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Mitigation and calibration schemes are central to maximize the computa-
tional reach of today’s Noisy Intermediate Scale Quantum (NISQ) hardware,
but these schemes are often specialized to exclusively address either coherent
or decoherent error sources. Quantifying the two types of errors hence con-
stitutes a desirable feature when it comes to benchmarking error suppression
tools. In this paper, we present a scalable and cycle-centric methodology
for obtaining a detailed estimate of the coherent contribution to the error
profile of a hard computing cycle. The protocol that we suggest is based
on Cycle Error Reconstruction (CER), also known as K-body Noise Recon-
struction (KNR). This protocol is similar to Cycle Benchmarking (CB) in
that it provides a cycle-centric diagnostic based on Pauli fidelity estimation
[1]. We introduce an additional hyper-parameter in CER by allowing the
hard cycles to be folded multiple times before being subject to Pauli twirling.
Performing CER for different values of our added hyper-parameter allows
estimating the coherent error contributions through a generalization of the
fidelity decay formula. We confirm the accuracy of our method through nu-
merical simulations on a quantum simulator, and perform proof-of-concept
experiments on three IBM chips, namely ibmq_guadalupe, ibmq_manila,
and ibmq_montreal. In all three experiments, we measure substantial co-
herent errors biased in Z.

1 Introduction
Today’s engineering advances in quantum computing hardware architectures allow ven-
dors to produce processors with a considerable number of qubits. Despite these im-
Patrick Dreher: Corresponding author: padreher@ncsu.edu
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pressive advances, the current technology does not yet enable large-scale fault-tolerant
quantum computing (FTQC) to be implemented. As a result, computations today and
into the intermediate future will be done on Noisy Intermediate-Scale Quantum (NISQ)
[2] platforms. Noise on these devices can result in both decoherent and coherent errors.
Suppressing noise on these hardware platforms and extending the coherence times will
rely on improvements in error mitigation protocols and error suppression methods.

Decoherent errors are created by the unwanted interactions between the qubits and
their external environment as well as by stochastic events. Typical decoherent processes
include amplitude-damping, phase-damping, and depolarization. Decoherent errors are
often partially suppressed by dynamical decoupling (DD) techniques [3–12]. Moreover,
many error mitigation schemes rely on the propagation laws of decoherent errors to
suppress their effect on computational outcomes [13–30].

Coherent errors are the result of unitary processes occurring in the closed system
formed by the qubits’ Hilbert space. They arise from several sources such as mis-
calibrated control parameters, external fields, and crosstalk (e.g. undesired internal
fields). They are usually suppressed through advanced calibration and pulse compensa-
tion methods [31–34]. Alternatively, coherent errors can be effectively transformed into
decoherent errors via Randomized Compiling (RC) [35, 36], and then mitigated with
tools aimed for decoherent errors [30].

Because the two types of errors have different natures, there are specific error sup-
pression tools aimed at suppressing only coherent errors, while others impact decoherent
errors either exclusively, or more efficiently. Given the fundamentally different nature
of coherent and decoherent errors and the likelihood that FTQC will not be available
in the intermediate future, it will be important to develop fast and accurate methods to
independently measure their impact on quantum computing outcomes. Developing such
capabilities can provide an essential means to test and compare the effect of different
error suppression and calibration tools.

There exist many different frameworks and protocols for characterizing quantum
computing processing errors. One approach focuses on characterizing specific infinitesi-
mal generators of motion from a Hamiltonian or Lindbladian viewpoint. While crucial,
such approaches don’t immediately connect with the diagnostics of integrated evolu-
tions such as quantum gates. Let’s define a quantum instruction as a set of one or few
qudit labels, together with a linear operation to apply over these. The operation can
be a gate, some measurement operation, or some state preparation. A cycle can be
defined as a set of instructions targeting disjoint sets of qubits, together with a sched-
ule. For example, a cycle could consist of a round of simultaneous CNOT gates over
the processor. Due to various physical effects such as crosstalk, parallel instructions
often substantially influence each other. This observation means that characterizing in-
structions in isolation can lead to misguided diagnostics. Indeed, a cycle error channel
depends on a non-obvious function of every instruction that is being applied, as well as
on the precise relative timing of those instructions.

As such, to better contextualize error profiles, we focus on a cycle-centric approach
to process characterization. Given the considerable number of parallelizable instruc-
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tions as well as the complexity of their joint error profile, a cycle-centric approach is
particularly relevant in the NISQ-era and beyond. A well-known cycle-centric error
diagnostic scheme is known as Gate Set Tomography (GST) [37–42]. GST provides
detailed information about both coherent and decoherent errors, but the diagnostic
information addresses non-randomized cycles.

In the current work, we instead focus on characterizing effective dressed cycles tied
to randomly compiled circuits. The idea is to provide detailed diagnostic information
that closely connects with the effective performance of circuits run under RC. One con-
venient aspect of effective dressed cycles is that they can be characterized via Pauli
infidelity estimation methods [43, 44]. In particular, the Cycle Benchmarking (CB)
[1] protocol features a valuable framework to characterize effective dressed cycles with
great precision. As such, more advanced error diagnostic tools, such as Cycle Error
Reconstruction (CER) [34, 45], repurposed the structure of CB circuits to gather de-
tailed error profiles attached to effective dressed cycles. Note that CER is also known
as k-body Noise Reconstruction (KNR) [46].

However, neither CB nor CER are initially designed to provide a budget for coherent
and decoherent contributions to the measured error rates. As such, we introduce a new
CB-structured method for separately measuring both the decoherent and main coherent
cycle errors based on CER data. To distinguish between decoherent and coherent errors,
we rely on their different propagation principles (linear vs quadratic). In the current
work, we focus on characterizing effective dressed cycles tied to randomly compiled
circuits.

The idea is to provide detailed diagnostic information that closely connects with
the effective performance of circuits run under RC. This technique can be as fine as
desired, depending on the number of marginal error probabilities that are included.
One important purpose of making the distinction between coherent and decoherent
errors (other than understanding the error budget in a more complete manner) is that
this can lead to calibration strategies such as knowledge-based dynamical decoupling
or compiled compensations of coherent errors into future cycles.

We acknowledge that both GST and our extended CER do provide a measurement
of the noise. However, CER considers effective dressed cycles which are slightly different
objects than deterministic cycles characterized in the GST method. Of course, one could
deduce the error maps of effective dressed cycles by combining various GST-obtained
error profiles, but the advantage of the extended CER is that it leverages the tailored
properties of the noise under RC to accelerate the characterization procedure.

In this paper we layout our work as follows. In Section 2, we summarize the main
principles describing the propagation of coherent and decoherent errors in repeated error
channels. In Section 3, we outline the background material necessary to understand a
CB-structured error characterization scheme known as CER [34, 45], and we introduce
our protocol extension to CER. We finish the section with a generalized decay model
that connects the output data of the scheme to the effective coherent contributions
to the error profile of the hard cycle. In Section 4, we further expand on the fitting
model related to our protocol. This section also provides numerical evidence that the
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error profile obtained from our suggested experiment matches the underlying error
model. In Section 5, we apply our extension to the CER protocol on three separate
IBM quantum computing hardware platforms and present the central results of this
research. As a proof of concept, we measure the effective coherent and decoherent error
rates marginalized on an ancilla during an entangling cycle. Fidelities of the errors
for various sequence lengths are calculated and compared to the results obtained from
running the circuit applying a proposed polynomial global fitting function. We show
through our implementations that the coherent error manifests primarily as Pauli Z
error on IBM platforms due to ZZ static coupling in transmon qubits. In Section 6, we
summarize our results and expand on their relevance regarding the benchmarking and
designing of error suppression tools for gate-based quantum computing architectures.
In addition, there are several supplemental sections that expand the discussion in the
main sections of the paper.

2 Theory - Coherent and decoherent error propagation
Coherent and decoherent quantum errors in a quantum computing circuit propagate
in intrinsically different ways. In this section, we explicitly demonstrate the error
propagation formula for the simple case of an x-fold error channel Ex.

Recent work has also analyzed the error propagation in quantum computers [47].
They have shown that the decoherent error increases linearly with circuit depth but
plateaus after some threshold circuit depth. Our work takes such an analysis into co-
herent error domain, and shows, both theoretically as well as through implementations
on IBM quantum processor, that repeated coherent error propagates quadratically to
the first order.

A quantum state can be described by a density matrix ρ, which is a positive semi-
definite, unit-trace matrix. This allows representing pure states (if and only if the rank
of ρ is 1) and a probabilistic mixture thereof. The evolution of a quantum mechanical
state ρ is often described by the von Neumann equation,

d

dt
ρ = −i[H, ρ] , (1)

where H is a Hermitian matrix referred to as the Hamiltonian. However, the von
Neumann equation only applies to the deterministic evolution of a closed system.

