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Using local operations and classical communication (LOCC), entanglement
can be manipulated but not created. However, entanglement can be embez-
zled. In this work, we completely characterize universal embezzling families
and demonstrate how this singles out the original family introduced by van
Dam and Hayden. To achieve this, we first give a full characterization of pure
to mixed state LOCC-conversions. Then, we introduce a new conversion dis-
tance and derive a closed-form expression for it. These results might be of
independent interest.

1 Introduction
Quantum entanglement [1–6] describes correlations between different particles with no
classical counterpart and has both deep foundational implications [7] and numerous ap-
plications in quantum information science [8–18]. If two or more parties are far apart, in
practice, they are restricted to local operations and classical communication (LOCC) be-
cause during transmission over long distances, physical systems will unavoidably interact
with an environment and eventually lose the quantum information they carry. In con-
trast, it is much simpler to exchange classical information that can easily be amplified
and protected. The states that can be prepared with LOCC, i.e., the separable ones, are
therefore considered free and the ones that cannot, which are exactly the entangled ones,
are considered costly or resourceful.

According to this reasoning, entanglement is a resource and thus studied within the
framework of quantum resource theories (QRTs) [19, 20]. In a QRT, a physically motivated
restriction such as the one discussed above divides both states and operations into free or
resourceful in a consistent manner: Free operations map free states into free states. Once
the free operations and states have been fixed, a QRT studies which quantum advantages
depend on the resource under consideration and, closely related, how the consumption of
resourceful states can help to overcome the restriction. An example is quantum teleporta-
tion [11]: By consuming entangled states, LOCC allows to teleport quantum systems and
thereby simulate arbitrary operations outside LOCC.

In this sense, consuming entangled states or more generally resourceful states can lead
to operational advantages, e.g., in communication scenarios [8–15]. Importantly, if a state
can be converted with a free operation into another one, then the former is at least as
valuable as the latter in any application that only allows for free operations. Answering
the question which states can be converted into each other is thus a central question in
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any QRT. In entanglement theory, Nielsen’s Theorem [3] provides a characterization of
the deterministic conversion between pure states that was later extended to probabilistic
conversions [21]. Here, we generalize these results and characterize the conversion of a pure
state into a mixed state.

The results on state conversions mentioned so far require that an initial state is exactly
converted into a target state. However, every physical setup is affected by noise and finitely
many measurements will only lead to finite accuracy. It is therefore practically impossible
to distinguish the desired target state from a close approximation. This is the physical
motivation to investigate whether a state can be approximately converted to the target
using free operations [22]. There are several equivalent distances that formalize a notion
of closeness between quantum states [23–27], which can be used to define conversion dis-
tances [28–31]. These conversion distances measure the error in approximate conversions,
i.e., given two states, they are the smallest distance between the second state and the
result of any free operation on the first one. In this article, we introduce a new conversion
distance under LOCC defined on pure states. Using our result on exact conversions, we
prove that it is topologically equivalent to the other conversion distances and derive a
closed formula for it.

This in turn will allow us to completely characterize entanglement embezzlement [32,
33]: Whilst it is impossible to create entanglement with LOCC [2, 5, 19, 34], it is possible
to embezzle it in the sense that one converts a given entangled state approximately to itself
and a copy of another entangled target state. A family of pure states such that one can
do this for any target state with arbitrary accuracy using LOCC and one of its members
is called a universal embezzling family. Embezzlement is thus a generalization of quantum
catalysis, a phenomenon discovered in the early years of the resource theory of entangle-
ment [35]: Whilst in catalysis, the catalyst must be preserved exactly, embezzlement allows
to change it by an arbitrarily small amount. Very recently, we have witnessed a renewed
interest in the catalysis of various quantum resources [36–52], with applications far beyond
state conversion. In Ref. [46], it was for example shown that a catalytic quantum tele-
portation protocol outperforms the standard teleportation protocol [11, 16, 17] in terms
of teleportation fidelity. For further details and examples, see the recent review articles
Refs. [53, 54].

Universal embezzling families are valuable resources in various applications. They are,
for example, necessary resources for the efficient simulation of noisy quantum channels with
noiseless channels [15, 18], a result known in quantum information theory as ‘Quantum Re-
verse Shannon Theorem’. They are also an important component in the elementary proofs
of Grothendiek theorems [55, 56], which are of fundamental importance in the theories of
Banach spaces and C∗- algebras (see, e.g., Ref [57]). Furthermore, embezzling families are
necessary to win various quantum guessing games with certainty [58–61]. Lastly, due to
the close relation to catalysis, we expect that they will prove useful in applications such as
teleportation, where catalysis provides advantages.

The first universal embezzling family was introduced in Ref. [32] and we call it van Dam
and Hayden embezzling family. More recently, additional families have been proposed in
Ref. [33]. In these works, embezzlement is considered using only local operations. Here,
we extend the framework and additionally allow for classical communication, provide a
complete characterization of universal embezzling families under LOCC, and discuss in
what sense the van Dam and Hayden family is unique.
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2 Notation and Preliminaries
In this article, we restrict ourselves to finite-dimensional Hilbert spaces and denote them
with capital Latin letters such as A, B. The dimension of a Hilbert space C is denoted
by |C|, and the set of density matrices acting on it by D(C). For the set of pure states in
D(C), we write PURE (C). Small Greek letters such as ρ and σ denote density matrices,
with ψ, φ, and χ reserved for pure states. For ρ, σ ∈ D(C), the trace distance between ρ
and σ is defined as 1

2 ∥ρ− σ∥1, where ∥·∥1 is the trace norm.
Probability vectors are represented by bold small Latin letters, e.g., p, with px the

x-th component of p. The set of probability vectors of length d is denoted by Prob(d),
which contains the subset Prob↓(d) consisting of all d-dimensional probability vectors with
non-increasing entries. The k-th Ky Fan norm of p ∈ Prob↓(d) is defined as

∥p∥(k) =
k∑
x=1

px (1)

for k ∈ [d], where [d] is a shorthand notation for {1, . . . , d}. We write p ≻ q if p majorizes
q [62–64] and ∥p − q∥1 for

∑
x |px − qx|.

Since this article is concerned with two spatially separated parties, call them Alice and
Bob, it is important to make clear which system is under the control of whom: Systems
belonging to Alice will always be denoted by A or A′, and systems belonging to Bob by B
or B′. Quantum channels are represented by calligraphic large Latin letters such as M, N ,
and the set of quantum channels from a bipartite system AB toA′B′ that Alice and Bob can
implement if they are restricted to local operations and classical communication is denoted
by LOCC(AB → A′B′). For bipartite systems AB, we assume w.l.o.g. that |A| = |B| = d
(since with LOCC, Alice and Bob can always attach and remove local auxiliary systems).
Fixing an orthonormal basis { |x⟩A }x∈[d] for A and { |x⟩B }x∈[d] for B, under LOCC,
every ψ ∈ PURE(AB) is then equivalent to its standard form

∑
x

√
px |xx⟩AB, where

p ∈ Prob↓(d) are the Schmidt coefficients of ψ (which, w.l.o.g., we will always assume to be
ordered non-increasingly from here on). We denote with SR(ψ) the Schmidt rank of a pure
bipartite state ψ ∈ PURE(AB), i.e., the number of non-zero Schmidt coefficients of ψ, and
use the symbol Φm =

∑m
x=1

1√
m

|xx⟩AB for the maximally entangled state on AB, where

|A| = |B| = m. Finally, for ρ ∈ D(AB) and σ ∈ D(A′B′), we write ρ LOCC−−−−→ σ whenever
there exists an N ∈ LOCC(AB → A′B′) such that σ = N (ρ) and ρ

LOCC−−−−→ { tz, τz }
whenever there exists a probabilistic LOCC protocol that converts ρ to τz with probability
tz.

3 State conversions with LOCC
As motivated in the introduction, the question of how entangled states can be intercon-
verted is at the core of the resource theory of entanglement. The exact deterministic
LOCC-conversion problem between pure states is solved by Nielsen’s Theorem [3]: For ψ,
φ ∈ PURE(AB) and p, q ∈ Prob↓ (|A|) their associated Schmidt vectors, ψ LOCC−−−−→ φ if
and only if [65]

Ek(ψ) ≥ Ek(φ) ∀k ∈ [|A|] , (2)

where Ek(ψ) := 1 − ∥p∥(k). In Ref. [21], this result was generalized to the case where the
target state φ is replaced with an ensemble of states: For ψ, φ1, . . . , φn ∈ PURE(AB),
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ψ
LOCC−−−−→ { tz, φz }z∈[n] if and only if

Ek(ψ) ≥
n∑
z=1

tzEk(φz) ∀k ∈ [|A|], (3)

which can be rewritten as

min
k∈[|A|]

{
Ek(ψ) −

∑
z

tzEk(φz)
}

≥ 0. (4)

We extend this result considering a generic mixed state as target.

Proposition 1. For ψ ∈ PURE(AB) and σ ∈ D(AB), ψ LOCC−−−−→ σ if and only if there
exists a pure state decomposition { pz, χz } of σ (i.e., σ =

∑
z pzχz) such that

min
k∈[|A|]

{
Ek(ψ) −

∑
z

pzEk(χz)
}

≥ 0. (5)

That this condition is sufficient follows directly from Eq. (4). That it is also necessary
follows from the Lo-Popescu Theorem [66] which implies that if ρ LOCC−−−−→ σ, then there
exists a pure state decomposition { pz, χz } of σ that satisfies Eq. (4). The details of this
proof can be found in Appendix A.

For certain choices of ρ ∈ D(AB) and σ ∈ D(A′B′), ρ cannot be converted to σ by
LOCC. It is then interesting to determine how well we can approximate σ with ρ and
LOCC. To this end, one can associate with every distance D defined on quantum states
the conversion distance

D(ρ → σ) = inf
N ∈LOCC(AB→A′B′)

D(N (ρ), σ). (6)

This conversion distance determines how close to σ, with respect to the distance D, one
can convert ρ using only LOCC. A commonly used distance in quantum information is the
trace distance T (σ, τ) = 1

2 ∥σ − τ∥1. The conversion distance associated with it is

T (ρ → σ) = inf
N ∈LOCC(AB→A′B′)

1
2 ∥N (ρ) − σ∥1 . (7)

This conversion distance has an operational interpretation in terms of a result in state
discrimination known as Holevo-Helstrom Theorem [67, 68] (see Ref. [69, Theorem 3.4] for a
review). Indeed, if a single copy of either σ ∈ D(AB) or N (ρ) ∈ D(AB), with N ∈ LOCC,
is given with equal probability, then the maximum probability pmax of correctly identifying
the given state is bounded by

pmax ≥ 1
2(1 + T (ρ → σ)). (8)

Moreover, for every fixed ρ and σ, there always exists an N ∈ LOCC such that pmax is
arbitrarily close to this lower bound. In this sense, T (ρ → σ) describes how well we can
approximate σ given access to ρ and LOCC.

Another distance used often in quantum information is the purified distance P (σ, τ) =
infψσ ,ψτ T (ψσ, ψτ ) [26, 27], where the infimum runs over all purifications ψσ and ψτ of σ
and τ , respectively. In this case, the conversion distance is analogously defined as

P (ρ → σ) = inf
N ∈LOCC(AB→A′B′)

P (N (ρ), σ). (9)
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On pure states ψ, φ ∈ PURE(AB), we define what we call star conversion distances
via

D⋆(ψ → φ) = min
r≻p

D(r,q), (10)

where p, q ∈ Prob↓(|A|) are the Schmidt coefficients of ψ and φ, respectively, and
D(r,q) = D(diag(r), diag(q)). In general D⋆(ψ → φ) ̸= D(ψ → φ). However, we show in
Appendix B that in the case of the purified distance, the two conversion distances coincide
on pure states.

Theorem 2. Let ψ, φ ∈ PURE(AB). Then P (ψ → φ) = P⋆(ψ → φ).

This, in turn, is useful to show that T (ψ → φ) and T⋆(ψ → φ) are topologically
equivalent on pure states, which means that if one can approximate φ arbitrarily well with
a sequence of states { ψn } in the sense that limn→∞ T (ψn → φ) = 0, then the same is true
for T⋆, and vice-versa. This is guaranteed by the following result (Appendix C).

Lemma 3. Let ψ, φ ∈ PURE(AB). Then

1
2 [T⋆(ψ → φ)]2 ≤ T (ψ → φ) ≤

√
2T⋆(ψ → φ). (11)

We are particularly interested in T⋆(ψ → φ) because using tools from approximate
majorization [62–64, 70–73], one can derive a closed-form expression for it (Appendix C).

