF. For RC-DF, we employed ρ = 10−3 and varied the convergence
tolerance from 10−1 to 10−4. From the factorized two-body integrals, a CCSD(T) energy was computed
as described in Ref. [11] using the chemftr Python library (https://github.com/ncrubin/chemftr)
interfaced with PySCF [31, 32]. The CCSD(T) energy error is the energy difference of the CCSD(T)
energies with exact two-body integrals and the two-body integrals reconstructed from the factoriza-
tion. For both factorization schemes, we evaluated λBurg

DF and λLCU
DF . Since the data for the truncated

DF scheme in Ref. [11] are not shown in the paper, we recomputed the factorization using chemftr
and checked that for exact factorizations, the lambda parameters agree exactly with our X-DF im-
plementation. The RC-DF and X-DF results are shown in Tables 1 and 2, respectively. In addition,
Table 3 contains the recomputed results for truncated DF from Ref. [11]. The factorized Hamiltonians,
together with the resulting energy errors and lambda factors were deposited on Zenodo [37].

Appendix F: Derivation of the double factorized Hamiltonian in terms of Pauli
operators

Inserting (5) into (1) we have

H = Ec +
∑
pq

(p|κ̂|q)E+
pq + 1

2
∑
tkl

Zt
klU

tE+
kkE+

ll U †t (48)

with

(p|κ̂|q) = (p|ĥc|q) − 1
2
∑

r

(pr|qr). (49)

Using the Jordan Wigner mapping we can write

E+
kk = I − Ẑk + Ẑk̄

2 (50)

and using the following identity

E+
kkE+

ll = −I + E+
kk + E+

ll + 1
4(Ẑk + Ẑk̄)(Ẑl + Ẑl̄) (51)

yields

H = Ec − 1
2
∑
tkl

Zt
kl +

∑
pq

(p|κ̂|q)E+
pq +

∑
tk

∑
l

Zt
klU

tE+
ll U t† + 1

8
∑
tkl

Zt
klU

t(Ẑk + Ẑk̄)(Ẑl + Ẑl̄)U
t†

. (52)

Our aim is now to sort terms according to whether they contain an even or odd number of
Ẑ operators to arrive at expression (6). Using again (5) we can rewrite

∑
tk

∑
l Zt

klU
tEllU

t† =∑
pq

∑
tk

∑
l U t

plU
t
qlZ

t
klE

+
pq and hence we have

(pq|rr) =
∑
tkl

U t
pkU t

qkZt
klU

t
rl

2 (53)

=⇒
∑

r

(pq|rr) =
∑
tkl

U t
pkU t

qkZt
kl. (54)
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Using these expressions and the shorthand Fpq defined in (3) we can rewrite (52) to read

H = Ec − 1
2
∑
tkl

Zt
kl +

∑
pq

((p|κ̂|q) +
∑
tk

∑
l

U t
plU

t
qlZ

t
kl)E+

pq + 1
8
∑
tkl

Zt
klU

t(Ẑk + Ẑk̄)(Ẑl + Ẑl̄)U
t† (55)

= Ec − 1
2
∑
tkl

Zt
kl +

∑
pq

((p|κ̂|q) +
∑

r

(pq|rr))E+
pq + 1

8
∑
tkl

Zt
klU

t(Ẑk + Ẑk̄)(Ẑl + Ẑl̄)U
t† (56)

= Ec − 1
2
∑
tkl

Zt
kl +

∑
pq

FpqE+
pq + 1

8
∑
tkl

Zt
klU

t(Ẑk + Ẑk̄)(Ẑl + Ẑl̄)U
t† (57)

= Ec − 1
2
∑
tkl

Zt
kl +

∑
k

F∅
k U∅†

E+
k U∅ + 1

8
∑
tkl

Zt
klU

t(Ẑk + Ẑk̄)(Ẑl + Ẑl̄)U
t† (58)

Replacing E+
k according to (50) and pulling out the k = l terms from the last sum we arrive at

H = Ec − 1
2
∑
tkl

Zt
kl +

∑
p

F∅
p + 1

8
∑
tk

Zt
kk +

∑
k

F∅
k U∅†(Zk + Zk̄)U∅+ (59)

1
8
∑
tkl

Zt
klU

t
(
ẐkẐl − δkl + ẐkẐl̄ + Ẑk̄Ẑl + Ẑk̄Ẑl̄ − δk̄l̄

)
U t†

. (60)

Using 69 and 71, we write the total offset in the above equation as:

E =Ec − 1
2
∑
tkl

Zt
kl +

∑
p

F∅
p + 1

8
∑
tk

Zt
kk (61)

=Ec − 1
2
∑
pq

(pp|qq) +
∑

p

F∅
p + 1

8
∑
pq

(pq|pq) (62)

Since trace(Fpq) =
∑

p F∅
p , we have:∑

p

F∅
p =trace(Fpq) (63)