For open quantum systems, a more general evolution formula is given by the Lind-
blad master equation [48]:

d

dt
ρ =Λ[ρ]

:= − i[H, ρ] +
∑

j

(
LjρL†

j − 1
2(L†

jLjρ + ρL†
jLj)

)
, (2)

where Li are traceless matrices referred to as Lindblad operators or Lindblad jumps,
and where the linear operator Λ is referred to as the Lindbladian. A Lindlbadian is one
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of the general forms of Markovian and time-homogeneous master equations describing
the general non-unitary evolution of the density matrix ρ.

An error channel E can be represented as a linear operator acting on density matri-
ces. In this work, we consider error channels E which are close to the identity and that
are the result of a finite-time evolution of a time-independent Lindbladian:

E [ρ] =
∫ t=∆t

t=0
Λ[ρ]dt . (3)

For what follows, we pick ∆t = 1 without loss of generality, as it simply fixes the scales
of the matrices H and {Li}i appearing in the Lindbladian. We emphasize that although
the d × d matrices (d = 2n where n is the number of qubits) H and Lj appearing in
Eq. (2) do not depend on time, we don’t have to assume that the error channel E is
the result of a time-independent error process. The error process itself could involve
time-dependent features, but could be equivalent to an integral over a time-independent
evolution. Indeed, if the error process is weak (which implies that the generators of
motions can be time-averaged) then after the time-dependent equation is integrated,
the solution can be either exactly expressed or well approximated as the integral of a
time-independent process.

Starting from Eq. (3) we can construct a columned-vectorized picture (i.e. the d×d
density matrix ρ becomes a d2 × 1 vector col(ρ) obtained by stacking the columns of ρ)
and re-write the equation as

d

dt
col(ρ) = Λ col(ρ) , (4)

where the d2 × d2 matrix

Λ := −i(I ⊗ H − HT ⊗ I) +
∑

j

[
L∗

j ⊗ Lj − 1
2
(
I ⊗ L†

jLj + LT
j L∗

j ⊗ I
)]

(5)

is the matrix form of the Lindbladian. The solution of Eq. (4) is given by Eq. (6).

col(ρ(t)) = eΛ(t−t0)col(ρ(t0)) (6)

Therefore our error channel E can be expressed as

E = eΛ . (7)

In this context we are viewing Λ as the generator of the process matrix E . Viewing Λ
from this perspective, if all of the terms in Λ can be calculated, then effectively one
knows the error process matrix E .

To properly discuss the strength of specific terms appearing in the Lindbladian, let’s
fix an expansion basis and express the effective Hamiltonian H and Lindblad operators
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Lj as linear combinations Pauli operators:

H =:
∑

P ∈Pn

hP P , (8a)

Lj =:
∑

P ∈Pn

ℓj,P P , (8b)

where Pn denotes the n-qubit Pauli basis defined by the Kronecker products of the Pauli
matrices I, X, Y, Z. The coefficients obey hP ∈ R, ℓj,P ∈ C. In practice, the squared
magnitudes |hP |2 and |ℓj,P |2 are upper-bounded by the 2-qubit error rates because they
are ultimately tied to geometric near-local interactions.

In this work, we only consider errors induced by near-local physical interactions. To
provide a notion of locality, we have to consider the geometric features of a given device.
We will simply consider an interaction graph, where qubits can undergo controlled
entangling operations if the vertices are connected. Given a connectivity graph, we
constrain Lindblad and Hamiltonian operators to be at most geometrically k-local for
some small integer k, which means that the operators can act on connected subgraphs
of at most k qubits (note that the operators can act trivially on some of the qubits,
allowing for gaps). The accuracy of the upcoming Eq. (11) fails exponentially fast in
the size of the locality constraint k. However, given some array-like topology, if we
assume that errors stem from 1 or 2-body interactions in some rotating frame, then
an N-qubit subsystem (N ≤ n) should be affected by O(N) terms in the Lindbladian.
As a result (see Appendix A.2), the action of the error channel eΛ on a limited qubit
support can be well approximated through an early-truncated Taylor expansion.

To be more specific, first consider Pauli fidelities, defined for a generic channel E
acting on a n-qubit system as

fP (E) := Tr PE [P ]
2n

. (9)

We denote the infidelity as δfP (E) = 1 − fP (E). Given a Lindbladian Λ such that
E = eΛ, let’s further define the coherent and decoherent contributions to the infidelities
respectively as:

δf coh.
P := 2

∑
Q

QP =−P Q

|hQ|2 (10a)

δfdecoh.
P := 2

∑
j,Q

QP =−P Q

|ℓj,Q|2 (10b)

In this work, we approach the propagation of errors by studying the Pauli fidelities
associated with the repeated channel Ex = exΛ:

fP (Ex) = 1 − δf coh.
P x2 − δfdecoh.

P x

+ O
(

δfdecoh
P

(
δfdecoh

P +
√

δf coh
P

)
x2
)

+ O(x3) (11)
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Notice that both sums above are performed over the Paulis which anti-commute with
P , and the second sum is further performed over the Lindblad jumps’ indices j. In
Appendix A.2, we provide a proof of Eq. (11), and expand on the quadratic term in x.

If we Pauli-twirl the error E – and denote it as ERC to refer to randomized compiling
– we could sensibly characterize it in terms of Pauli error probabilities, since the twirled
error channel would become a probabilistic sum over Pauli errors:

ERC[ρ] =
∑

P ∈Pn

eP PρP † , (12)

where Pn is the n-qubit Pauli basis, and where {eP }P is a probability distribution
over Pauli errors P . We can translate between Pauli error probabilities eP and Pauli
fidelities fP by using the Walsh-Hadamard transform (see [49] as well as Eq. (60)).
We can define the coherent and decoherent contributions to the error probability eP

respectively as:

edecoh.
P :=

∑
j

|ℓj,P |2 (13a)

ecoh.
P := |hP |2 (13b)

Notice that by substituting the above in Eq. (10), we get

δf coh.
P = 2

∑
Q

QP =−P Q

ecoh.
Q (14a)

δfdecoh.
P = 2

∑
Q

QP =−P Q

edecoh.
Q (14b)

Just as in Eq. (11), error probabilities corresponding to a Pauli-twirled repeated channel
(Ex)RC closely follow a quadratic equation:

eP (Ex) ≃ x2 ecoh.
P + x edecoh.

P (15)
We elaborate on Eq. (15) in Appendix A.3. To a good approximation, coherent errors
first induce a purely quadratic error growth as opposed to the purely linear initial
growth characteristic of decoherent errors. This difference in propagation speed is the
key to differentiating the two error sources.

3 Learning the Error Profile Attached to a Cycle
In this section, we provide the background material necessary to understand a CB-
structured error characterization scheme known as Cycle Error Reconstruction (CER),
which is also known as k-body Noise Reconstruction (KNR). Once the basics of CER
are covered, we shall introduce our extension to the protocol which complements the
standard CER diagnostics with a measure of the coherent contribution to the error
profile of the hard cycle.
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3.1 Cycle Error Reconstruction (CER) Error Diagnostic Protocol
In quantum computing, there are typically hard and easy cycles, which usually consist
of parallel entangling gates and parallel single-qubit gates respectively. Hard cycles
dictate the circuit performance compared to easy cycles. A dressed cycle refers to a
composite cycle comprising a hard cycle followed (or preceded) by an easy cycle.

CER specifically provides error profiles attached to cycles relevant to circuits per-
formed under Randomized Compiling (RC), a well-known error suppression technique
[50–54]. To understand RC, consider a noisy application circuit composed of m sequen-
tial dressed cycles Ci interleaved with cycle-dependent error channels Ei,

C̃ = EmCm · · · E1C1 . (16)

RC replaces the above application circuit C̃ meant to be run Nshots times with nrand
randomly sampled equivalent circuits (over a structured distribution of circuits), each
to be run Nshots/nrand times. The effect of RC is to effectively replace each noisy dressed
cycle EiCi with what is referred to as an effective dressed cycle ERC

i Ci, which is similar
to EiCi. The difference here is that the generic error channel Ei is replaced with a Pauli
stochastic error channel ERC

i of the form

ERC
i [ρ] =

∑
P ∈Pn

eP,iPρP † , (17)

where Pn is the n-qubit Pauli basis, and where {eP,i}P is a probability distribution
over Pauli errors P corresponding with the ith cycle. The error distribution naturally
depends on the cycle Ci.