Theorem 4. Let ψ, φ ∈ PURE(AB) and let p, q ∈ Prob↓(|A|) be their corresponding
Schmidt coefficients. Then,

T⋆(ψ → φ) = max
k∈[SR(ψ)]

{
∥p∥(k) − ∥q∥(k)

}
. (12)

If ξ ∈ PURE(AB) is separable and ψ, φ are not,

T⋆(ψ → φ) < T⋆(ξ → φ). (13)

This theorem provides, to the best of our knowledge, the first algorithm to compute
a conversion distance in LOCC with a finite number of steps. Indeed, if ψ, φ, and their
Schmidt coefficients are known, then one can compute T⋆(ψ → φ) using a finite memory,
and a finite (perhaps very large) number of operations (additions or subtractions). This is
not the case for the other conversion distances because they require a minimization over
LOCC, which is in general unfeasible. The second part of the theorem shows that any
entangled state is more useful in the approximation of all other entangled states than any
separable state.

Whilst Theorem 4 is of independent interest, for example in the characterization of
entanglement distillation and dilution [74], we discuss in the following how it yields new
results concerning the embezzlement of entanglement. When referring to the conversion
distance and star conversion distance, we will thus refer to the versions based on the trace
distance from here on.

4 Entanglement embezzlement
As mentioned in the introduction, it is impossible to create additional entanglement with
LOCC alone [2, 5, 19, 34]. If ρ ∈ D(A′B′) is an entangled state, this implies that there
cannot exist a ψ ∈ PURE(AB) and a channel N ∈ LOCC(AB → ABA′B′) such that
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N (ψ) = ψ ⊗ ρ, because this would increase the total amount of entanglement between
systems AA′ andBB′ with respect to any additive entanglement measure. It might however
be possible to approximate ψ ⊗ ρ in the sense that T (ψ → ψ ⊗ ρ) ≤ ε for a small ε. In
this case, it is hard to distinguish ψ ⊗ ρ from the approximation. By keeping the systems
A′B′, one would thus embezzle entanglement from the owner of ψ - and if one would be
able to make ε arbitrarily small, it would be impossible to detect.

In fact, in Ref. [32], van Dam and Hayden showed that it is possible to embezzle
any bipartite state σ ∈ D(A′B′) arbitrarily well from a family of pure states

{
χABn

}
n∈N

in the sense that limn→∞ T (χn → χn ⊗ σ) = 0. This implies that an arbitrarily good
approximation of any σ can be embezzled from χn whilst changing χn arbitrarily little, as
long as n is large enough. This motivates the following definition.

Definition 5. A family of pure bipartite states { χn }n∈N is called a universal embezzling
family if limn→∞ T (χn → χn ⊗ σ) = 0 for every bipartite finite dimensional state σ.

This definition is very similar to the one provided in Refs. [32, 33]. The main difference
is that these works only consider protocols using local operations (LO), while in this work,
we allow for classical communication too. The set of operations that we consider is therefore
larger, and as a result, if a family of states is not an embezzling family according to our
definition, then it is not an embezzling family in the sense of Refs. [32, 33]. Surprisingly,
the original embezzling family proposed in Ref. [32] is rather unique in a sense that we
will specify later, even when we allow for classical communication. Another difference with
Refs. [32, 33] is that in those works the fidelity was used to quantify the conversion error.
Since the fidelity and trace distance are topologically equivalent, this is irrelevant.

The term ‘universal’ in Definition 5 underlines the property that any bipartite state can
be embezzled. Since for every bipartite state σ ∈ D(AB), where A = B = m, it is possible
to LOOC-convert the maximally entangled state Φm into σ (see, e.g., Proposition 1), it
is enough to check whether limn→∞ T (χn → χn ⊗ Φm) = 0 for all m ∈ N to determine if
{ χn }n∈N is a universal embezzling family: This follows for example by combining Lemma 3
and the triangular inequality for the star conversion distance proven in Appendix C. Even
simpler, it is in fact equivalent to only require limn→∞ T (χn → χn⊗Φ2) = 0 [33, Lemma 2
for the case of embezzlement with LO], because if one can embezzle enough copies of Φ2,
then one can convert them into Φm with LOCC (see Appendix D for more details). It is
also important to note that technically, one could have required that lim infn→∞ T (χn →
χn ⊗ σ) = 0, since this would also allow to embezzle any state arbitrarily well. However,
since one can always choose a subfamily, we decided to keep the definition in line with
Ref. [33]. Lastly, due to Eq. (11), we can replace T (χn → χn ⊗ σ) in Definition 5 with
T⋆(χn → χn ⊗ Φ2). Thanks to the closed formula in Theorem 4, we obtain the following
complete characterization of universal embezzling families (Appendix D).

Theorem 6. A family of pure bipartite states { χn }n∈N with corresponding Schmidt co-
efficients

{
p(n)

}
n∈N

is a universal embezzling family if and only if

lim
n→∞

max
l∈[An]

{ ∥∥∥p(n)
∥∥∥

(2l−1)
−
∥∥∥p(n)

∥∥∥
(l−1)

}
= 0, (14)

where An = ⌈SR(χn)/2⌉ is the ceiling of half the Schmidt rank of χn.

The problem of determining if a family of states is a universal embezzling family has
therefore been restated as a rather simple optimization problem, which in many cases can
be solved numerically or even analytically. By choosing l = 1 in Eq. (14) one obtains the
following necessary condition for a universal embezzling family.
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Corollary 7 (cf. Ref. [33, Lemma 3 (LO)]). If a family of pure bipartite states { χn }n∈N
is a universal embezzling family, then limn→∞ p

(n)
1 = 0, where p(n) ∈ Prob↓(dn) are the

Schmidt coefficients of χn.

This implies that if a family of pure bipartite states { χn }n∈N is a universal embezzling
family, then limn→∞ SR(χn) = +∞, where SR(χn) is the Schmidt rank of χn. Indeed,
considering that the entries of any p(n) sum to one, if the largest entry converges to zero,
then the number of non-zero entries must diverge.

When looking for candidates for universally embezzling families, it is common [32, 33]
to consider families of bipartite states

|χn⟩ = 1√
Fn

n∑
x=1

√
f(x) |xx⟩AB , (15)

defined by a function f : N → R+, where Fn =
∑n
x=1 f(x) is a normalization constant.

With this choice, one ensures that the families of states have a common structure, i.e.,
χm>n is obtained from χn by appending additional coefficients and renormalizing. By
choosing f(x) = x−1, one recovers the universal embezzling family introduced by van Dam
and Hayden [32]. This family is rather unique: If we assume that f has a reasonable
asymptotic behavior, specifically that it is asymptotically non-increasing and f(x)/xα is
asymptotically monotonic for all α ∈ R, then the family of states { χn } is an embezzling
family if and only if f is asymptotically close to x−1 in the sense that for every ε > 0,

lim
x→∞

f(x)
x−1−ε = ∞ , lim

x→∞
f(x)
x−1+ε = 0. (16)

As we will discuss now, the assumptions on the asymptotic behavior of f , which we require
for technical reasons, are not particularly restrictive. In entanglement theory, it is possible
to consider, w.l.o.g., only states with non-increasing Schmidt coefficients. With the first
assumption, we require that the family of states, at least asymptotically, has this behavior.
The second assumption rules out functions that are asymptotically monotonic but have
oscillating components, for an example of such a function see Appendix G, Eq. (G23).

In Ref. [33], it was shown that certain functions that differ from x−1 by logarithmic fac-
tors lead to universal embezzling families too. Since these functions satisfy the constraints
in Eq. (16), this is in accordance with our findings. In addition, in Appendix G, we also
show that many non-decreasing functions do not lead to universal embezzling families (see
Propositions G.3 and G.4 for details).

A special case of the functions discussed so far are the functions fα(x) = xα with α ∈ R.
For the families of states { χαn } generated by such functions, we analytically compute the
exact value of limn→∞ T⋆(χαn → χαn ⊗ Φm) for α ≥ −1 and lower and upper bound it for
α < −1. The details of the computations can be found in Appendix F and the results for
m = 2 are shown in Figure 1. Clearly, the limit of the star conversion distance is zero only
for α = −1, showing again the uniqueness of the choice made by van Dam and Hayden
amongst the functions f(x) = xα.

5 Conclusions
In Proposition 1 we provided necessary and sufficient conditions for a deterministic LOCC-
conversion from a pure bipartite state to a mixed bipartite state. This extends the results
already known for pure to pure state LOCC-conversions, whether deterministic or prob-
abilistic [3, 21]. We then exploited this result to prove the topological equivalence of
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Figure 1: Uniqueness of the van Dam and Hayden embezzling family — The family of states { χα
n }n∈N

introduced in the main text is a universal embezzling family if and only if α = −1. This can be seen in
the above plot showing the analytically derived exact value of limn→∞ T⋆(χα

n → χα
n ⊗ Φ2) for α ≥ −1

and lower and upper bounds for α < −1.

the newly defined star conversion distance between pure states and the trace conversion
distance commonly used in literature. The star conversion distance exhibits a closed for-
mula (Theorem 4). This is remarkable, since the mixed state LOCC-conversion problem
is NP-hard [75].

The closed formula in turn allowed us to completely characterize universal embezzling
families (see Definition 5 and Refs. [32, 33] for an analogous definition for LO) in terms
of a simple optimization problem stated in Theorem 6. With this characterization at
hand, we discussed the uniqueness of the van Dam and Hayden family [32]. For specific
families of states generalizing the van Dam and Hayden family, we explicitly evaluated
their star conversion distance to maximally entangled states and showed that they are only
universally embezzling if they are exactly the van Dam and Hayden family, see Figure 1.
Therefore, the van Dam and Hayden embezzling family shows unique properties even
for protocols that involve classical communication, as already noticed in Ref. [32]. This
suggests a direction for future work, namely, to determine whether LOCC embezzlement
implies LO embezzlement (the other direction is trivial), and therefore to investigate if
classical communication is relevant in entanglement embezzlement or not. It is worth
noting that so far, the research on entanglement embezzlement focuses solely on families
composed of pure states. A more comprehensive theory of embezzlement that includes
families of mixed states is yet to be developed.

Originally introduced in the resource theory of entanglement as a generalization of
catalysis [32], embezzlement has recently also been studied in other resource theories in-
cluding non-uniformity [76, 77], coherence [78–81], and athermality [76, 82–85]. Moreover,
fundamental limits for embezzlement have been proved in Ref. [86] and applied to the re-
source theories mentioned above. The aforementioned resource theories are related to the
resource theory of entanglement via majorization, which is the tool that we used to derive
the closed formula for the star conversion distance. A natural next step is to investigate
whether it is possible to derive a similar formula in these other majorization-based resource
theories. However, this task is not trivial: In the resource theory of non-uniformity, the
majorization relation is inverted, and the free state is the maximally mixed state, which
is fundamentally different from the free states in the resource theory of entanglement; in
the resource theory of athermality, state conversion is described by relative majorization,
which is a generalization of majorization. It is worth mentioning that in Ref. [84] it has
been shown that embezzlement of athermality allows to violate the second law of thermo-
dynamics. However, by using the work distance [84] as conversion distance, or by imposing
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physical constraints on the catalyst [76], e.g., finite dimension or finite energy expectation
value, athermality embezzlement is no longer possible, thus restoring the validity of the
second law of thermodynamics.

As described in the introduction, universal embezzling families have been useful in many
applications [15, 18, 55–61]. Our results provide an easy way to check whether a family
is universally embezzling. Moreover, we ruled out large classes of potential candidates
that are fundamentally different from the van Dam and Hayden family. The complete
characterization of universally embezzling families therefore contributes to a more efficient
usage of entanglement in technology.
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A Pure to Mixed State Conversions with LOCC
In this section, we prove Proposition 1 of the main text, which we restate for readability.

Proposition 1. For ψ ∈ PURE(AB) and σ ∈ D(AB), ψ LOCC−−−−→ σ if and only if there
exists a pure state decomposition { pz, χz } of σ (i.e., σ =

∑
z pzχz) such that

min
k∈[|A|]

{
Ek(ψ) −

∑
z

pzEk(χz)
}

≥ 0. (A1)

Proof. We first assume that ψ can be converted into σ with LOCC operations. Then,
according to Refs. [66, 87], there exists a protocol in which Alice performs a generalized
measurement {Mz } and Bob performs a unitary transformation Uz conditioned on the
measurement’s outcome such that σ =

∑
z(Mz ⊗Uz)ψ(Mz ⊗Uz)†. If Alice and Bob record

the outcome of the measurement in a classical system X, the output of the protocol is∑
z pz|z⟩⟨z|

X ⊗ χABz := { pz, χz }, where

|χz⟩ = (Mz ⊗ Uz) |ψ⟩
∥(Mz ⊗ Uz) |ψ⟩∥

, pz = ∥(Mz ⊗ Uz) |ψ⟩∥2 . (A2)

This shows that Alice and Bob can convert ψ into the ensemble { pz, χz } with LOCC
operations, which is equivalent to the condition [21, 65]

min
k∈[d]

(
Ek(ψ) −

∑
z

pzEk(χz)
)

≥ 0, (A3)

where Ek was introduced in the main text and d = |A| = |B| as per our convention. This
proves the necessary condition.