=
∑

p

Fpp =
∑

p

(p|κ̂|p) +
∑

r

(pp|rr) (64)

=
∑

p

((p|ĥc|p) − 1
2
∑

r

(pr|pr) +
∑

r

(pp|rr)) (65)

As a result we have:

E =Ec − 1
2
∑
pq

(pp|qq) +
∑

p

((p|ĥc|p) − 1
2
∑

r

(pr|pr) +
∑

r

(pp|rr)) + 1
8
∑
pq

(pq|pq) (66)

=Ec − 1
2
∑
pq

(pp|qq) +
∑

p

(p|ĥc|p) − 1
2
∑
pr

(pr|pr) +
∑
pr

(pp|rr)) + 1
8
∑
pq

(pq|pq) (67)

=Ec + 1
2
∑
pq

(pp|qq) +
∑

p

(p|ĥc|p) − 1
4
∑
pr

(pr|pr) (68)

Using (5) again we can identify the the second term in the last expression to be

(pp|qq) =
∑
tkl

U t
pk

2
Zt

klU
t
ql

2 (69)

=⇒
∑
pq

(pp|qq) =
∑
tkl

Zt
kl. (70)

Similarly
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Moreover, since for k = l =⇒ ẐkẐl = I, we have an extra offset of
∑

tk Zt
kl:

(pq|pq) =
∑
tkl

U t
pkU t

qkZt
klU

t
plU

t
ql (71)

=⇒
∑
pq

(pq|pq) =
∑
tkl

∑
p

U t
pkU t

plZ
t
kl

∑
q

U t
qkU t

ql (72)

=
∑
tkl

δklZ
t
klδkl (73)

=
∑
tk

Zt
kk (74)

Appendix G: Comparison of RC-DF and FFF

The Fluid Fermionic Fragments (FFF) method is based on the fact that some contributions to the
Hamiltonian can be moved back and fourth freely between the second and third term of the electronic
structure Hamiltonian as written in (1). In the fermionic picture, these ”fluid” parts of the Hamiltonian
correspond to terms that are quadratic in the creation and annihilation operators (see (9) an (10) in
Ref [21]) and which, after diagonalization of the quadratic part contribute to the terms proportional
to particle number operators, and which under Jordan Wigner yield Pauli Ẑ operators.

Here we present the FFF method in the qubit picture. To that end, starting from (1), we first
factorize the (pq|rs) part of the Hamiltonian only, which yields:
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∑
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Now we can add and subtract terms of the form U t(
∑

k ct
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∑
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FFF coefficients to obtain
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with

E ′ = E0 − 1
2
∑
tkl

Zt
kl +

∑
k

Ckk +
∑
tk

(
∑

l

Zt
kl + ct

k) + 1
4
∑
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kk (86)

Cpq = (p|κ̂|q) −
∑

t

∑
k

ut
pkut

qkct
k (87)

and U ′∅ and C∅
k are the diagonalizing unitaries and eigenvalues of Cpq.

The case all ct
k = 0 corresponds to how X-DF was introduced in [18] and this was taken as the prior

art benchmark in [21]. The case
ct

k = −
∑

l

Zt
kl (88)

corresponds to the way we wrote the Hamiltonian in (6), with no single qubit Ẑ contributions in the
two body leafs. It turns out that neither of these choices is optimal with respect to variance and thus
shot count and optimizing the ct

k can further yield improvements,
Optimization can be done with a gradient based optimizer and in [21] as well as here we used

LBFGSB as implemented in scipy. The number of shots is then optimized, via a proxy state, using
a nested loop where in each iteration the coefficients ct

k are updated using the partial derivative at
fixed shot distribution then the shots are optimally distributed according to the variances computed
with the new ct

k in the proxy state. For simplicity and better comparability with the results form [21]
we use the exact ground state as the proxy state. This is not efficient but [21] found little difference
between using the real ground state and an approximate proxy state for which variances can be
computed efficiently. We compute the needed derivatives by means of a fully auto-differentiable code
that computes the variances as a function of the ct

k [29, 36, 41].
For some cases for which we have performed simulations (see Figure 8) we find that all ct

k = 0 and/or
X-DF with the ct

k corresponding to (6) is a local minimum and hence gradient based optimization of
the ct

k does not work. We consistently found good final shot counts from random uniformly distributed
within [0, 1[ initializations. Alternatively one can initialize from coefficients according to (88) which
lead to faster convergence but seems to yield the same final or very similar shot budgets. Overall
we find that combining RC-Df with FFF yields the lowest shot budgets. The term mapping used in
(6) is significantly better than choosing all ct

k = 0 and RC-DF (with and without FFF) consistently
outperforms X-DF.
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Table 1: RC-DF performance summary for Cpd I