CER specifically learns information about the distribution {eP,i}P . To avoid scala-
bility limitations, CER doesn’t usually try to learn every probability value eP,i, because
there are 4n of them. Instead, it learns marginal error probabilities over constrained
unions of instruction labels. That is, if we let A be a union of instruction labels (e.g.
{1}∪{2, 3}), and let Ac be its complement over the architecture (e.g. {4, · · · , n}), then
the marginal probability of the error P (e.g. XXZ) over A is defined as

µA(P ) :=
∑
Q

eP over A and Q over Ac . (18)

CER is tomographically complete because learning all marginals is equivalent to
learning the probability distribution {eP,i}P . However, due to locality constraints in
realistic error models, poly(n) marginals are often sufficient to accurately reconstruct
the error profile of a given cycle. For instance, in a planar architecture, if we look at
the marginal error probabilities for all pairs of gates in a given cycle that are occur-
ring on two directly connected sets of qubits, we would only need to gather O(C · n)
error probabilities, where C denotes the average number of connections per qubit (in
a rectangular lattice, C = 4). If we want to further collect next-to-nearest neighbor
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error correlations, we would need O(C2 · n) error estimates. Keeping the same two
examples but for a fully connected architecture, the costs would instead be O(n2) and
O(n3) respectively. A more thorough discussion regarding marginal probabilities and
reduced error models in CER can be found in [34].

The marginal error probabilities associated with the stochastic channel ERC
i are re-

trieved from the Pauli fidelities, defined in Eq. (9). That is, given an effective cycle of
interest ERCC, the CER protocol involves the estimation of a set of various Pauli fideli-
ties, {fP (ERC)}P , and converts the cycle of interest into a marginal error distribution.
The Pauli fidelities are themselves extracted from circuit-level observables.

To be more explicit, let’s specify CER circuits with three parameters, namely a
set of commuting Paulis, S, which is dictated by a state preparation and measurement
(SPAM) strategy, a number of dressed cycle repetitions “m”, and a string “s” sampled
from a random variable X, which contains the information about the RC-randomized
dressings. The role of the three parameters can be visualized in Fig. 1 (set x = 1),
where the random string s dictates a choice of easy cycles. Each sampled CER circuit
C̃(S, m, s) yields a set of fidelity-like numbers {f circuit

P (m, s)}P ∈S associated with the set
S of commuting Pauli operators determined by the SPAM strategy. The expectation of
f circuit

P (m, s) over the strings s in X obeys a decay formula of the form:

Esf
circuit
P (m, s) = AP

(
fP (ERC)

)m
, (19)

where the constant AP depends on SPAM errors, and where ERC is the Pauli stochastic
error channel associated with the effective dressed cycle of interest. In practice, the LHS
of Eq. (19) is replaced by a sample mean, and the Pauli fidelities fP (ERC) are obtained
by gathering sample mean estimators for various values of dressed cycle repetitions m.
A thorough description of the CER protocol together with pseudo-code can be found
in [34].

3.2 An extension to CER to learn coherent contributions to errors
CER is meant to provide a diagnostic of effective RC cycles. Let the implementation
of a hard cycle be expressed as the product Ehard ◦ Chard, where Ehard is the cycle error
channel attached to the ideal cycle implementation Chard. Similarly, let n-qubit Pauli
easy cycles Q ∈ Pn be expressed as the product Q◦EQ (error channels can be placed on
the left or right of the ideal implementation without loss of generality, but may differ
depending on which side is chosen). To a high approximation, the fidelities given by
CER correspond to [34]:

fCER
P = fP

(
⟨EQ⟩Q∈Pn

◦ Ehard
)

, (20)

and it corresponds to the Pauli fidelities of the effective dressed cycle ERC ◦Chard to the
ideal cycle Chard. Notice that those fidelities don’t provide a quantitative budgeting of
the coherent and decoherent contributions to the infidelity.
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...

Hard cycle,
folded x times

Easy cycle
(random)

Dressed cycle,
repeated m times

...

State preparation
circuit specified
by a set of
commuting
Paulis S.

Measurement
circuit specified
by a set of
commuting
Paulis S.

Figure 1: Visual representation of the CB-structured circuits in our error diagnostic scheme. The
core cycles in gray are wrapped in state preparation and measurement (SPAM) circuits specified
by a set of commuting Paulis S. Dressed cycles are repeated m times and they each contain
the x-folded hard cycle of interest (Ehard ◦ Chard)x, where Cx

hard = Chard. The easy cycles are
randomized (the random aspect of the circuit is specified by a randomly sampled string s) but
chosen together with m and the SPAM circuits such that the whole circuit amounts to a Pauli
(which is accounted for in post-processing).

To distinguish coherent error contributions from decoherent ones, we propose to
perform CER sequences on folded hard cycles (Ehard ◦ Chard)x for x such that Cx

hard =
Chard. The circuit representation of the experiments can be visualized in Fig. 1. As
such, the pseudo-code for this generalization is almost identical to CER.

This idea is not generally equivalent to considering Ex
hard ◦ Chard, but as we shall

see, they are very closely related in many physically realistic scenarios. Let c be the
smallest positive integer such that Cc

hard = I, also referred to as the period of Chard.
For instance, if the hard cycle consists of parallel CNOTs, we get c = 2 since CNOT is
self-inverting. Without loss of generality, let’s express Ehard as

Ehard =: exp (Λhard) =: exp
(
Λ(0)

hard + Λ(1)
hard + · · · Λ(c−1)

hard

)
, (21)

where the components Λ(j)
hard phase-commute with Chard according to the following equa-

tion:

Λ(j)
hard ◦ Chard = e

j
c

2πi · Chard ◦ Λ(j)
hard . (22)

Now, let’s consider multiplying the noisy hard cycle Ehard ◦ Chard with itself a number
of c times where c is the period of Chard:

(Ehard ◦ Chard)c =: eΛecho , (23)
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where Λecho is a transformation of the original Lindbladian Λhard. From the Baker-
Campbell-Hausdorff formula [55], we get

Λecho =
c∑

j=1
C−j

hard ◦ Λhard ◦ Cj
hard + 1

2

c∑
j=2

j−1∑
k=1

C−j
hard ◦ Λhard ◦ Cj

hard, C−k
hard ◦ Λhard ◦ Ck

hard

+ · · ·

=
c−1∑
k=0

c∑
j=1

e
kj
c

2πiΛ(k)
hard + O(c2Λ2

hard)

= cΛ(0)
hard + O(c2Λ2

hard) (24)

In other words, up to second-order corrections, the Lindbladian of the echoed trans-
formation Λecho is the period c times the component of the Lindbladian that com-
mutes with the hard cycle Chard. Therefore, Eq. (24) essentially states that by folding
the noisy cycle Ehard ◦ Chard, we effectively evolve the component of Ehard that com-
mutes with Chard. This often consists of the only substantial error component. Indeed,
Ehard ◦ Chard = Chard ◦ Ehard is usually a good approximation if the hard cycle of interest
Chard consists of a round of parallel pulses, since weak non-commuting noise components
are expected to be echoed out by the drive, similarly as in Eq. (24). By performing
CER sequences on folded hard cycles (Ehard ◦Chard)x where Cx

hard = Chard, we effectively
get an experiment to obtain the following fidelities using Eq. (24).

fCER
P (x) =fP

(
⟨EQ⟩Q∈Pn

◦ (Ehard ◦ Chard)x ◦ C−1
hard

)
,

=fP

(
exp

(
xΛ(0)

hard + (Λhard − Λ(0)
hard) + ΛQ + O(x2Λ2

hard + xΛhardΛQ)
))

≃fP

(
exp

(
xΛ(0)

hard + (Λhard − Λ(0)
hard) + ΛQ

))
, (25)

where ΛQ := log(⟨EQ⟩Q∈Pn
) and where the second line is obtained from the first-order

Baker-Cambell-Hausdorff formula [55]. Standard CER fidelities from Eq. (20) are ob-
tained by choosing x = 1. In the scenario where Ehard◦Chard = Chard◦Ehard (equivalently
if Λhard = Λ(0)

hard) and where the easy cycle has a very small error component compared
to the hard cycle (∥ΛQ∥ ≪ ∥Λhard∥), we immediately get:

fCER
P (x) ≃fP

(
exp

(
xΛ(0)

hard

))
. (26)

More generally, we get

fCER
P (x) = fP

(
exp

(
xΛ(0)

hard

))
+ ϵ(x) , (27)

where the small term ϵ(x) is implicitly defined and can approximately take the form of
a constant plus a linear term in x if we Taylor expand Eq. (25). In terms of physics, the
linear term in x in the expansion of ϵ(x) can arise if the coherent part of (Λhard−Λ(0)

hard)+
ΛQ coherently interferes with the folded Lindbladian xΛ(0)

hard. Combining Eq. (27) with
the results of Sections 2 and 3.1, we get that by performing CER sequences on folded
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hard cycles (Ehard ◦Chard)x where Cx
hard = Chard, we should expect decay formulas of the

form:

Esf
circuit
P (m, x, s) = AP

(
1 − δf coh.