For the reverse, we assume that { pz, χz } is a pure state decomposition of σ that
satisfies

min
k∈[d]

(
Ek(ψ) −

∑
z

pzEk(χz)
)

≥ 0. (A4)

This is equivalent to ψ LOCC−−−−→ { pz, χz } =
∑
z pz|z⟩⟨z|

X ⊗χABz [21, 65]. Alice and Bob can
trace out the classical system and they obtain

∑
z pzχz = σ, thus ψ can be converted into

σ with LOCC operations.

B Purified Conversion Distance
In this section, we present some results concerning the purified conversion distance [26, 27],
which are useful to prove the theorems about the star conversion distance presented in the
main text. The purified distance between two states ρ, σ ∈ D (AB) is defined as

P (ρ, σ) =
√

1 − F 2 (ρ, σ), (B1)

where F (ρ, σ) =
∥∥√ρ√

σ
∥∥

1 is the fidelity. The purified distance is a metric and according
to Uhlmann’s Theorem [23],

P (ρ, σ) = min
ψ,φ

T (ψ,φ) , (B2)

where T (ρ, σ) = 1
2 ∥ρ− σ∥1 is the trace distance and the minimization runs over all purifi-

cations ψ and φ of ρ and σ, respectively. Importantly, the purified distance is topologically
equivalent to the trace distance [26],

T (ρ, σ) ≤ P (ρ, σ) ≤
√

2T (ρ, σ). (B3)
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We now recall the definition of the purified conversion distance and purified star conversion
distance introduced in the main text,

P (ρ → σ) = inf
N ∈LOCC

P (N (ρ) , σ) , P⋆ (ψ → φ) = min
r≻p

P (r,q) , (B4)

where p, q ∈ Prob↓(d) are the Schmidt coefficients of ψ and φ, respectively, and P (r,q) =√
1 − F 2(r,q) is the classical version of the purified distance with

F (r,q) := F (diag(r),diag(q)) =
∑
x

√
rxqx. (B5)

We next prove that the two purified conversion distances recalled above are equal on
pure states. To this end, we need the following Lemma.

Lemma B.1. Let q ∈ Prob(d). The function f : Prob(d) → [0, 1] defined as f(v) =(∑d
x=1

√
qxvx

)2
is concave.

Proof. For details about concave functions, see Ref. [88]. Here, we are going to use that a
twice differentiable function is concave if and only if its Hessian matrix is negative semi-
definite. The functions fx,y(vx, vy) := √

qxvx
√
qyvy are twice differentiable in vx, vy for

vx, vy ∈ (0, 1] and their Hessian matrices are given by

H (vx, vy) = 1
4

−
√

qxqyvy

v3
x

√
qxqy

vxvy√
qxqy

vxvy
−
√

qxqyvx

v3
y

 . (B6)

Since detH(vx, vy) = 0, one of the eigenvalues of H(vx, vy) is 0 and the other is equal
to the trace of H(vx, vy), which is smaller than or equal to zero. This implies that the
functions fx,y(vx, vy) are concave for vx, vy ∈ (0, 1]. Moreover, since 0 = fx,y(0, vy) =
fx,y(vx, 0) = fx,y(0, 0), it is easy to see that fx,y(vx, vy) is in fact concave for vx, vy ∈ [0, 1].
From this follows that f is concave, since

f (v) =
∑
x

vxqx +
∑
y

∑
x ̸=y

√
qxvx

√
qyvy (B7)

is the sum of concave functions.

We are now ready to prove the promised theorem.

Theorem 2. Let ψ,φ ∈ PURE(AB), then P (ψ → φ) = P⋆ (ψ → φ).

Proof. We assume w.l.o.g. that all pure states are in standard form, that is, |ψ⟩ =∑
x

√
px |xx⟩AB, where p ∈ Prob↓(d) and { |x⟩A } and { |x⟩B } are fixed bases for A and

B, respectively (see main text for more details). Let p,q ∈ Prob↓(d) be the Schmidt
coefficients or ψ and φ, respectively. With r ∈ Prob↓(d), as a consequence of Nielsen’s
Theorem [3], r ≻ p if and only if there exists an N ∈ LOCC such that N (ψ) ∈ PURE(AB)
has Schmidt coefficients r. We notice that

P (N (ψ), φ) =
√

1 − F 2(N (ψ), φ) =
√

1 − |⟨N (ψ) |φ⟩|2

=

√√√√1 −
(∑

x

√
rxqx

)2

=
√

1 − F 2(r,q)

= P (r,q).

(B8)
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This implies that
P⋆ (ψ → φ) = min

r≻p
P (r,q)

= min
N ∈LOCC

N (ψ)∈PURE(AB)

P (N (ψ) , φ)

≥ inf
N ∈LOCC

P (N (ψ) , φ)

= P (ψ → φ) .

(B9)

This inequality follows from the definition of the star purified conversion distance
because the minimization in the star conversion distance is done over a smaller set. The
non-trivial part is to show that the opposite inequality holds as well. To this end, we want
to show that for every mixed state σ such that ψ LOCC−−−−→ σ, there exists a pure state χ
such that ψ LOCC−−−−→ χ and P (σ, φ) ≥ P (χ, φ). It is then sufficient to consider only pure
output states for the computation of the purified conversion distance, which implies the
reverse inequality.

Let σ = M(ψ) ∈ D(AB), where M ∈ LOCC. Also, let { tz, χz } be a pure state
decomposition of σ that satisfies Eq. (A1) (where the χz are not necessarily in standard
form), and s(z) be the Schmidt coefficient of χz for every z. Furthermore, for every χz,
let χ̃z be the pure state in standard form that is equal to χz up to local unitaries, let
σ̃ =

∑
z tzχ̃z, and define χ ∈ PURE(AB) as the pure bipartite state (in standard form)

with Schmidt coefficients s =
∑
z tzs(z). We notice that for all k ∈ [d]

Ek(χ) = 1 −
k∑
x=1

sx = 1 −
k∑
x=1

∑
z

tzs
(z)
x

= 1 −
∑
z

tz(1 − Ek(χz)) =
∑
z

tzEk(χz)

≤ Ek(ψ),

(B10)

where the last inequality follows from the fact that { tz, χz } satisfies Eq. (A1). This
implies that s ≻ p.

The next step is to show that P (σ, φ) ≥ P (s,q). First, we note that due to the von
Neumann trace inequality [89, 90],

F 2 (σ̃, φ) =
∑
z

tz

(∑
x

√
qxs

(z)
x

)2

≥ F 2 (σ, φ) (B11)

and

F 2(χ, φ) = F 2 (s,q) =

∑
x

√
qx
∑
z

tzs
(z)
x

2

. (B12)

Second, we introduce the concave function f (v) =
(∑

x
√
qxvx

)2, for v ∈ Prob (d) (see
Lemma B.1), and rewrite Eq. (B11) and Eq. (B12) as

F 2 (σ, φ) ≤ F 2 (σ̃, φ) =
∑
z

tzf
(
s(z)

)
, F 2 (s,q) = f

(∑
z

tzs(z)
)
. (B13)

Finally, the concavity of f and the multidimensional Jensen’s inequality [91] imply

F 2 (σ, φ) ≤ F 2 (σ̃, φ) =
∑
z

tzf
(
s(z)

)
≤ f

(∑
z

tzs(z)
)

= F 2 (s,q) , (B14)
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which is equivalent to P (σ, φ) ≥ P (s,q). So far, we have shown that for every σ = M(ψ),
with M ∈ LOCC, there exists an s(M(ψ)) ∈ Prob↓(d) such that s(M(ψ)) ≻ p and P (σ, φ) ≥
P (s(M(ψ)),q), thus

P (ψ → φ) = inf
M∈LOCC

P (M (ψ) , φ)

≥ inf
M∈LOCC

P
(
s(M(ψ)),q

)
≥ min

r≻p
P (r,q)

= P⋆ (ψ → φ) .

(B15)

Eq. (B9) and Eq. (B15) imply that P (ψ → φ) = P⋆ (ψ → φ), and this concludes the
proof.

C The Star Conversion Distance
In this section, we discuss properties of the star conversion distance based on the trace
distance and provide proofs omitted in the main text. We begin by proving that the trace
star conversion distance is topologically equivalent to the standard conversion distance
defined via the trace distance.

Lemma 3. Let ψ, φ ∈ PURE(AB). Then
1
2 [T⋆(ψ → φ)]2 ≤ T (ψ → φ) ≤

√
2T⋆(ψ → φ). (C1)

Proof. Using Eq. (B3) and Theorem 2, we obtain

T (ψ → φ) = inf
N ∈LOCC

T (N (ψ), φ)

≤ inf
N ∈LOCC

P (N (ψ), φ) = P (ψ → φ) = P⋆(ψ → φ) = min
r≻p

P (r,q)

≤ min
r≻p

√
2T (r,q) =

√
2T⋆(ψ → φ),

(C2)

where T (p,q) := T (diag(p), diag(q)). Analogously,

T⋆(ψ → φ) = min
r≻p

T (r,q)

≤ min
r≻p

P (r,q) = P⋆(ψ → φ) = P (ψ → φ) = inf
N ∈LOCC

P (N (ψ), φ)

≤ inf
N ∈LOCC

√
2T (N (ψ), φ) =

√
2T (ψ → φ).

(C3)

This proves that T⋆ (ψ → φ) is topologically equivalent to T (ψ → φ).
In the following, we provide the proof of Theorem 4 of the main text, which we restate

below for readability. In other words, we derive a closed formula for T⋆ (ψ → φ) based on
the Schmidt coefficients p,q ∈ Prob↓(d) of ψ and φ, respectively.

Theorem 4. Let ψ, φ ∈ PURE(AB) and let p, q ∈ Prob↓(|A|) be their corresponding
Schmidt coefficients. Then,

T⋆(ψ → φ) = max
k∈[SR(ψ)]

{
∥p∥(k) − ∥q∥(k)

}
. (C4)

If ξ ∈ PURE(AB) is separable and ψ, φ are not, then

T⋆(ψ → φ) < T⋆(ξ → φ). (C5)
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Proof. Let ε ∈ [0, 1] and Bε
q =

{
q′ : 1

2 ∥q − q′∥1 ≤ ε
}

. As shown in Ref. [73], there exist
probability vectors q̄(ε) ∈ Bε

q called steepest ε-approximations of q such that q̄(ε) ≻ q′

for all q′ ∈ Bε
q. Moreover, these steepest ε-approximations can be constructed explicitly:

If 1
2 ∥q − e1∥1 ≤ ε, then q̄(ε) = e1, otherwise let kε ∈ [d] be the index satisfying

kε∑
x=1

qx ≤ 1 − ε and
kε+1∑
x=1

qx > 1 − ε. (C6)

The components of q̄(ε) are then given by

q̄(ε)
x =


q1 + ε if x = 1,
qx if x ∈ { 2, . . . , kε } ,
1 − ε−

∑kε
x=1 qx if x = kε + 1,

0 otherwise.