Conv. Tol. nt ∥∆pqrs∥F CCSD(T) error [mEh] λBurg
DF λLCU

DF

10−1 30 0.4472 −23.5907 300.6 456.5
40 0.4412 −22.6134 311.0 468.6
50 0.4382 −22.4729 320.6 478.0
60 0.4415 −22.7342 327.5 478.1
70 0.4452 −21.4039 336.3 483.7
80 0.4352 −18.2827 343.0 490.5
90 0.4310 −17.3526 349.9 496.1
100 0.4278 −17.2627 355.8 498.1
150 0.4232 −14.8979 385.9 521.0
200 0.4258 −15.0266 417.9 545.2

10−2 30 0.1411 −3.0769 278.2 430.4
40 0.1411 −3.6537 290.8 448.5
50 0.1408 −2.9621 299.5 462.7
60 0.1414 −3.2143 304.6 470.0
70 0.1406 −2.8366 308.6 475.4
80 0.1407 −3.6169 313.8 482.2
90 0.1407 −2.6580 318.7 489.2
100 0.1409 −2.1238 321.7 492.1
150 0.1410 −2.6875 337.2 508.8
200 0.1413 −2.5034 351.2 524.2

10−3 30 0.0447 −0.2292 244.4 386.6
40 0.0447 −0.3581 257.1 394.1
50 0.0447 −0.2405 268.0 409.6
60 0.0447 −0.2515 276.5 422.8
70 0.0447 −0.5585 284.0 434.3
80 0.0447 −0.1995 288.6 442.6
90 0.0447 −0.3395 292.2 450.4
100 0.0447 −0.0137 295.8 456.6
150 0.0446 −0.4667 310.3 481.2
200 0.0446 −0.2690 321.1 499.3

10−4 100 0.0141 0.0086 258.0 390.8
150 0.0141 −0.0423 275.7 414.4
200 0.0141 −0.0340 287.9 435.3
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Table 2: X-DF performance summary for Cpd I

nt ∥∆pqrs∥F CCSD(T) error [mEh] λBurg
DF λLCU

DF

30 1.01455 15.5688 418.5 759.2
40 0.72606 −7.3444 431.6 784.9
50 0.58478 −8.5971 440.3 802.0
60 0.47298 −14.4322 447.9 816.8
70 0.38068 −3.1890 453.7 828.2
80 0.29495 −9.6247 458.8 838.3
90 0.21062 0.5473 462.2 844.9
100 0.15487 −3.9773 464.3 848.9
150 0.04288 −0.0570 469.8 859.8
200 0.01609 0.1208 471.7 863.4
400 0.00126 0.0092 473.0 866.0
800 0.00001 0.0003 473.2 866.3

Table 3: Truncated DF performance summary for Cpd Ia)

nt
b) thresholdc) ∥∆pqrs∥F CCSD(T) error [mEh] λBurg

DF

99 0.07500 0.4909 −73.8021 428.8
114 0.05000 0.3631 −17.4890 439.9
131 0.02500 0.1892 1.1578 455.1
178 0.01000 0.0836 2.6993 464.3
194 0.00750 0.0644 4.1638 466.1
207 0.00500 0.0457 1.8040 467.9
241 0.00250 0.0245 −0.1019 470.1
309 0.00100 0.0106 0.0266 471.7
364 0.00050 0.0054 0.0155 472.3
505 0.00010 0.0012 −0.0086 473.0
568 0.00005 0.0006 0.0037 473.1
702 0.00001 0.0001 0.0007 473.1

a) Recomputed with chemftr.
b) Referred to as L in Refs. [12, 17].
c) Eigenvector screening threshold with which the accuracy of the factorization is tuned, see Ref. [12].
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Figure 8: Number of shots to reach mili Hartree precision with optimal shot distribution for combinations of X-DF
and RC-DF with the fluid fermionic fragments (FFF) method for (a) H2O with nt = 24 and (10e, 7o) active space,
(b) HF with nt = 16 and (10e, 6o) active space, (c) NH3 with nt = 28 and (10e, 8o) active space and (d) H4
with nt = 10 and (4e, 4o) active space (all with RHF orbitals in the STO-3G basis). The gray horizontal lines are
the number of shots when the Hamiltonians are measured as written in (85) with all FFF coefficients ct

k equal to
zero (X-DF/RC-DF all zero) or as written in (6) (X-DF/RC-DF) and the best original results of FFF from [21]. The
examples (a) to (c) were specifically picked because the gap between the plain RC-DF shot budget and the FFF shot
budget from [21] were large. For other cases, plain RC-DF already yields similar results to FFF. The crosses/dots
show how the number of shots decreases during optimization of the ct

k FFF coefficients (with the true ground state
taken as proxy state for simplicity) in (85) after initializing them randomly according to a uniform distribution within
[0,1[/such that the initial Hamiltonian coincides with (6).
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