P x2 − δfdecoh.
P x + ϵ(x)

)m
, (28)

where the coherent and decoherent Pauli infidelities δf coh.
P and δfdecoh.

P are defined in
Eq. (10), but are to be associated with the Λ(0)

hard effective Lindbladian that commutes
with Chard, and where ϵ(x) is a linear function of x. The impact of ϵ(x) on the estimates
of the decoherent term is expected to be negligible in the regime where the decoherence
induced by the hard cycle dominates over the coherent interference between (Λhard −
Λ(0)

hard) + ΛQ and xΛ(0)
hard.

Finally, the coherent contributions ecoh.
P to the error probabilities eP (Ehard) of the

hard cycle Chard are obtained by gathering the quadratic components from Eq. (28) and
by performing the Walsh-Hadamard transform.

4 Extracting Coherent and Decoherent Qubit Errors Using CER
In this section, we elaborate on a simple example of the CER extension protocol intro-
duced in Section 3.2. This allows us to expand further on the subtleties of the fitting
model such as the properties of the underlying covariance matrix. Finally, we pro-
vide numerical evidence that the error profile obtained from our suggested experiment
matches the underlying error model.

We frame our analysis and fitting procedure around a simple proof-of-concept ex-
periment for the sake of concreteness and clarity. In particular, we focus on the errors
occurring on an idling qubit during a hard cycle where the nearby qubits undergo a
CNOT gate. We focus on this example for two reasons. First, we judged that simplicity
would allow us to expand more explicitly on the fitting procedure and analysis. Second,
based on the physics behind IBM processors, we expected (and observed) a noticeable
coherent Z error on the idling qubit resting next to the CNOT operation [56]. This
highlights the relevance of our method for the characterization of coherent crosstalk
effects. All that said, we emphasize once more that our method extends beyond the
characterization of a single qubit because it consists of a straightforward generalization
of CER, and that CER has been demonstrated on multi-qubit hard cycles [34, 45].

4.1 Fitting Model
As discussed in Section 3.2, our experiment consists of sampling CER circuits for various
circuit parameter tuples (x, m,B, s):

• x is the number of folded hard cycle per dressed cycle;

• m is the number of dressed cycles ;
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Figure 2: The blue cropped ellipse represents the 1σ confidence region of 2 fitted parameters,
namely linZ/2 and cstP /2, based on the covariance matrix returned by the fitting function. These
2 parameters appear in the 12-parameter model given by Eq. (29). Recall that those parameters
are physically constrained to be positive, hence the cropping of the region. The fit was performed
on simulated data in order to include exact values (see Section 4.3). The solid blue dot is the
value returned by the fit, and the star is the exact value of the parameter pair. The dotted line
represents a tradeoff line where (linZ + cstP )/2 is set to the exact value, for different values of
linZ and cstZ . The longer principal axis of the ellipse in the figure is nearly aligned with the dotted
tradeoff line. This illustrates that the estimate of (linZ + cstP )/2 is much more precise than the
estimate of (linZ − cstP )/2.
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Figure 3: Error profile obtained from a simulation of our experiment. The coherent contributions
refer to the hard cycle coherent errors. For the simulated error model, we used the relaxation
times from ibmq_montreal, and introduced a coherent Z error with effective rate of 0.002.

• B denotes a state preparation and measurement (SPAM) basis as a set of com-
muting Pauli observables. We omit B in the expression of the Pauli fidelities since
it is implicitly chosen through the P Pauli index.

• s denotes a randomly sampled string that encodes the random part of the circuit
construction for the fixed parameters (x, m,B).

From those parameterized sampled circuits, we generated fidelity-like quantities f circuit
P (x, m, s).

Consider the simplest instance of such an experiment on a single qubit. According to
Eq. (28), the sample average of f circuit

P (x, m, s) obeys the following 12-parameter decay
model:

Esf
circuit
X (x, m, s) =AX

(
1 − (quadY + quadZ)x2 − (linY + linZ)x − (cstY + cstZ)

)m

Esf
circuit
Y (x, m, s) =AY

(
1 − (quadX + quadZ)x2 − (linX + linZ)x − (cstX + cstZ)

)m

Esf
circuit
Z (x, m, s) =AZ

(
1 − (quadX + quadY )x2 − (linX + linY )x − (cstX + cstY )

)m

(29)

There are many possible methods to retrieve estimates for the 12 parameters (AX ,AY ,
AZ , quadX , quadY ,quadZ , linX ,linY ,linZ ,cstX , cstY ,cstZ ). A simple one is to start with
an initial guess and perform a minimization algorithm with the cost function defined
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by

χ2(AX , AY , AZ , quadX , quadY , quadZ , linX , linY , linZ , cstX , cstY , cstZ) :=

∑
P,m,x

Esf
circuit
P (x, m, s) − AP

1 −
∑
Q

QP =−P Q

(quadQx2 + linQx + cstQ)


m

2

, (30)

where the sum
∑

P,m,x is performed over the desired Paulis, sequence lengths and number
of folded hard cycles. For instance, in this work, we used the Trust-Region-Reflective
(TRF) least mean squares algorithm to fit the parameters to the fidelity data [57]. In
the general case, for N different Pauli fidelities to estimate, the number of parameters in
the fit becomes 4N . Since CER focuses on error probabilities marginalized over a small
number of qubits, the number of parameters is guaranteed to be manageable unless we
observe long-range error correlations.

As shown in the previous section, the coefficients quadP appearing in the quadratic
part of the exponential decay are in direct correspondence with the effective coherent
contribution to the infidelity of the hard cycle on the qubit:

quadP = 2ecoh.
P . (31)

The linear coefficients are most realistically in correspondence with the decoherent
contribution to the infidelity of the hard cycle on the qubit, although some linear effects
could in principle be induced by a coherent effect between the randomized easy cycle
and the folded hard cycle. Easy cycles are usually much less error-prone than hard
cycles, meaning that the linear coefficient is often entirely dominated by the decoherent
contribution. Finally, the constant terms cstP are due to the errors occurring during
the easy cycles, as well as to the components of the hard cycle error that does not
commute with the hard cycle Chard (see Eq. (27)).

4.2 Resource requirements
CER as well as its newly introduced variant are designed for scaling well with the
number of qubits n. The number of circuits for such experiments scales as the number of
marginal error probabilities to extract, and often – due to constraints in the correlations
of errors – only a polynomial number of marginals is enough to accurately describe the
error profile. Moreover, other hyper-parameters, such as the number of shots and the
number of random circuit samples can be kept constant and still yield multiplicative
precision estimates on the error probabilities. Regarding the required number of shots,
it is shown in [58] that the number of shots can be kept constant no matter the error
rates as long as the sequence lengths are appropriately chosen (the optimal choice of
sequence lengths is discussed in [58]). It is worth mentioning that the number of shots
bounds the relative precision of the error probability estimates, so it is worth picking
a few thousand shots to ensure 2 significant digits on the estimates. Regarding the
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number of random circuit samples, it is known that due to concentration inequalities,
randomly compiled channels converge exponentially fast to their true average with the
number of samples. For instance, in [59] it is shown that 30 circuit samples are enough
to heavily suppress coherent errors (see the figure 2 in the paper).

4.3 Fitting Model Simulation Results and Analysis
To anticipate our hardware-based experiments, we perform numerical simulations of
our experiment in the simple case of a single qubit subject to a noise source coming
from a nearby entangling gate. To measure the systematic increase in the magnitude
of the error from the noise, the number of CNOT gates is systematically increased.
Measurements are taken for hard gate cycles of 1, 3, 5, 7 and 9 CNOT gates and
the simulations are run for 20,000 shots per random circuit. We used the values 4,
8, 12, 16 and 32 for the the sequence lengths. For the simulated error model, we use
the relaxation times from ibmq_montreal, and introduce a coherent Z error with an
effective rate of 0.002 to simulate the presence of coherent crosstalk.

In our numerical analysis, we notice that linP and cstP are strongly anti-correlated,
inducing a large uncertainty for their difference linP − cstP . This is well illustrated
in Fig. 2, where we can further see that the sum linP + cstP is estimated with high
precision and accuracy. For this reason, we contrast the coherent contribution to the
error rates from the hard cycle with the sum of the other contributions (see Fig. 3). In
the regime where the twirling operations are nearly perfect, the contributions linP +
cstP can be interpreted as the sole result of decoherence during the hard cycle. More
generally, one could make tighter upper-bounds on the constants cstP , based on physical
assumptions or on additional benchmarking data. For example, in Fig. 2, one could
reduce the uncertainty on the difference linP − cstP by upper-bounding the constant Z
error cstZ/2 ≤ 0.0005. This would crop the confidence region and improve the precision
and level of detail of the error profile, but would inherently rely on an assumption.