(C7)

We now show that

min
r≻p

{ 1
2 ∥q − r∥1

}
= min

{
ε ∈ [0, 1] : q̄(ε) ≻ p

}
. (C8)

First, we notice that if r⋆ is an optimizer of minr≻p
{

1
2 ∥q − r∥1

}
and ε̃ = 1

2 ∥q − r⋆∥1,
then r⋆ ∈ Bε̃

q and therefore q̄(ε̃) ≻ r⋆. By transitivity, we also have q̄(ε̃) ≻ p, which
implies that

min
{
ε ∈ [0, 1] : q̄(ε) ≻ p

}
≤ ε̃ = min

r≻p

{ 1
2 ∥q − r∥1

}
. (C9)

For the reverse inequality, let ε⋆ be the optimizer of min
{
ε ∈ [0, 1] : q̄(ε) ≻ p

}
. By defi-

nition, q̄(ε⋆) ≻ p and 1
2

∥∥∥q − q̄(ε⋆)
∥∥∥

1
≤ ε⋆, thus

min
r≻p

{ 1
2 ∥q − r∥1

}
≤ ε⋆ = min

{
ε ∈ [0, 1] : q̄(ε) ≻ p

}
. (C10)

This shows that

T⋆(ψ → φ) = min
r∈Prob↓(d)

{ 1
2 ∥q − r∥1 : r ≻ p

}
= min

{
ε ∈ [0, 1] : q̄(ε) ≻ p

}
. (C11)

We observe that
∥∥∥q̄(ε)

∥∥∥
(k)

= min
{

1, ∥q∥(k) + ε
}

, thus the condition q̄ε ≻ p is equiv-
alent to

∥p∥(k) ≤ min
{

1, ∥q∥(k) + ε
}
, ∀k ∈ [d]. (C12)

This expression is further simplified by noticing that p is a probability vector, and therefore
∥p∥(k) ≤ 1 for all k ∈ [d]. Consequently,

q̄ε ≻ p ⇔ ∥p∥(k) ≤ ∥q∥(k) + ε, ∀k ∈ [d] ⇔ max
k∈[d]

{
∥p∥(k) − ∥q∥(k)

}
≤ ε. (C13)

In combination with the minimization in Eq. (C11) follows that

T⋆(ψ → φ) = max
k∈[d]

{
∥p∥(k) − ∥q∥(k)

}
. (C14)
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To conclude the proof of the first part of the theorem, we observe that for k ≥ SR(ψAB),
∥p∥(k) = 1 and ∥q∥(k) is non-decreasing with k, thus we can restrict the maximization to
k ≤ SR(ψAB).

For the second part, we notice that according to Eq. (C11),

T⋆(ξ → φ) = min
r∈Prob↓(d)

{ 1
2 ∥q − r∥1 : r ≻ e1

}
= 1

2 ∥q − e1∥1 = 1 − q1. (C15)

Furthermore, from e1 ≻ p and the transitivity of the majorization-relation, it follows that

T⋆(ψ → φ) = min
r∈Prob↓(d)

{ 1
2 ∥q − r∥1 : r ≻ p

}
≤ min

r∈Prob↓(d)

{ 1
2 ∥q − r∥1 : r ≻ e1

}
= T⋆(ξ → φ).

(C16)

To rule out equality, suppose that T⋆(ψ → φ) = maxk∈[d]
{

∥p∥(k) − ∥q∥(k)

}
= 1 − q1,

and denote with k⋆ an index that achieves this maximum. Then

∥p∥(k⋆) = 1 + ∥q∥(k⋆) − q1. (C17)

From this expression follows that ∥p∥(k⋆) ≤ 1 only if either q = e1 or if k⋆ = 1, and
therefore p = e1. These conditions are in contrast with the assumption that ψ and φ are
not separable. As a consequence, equality in Eq. (C16) is unachievable, which proves the
second part of the theorem.

Next, we show that the star conversion distance satisfies a triangle inequality. Let ψ,
φ, and χ ∈ PURE(AB) and let p, q, and r be their Schmidt coefficients. With the help
of Eq. (C14), this implies that

T⋆(ψ → χ) = max
n∈[d]

(∥p∥(n) − ∥r∥(n))

= max
n∈[d]

(∥p∥(n) − ∥q∥(n) + ∥q∥(n) − ∥r∥(n))

≤ max
n∈[d]

(∥p∥(n) − ∥q∥(n)) + max
n∈[d]

(∥q∥(n) − ∥r∥(n))

= T⋆(ψ → φ) + T⋆(φ → χ).

(C18)

Remark. The star conversion distance T⋆(ψ → φ) was so far only defined for pure
bipartite states belonging to the same Hilbert space. This restriction is easily lifted by
noting that one can always add separable auxiliary states such that the Hilbert spaces
(or dimensions) match. This can be done in multiple ways: Let ψ ∈ PURE(AB), φ ∈
PURE(A′B′), and let d = |A| = |B|, d′ = |A′| = |B′|. Then

T⋆(ψAB → φA′B′) ≡ T⋆(ψAB ⊗ |11⟩⟨11|A′B′ → |11⟩⟨11|AB ⊗ φA′B′). (C19)

Since in fact we are only interested in the dimension of systems and their spatial separation,
a more compact equivalent notation that we will use later can be defined as follows: Denote
with m, m′ > 0 the smallest integers such that md = m′d′, and with Am, Bm, Am′ , Bm′

Hilbert spaces of corresponding dimensions. The conversion distance T⋆(ψAB → φA′B′) is
then

T⋆(ψAB → φA′B′) ≡ T⋆(ψAB ⊗ |11⟩⟨11|AmBm → φA′B′ ⊗ |11⟩⟨11|Am′Bm′ ). (C20)
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D Universal Embezzling Families
In the main text, we provided the following definition of universal embezzling families,
which we repeat here for readability.

Definition 5. A family of pure bipartite states { χn }n∈N is called a universal embezzling
family if limn→∞ T (χn → χn ⊗ σ) = 0 for every bipartite finite dimensional state σ.

Thanks to the triangle inequality for the star conversion distance proven in Eq. (C18),
a family of states { χn }n∈N is an embezzling family if and only if it can embezzle the state
Φ2, as already shown in Ref [33, Lemma 2] for the case of embezzling with LO.

Lemma D.1 (cf. Ref. [33, Lemma 2 (LO)]). Let { χn }n∈N be a family of pure bipartite
states. The following three statements are equivalent

1. { χn }n∈N is a universal embezzling family.

2. limn→∞ T⋆(χn → χn ⊗ Φ2) = 0.

3. limn→∞ T⋆(χn → χn ⊗ Φm) = 0 for every m ≥ 2.

Proof. Clearly 2. and 3. follow from 1. due to the definition of universal embezzling
families and the topological equivalence of T and T⋆. Moreover, 3. follows from 2. because
Φ⊗⌈log2 m⌉

2
LOCC−−−−→ Φm, and therefore

T⋆(χn → χn ⊗ Φm)

≤ T⋆(χn → χn ⊗ Φ⊗⌈log2 m⌉
2 )

≤ T⋆(χn → χn ⊗ Φ⊗⌈log2 m⌉−1
2 ) + T⋆(χn ⊗ Φ⊗⌈log2 m⌉−1

2 → χn ⊗ Φ⊗⌈log2 m⌉
2 )

≤ T⋆(χn → χn ⊗ Φ2) + T⋆(χn ⊗ Φ2 → χn ⊗ Φ⊗2
2 ) + . . .

+ T⋆(χn ⊗ Φ⊗⌈log2 m⌉−1
2 → χn ⊗ Φ⊗⌈log2 m⌉

2 )
≤ ⌈log2m⌉T⋆(χn → χn ⊗ Φ2).

(D1)

By taking the limit n → ∞ on both sides we obtain the desired result. To conclude, we
note that 3. implies 1., since for all σAB, Φ|A|

LOCC−−−−→ σAB.

Next, we derive a formula for the conversion distance T⋆(χ → χ⊗ Φm) using Eq. (C14)
and Eq. (C20).

Lemma D.2. Let p ∈ Prob↓(d) be the Schmidt coefficients of χ. Then

T⋆(χ → χ⊗ Φm) = max
k∈[SR(χ)]

{
∥p∥(k) − ∥p∥(ak) − bk

m
pak+1

}
, (D2)

where ak = ⌊k/m⌋, ⌊·⌋ denotes the floor, and bk = k − akm.

Proof. The Schmidt coefficients of the input and target state are

p ⊗ e1 = (p1, . . . , pd, 0, . . . , 0︸ ︷︷ ︸
d·(m−1) times

),

p ⊗ u(m) = 1
m

(p1, . . . , p1︸ ︷︷ ︸
m times

, . . . , pd, . . . , pd︸ ︷︷ ︸
m times

),
(D3)
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where u(m) = (1/m, . . . , 1/m). It is straightforward to see that

∥p ⊗ e1∥(k) =
{

∥p∥(k) if k ∈ [d],
1 if d < k ≤ d ·m,

(D4)

and by writing k = akm+ bk, where ak = ⌊k/m⌋,

∥∥∥p ⊗ u(m)
∥∥∥

(k)
=

ak∑
x=1

px + bk
pak+1
m

= ∥p∥(ak) + bk
pak+1
m

. (D5)

Using the closed formula for the star conversion distance given in Theorem 4, we obtain

T⋆(χ → χ⊗ Φm) = max
k∈[SR(χ)]

{
∥p∥(k) − ∥p∥(ak) − bk

m
p

(n)
ak+1

}
. (D6)

A simplified version of this expression can be used to characterize embezzling families.

Theorem 6. A family of pure bipartite states { χn }n∈N with corresponding Schmidt co-
efficients

{
p(n)

}
n∈N

is a universal embezzling family if and only if

lim
n→∞

max
l∈[An]

{ ∥∥∥p(n)
∥∥∥

(2l−1)
−
∥∥∥p(n)

∥∥∥
(l−1)

}
= 0, (D7)

where An = ⌈SR(χn)/2⌉.

Proof. Due to Lemma D.1 and Eq. (D2), { χn }n∈N is a universal embezzling family if and
only if

0 = lim
n→∞

T⋆(χn → χn ⊗ Φ2) = lim
n→∞

max
k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
2 p

(n)
ak+1

}
, (D8)

where ak = ⌊k/2⌋ and k = 2ak+bk. First, we prove the necessary condition. Let { χn }n∈N
be a universal embezzling family. We observe that

max
k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
2 p

(n)
ak+1

}
≥
∥∥∥p(n)

∥∥∥
(1)

−
∥∥∥p(n)

∥∥∥
(a1)

− b1
2 p

(n)
a1+1

= p
(n)
1 − 0 − 1

2p
(n)
1 > 0.

(D9)

Taking the limit for n → ∞ in the expression above, we obtain limn→∞ p
(n)
1 = 0. Since

p
(n)
1 is the largest Schmidt coefficient, p(n)

ak+1 converges to zero too. Since 0 ≤ bk
2 ≤ 1

2 ,

lim
n→∞

bk
2 p

(n)
ak+1 = 0 (D10)

and thus
0 = lim

n→∞
max

k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
2 p

(n)
ak+1

}
= lim

n→∞
max

k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

}
≥ lim

n→∞
max

l∈[⌈SR(χn)/2⌉]

{ ∥∥∥p(n)
∥∥∥

(2l−1)
−
∥∥∥p(n)

∥∥∥
(l−1)

}
≥ 0.

(D11)
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For the sufficient condition, we observe that

0 = lim
n→∞

max
l∈[An]

{ ∥∥∥p(n)
∥∥∥

(2l−1)
−
∥∥∥p(n)

∥∥∥
(l−1)

}
≥ lim

n→∞
p

(n)
1 , (D12)

which implies that limn→∞ p
(n)
1 = 0. Furthermore,

lim
n→∞

T⋆(χn → χn ⊗ Φ2) = lim
n→∞

max
k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
2 p

(n)
ak+1

}
≤ lim

n→∞
max

k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

} (D13)

At this point, we have a closer look at

max
k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

}
. (D14)

If k is even, then ak = k/2 = ak+1, and thus∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

≤
∥∥∥p(n)

∥∥∥
(k+1)

−
∥∥∥p(n)

∥∥∥
(ak+1)

(D15)

If SR(χn) is odd, we can thus without loss of generality restrict the maximization to run
over odd k ∈ [SR(χn)]. If SR(χn) is even, we must additionally consider k = SR(χn).
Assume that this is the case: It then holds that∣∣∣∣∣∥∥∥p(n)

∥∥∥
(SR(χn))

−
∥∥∥p(n)

∥∥∥
(SR(χn)/2)

−
(∥∥∥p(n)

∥∥∥
(SR(χn)−1)

−
∥∥∥p(n)

∥∥∥(SR(χn)
2 −1

))∣∣∣∣∣
=
∣∣∣p(n)

SR(χn) − p
(n)
SR(χn)/2

∣∣∣
≤ p

(n)
1 ,

(D16)

which vanishes in the limit n → ∞. As a consequence,

lim
n→∞

T⋆(χn → χn ⊗ Φ2) ≤ lim
n→∞

max
k∈[SR(χn)]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

}
= lim

n→∞
max

k∈[SR(χn)],k odd

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

}
= lim

n→∞
max

l∈⌈SR(χn)/2⌉

{ ∥∥∥p(n)
∥∥∥

(2l−1)
−
∥∥∥p(n)

∥∥∥
(l−1)

}
= 0.

(D17)

Eq. (D17) shows that { χn }n∈N is an embezzling family and concludes the proof.

An important and easy to check necessary condition for a universal embezzling family
is given in the following Corollary.

Corollary 7 (cf. Ref. [33, Lemma 3 (LO)]). If a family of pure bipartite states { χn }n∈N
is a universal embezzling family, then limn→∞ p

(n)
1 = 0, where p(n) ∈ Prob↓(dn) are the

Schmidt coefficients of χn.
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E Regular Embezzling Families of States
Often, families of states are defined in terms of a positive, monotonic, and continuous
function. This motivates the following definition (compare to Ref. [33]).

Definition E.1. A family of states { χn }n∈N is a regular family if there exists a monotonic
function f : N → (0,∞) such that

|χn⟩ = 1√
Fn

n∑
x=1

√
f(x) |xx⟩ for all n ∈ N, (E1)

where Fn =
∑n
x=1 f(x).

Remark. If { χn }n∈N is a regular family, then there exists a sequence { nj }j∈N such that

the family
{
χnj

}
j∈N

is a universal embezzling family if and only if lim infn→∞ T⋆(χn →

χn ⊗ Φm) = 0. However, according to our definition, the family
{
χnj

}
j∈N

is then no
longer regular, unless nj = j for all j ∈ N.

For the following proofs, it is beneficial to extend f to a monotonic continuous function
on [1,∞). This can often be done trivially by simply extending the domain of f . An
example is the van Dam and Hayden family where f(x) = x−1. Otherwise, we can extend
f by connecting two consecutive points with straight lines. If the function f is multiplied
by a constant factor, this does not change the corresponding family of states. Therefore,
from now on we assume for simplicity that f(1) = 1.

Let { χn }n∈N be a regular family of states and let f be the function associated to it.
We define the non-increasing functions fn, n ∈ N, by

fn(x) =

f(x) if f is non-increasing,
f(n+1−x)

f(n) if f is non-decreasing.
(E2)

By our extension of f , fn is also naturally extended to a continuous function g(x, y) such
that g(x, n) = fn(x) via the definition

g(x, y) =

f(x) if f is non-increasing,
f(y+1−x)

f(y) if f is non-decreasing.
(E3)

The (by definition non-increasing) Schmidt coefficients of χn are therefore given by

p(n)
x = fn(x)

Fn
. (E4)

Since p(n)
1 = 1

Fn
, we can restate Corollary 7 for regular families.

Corollary E.2 (cf. Ref. [33, Lemma 3 (LO)]). If { χn }n∈N is a regular universal embez-
zling family, then limn→∞ Fn = +∞, where Fn is defined in Definition E.1.

In the following proposition, we present bounds on the limit of the conversion distance
T⋆(χn → χn ⊗ Φm) in terms of the function g(x, y) introduced in Eq. (E3), which will be
of use later.
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Proposition E.3. Let { χn }n∈N be a regular family of states, f be the function associated
to it, and g be defined as in Eq. (E3). If limn→∞ Fn = ∞, then

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) ≥ lim inf
y→∞

max1≤a≤y/m {
∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx , (E5)

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) ≤ lim sup
y→∞

max1≤a≤y/m {
∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx . (E6)

If limy→∞
max1≤a≤y/m{

∫ am

a
g(x,y) dx }∫ y

1 g(x,y) dx
exists, this implies that

lim
n→∞

T⋆(χn → χn ⊗ Φm) = lim
y→∞

max1≤a≤y/m {
∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx . (E7)

Proof. For better readability, we divide the proof into steps and use the notation G(x, y) =∫ x
1 g(t, y) dt.

Step 1: Starting from Eq. (D2), we find

lim inf
n→∞

T⋆(χn → χn ⊗ Φm)

= lim inf
n→∞

max
k∈[n]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
m
p

(n)
ak+1

}

= lim inf
n→∞

max
k∈[n]

∥∥∥p(n)
∥∥∥

(akm)
+

k∑
x=akm+1

p(n)
x −

∥∥∥p(n)
∥∥∥

(ak)
− bk
m
p

(n)
ak+1


= lim inf

n→∞
max
k∈[n]

{∥∥∥p(n)
∥∥∥

(akm)
−
∥∥∥p(n)

∥∥∥
(ak)

+
∑akm+bk
x=akm+1 fn(x) − bk

mfn(ak + 1)
Fn

}
(E8)

Now we observe that the last contribution in the expression above vanishes because by
construction fn(x) ≤ 1 and

0 ≤
∑akm+bk
x=akm+1 fn(x)

Fn
≤ m

Fn
,

0 ≤
bk
mfn(ak + 1)

Fn
≤ 1
Fn
.

(E9)

Moreover, by assumption, the right-hand sides converge to zero in the limit n → ∞, and
this ensures that the limit inferior is additive. As a result,

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) = lim inf
n→∞

max
a∈{ 0,...,⌊n/m⌋ }

{ ∥∥∥p(n)
∥∥∥

(am)
−
∥∥∥p(n)

∥∥∥
(a)

}
= lim inf

n→∞
max

a∈[⌊n/m⌋]

{ ∥∥∥p(n)
∥∥∥

(am)
−
∥∥∥p(n)

∥∥∥
(a)

}
,

(E10)

where we used that
∥∥∥p(n)

∥∥∥
(0)

= 0.
Step 2: We start with finding bounds for

∑n
x=1 fn(x) −

∫ n
1 fn(x) dx. To this end we

observe that since fn(x) is by construction non-increasing,∫ n

1
fn(x) dx ≤

∫ n

1
fn(x) dx+ fn(n) ≤

n∑
x=1

fn(x) ≤ fn(1) +
∫ n

1
fn(x) dx. (E11)
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By subtracting
∫ n

1 fn(x) dx from all terms, the desired bounds follow:

0 ≤
n∑
x=1

fn(x) −
∫ n

1
fn(x) dx ≤ fn(1) = 1. (E12)

Dividing by Fn =
∑n
x=1 fn(x) and taking the limit n → ∞, we obtain limn→∞ 1 −∫ n

1 fn(x) dx∑n

x=1 fn(x) = 0. Since fn(x) = g(x, n), the limit can be rewritten as limn→∞
G(n,n)
Fn

= 1.
Step 3: In this step we want to show that

lim inf
n→∞

max
a∈[⌊n/m⌋]

{ ∥∥∥p(n)
∥∥∥

(am)
−
∥∥∥p(n)

∥∥∥
(a)

}
= lim inf

n→∞

maxa∈[⌊n/m⌋]
{∑am

x=a+1 fn(x)
}

Fn

= lim inf
n→∞

maxa∈[⌊n/m⌋]
{ ∫ am

a+1 fn(x) dx
}

∫ n
1 fn(x) dx .

(E13)

Analogously to the previous step, one can obtain the following bounds for
∑am

x=a+1 fn(x)
Fn

:∫ am
a+1 fn(x) dx

Fn
≤
∑am
x=a+1 fn(x)

Fn
≤

1 +
∫ am
a+1 fn(x) dx
Fn

, (E14)

and after taking the maximum over a ∈ [⌊n/m⌋] and the limit inferior the bounds become

lim inf
n→∞

maxa∈[⌊n/m⌋]
{ ∫ am

a+1 fn(x) dx
}

Fn

≤ lim inf
n→∞

maxa∈[⌊n/m⌋]
{∑am

x=a+1 fn(x)
}

Fn

≤ lim inf
n→∞

1 + maxa∈[⌊n/m⌋]
{ ∫ am

a+1 fn(x) dx
}

Fn
.

(E15)

We can rewrite the last expression as

lim inf
n→∞

 1
Fn

+
maxa∈[⌊n/m⌋]

{ ∫ am
a+1 fn(x) dx

}
Fn


= lim inf

n→∞

( 1
Fn

)
+ lim inf

n→∞

maxa∈[⌊n/m⌋]
{ ∫ am

a+1 fn(x) dx
}

Fn


= lim inf

n→∞

maxa∈[⌊n/m⌋]
{ ∫ am

a+1 fn(x) dx
}

Fn
.

(E16)

By combining Eq. (E15) with Eq. (E16), one obtains

lim inf
n→∞

maxa∈[⌊n/m⌋]
{∑am

x=a+1 fn(x)
}

Fn
= lim inf

n→∞

maxa∈[⌊n/m⌋]
{ ∫ am

a+1 fn(x) dx
}

Fn
. (E17)

This is equivalent to

lim inf
n→∞

max
a∈[⌊n/m⌋]

{ ∥∥∥p(n)
∥∥∥

(am)
−
∥∥∥p(n)

∥∥∥
(a)

}
= lim inf

n→∞

maxa∈[⌊n/m⌋] {G(am, n) −G(a+ 1, n) }
G(n, n) ,

(E18)
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where we replaced Fn with G(n, n), which we can do according to step 2.
Step 4: Let cn be the value that maximizes max1≤a≤n/m {G(am, n) −G(a+ 1, n) }

and let c′
n be the natural number satisfying c′

n ≤ cn < c′
n + 1. This implies

G(cnm,n) −G(cn + 1, n) =
∫ cnm

cn+1
g(t, n) dt

≤
∫ c′

nm

c′
n+1

g(t, n) dt+
∫ (c′

n+1)m

c′
nm

g(t, n) dt

≤
∫ c′

nm

c′
n+1

g(t, n) dt+m.

(E19)

Dividing by G(n, n), taking the limit inferior, and arguing as in the previous step, we
obtain

lim inf
n→∞

max1≤a≤n/m {G(am, n) −G(a+ 1, n) }
G(n, n)

= lim inf
n→∞

G(cnm,n) −G(cn + 1, n)
G(n, n)

≤ lim inf
n→∞

G(c′
nm,n) −G(c′

n + 1, n) +m

G(n, n)

= lim inf
n→∞

G(c′
nm,n) −G(c′

n + 1, n)
G(n, n)

≤ lim inf
n→∞

maxa∈[⌊n/m⌋] {G(am, n) −G(a+ 1, n) }
G(n, n) .

(E20)

The reverse inequality follows from the fact that we maximize over a larger set. This
proves that

lim inf
n→∞

maxa∈[⌊n/m⌋] {G(am, n) −G(a+ 1, n) }
G(n, n)

= lim inf
n→∞

max1≤a≤n/m {G(am, n) −G(a+ 1, n) }
G(n, n) .

(E21)

Step 5: Combining the results of the previous steps, and in particular Eq. (E10),
Eq. (E18), and Eq. (E21), we have proven that

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) = lim inf
n→∞

max1≤a≤n/m
{ ∫ am

a+1 g(x, n) dx
}

∫ n
1 g(x, n) dx . (E22)

In the above equation, we can replace
∫ am
a+1 g(x, y) dx with

∫ am
a g(x, y) dx because the

difference of the two integrals is finite and divided by a diverging term. Thus

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) = lim inf
n→∞

max1≤a≤n/m {
∫ am
a g(x, y) dx }∫ n

1 g(x, y) dx . (E23)

The expression inside the lim inf on the right-hand side of Eq. (E23) is a function of
n ∈ N \ { 1 } and we call it M(n),

M(n) =
max1≤a≤n/m {

∫ am
a g(x, n) dx }∫ n

1 g(x, n) dx . (E24)

We extend this function to real numbers y > 1 as follows:

M(y) =
max1≤a≤y/m {

∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx . (E25)
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Since the natural numbers are a subset of the real numbers,

lim inf
n→∞

M(n) ≥ lim inf
y→∞

M(y), (E26)

which proves Eq. (E5). Furthermore, Steps 1-4 can be repeated with exactly the same
arguments for the lim sup, and they imply

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) = lim sup
n→∞

M(n) ≤ lim sup
y→∞

M(y). (E27)

This proves Eq. (E6).
In the following, we assume that limy→∞M(y) exists. This implies

lim
y→∞

M(y) = lim inf
y→∞

M(y) = lim sup
y→∞

M(y). (E28)

From Eq. (E26), Eq. (E27), and Eq. (E28) we obtain

lim
y→∞

M(y) ≤ lim inf
n→∞

M(n) ≤ lim sup
n→∞

M(n) ≤ lim
y→∞

M(y). (E29)

Therefore, limn→∞M(n) exists and is equal to limy→∞M(y). From Eq. (E23) and
Eq. (E27) we derive

lim
n→∞

T⋆(χn → χn ⊗ Φm) = lim
n→∞

M(n) = lim
y→∞

M(y). (E30)

This proves Eq. (E7) and concludes the proof.

Corollary E.2 combined with Proposition E.3 leads to the following characterization of
embezzling families.