In all of the computations, the error parameters appearing in the model described
by Eq. (29) are bounded between 0 and 1 (they are usually close to 0). As such, we use
the Trust-Region-Reflective (TRF) least mean squares algorithm to fit the parameters
to the data [57]. We compare the estimated error profile to an exact reference in Fig. 3
and find a satisfactory degree of agreement.

5 Hardware results and analysis
Starting with the proposed fitting model discussed in Section 4.1, we note that each
of the quadratic equations fX , fY and fZ in Eq. (29) are interconnected because each
direction (X, Y, Z) has anti-commuting terms for X, Y, and Z that are coupled across
each dimension of the model. This requires each of the coefficients in the polynomial
to have both a coherent (quadP) and a decoherent (linP) fitting parameter. Having all
possible terms that anti-commute with each of the x, y, and z axes in Eq. (29) included
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in the proposed model require twelve parameters ( 3 “AP ” parameters, 3 “quadP”
parameters, 3 “linP” parameters and finally 3 “cstP” parameters). One advantage of
such an approach is that the global fit to these twelve parameters assures overall positive
error rates. The results from this global fitting produce 75 values (five different CNOT
repetitions at the five different sequence lengths and three fX , fY and fZ).

We construct graphs of the component fidelities fX , fY and fZ versus sequence
lengths for hard cycle CNOT repetitions 1, 3, 5, 7, and 9 for the fitting model for each
of the three different hardware platforms. These 75 values are plotted on graphs of fX ,
fY and fZ versus sequence lengths for each hard cycle CNOT repetition (1, 3, 5, 7, and
9) with star symbols (⋆). Fig. 6 shows an example of these graphs for the ibmq_manila
hardware platform.

To compare these computations with experimental data we selected the cloud-
accessible IBM quantum computing hardware platforms as a proof-of-concept of our
experimental design derived in Section 3.2. The cycle and marginal distribution selected
are modelled from the circuit design implemented to measure the spin-spin correlation
function of a Heisenberg spin chain [60]. Fig. 4 is a block diagram of the spin-spin
correlation function circuit showing CNOT gates in the circuit and an ancilla qubit
used to measure the computational results. Fig. 5 shows a more detailed sub-circuit
used in the time evolution of the Heisenberg spin-chain. As shown through the dia-
grams, the types of circuits that we consider feature a spectator ancillary qubit that is
left idling during the trotterized evolution of the spin chain. As such, we focused our
interest on the coherent and decoherent error profile marginalized on this ancilla. In
this simple instance, the hard cycle of interest consist of a CNOT acting on a pair of
qubits neighboring to the idle ancilla. These types of circuits motivated this work.

We implement the circuit on three different IBM quantum computing hardware
platforms (ibmq_guadalupe, ibmq_montreal, and ibmq_manila). Appendix B dis-
cusses the specific circuit implementations on each of the hardware platforms. These

|0⟩ H • •

ÛS ÛA e−iHt ÛB


|0⟩⊗n

Figure 4: Block diagram for calculating spin-spin correlation in 4-site Heisenberg spin-chain [60].

calculations are randomly compiled 30 times with different Paulis for each sequence
length on each of the three hardware platforms using 10,000 shots for ibmq_manila
and 20,000 shots for ibmq_guadalupe and ibmq_montreal. We color-code each of the
30 results from these experimental measurements for each sequence length and plot
them on the graph of fX , fY and fZ versus sequence lengths for each hard cycle CNOT
repetition (1, 3, 5, 7, and 9) and each of the three different hardware platforms. We
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• Rx (−2Jt − π/2) H • H • Rx(π/2)

X Rz(−2Jt) X Rz(2Jt) X Rx(−π/2)

Figure 5: Sub-circuit used in time-evolution (see e−iHt block of Fig. 4) of the 4-site Heisenberg
spin-chain. Four instances of this sub-circuit implement e−iHt block of Fig. 4

also plot the sample mean from the 30 different data points for each hard cycle CNOT
repetition at each sequence length on the graph with the diamond symbol(⋄) and a
standard deviation error bar. Fig. 6 shows these results for the ibmq_manila hardware
platform. We construct similar computations and graphs for both ibm_montreal and
ibm_guadalupe.

Upon examination of Fig. 6 in more detail, it can be seen that some of the 75 different
pairs of stars and diamonds do not overlay each other on the graph. For example, the
3 CNOT folding star-diamond pairs for all of the sequence lengths 4, 8, 12, 16, and 32
in the component fidelity fY are slightly displaced from each other. Similar examples
of these star-diamond pair displacements can also be seen throughout the other CNOT
foldings in the figure. However, these displacements are rather small. We calculated
the coefficient of determination, also referred to as R2, [61], to three significant digits
for all three devices (for ibmq_manila, R2 = 0.894; for ibmq_montreal, R2 = 0.989; for
ibmq_guadalupe, R2 = 0.990). The fact that these values are well above 80% indicates
that the model substantially accounts for all the data.

We then implement a minimization procedure on the star-diamond data. The goal is
to globally minimize the distance between the diamond values and the star values for all
75 star-diamond combinations. We perform this global minimization by computing the
square of the difference between each pair of stars and diamonds and dividing by that
specific star value and then summing over all 75 star/diamond pairs This calculation is
essentially a minimization of the χ2 statistic to improve the goodness of the fit.

From Section 4.3 a more detailed analysis for the 12-parameter fit shows that the
sums and differences of the linP /2 and cstP /2 are strongly anti-correlated. As stated in
Eq. (31), the quadP /2 values contain the coherent contribution to the error rate from
the hard cycle, while the (linP + cstP )/2 contains the other contributions. We plot
these terms for each of the three IBM hardware platforms as shown in Fig. 7. This
figure is the central result of this research project and shows the effective error rate
versus Pauli Error (X, Y and Z) for the designated single qubit on each of the hardware
platforms. These results as well as the data from the simulator are shown in Table 1.
The table clearly shows that the Pauli Z linP /2 and cstP /2 terms have the strongest
error measured on the single qubit on each of the hardware platforms.

It is well-known that the static ZZ coupling in a transmon qubit is always present
and leads to both coherent and incoherent errors [62]. Recent works have theoretically
analyzed the effect of crosstalk on simultaneous gate operation in a tunable ZZ coupling-
based qubit architecture [63, 64]. Our results confirmed that a CNOT gate indeed affects
the idling qubit, and the nature of the coherent error is predominantly Pauli Z error.
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Figure 6: Fidelities fX , fY and fZ versus sequence lengths for CNOT repetition 1,3,5,7, and 9
for ibmq_manila. Each CNOT repetition is color coded and identified in the legend in the upper
left portion of the figure. Each CNOT repetition was randomly compiled 30 times with different
Paulis at each sequence length. Each individual data point plotted is color code matched to the
corresponding CNOT repetition. The average value from the 30 different data points for each
CNOT repetition at each sequence length is then plotted on the graph with the diamond symbol(⋄)
and standard deviation error bar. The global fitting from the model produces 75 values for the
estimated mean and is plotted with star symbols (⋆)
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Figure 7: Effective error profile for an idling ancilla standing next to a CNOT on IBM hardware
platforms ibm_guadalupe, ibm_montreal and ibm_manila. The horizontal axis contains the
three possible Pauli errors on the ancilla, and the vertical axis quantifies the respective effective
error probability (when rendering the error channel Pauli stochastic through a projection). The
solid blue markers indicate the coherent contribution to the error rate from the hard cycle, while
the red open markers quantify the other contributions to the error rate. The results are obtained
via the extended CER protocol described in Section 3. The numerical values of the error rates
with their respective uncertainty are contained in Table 1.
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We observed this noise bias toward Pauli Z error due to the effects of static ZZ coupling
in a transmon qubit.

This increase in the single qubit error as the number of CNOT hard cycles is in-
creased can also be seen graphically through heat map plots for the single qubit on
ibm_guadalupe, ibm_montreal and ibm_manila as shown in Fig. 10, Fig. 11 and
Fig. 12 in Appendix C. Although there is some increase in the X and Y Pauli er-
ror, these heatmaps also graphically illustrate that it is the Z Pauli error that shows
the greatest increase as the number of CNOT hard cycles increases. We observe from
our heatmaps that Pauli Z error increases rapidly compared to X and Y errors when
the number of CNOTs increases from 1 to 9. This rapid scaling of Z error is the signa-
ture of coherent errors. Thus, our characterization scheme shows not only that Pauli Z
error is the dominant error on the IBM quantum processors, but also that a substantial
fraction of it is the result of coherent processes.