Corollary E.4. Let { χn }n∈N be a regular family of states, f be the function associated
to it, and g be defined as in Eq. (E3). If

lim
y→∞

max1≤a≤y/m {
∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx (E31)

exists, then the family of states { χn }n∈N is an universal embezzling family if and only if
limn→∞ Fn = ∞ and

lim
y→∞

max1≤a≤y/m {
∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx = 0. (E32)

In addition, thanks to Proposition E.3, the task of determining if a family of states is
a universal embezzling family is converted into an optimization problem. It is enough to
find the maximum of the differentiable function Gy(a) =

∫ am
a g(x, y) dx on 1 ≤ a ≤ y/m,

which is easily done with the help of its derivative

mg(am, y) − g(a, y), 1 ≤ a ≤ y/m. (E33)
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F Generalization of the van Dam and Hayden Family
The universal embezzling family { χn }n∈N introduced by van Dam and Hayden consists
of the states

|χn⟩ = 1√
Hn

n∑
x=1

√
x−1 |xx⟩ , (F1)

where Hn =
∑n
x=1 x

−1 is the n-th harmonic number. We generalize this family of states
as follows: For every α ∈ R we introduce the family

{
χ

(α)
n

}
n∈N

, where

∣∣∣χ(α)
n

〉
= 1√

H
(−α)
n

n∑
x=1

√
xα |xx⟩ (F2)

and H
(−α)
n =

∑n
x=1 x

α is the n-th generalized harmonic number. Note that the families
of states

{
χ

(α)
n

}
n∈N

are regular families of states, and the van Dam and Hayden family
is recovered for α = −1. The corresponding Schmidt coefficients, as per our convention
arranged in non-increasing order, are

p(n|α) =


1

H
(−α)
n

(1, 2α, . . . , nα) if α ≤ 0,
1

H
(−α)
n

(nα, . . . , 2α, 1) if α > 0.
(F3)

In the remaining part of this section, we show that the family of state
{
χ

(α)
n

}
n∈N

is a
universal embezzling family if and only if α = −1 and derive bounds on the star conversion
distance.

Case α < −1. For α < −1, limn→∞H
(−α)
n is finite, thus the regular family of states

{ χαn }n∈N is not a universal embezzling family (see Corollary E.2). The largest Schmidt
coefficient provides a lower bound on the star conversion distance: Using Eq. (C14), we
obtain

T⋆(χ(α)
n → χ(α)

n ⊗ Φm) = max
k∈[n]

{∥∥∥p(n|α)
∥∥∥

(k)
−
∥∥∥p(n|α)

∥∥∥
(ak)

− bk
m
p

(n|α)
ak+1

}
≥ p

(n|α)
1

(
1 − 1

m

)
= 1
H

(−α)
n

(
1 − 1

m

)
,

(F4)

where the inequality followed from choosing k = 1. By taking the limit, we obtain

lim inf
n→∞

T⋆(χ(α)
n → χ(α)

n ⊗ Φm) ≥ lim inf
n→∞

1
H

(−α)
n

(
1 − 1

m

)
= 1
ζ(−α)

(
1 − 1

m

)
, (F5)

where ζ(−α) =
∑∞
x=1 x

α is the Riemann Zeta function. To obtain an upper bound, we
observe that, since α < −1,

(a+1)m∑
x=a+1

xα ≤ (a+ 1)α +
∫ (a+1)m

a+1
xα dx = (a+ 1)α + (a+ 1)α+1

α+ 1
(
mα+1 − 1

)
. (F6)
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The right-hand side is decreasing in a, and thus

max
k∈[n]

{∥∥∥p(n|α)
∥∥∥

(k)
−
∥∥∥p(n|α)

∥∥∥
(ak)

− bk
m
p

(n|α)
ak+1

}

≤ 1
H

(−α)
n

max
k∈[n]


k∑

x=ak+1
xα


≤ 1
H

(−α)
n

max
a∈{0,...,⌊n/m⌋}


(a+1)m∑
x=a+1

xα


≤ 1
H

(−α)
n

max
a∈{0,...,⌊n/m⌋}

{
(a+ 1)α + (a+ 1)α+1

α+ 1
(
mα+1 − 1

) }

= 1
H

(−α)
n

(
1 + mα+1 − 1

α+ 1

)
.

(F7)

Taking the limit n → ∞, and considering that the conversion distance is by definition
smaller than one, we obtain

lim sup
n→∞

T⋆(χ(α)
n → χ(α)

n ⊗ Φm) ≤ min
{

1, 1
ζ(−α)

(
1 + mα+1 − 1

α+ 1

) }
. (F8)

Case α = −1. This is the van Dam and Hayden family. Analogously to the previous
case, we observe that

(a+1)m∑
x=a+1

x−1 ≤ (a+ 1)−1 +
∫ (a+1)m

a+1
x−1 dx = (a+ 1)−1 + lnm ≤ 1 + lnm. (F9)

Since H(1)
n = Hn diverges, by following the same steps, we have

lim
n→∞

T⋆(χ(−1)
n → χ(−1)

n ⊗ Φm) ≤ lim
n→∞

1 + lnm
Hn

= 0. (F10)

Thus, the limit for the conversion distance is zero as expected for the van Dam and Hayden
family.

Case −1 < α < 0. In this scenario H(−α)
n diverges when n → ∞, and we can use the

results of Section E. Here g(x, y) = xα, and the derivative with respect to a of the function∫ am
a g(x, y) dx is

mg(am, y) − g(a, y) = aα(mα+1 − 1), (F11)

which is positive in the domain 1 ≤ a ≤ y/m. This implies that the function
∫ am
a g(x, y) dx

is non-decreasing and the maximum

max
1≤a≤y/m

{ ∫ am

a
g(x, y) dx

}
(F12)

is obtained for a = y/m. Due to Proposition E.3,

lim
n→∞

T⋆(χ(α)
n → χ(α)

n ⊗ Φm) = lim
y→∞

∫ y
y/m x

α dx∫ y
1 x

α dx = 1 − 1
mα+1 . (F13)
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Case α = 0. Here we have

p(n)
x = 1

n
, (p(n) ⊗ u(m))x = 1

nm
. (F14)

We can compute the star conversion distance directly using Eq. (C14) and obtain

T⋆(χ(0)
n → χ(0)

n ⊗ Φm) = max
k∈[n]

{
k

n
− k

nm

}
= 1 − 1

m
. (F15)

Case α > 0. Also here H(−α)
n diverges for n → ∞ and we can use the results of Section E.

The function g(x, y) is defined as g(x, y) = (y+1−x)α/yα, because xα is increasing. From
this follows

mg(am, y) − g(a, y) ≥ 0 ⇔ m(y + 1 − am)α ≥ (y + 1 − a)α

⇔ a ≤
(y + 1)

(
m

1
α − 1

)
m1+ 1

α − 1
:= amax.

(F16)

Since amax increases linearly with y and amax ≤ y
m is equivalent to y ≥ m(m1/α−1)

m−1 , for
large enough y, the value amax belongs to the interval [1, y/m] and is a global maximum.
Plugging amax into Proposition E.3, we obtain

lim
n→∞

T⋆(χ(α)
n → χ(α)

n ⊗ Φm) = lim
y→∞

∫ amaxm
amax

(y+1−x)α

yα dx∫ y
1

(y+1−x)α

yα dx
= (m− 1)

(
m− 1

m1+ 1
α − 1

)α
. (F17)

This completes the study of regular families of states defined by f(x) = xα. The star
conversion distance vanishes only for α = −1, thus the only universal embezzling family
of this form is the one introduced by van Dam and Hayden. Furthermore, exact values
for the limit of the star conversion distance for α ≥ −1 and lower and upper bounds for
α < −1 were provided.

G Uniqueness of the van Dam and Hayden Embezzling Family
In this section, we provide further results on the uniqueness of the van Dam and Hayden
embezzling family. Given a regular family of states { χn }n∈N, the asymptotic behavior of
the function f associated to it is relevant to determine whether { χn }n∈N is a universal
embezzling family or not (e.g., see Corollary E.2). We thus use the notations little-ω
and little-o (see, e.g., Ref. [92]) to describe asymptotic relations between two functions
g, h : [1,∞) → (0,∞),

h ∈ ω(g) ⇔ lim
x→∞

h(x)
g(x) = +∞ , h ∈ o(g) ⇔ lim

x→∞
h(x)
g(x) = 0. (G1)

Before we state the results about the uniqueness of the van Dam and Hayden embezzling
family, we prove the following Lemma, which is a direct consequence of Theorem 2 in
Ref. [93], which we restate here to improve readability: Let µ be a measure on the real line
R, and let fi, gi (i = 1, 2) be four Borel-measurable functions: R → R such that f2 ≥ 0
and g2 ≥ 0, and

∫
|figj | dµ < ∞ (i, j = 1, 2). If f1/f2 and g1/g2 are monotonic in the same

direction, then ∫
f1g1 dµ

∫
f2g2 dµ ≥

∫
f1g2 dµ

∫
f2g1 dµ. (G2)
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Lemma G.1. Let f , g be continuous, positive functions on [a, b] such that f(x)/g(x) is
a non-decreasing function on [a, b]. Then, for every x1 such that a < x1 < b,∫ b

a
f(x) dx

∫ x1

a
g(x) dx ≥

∫ x1

a
f(x) dx

∫ b

a
g(x) dx. (G3)

Proof. Let h̃(x) = 1 and h(x) = χ[a,x1](x), where χS(x) is the characteristic function of
the set S. Furthermore, let

hk(x) =
{

1 if a ≤ x ≤ x1,

e−k(x−x1) if x1 < x ≤ b.
(G4)

The sequence of functions { hk }k∈N converges to h(x) and satisfies 0 ≤ hk(x) ≤ 1. Due
to the dominated convergence theorem (see, e.g., Ref. [94]), we have

lim
k→∞

∫ b

a
f(x)hk(x) =

∫ x1

a
f(x). (G5)

The same result holds for g.
Since both f(x)/g(x) and h̃(x)/hk(x) are non-decreasing, we can apply Theorem 2 of

Ref. [93] to find∫ b

a
f(x)h̃(x) dx

∫ b

a
g(x)hk(x) dx ≥

∫ b

a
f(x)hk(x) dx

∫ b

a
g(x)h̃(x) dx. (G6)

After taking the limit k → ∞ on both sides, we obtain∫ b

a
f(x) dx

∫ x1

a
g(x) dx ≥

∫ x1

a
f(x) dx

∫ b

a
g(x) dx, (G7)

which finishes the proof.

With this lemma at hand, we are ready to present the promised results concerning the
uniqueness of the van Dam and Hayden embezzling family.

Theorem G.2. Let f be a positive non-increasing function such that f(x)/xα is asymp-
totically monotonic for all α ∈ R and let { χn }n∈N be the regular family of states as-
sociated to it (see Definition E.1). Then { χn }n∈N is a universal embezzling family if
and only if f ∈ ω(x−1−ε) ∩ o(x−1+ε) ∀ε > 0 and

∑∞
x=1 f(x) = ∞. Furthermore, if

f /∈ ω(x−1−ε) ∩ o(x−1+ε) for at least one ε > 0, then
{
χnj

}
j∈N

, where { nj }j∈N is any
sequence of natural numbers, is not a universal embezzling family.

Proof. Before we start, we notice that if limj→∞ nj = J < ∞, then limj→∞ Fnj =∑J
x=1 f(x) < ∞, which implies that the family of states

{
χnj

}
j∈N

is not an embezzling
family (see Corollary E.2). In this proof we will thus assume, w.l.o.g., that limj→∞ nj = ∞.

Necessary condition — Let { χn }n∈N be a universal embezzling family with corre-
sponding function f satisfying the assumptions above. We already proved in Corollary E.2
that if { χn }n∈N is a universal embezzling family, then

∑∞
x=1 f(x) = +∞. To show the

remainder, let

R =
{
α ∈ R

∣∣∣∣ lim
x→∞

f(x)
xα

= 0
}
, L =

{
α ∈ R

∣∣∣∣ lim
x→∞

f(x)
xα

= +∞
}
. (G8)
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Since limx→∞ f(x)/xα = 0 for α > 0, we have that R ̸= ∅. Now we prove by contradiction
that also L ̸= ∅. Let us assume that L is empty. This implies that limx→∞ f(x)/xα =
lα < ∞ for all α. If there exists an α such that lα ̸= 0, then limx→∞ f(x)/xα−1 =
lα(limx→∞ x) = +∞. Thus, α − 1 ∈ L, and L ̸= ∅, leading to the desired contradic-
tion. If instead limx→∞ f(x)/xα = 0 for all α, then limx→∞ f(x)/x−2 = 0. This implies
that f(x)/x−2 converges monotonically to zero for large x, i.e., there exists an N such
that f(x) < x−2 for x > N . Thus,

∑∞
x=N f(x) <

∑∞
x=N x

−2 < ∞. According to Corol-
lary E.2, this contradicts the hypothesis that the family under consideration is universally
embezzling. We have therefore shown that L ̸= ∅ ≠ R.