6 Summary
We successfully demonstrate the design and implementation of an efficient and scalable
diagnostic method that quantitatively differentiates between coherent and decoherent
errors in cycles. The characterization scheme that we suggest in the present work differs
from existing error diagnostic methods such as GST [37–42] in that it is targeted toward
the characterization of the effective dressed cycles present in randomly compiled circuits.
This is an important tool because many error suppression techniques implemented today
only provide improved circuit performance by focusing on mitigating either decoherent
or coherent errors. Our method can therefore be used to measure the impact of error
suppression suites on the type of errors that they specifically target.

We leverage a CB-structured error characterization protocol known as CER [1, 34,
45]. The original method was designed to measure the error profile on effective dressed
cycles, which are tailored to have purely decoherent errors via a compiling method
known as RC [35]. We expand on the basic CER method by introducing an additional
hyper-parameter (labeled x in this work) which corresponds to the number of hard
cycle repetitions before being subject to Pauli twirling (see Fig. 1). This additional
hyper-parameter allows for quantitative estimates of the coherent error contributions
to be computed through a generalization of the fidelity decay formula (Eq. (28)).

Our data analysis relies on the different propagation formulas of coherent and de-
coherent errors in folded error channels (see Section 2). As a proof of concept, we
test our method both physically and numerically by reconstructing the effective error
profile on a single-qubit ancilla left idling during a cycle. The numerical simulation
confirms a strong agreement between the error profile estimated by our protocol and
the exact underlying error model. The data obtained from IBM hardware platforms
(ibmq_guadalupe, ibmq_manila, and ibmq_montreal) revealed a substantial level of
coherent errors occurring on the idling ancilla induced by an entangling operation (see
Fig. 7).
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In terms of next steps, we note that the fitting method derived in the current work
only relies on the sample averages of fidelities, and does not take into consideration
the shape of the distribution of the fidelities for fixed (m, x) hyper-parameters. As
shown in Fig. 6, coherent errors affect more properties of the fidelity distributions than
just the mean and we leave as an open problem the refining of the fitting function
based on those considerations, as well as statistical optimization of the choice of hyper-
parameters. Finally, we leave the demonstration of our proposed CB-structured method
as a means to design and benchmark error suppression tools for future work.

Pauli error quadP /2 linP /2 cstP /2 (linP + cstP )/2 (linP − cstP )/2
Montreal
X 0.00000(9) 0.008(2) 0.0004(9) 0.0010(5) 0.000(1)
Y 0.00001(9) 0.007(2) 0.0000(9) 0.0013(5) 0.001(1)
Z 0.00081(9) 0.0038(7) 0.0000(9) 0.0029(5) 0.003(1)
Guadalupe
X 0.0000(6) 0.001(3) 0.001(3) 0.002(1) 0.000(6)
Y 0.0000(6) 0.002(3) 0.000(3) 0.002(1) 0.002(6)
Z 0.0035(6) 0.004(3) 0.000(3) 0.004(1) 0.004(6)
Manila
X 0.0000(1) 0.001(1) 0.000(1) 0.0009(8) 0.001(2)
Y 0.0000(1) 0.001(1) 0.000(1) 0.0008(8) 0.001(2)
Z 0.0008(1) 0.006(1) 0.000(1) 0.0055(8) 0.006(2)
Simulator
X 0.0000(3) 0.000(2) 0.000(1) 0.0007(4) 0.000(3)
Y 0.0000(3) 0.001(2) 0.000(1) 0.0007(4) 0.001(3)
Z 0.0019(1) 0.003(2) 0.000(1) 0.0031(4) 0.002(3)

Table 1: Various fitted parameters corresponding to the 12-parameter model presented in Eq. (29),
for three different hardware platforms. We include the difference and the sum of linP /2 and cstP /2
since these parameters are strongly anti-correlated (see Section 4.3). From Eq. (31), we get that
the quadP /2 column contains the coherent contribution to the error rate from the hard cycle,
while the (linP + cstP )/2 contains the other contributions. These error rates are shown in Fig. 7.
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A Supplementary Material
In this section, we prove lemma 1, which yields the propagation formula given in
Eq. (11).

A.1 Preliminary definitions
Before the proof, consider the following definition:

Definition 1 (Area of Effect). Consider a connectivity graph G = (V, E), where V is
the set of qubit vertices and E is a set of connectivity edges. We say that, given the
graph G, an operator M has an area of effect

A (M |G) := min
W ⊆V

|W | (32)

such that

1. The vertex-induced subgraph obtained by limiting the vertices of G to the set W
is connected;

2. M can be expressed as MHW
⊗ IHW c , where W c is the complement of W , and HW

(HW c) denotes the Hilbert space over the qubits in the set W (W c).

An operator M is said to be geometrically (or topologically) k-local if A(M |G) = k.
See Fig. 8a for an example of an operator with area of effect of 7. As we show, if we
limit the area of effect of noisy interactions, early-truncated Taylor expansion of eΛ will
be appropriate for approximating the effect of eΛ on reasonably small subsystems.

Let’s further consider the extended support of a Pauli basis element:

Definition 2 (k-extended support of a Pauli basis element). Consider a Pauli basis
element P = P1P2 · · · Pn ∈ Pn and a connectivity graph G = (V, E), where V is the set
of qubit vertices and E is a set of connectivity edges. The (0-extended) support of P
is defined as the set of qubits for which P is not the identity:

S0(P ) := {i ∈ V |Pi ̸= I} . (33)

The k-extended support of P is simply an extension of the support of P by k ∈ N
vertices:

Sk(P ) := {i ∈ V |∃j ∈ S0(P ) s.t. d(i, j) ≤ k} , (34)

where d(·, ·) is the distance on the graph G.

See Fig. 8b for an example of different extended supports with different values of k.
Let’s define the decoherent error rate over a set of qubits. Let’s define the decoherent
error rate over a set of qubits.
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Definition 3 (decoherent error rate over a set of qubits). Consider a set of qubits V .
We define the decoherent error rate over those qubits as

edecoh
V :=

∑
P

S(P )=V

edecoh
P (35)

:=
∑
P

S(P )=V

∑
j

|ℓj,P |2 . (36)

Definition 4. Let’s define the coherent and decoherent infidelities of P ∈ Pn as:

δfdecoh.
P := 2

∑
j,Q

QP =−P Q

|ℓj,Q|2 (37a)

δf coh.
P := 2

∑
Q

QP =−P Q

|hQ|2 (37b)

Legend

a) b)

X

Y

Z

S0(P )
S1(P )
S2(P )

Subgraph s.t.
A(P |G) = 7

Figure 8: Visualization of different Paulis P ∈ P16 in a planar 16-qubit architecture. a) Visu-
alization of subgraph associated with the area of effect A(P |G) on a planar architecture. The
Pauli in figure a) has an area of effect of 7. b) Visualization of k-extended supports of a Pauli for
k ∈ {0, 1, 2}.
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A.2 Derivation of the Pauli Fidelities of a Repeated Channel
Lemma 1: Pauli fidelities of repeated channel

Let Lindbladian and Hamiltonian operators be at most geometrically k-local for
some integer k. Consider an error channel E = eΛ stemming from geometrically
k-local interactions. The fidelity of P associated with the channel Ex = exΛ is
given by

fP (x) =1 − δf coh.
P x2 − δfdecoh.

P x

+ O
(
poly(ek)

) (δfdecoh.
P ) max

S∈Sk(P )

(
edecoh.

S

)

+
(

2 max
S, χS,P =−1

|hS| + max
S∈Sk(P )

edecoh.
S

)
× edecoh

Sk(P )

x2

+ Tr
(

P
Λ3

3! [P ]
)

x3 + Tr
(

P
Λ4

4! [P ]
)

x4 + · · · . (38)

Proof. A way to interpret the total evolution eΛ is to consider Λ as a transition ma-
trix. The total evolution depicted by eΛ is then the sum over all paths, and each path
is weighted by 1/J ! where J is the number of jumps. The essence of the proof will
be to quantify and categorize the transition amplitudes, and to sum up the different
paths. For conciseness, we omit the graph dependence in the area of effect function,
i.e. A (M |G) is replaced by A (M).

Let’s define the transition amplitude from the Pauli P ∈ Pn to the Pauli Q ∈ Pn as

tP →Q := Tr (QΛ[P ])
2n

. (39)

From the definition of the Lindblad matrix Eq. (5), we more specifically get

2n · tP →Q = −i Tr (Q[H, P ]) +
∑

j

{
Tr
(
QLjPL†

j

)
− 1

2 Tr
(
QPL†

jLj

)
− 1

2 Tr
(
QL†

jLjP
)}

.

(40)
It follows by the hermicity-preserving nature of the evolution that tP →Q remains real.
Let’s decompose the operators Lj Eq. (41a), L†

j Eq. (41b) and H Eq. (41c) by inserting
summations over the Pauli operators S as follows:

Lj =
∑
S

ℓj,SS , (41a)

L†
j =

∑
S

ℓ∗
j,P QSPQS , (41b)

H =
∑
S

hP SPS , (41c)
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where

ℓj,S := Tr(SLj)/2n , (42a)
ℓj,P QS := Tr(PQSLj)/2n , (42b)

hP S := Tr((PS)†H)/2n , (42c)

and let’s substitute those decompositions into Eq. (40):

tP →Q = − ihP Q Tr (QPQP − QPPQ) /2n +
∑
j,S

ℓj,Sℓ∗
j,P QS Tr (QSPPQS) /2n

− 1
2
∑
j,S

ℓj,Sℓ∗
j,P QS Tr ((PQ + QP )PQSS) /2n . (43)

The above expression can be further simplified. Let’s define the commutation function,

χP,Q =

 1 if P and Q commute ,

−1 if P and Q anti-commute .
(44)

By using the commutation function and by taking the real projection of tP →Q, we get

tP →Q = −ihP Q(χP,Q − 1)︸ ︷︷ ︸
tcoh
P →Q

+
∑
j,S

(
ℓj,Sℓ∗

j,P QS

)(
χQ,S − χP,Q + 1

2

)
︸ ︷︷ ︸

tdecoh
P →Q

, (45)

where we explicitly labeled the coherent and decoherent transition amplitudes. Let’s
break the transitions into two cases.

Case 1: PQ = QP

First, if PQ = QP , then χP,Q = 1 and we get

tP →Q =
∑
j,S

(
ℓj,Sℓ∗

j,P QS

)
(χQ,S − 1) ,

= −2
∑
S

χQ,S=−1
A(S+P QS)≤k

∑
j

(
ℓj,Sℓ∗

j,P QS

)
. (46)

In the special case where P = Q, we get

tP →P = d

dx
fP (x)

∣∣∣∣
0

= −2
∑
S

χP,S=−1
A(S)≤k

∑
j

|ℓj,S|2 = −δfdecoh
P . (47)

Notice that the sum in one of the expressions above has 2 constraints, namely χP,S =
−1 and A (S) ≤ k. With these, the number of terms in the sum of Eq. (47) scales
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proportionally to the weight w(P ) of P , and scales exponentially in k and in the level
of connectivity of the architecture’s graph G.

In Eq. (46) the transition amplitude is still scaling as the squared magnitude of the
Lindbladian terms. Applying the Cauchy-Schwarz inequality to the transition ampli-
tude, we get :

|tP →Q| = 2

∣∣∣∣∣∣∣∣∣∣∣
∑
S

χQ,S=−1
A(S+P QS)≤k

∑
j

(
ℓj,Sℓ∗

j,P QS

)
∣∣∣∣∣∣∣∣∣∣∣

,

≤ 2
∑
S

χQ,S=−1
A(S+P QS)≤k

√∑
j

|ℓj,S|2
√∑

j

|ℓj,P QS|2 (48)

Because PQ = QP , we find that PQS anti-commutes with Q just like S, meaning that
they belong to the same set of operators. This means that if S is summed over an
indexed set {S|χQ,S = −1, A (S + PQS) ≤ k} =: {s1, s2, · · · }, PQS is simultaneously
summed over a permutation τ of that set:

|tP →Q| ≤ 2
∑

i

√∑
j

|ℓj,si
|2
√∑

j

|ℓj,sτ(i)|2 . (49)

It follows from majorization inequalities that the sum is maximized for the trivial per-
mutation [65]:

|tP →Q| ≤ 2
∑
S

χQ,S=−1
A(S+P QS)≤k

∑
j

|ℓj,S|2 = δfdecoh
Q (50)

The number of terms in the sum over S is constrained since

1. S has to anti-commute with the transition endpoint Q (i.e. SQ = −QS);

2. S + PQS has to be geometrically k-local (i.e. A (S + PQS) ≤ k);

Since PQ ̸= I, the second condition implies that non-zero transitions must obey
A (PQ) ≤ k; in simpler terms, Q must differ from P by a k-local operator. To get
a better picture of non-zero transitions, imagine P as a product of different “Pauli
islands”, defined as follows:
Definition 5 (Pauli Islands). A Pauli P is said to be a k-island if any tensor product
partitioning P = Q ⊗ R obeys

A (P |G) < A (Q|G) + A (R|G) + k − 1 . (51)
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Any Pauli P can be partitioned into a product of islands, and this product is unique.
For instance, for k = 2 and a chain topology, P = (X2X3X4) ⊗ (Z6Y7) is a product of
two islands.
Rules 1 (Transition rules for PQ = QP ). The allowed transitions must obey the
following rules:

1. From the onset, PQ = QP and Q ̸= P .

2. An allowed transition is the creation of a new geometrically k-local island. For
instance with our P = (X2X3X4) ⊗ (Z6Y7) example, we could have an endpoint
of the form Q = (X2X3X4) ⊗ (Z6Y7) ⊗ (Y75).

3. An allowed transition can be the geometrically k-local modification of a single
island. Still with our P = (X2X3X4)⊗(Z6Y7) example, we could have an endpoint
of the form Q = (Y1X2X3X4) ⊗ (Z6Y7) or Q = (X2X3X4) ⊗ (X6X7).

4. The annihilation of an island is forbidden! This is because of the first constraint
on S, which states that it must anti-commute with Q, and enforces S to connect
to the endpoint Q.

5. Through the second rule, islands that are less than 2k edges apart can be merged
via island modifications. Still with our P = (X2X3X4) ⊗ (Z6Y7) example, we
could have a single island endpoint: Q = (X2X3X4Y5Z6Y7).

By looking carefully at the above rules, notice that for a non-zero double transition
tP →QtQ→P to start and end at P and pass by Q such that QP = PQ, it has to be a
geometrically k-local modification of a single island (see Rules 1, item 3). The reason for
this is that although island creations have non-zero amplitudes, annihilation transitions
are prohibited. Only a few triple transitions tP →QtQ→RtR→P can start and end with P
and involve an island creation: 1) start with an island creation that is within 2k edges,
2) merge the created island to one of P ’s islands in the second transition, 3) return to
P through a single island modification.

With this argument in mind, let’s bound the total amplitude of double transitions
tP →QtQ→P that start and end at P and pass by Q such that QP = PQ:∑

Q, χQ,P =1,
geo. k-local

mod. of 1 isl.

|tP →Q||tQ→P | ≤ 4
∑

Q, χQ,P =1,
geo. k-local

mod. of 1 isl.

∑
S

χQ,S=−1
A(S+P QS)≤k

∑
S′

χP,S′ =−1
A(S′+P QS′)≤k

∑
i,j

|ℓi,S|2|ℓj,S′|2 . (52)

Notice that the constrained double sum over Q and S(S ′) goes over some k-local
areas connected to P and over some k-local jumps in those regions. Therefore, up to a
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multiplicity constant that grows exponentially in k, we get

∑
Q, χQ,P =1,
geo. k-local

mod. of 1 isl.

|tP →Q||tQ→P | ≤ O(poly(ek))
|tP →P | max

S∈Sk(P )

∑
j

|ℓj,S|2


= O(poly(ek))
[
δfdecoh.

P max
S∈Sk(P )

(
edecoh.

S

)]
(53)

which, unless the noise is highly non-local (i.e. k is large), is much smaller than
|tP →P |. Triple transitions can be similarly neglected compared to tP →P on the first-
order approximation.

Case 2:PQ = −QP

Finally, if PQ = −QP , we get

tP →Q =2ihP Q +
∑
j,S

(
ℓj,Sℓ∗

j,P QS

)
χQ,S . (54)

From there we can deduce some transition rules:
Rules 2 (Transition rules for PQ = −QP ). The allowed transitions must obey the
following rules:

1. Since P and Q must anti-commute, island creation and annihilation are both
forbidden.

2. An allowed transition can only be the geometrically k-local modification of a
single island.

Using the fact that hP Q = −hQP and χP Q,P = −1, we get:∑
Q, χQ,P =−1,

geo. k-local
mod. of 1 isl.

tP →QtQ→P = − 4
∑
S

χS,P =−1

|hS|2 + T (55)
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where T is a term with a magnitude bounded as

|T | =

∣∣∣∣∣∣
∑

Q, χQ,P =−1,
geo. k-local

mod. of 1 isl.

∑
S,S′

A(S+P QS)≤k
A(S′+P QS′)≤k

∑
i,j

(
ℓi,Sℓ∗

i,P QS

) (
ℓj,S′ℓ∗

j,P QS′

)
χQ,SχP,S′

+ 2
∑

Q, χQ,P =−1,
geo. k-local

mod. of 1 isl.

ihP Q

∑
S

A(S+P QS)≤k

∑
j

(
ℓj,Sℓ∗

j,P QS

)
χQ,SχP,S′

∣∣∣∣∣∣

≤
∑

Q, χQ,P =−1,
geo. k-local

mod. of 1 isl.