The next step is to prove that inf R = supL. From the definition of R and L follows
that inf R ≥ supL. Let us assume that inf R > supL, i.e., that there exists an α ∈ R
such that supL < α < inf R. Since α /∈ L ∪ R, there exists a positive real number l such
that limx→∞ f(x)/xα = l. Now pick α1 such that supL < α1 < α < inf R. We observe
that limx→∞ f(x)/xα1 = l(limx→∞ xα/xα1) = +∞, thus α1 ∈ L. This is in contradiction
to the choice α1 > supL. We therefore showed that supL = inf R.

So far, we have shown that if { χn } is a universal embezzling family satisfying our
assumptions, then there exists a unique α such that f(x) ∈ o(xα+ε) ∩ ω(xα−ε) for every
ε > 0. What is left to show is that if α ̸= −1, then the family of states corresponding to f
cannot be universally embezzling. From the above discussion, we know that { α > 0 } ⊆ R,
thus we can focus on α ≤ 0 and split our discussion into two scenarios, α < −1 and
−1 < α ≤ 0.

If α < −1, then there exists an ε > 0 such that α + ε < −1. Since f ∈ o(xα+ε)
and f(x)/xα+ε converges monotonically to zero for large x, there exists an N such that
f(x) < xα+ε for x > N . This implies that

∑∞
x=N f(x) <

∑∞
x=N x

α+ε < ∞ and therefore∑∞
x=1 f(x) < ∞, which, according to Corollary E.2, contradicts the hypothesis that { χn }

is a universal embezzling family. Let { nj }j∈N be any sequence of natural number such
that limj→∞ nj = ∞. Then limj→∞

∑nj

x=1 f(x) =
∑∞
x=1 f(x) < ∞. This implies, again

due to Corollary E.2, that
{
χnj

}
j∈N

is not a universal embezzling family.
If −1 < α ≤ 0, then there exists an ε > 0 such that α − ε > −1. We notice that

f(x)/xα−ε diverges to infinity for large x, because f ∈ ω(xα−ε). This implies that there
exists an N such that f(x) ≥ xα−ε for x > N and therefore

∑∞
x=N f(x) ≥

∑∞
x=N x

α−ε =
∞, which allows us to use the results of Section E. Since f(x)/xα−ε is non-decreasing for
x > N , for all y such that y/m > N , we can use Lemma G.1 to obtain∫ y

N
f(x) dx

∫ y/m

N
xα−ε dx ≥

∫ y/m

N
f(x) dx

∫ y

N
xα−ε dx. (G9)

This implies that
(y/m)α−ε+1 −Nα−ε+1

(y)α−ε+1 −Nα−ε+1 ≥
∫ y/m
N f(x) dx∫ y
N f(x) dx . (G10)

Next we introduce δ := α − ε + 1 > 0 and take on both sides the limit inferior y → ∞,
leading to

1
mδ

= lim inf
y→∞

(y/m)α−ε+1 −Nα−ε+1

(y)α−ε+1 −Nα−ε+1

≥ lim inf
y→∞

∫ y/m
N f(x) dx∫ y
N f(x) dx

= lim inf
y→∞

∫ y/m
1 f(x) dx∫ y

1 f(x) dx ,

(G11)
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where in the last equality, we used that
∫N

1 f(x) dx is finite, whilst
∫∞
N f(x) dx diverges.

As last step, we observe that according to Proposition E.3,

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) ≥ lim inf
y→∞

max1≤a≤y/m {
∫ am
a f(x) dx }∫ y

1 f(x) dx

≥ lim inf
y→∞

∫ y
y/m f(x) dx∫ y

1 f(x) dx

≥ 1 − 1
mδ

> 0.

(G12)

Using the remark after Definition E.1, we obtain that for −1 < α ≤ 0, there are no
sequences { nj }j∈N such that

{
χnj

}
j∈N

is a universal embezzling family, contradicting the
hypothesis. Once we combine the results for α < −1 and −1 < α ≤ 0, we have that if { χn }
is a universal embezzling family satisfying our assumptions, f(x) ∈ o(x−1+ε)∩ω(x−1−ε) for
all ε > 0. We have also shown that if f /∈ o(x−1+ε) ∩ω(x−1−ε) for at least one ε > 0, then
there are no sequences { nj }j∈N such that the family

{
χnj

}
j∈N

is a universal embezzling
family. This concludes the first part of the proof.

Sufficient condition — Let f be a function satysfying our assumptions. Since f(x)/x−1

is asymptotically monotonic by assumption, limx→∞ f(x)/x−1 exists in [0,+∞]. A priori,
it can be either 0, 0 < l ∈ R, or +∞. If limx→∞ f(x)/x−1 = l > 0, then by definition of
the limit, for any l > ε̃ > 0 there exists an N such that

∣∣∣f(x)
x−1 − l

∣∣∣ < ε̃ for all x > N . This
is equivalent to (l − ε̃)x−1 < f(x) < (l + ε̃)x−1 for all x > N . Since

∑∞
x=N f(x) ≥ (l −

ε̃)
∑∞
x=N x

−1 = +∞, we can compute the star conversion distance using Proposition E.3,
and find

lim
n→∞

T⋆(χn → χn ⊗ Φm)

= lim
y→∞

max1≤a≤y/m {
∫ am
a f(x) dx }∫ y

1 f(x) dx

≤ lim
y→∞

max1≤a<N {
∫ am
a f(x) dx } + maxN≤a≤y/m {

∫ am
a f(x) dx }∫ y

1 f(x) dx

= lim
y→∞

maxN≤a≤y/m {
∫ am
a f(x) dx }∫ y

1 f(x) dx

≤ lim
y→∞

maxN≤a≤y/m {
∫ am
a f(x) dx }∫ y

N f(x) dx

≤ l + ε̃

l − ε̃
lim
y→∞

maxN≤a≤y/m
{ ∫ am

a x−1 dx
}∫ y

N x
−1 dx

= l + ε̃

l − ε̃
lim
y→∞

logm
log y − logN

= 0.

(G13)

Thus if limx→∞ f(x)/x−1 = l ̸= 0, then { χn } is a universal embezzling family.
Suppose now limx→∞ f(x)/x−1 = 0. Since f(x)/x−1 is non-increasing for large x,

there exists an Ñ such that f(x) < x−1 for all x > Ñ . For any fixed ε > 0, by hypothesis,
limx→∞ f(x)/x−1−ε = +∞. Furthermore, since by assumption

∫∞
1 f(x) dx = ∞, while∫∞

1 x−1−ε dx < ∞, there exists an Ñε, such that
∫ y

1 f(x) dx ≥
∫ y

1 x
−1−ε dx for y > Ñε.
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Let Nε = max
{
Ñ , Ñε

}
. Using again Proposition E.3 and performing the same steps as

in Eq. (G13), we obtain

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) ≤ lim sup
y→∞

maxNε≤a≤y/m {
∫ am
a f(x) dx }∫ y

1 f(x) dx

≤ lim sup
y→∞

maxNε≤a≤y/m
{ ∫ am

a x−1 dx
}∫ y

1 x
−1−ε dx

= logm lim
y→∞

ε

1 − y−ε

= ε logm.

(G14)

Since this is true for all ε > 0,

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) ≤ lim
ε→0

ε logm = 0. (G15)

This implies that limn→∞ T⋆(χn → χn ⊗ Φm) = 0, i.e., {χn} is a universal embezzling
family.

Let us now consider the case limx→∞ f(x)/x−1 = ∞. From this immediately follows
that

∑∞
x=1 f(x) = +∞, so we can use the results of Section E. Furthermore, there exists

an N such that f(x)/x−1 is non-decreasing for x ≥ N . We write f(x) = x−1h(x) and thus
h(x) is non-decreasing for x ≥ N . Computing the derivative of

∫ am
a f(x) dx for a ≥ N , we

find
d
∫ am
a f(x) dx

da = mf(am) − f(a) = h(am) − h(a)
a

≥ 0. (G16)

Thus, maxN≤a≤y/m
∫ am
a f(x) dx =

∫ y
y/m f(x) dx and, by following the same steps as in

Eq. (G13), we obtain

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) ≤ lim sup
y→∞

maxN≤a≤y/m {
∫ am
a f(x) dx }∫ y

1 f(x) dx

= lim sup
y→∞

∫ y
y/m f(x) dx∫ y

1 f(x) dx .

(G17)

Let us fix ε > 0. Since f(x)/x−1+ε is non-increasing for x > Nε by hypothesis, x−1+ε/f(x)
is non-decreasing for x > Nε. By applying Lemma G.1 (for y large enough), we obtain∫ y

Nε

x−1+ε dx
∫ y/m

Nε

f(x) dx ≥
∫ y/m

Nε

x−1+ε dx
∫ y

Nε

f(x) dx. (G18)

From this follows that ∫ y/m
Nε

f(x) dx∫ y
Nε
f(x) dx ≥ (y/m)ε −N ε

ε

yε −N ε
ε

. (G19)

Taking the lim sup on both sides, and adding the finite contributions
∫Nε

1 f(x) dx to the
diverging integrals

∫ y/m
Nε

f(x) dx and
∫ y
Nε
f(x) dx, we obtain

lim sup
y→∞

∫ y/m
1 f(x) dx∫ y

1 f(x) dx ≥ 1
mε

. (G20)

Combining Eq. (G17) and Eq. (G20) we get

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) ≤ 1 − lim sup
y→∞

∫ y/m
1 f(x) dx∫ y

1 f(x) dx ≤ 1 − 1
mε

. (G21)
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This is true for all ε > 0, thus taking the limit ε → 0 we obtain the desired result

lim sup
n→∞

T⋆(χn → χn ⊗ Φm) ≤ lim
ε→0

1 − 1
mε

= 0. (G22)

This concludes the proof of the sufficient condition.

The above result on the uniqueness of the van Dam and Hayden family can be expressed
as follows: Any regular family of states { χn }n∈N satisfying the conditions of Theorem G.2
is a universal embezzling family if and only if f , the function associated to { χn }n∈N, is
asymptotically close to x−1, the function associated to the van Dam and Hayden family,
where asymptotically close means f ∈ ω(x−1−ε) ∩ o(x−1+ε) for all ε > 0.

The assumption that f(x)/xα is asymptotically monotonic for every α ∈ R is crucial
for our proof and does not follow from the monotonicity of f . There are functions that are
non-increasing, but oscillate asymptotically when multiplied by powers of x. An example
is the function

f(x) = 1 + (1 + sin ln ln x) ln x
x

, (G23)

which is non-increasing, but xf(x) oscillates between 1 and ∞. Theorem G.2 does not
provide any information about families of states associated to such functions, and it cannot
be used to determine whether such families are universally embezzling or not.

Next, we prove two related propositions concerning regular families of states associated
to non-decreasing functions.

Proposition G.3. Let f be a positive non-decreasing function such that f(x)/xα is asymp-
totically non-increasing for at least one α > 0. Then the regular family of states { χn }n∈N
associated to f (see Definition E.1) is not a universal embezzling family. Furthermore,
there are no sequences { nj }j∈N such that

{
χnj

}
j∈N

is a universal embezzling family.

Proof. Since f(x) is non-decreasing and
∑∞
x=1 f(x) diverges, we can use Proposition E.3

and Lemma G.1, to obtain

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) ≥ lim inf
y→∞

max1≤a≤y/m {
∫ am
a g(x, y) dx }∫ y

1 g(x, y) dx

= lim inf
y→∞

max1≤a≤y/m
{ ∫ y−a+1

y−am+1 f(x) dx
}

∫ y
1 f(x) dx

≥ lim inf
y→∞

{ ∫ y(1−1/m)+1
1 f(x) dx

}
∫ y

1 f(x) dx

≥ lim inf
y→∞

{ ∫ y(1−1/m)+1
1 xα dx

}
∫ y

1 x
α dx

=
(

1 − 1
m

)α+1
.

(G24)

The last inequality is based on Lemma G.1 and is derived as in the previous cases. Using
the remark after Definition E.1, we obtain that { χn }n∈N is not a universal embezzling
family. Furthermore, there are no sequences { nj }j∈N such that

{
χnj

}
j∈N

is a universal
embezzling family.
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Proposition G.4. Let f be a positive non-decreasing function such that f(x)/ekx is
asymptotically non-decreasing for at least one k > 0. Then the regular family of states
{ χn }n∈N associated to f is not a universal embezzling family. Furthermore, there are no
sequences { nj }j∈N such that

{
χnj

}
j∈N

is a universal embezzling family.

Proof. From Eq. (D2) follows that

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) ≥
(

1 − 1
m

)
lim inf
n→∞

p
(n)
1

=
(

1 − 1
m

)
lim inf
n→∞

f(n)∑n
x=1 f(x)

=
(

1 − 1
m

)
lim inf
y→∞

f(y)∫ y
1 f(x) dx

≥
(

1 − 1
m

)
lim inf
y→∞

∫ y
y−1 f(x) dx∫ y
1 f(x) dx

≥
(

1 − 1
m

)
lim inf
y→∞

∫ y
y−1 e

kx dx∫ y
1 e

kx dx

=
(

1 − 1
m

)
(1 − e−k).

(G25)

Also here the last inequality is due to Lemma G.1 and the family of states is not a universal
embezzling family. Furthermore, there are no sequences { nj }j∈N such that

{
χnj

}
j∈N

is
a universal embezzling family.

H Asymptotically Regular Families
In the definition of universal embezzling families, Definition 5, and in all the results about
embezzlement, only the asymptotic behaviour of a family of states { χn }n∈N is relevant.
This motivates the following definition, which is a generalization of regular families.

Definition H.1. A family of states { χn }n∈N is called asymptotically regular if there
exists an asymptotically monotonic function f : N → (0,∞) such that

|χn⟩ = 1√
Fn

n∑
x=1

√
f(x) |xx⟩ for all n ∈ N, (H1)

where Fn =
∑n
x=1 f(x).

We next show that our results hold for asymptotically regular families too. To this
end, we start with the following theorem.

Theorem H.2. Let { χn }n∈N be an asymptotically regular family and let f be the function
associated to it (see Definition H.1). Then one can construct a function f̃ that satisfies

1. f̃ corresponds to a regular family { χ̃n }n∈N (see Definition E.1),

2. limx→∞ f̃(x)/f(x) = 1,

3. { χ̃n }n∈N is a universal embezzling family if and only if { χn }n∈N is a universal
embezzling family,
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4. { χ̃n }n∈N contains a universal embezzling subfamily if and only if { χn }n∈N contains
a universal embezzling subfamily.

Proof. Since f is by assumption asymptotically monotonic, limx→∞ f(x) exists in the
extended domain [0,∞]. We first study the case limx→∞ f(x) = l, with 0 < l ∈ R. In
this case, we choose f̃(x) = l, which corresponds to a regular family. Moreover, from
the definition of f̃ follows that limx→∞ f(x)/f̃(x) = 1. We also notice that for every
0 < ε < l, there exists an N such that l − ε < f(x) < l + ε for all x ≥ N . This implies
that

∑∞
x=1 f(x) ≥

∑∞
x=N f(x) ≥

∑∞
x=N (l − ε) = ∞. Similarly,

∑∞
x=1 f̃(x) =

∑∞
x=1 l = ∞.

Since limn→∞ F−1
n = limn→∞ F̃−1

n = 0, we obtain that limn→∞ p
(n)
1 = 0 (where p(n) are

the Schmidt coefficients of χn), and therefore, according to Eq. (D2),

lim inf
n→∞

T⋆(χn → χn ⊗ Φm) = lim inf
n→∞

max
k∈[n]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
m
p

(n)
ak+1

}

= lim inf
n→∞

max
k∈{N,...,n }


k∑

x=ak+1
p(n)
x − bk

m
p

(n)
ak+1


= lim inf

n→∞
max

k∈{N,...,n }


k∑

x=ak+1
p(n)
x

 ,
(H2)

where ak = ⌊k/m⌋ and bk = k − mak. The Schmidt coefficients are by definition non-
increasing, i.e., obtained by reordering { f(x)/Fn }x∈N. Since there are at most N natural
numbers x that do not satisfy the condition l − ε < f(x) < l + ε, there are at most
N Schmidt coefficients that do not satisfy l−ε

Fn
< p

(n)
x < l+ε

Fn
. We call the set of indices

corresponding to these Schmidt coefficients A (thus |A| ≤ N) and observe that for any
a, b ∈ {N, . . . , n } such that a ≤ b,

b∑
x=a

p(n)
x =

∑
x∈{ a,...,b }\A

p(n)
x +

∑
x∈{ a,...,b }∩A

p(n)
x

=
∑

x∈{ a,...,b }\A
p(n)
x +

∑
x∈{ a,...,b }∩A

l

Fn
+

∑
x∈{ a,...,b }∩A

(
p(n)
x − l

Fn

)
.

(H3)

This implies that

b∑
x=a

(l − ε)
Fn

+
∑

x∈{ a,...,b }∩A

(
p(n)
x − l

Fn

)
<

b∑
x=a

p(n)
x

<
b∑

x=a

(l + ε)
Fn

+
∑

x∈{ a,...,b }∩A

(
p(n)
x − l

Fn

)
,

(H4)

and therefore

lim inf
n→∞

max
k∈{N,...,n }


k∑

x=ak+1

l − ε

Fn

 ≤ lim inf
n→∞

max
k∈{N,...,n }


k∑

x=ak+1
p(n)
x


≤ lim inf

n→∞
max

k∈{N,...,n }


k∑

x=ak+1

l + ε

Fn

 ,
(H5)
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which implies

(l − ε) lim inf
n→∞

n− ⌊n/m⌋
Fn

≤ lim inf
n→∞

max
k∈{N,...,n }


k∑

x=ak+1
p(n)
x


≤ (l + ε) lim inf

n→∞
n− ⌊n/m⌋

Fn
.

(H6)

Observing that
∑N
x=1 f(x) + (l− ε)(n−N) < Fn <

∑N
x=1 f(x) + (l+ ε)(n−N), we obtain

l − ε

l + ε

(
1 − 1

m

)
≤ lim inf

n→∞
max

k∈{N,...,n }


k∑

x=ak+1
p(n)
x

 ≤ l + ε

l − ε

(
1 − 1

m

)
. (H7)

Since Eq. (H7) holds for every ε > 0, we conclude that

lim inf
n→∞

max
k∈{N,...,n }


k∑

x=ak+1
p(n)
x

 = 1 − 1
m
. (H8)

Inserting this result into Eq. (H2), we have

lim inf
x→∞

T⋆(χn → χn ⊗ Φm) = 1 − 1
m
. (H9)

The function f̃ is a rescaling of f(x) = x0, which we already studied in Section F. This
implies that the family { χ̃n }n∈N is equal to the family

{
χ

(0)
n

}
n∈N

and

lim inf
x→∞

T⋆(χ̃n → χ̃n ⊗ Φm) = lim inf
x→∞

T⋆(χ(0)
n → χ(0)

n ⊗ Φm)

= 1 − 1
m

= lim inf
x→∞

T⋆(χn → χn ⊗ Φm).

(H10)

This proves that neither f nor f̃ corresponds to families with universally embezzling
subfamilies (and are therefore also not universally embezzling themselves).

We consider now the case limx→∞ f(x) = 0, thus f is asymptotically non-increasing.
Let N be such that f is non-increasing on (N,∞) and let a = minx∈{ 1,...,N } f(x). Since
f is positive, a > 0. Let M > N be such that f(x) < a for every x ≥ M (such M exists
because limx→∞ f(x) = 0). In this case, we define f̃ as

f̃(x) =
{
f(M) if x ≤ M,

f(x) if x > M.
(H11)

Clearly, the family { χ̃n }n∈N associated to it is regular and limx→∞ f(x)/f̃(x) = 1. Fur-
thermore, the ordered Schmidt coefficients satisfy for all x ≥ M

p(n)
x = f(x)

Fn
= f̃(x)

Fn
= p̃(n)

x

F̃n
Fn
. (H12)

If Fn converges, F̃n converges too and by Corollary 7 neither { χn }n∈N nor { χ̃n }n∈N are
universal embezzling families (and do not contain universal embezzling subfamilies). If
instead Fn diverges, so does F̃n and

lim
n→∞

F̃n
Fn

= lim
n→∞

∑n
x=1 f̃(x)∑n
x=1 f(x) = lim

n→∞

∑n
x=M f̃(x)∑n
x=M f(x) = 1. (H13)
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Using Eq. (D2) and Eq. (H12), we obtain

lim inf
n→∞

T⋆(χn → χn ⊗ Φm)

= lim inf
n→∞

max
k∈[n]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
m
p

(n)
ak+1

}
= lim inf

n→∞
max

k∈{mM,...,n }

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
m
p

(n)
ak+1

}
= lim inf

n→∞
F̃n
Fn

max
k∈{mM,...,n }

{∥∥∥p̃(n)
∥∥∥

(k)
−
∥∥∥p̃(n)

∥∥∥
(ak)

− bk
m
p̃

(n)
ak+1

}
= lim inf

n→∞
max
k∈[n]

{∥∥∥p̃(n)
∥∥∥

(k)
−
∥∥∥p̃(n)

∥∥∥
(ak)

− bk
m
p̃

(n)
ak+1

}
= lim inf

n→∞
T⋆(χ̃n → χ̃n ⊗ Φm),

(H14)

where again ak = ⌊k/m⌋ and bk = k − mak. Also in this case, we therefore proved that
{ χn }n∈N is a universal embezzling family if and only if { χ̃n }n∈N is a universal embezzling
family (and the same holds for subfamilies).

Lastly, we consider the case when limx→∞ f(x) = ∞, and f is asymptotically non-
decreasing. Analogously to the previous case, let N be such that f is non-decreasing for
x ∈ (N,∞). Let a be the maximum of f(x) for x ∈ { 1, . . . , N }, and let M > N be such
that f(x) > a for x ≥ M . Also here, we define f̃ via

f̃ =
{
f(M) if x ≤ M,

f(x) if x > M.
(H15)

The family of states { χ̃n }n∈N is regular, limx→∞ f̃(x)/f(x) = 1, and limx→∞ F̃n/Fn = 1.
The Schmidt coefficients associated to χn and χ̃n are related by

p(n)
x = f(n+ 1 − x)

Fn
= f̃(n+ 1 − x)

Fn
= p̃(n)

x

F̃n
Fn

∀x ≤ n−M. (H16)

Using Eq. (D2) again and the relation between Schmidt coefficients derived in Eq. (H16)
we obtain

lim inf
n→∞

T⋆(χn → χn ⊗ Φm)

= lim inf
n→∞

max
k∈[n]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
m
p

(n)
ak+1

}
= lim inf

n→∞
max

k∈[n−M ]

{∥∥∥p(n)
∥∥∥

(k)
−
∥∥∥p(n)

∥∥∥
(ak)

− bk
m
p

(n)
ak+1

}
= lim inf

n→∞
F̃n
Fn

max
k∈[n−M ]

{∥∥∥p̃(n)
∥∥∥

(k)
−
∥∥∥p̃(n)

∥∥∥
(ak)

− bk
m
p̃

(n)
ak+1

}
= lim inf

n→∞
max
k∈[n]

{∥∥∥p̃(n)
∥∥∥

(k)
−
∥∥∥p̃(n)

∥∥∥
(ak)

− bk
m
p̃

(n)
ak+1

}
= lim inf

n→∞
T⋆(χ̃n → χ̃n ⊗ Φm).

(H17)

This proves the theorem.

Thanks to Theorem H.2, Theorem G.2 also holds for asymptotically regular families.
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Corollary H.3. Let f be a positive asymptotically non-increasing function such that
f(x)/xα is asymptotically monotonic for all α ∈ R and let { χn }n∈N be the asymptotically
regular family of states associated to f (see Definition H.1). Then { χn }n∈N is a universal
embezzling family if and only if f ∈ ω(x−1−ε)∩o(x−1+ε) for all ε > 0 and

∑∞
x=1 f(x) = ∞.

Furthermore, if f /∈ ω(x−1−ε) ∩ o(x−1+ε) for at least one ε > 0, then
{
χnj

}
j∈N

, where
{ nj }j∈N is any sequence of natural numbers, is not a universal embezzling family.

Proof. Combine Theorem H.2 and Theorem G.2.

For the same reasons, Proposition G.3 and Proposition G.4 also hold for asymptotically
regular families.

Corollary H.4. Let f be a positive asymptotically non-decreasing function such that
f(x)/xα is asymptotically non-increasing for at least one α > 0. Then the asymptotically
regular family of states { χn }n∈N associated to f is not a universal embezzling family. Fur-
thermore, there are no sequences { nj }j∈N such that

{
χnj

}
j∈N

is a universal embezzling
family.

Corollary H.5. Let f be a positive asymptotically non-decreasing function such that
f(x)/ekx is asymptotically non-decreasing for at least one k > 0. Then the asymptot-
ically regular family of states { χn }n∈N associated with f is not a universal embezzling
family. Furthermore, there are no sequences { nj }j∈N such that

{
χnj

}
j∈N

is a universal
embezzling family.
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