2 |hP Q| +
∑
S

A(S+P QS)≤k

∑
j

|ℓj,S|2


 ∑

S
A(S+P QS)≤k

∑
j

|ℓj,S|2

 ,

≤ max
Q, χQ,P =−1,

geo. k-local
mod. of 1 isl.

2 |hP Q| +
∑
S

A(S+P QS)≤k

∑
j

|ℓj,S|2

 ∑
Q, χQ,P =−1,

geo. k-local
mod. of 1 isl.

∑
S

A(S+P QS)≤k

∑
j

|ℓj,S|2

(56)

where the second line was obtained by using∣∣∣∣∣∣
∑
j,S

(
ℓj,Sℓ∗

j,P QS

)
χQ,S

∣∣∣∣∣∣ ≤
∑
S

A(S+P QS)≤k

∑
j

|ℓj,S|2 . (57)

The second factor in Eq. (56) scales as the average single transition tQ→Q over all Paulis
Q with the same support as P :∑

Q, χQ,P =−1,
geo. k-local

mod. of 1 isl.

∑
S

A(S+P QS)≤k

∑
j

|ℓj,S|2 = O(poly(ek)) × edecoh
Sk(P ) . (58)

Using Eq. (47), this means that |T | can be bounded by

|T | ≤O(poly(ek)) ×
(

2 max
S, χS,P =−1

|hS|
)

× edecoh
Sk(P )

+ O(poly(ek)) ×
(

max
S∈Sk(P )

edecoh.
S

)
× edecoh

Sk(P ) . (59)

A.3 Derivation of the Error Probabilities of a repeated channel
Error processes are not necessarily stochastic, meaning that it doesn’t always make
sense to discuss error probabilities. However, we can always project the error channels
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unto a stochastic one, and then consider the resulting error probability distribution.
As such, we define the effective Pauli error probabilities as the resulting Pauli error
probability of a channel once it is projected onto its Pauli stochastic component.

When it comes to Pauli stochastic channels, there is a duality between Pauli fidelities
and Pauli error probabilities. The two are in fact related by a linear operation known
as the Walsh-Hadamard transform. That is, if we consider a vector of fidelities, f
(such as f = (fI , fX , fY , fZ)), we can obtain the vector of error probabilities e (such as
e = (eI , eX , eY , eZ)) via:

e = W f , (60)

where W is the Walsh-Hadamard matrix. The entry Wij is 1 if the jth Pauli in the
domain vector commutes with the ith Pauli in the image. Wij is −1 if the jth Pauli in
the domain vector anti-commutes with the ith Pauli in the image.

Therefore, we can get error probabilities from fidelities by using the Walsh-Hadamard
transform on the fidelities given by lemma 1. Let’s approximate the elements of the
fidelity vector

fP (x) ≃ 1 − δf coh.
P x2 − δfdecoh

P x . (61)

If we apply the Walsh-Hadamard transform W on the vector composed of these ap-
proximated elements, we get an approximate error vector e with elements

eP (x) ≃ x2|hP |2 + x
∑

j

|ℓj,P |2 . (62)

More mathematical details regarding the transformation form fidelities to effective error
rates is contained in [34].
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B IBM Quantum Computing Hardware Architectures
The calculations for this project were run on three different IBM hardware platforms
(ibmq_manila, ibmq_guadalupe, and ibmq_montreal). On the 5 qubit ibmq_manila
platform, qubits q0, q1, q2, q3, and q4 are used with q0 as the ancilla and q1-q2 as
the two-qubit entangling gate. The ibmq_guadalupe processor is a 16 qubit platform.
On this processor the qubits used are q6, q7, q10, q12, and q13 with q10 as the ancilla
and q6-q7 as the two-qubit entangling gate. For the computation done on the 27 qubit
ibmq_montreal platform, qubits q18, q21, q23, q24, and q25 are used with q23 as the
ancilla and q18-q21 as the two-qubit entangling gate. Fig. 9 graphically shows these
qubit topologies for each platform. We also ran computations on the Keysight TrueQ
simulator [66] for the analysis discussed in the supplemental material in Section 4.3.

ibmq_montreal qubit layout

ibmq_guadalupe
qubit layout

ibmq_manila
qubit layout

Figure 9: IBM quantum hardware platforms and specific qubits used on each to run the 4 qubit
spin-spin correlation function circuit. The black circles indicate the specific qubits used for the
KNR two-qubit CNOT and ancilla effective dressed cycles and Pauli fidelity calculations

The key metrics associated with each of the processors that help characterize the
processor performance are

• Quantum volume (QV) This value measures the performance of gate-based quan-
tum computers, regardless of their underlying technology.

• Circuit Layer Operations per Second (CLOPS) is a measure of how many layers
of a QV circuit a quantum processing unit (QPU) can execute per unit of time.
The CLOPS is calculated using three key attributes to measure the performance
of near-term quantum computers (quality, speed, and scale) [67].

• The Falcon family of devices are medium-scale circuits. They were deployed
by IBM as a test environment for demonstrating performance and scalability
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improvements over previous generation processors. Specifically the r4 is the first
revision to deploy multiplexed readout. Previous designs required an independent
signal pathway on the chip, as well as in the dilution refrigerator and control
electronics for qubit state readout.

The ibmq_guadalupe is a 16 qubit Falcon r4p system with a quantum volume of
64 and 2.4K CLOPS. The computations on Guadalupe use qubits 6, 7, 10, 12, 13 with
qubit 6 being used as the ancilla qubit. The ibmq_montreal is a 27 qubit Falcon r4
system with a quantum volume of 128 and 2.0K CLOPS.

C CER Protocol Measurements and Heatmap Methodology
This project measures the noise on the single qubit (q10 in ibmq_guadalupe, q23 for
ibmq_montreal and q0 for ibmq_manila). Although the single qubit gates are set to
the identity and should remain so despite the increase in noise from the additional
CNOT folded hard cycles implemented through the extended CER mitigation protocol,
these heatmaps show that what is measured is not what was expected.

The increase in the measured noise on the single qubit is graphically seen in Fig. 10-
Fig. 12). These figures are heatmap error signatures showing the magnitude of error
recorded on these qubits. A dark color represents a relatively low value for the error;
warmer colors represent a higher value. To the right of each figure is a bar with a color
gradation and numbers that set the scale for that heatmap representing the level of the
infidelity being measured.

Each of the three figures ( Fig. 10 - Fig. 12) shows five sub-figures representing the
single qubit error measurements for CNOT hard cycle repetitions 1, 3, 5, 7, and 9 for
each of the three IBM hardware platforms. The y-axis label of the heatmap shows
the X, Y, and Z Pauli errors for the qubit of interest (q0 for ibmq_manilla, q10 for
ibmq_guadalupe and q23 for ibmq_montreal).

These heatmaps also clearly show that as the number of hard cycles is increased
from 1 to 9, the magnitude of the single qubit Pauli errors (especially the Z error)
grows by an order of magnitude on each of the three different hardware platforms. This
is a graphical signature that the CNOT folded cycles are contributing an increasing
magnitude of error that is detected by the deviation of the single spectator qubit from
what should have been an identity gate signature.
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Figure 10: Heatmap of ibmq_guadalupe processor. To the right of each figure is a bar with
a color gradation and numbers that set the scale for that heatmap representing the level of the
infidelity being measured
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Figure 11: Heatmap of ibmq_montreal processor. To the right of each figure is a bar with a color
gradation and numbers that set the scale for that heatmap representing the level of the infidelity
being measured
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Figure 12: Heatmap of ibmq_manila processor. To the right of each figure is a bar with a color
gradation and numbers that set the scale for that heatmap representing the level of the infidelity
being measured

42


	Introduction
	Theory - Coherent and decoherent error propagation
	Learning the Error Profile Attached to a Cycle
	Cycle Error Reconstruction (CER) Error Diagnostic Protocol
	An extension to CER to learn coherent contributions to errors

	Extracting Coherent and Decoherent Qubit Errors Using CER
	Fitting Model
	Resource requirements
	Fitting Model Simulation Results and Analysis

	Hardware results and analysis
	Summary
	Acknowledgments
	Author Contributions
	Competing interests
	Data and Code Availability
	Supplementary Material
	Preliminary definitions
	Derivation of the Pauli Fidelities of a Repeated Channel
	Derivation of the Error Probabilities of a repeated channel

	IBM Quantum Computing Hardware Architectures
	CER Protocol Measurements and Heatmap Methodology

