Schrödinger as a Quantum Programmer: Estimating Entanglement via Steering

Aby Philip1, Soorya Rethinasamy1, Vincent Russo2, and Mark M. Wilde3,1

1School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, USA
2Unitary Fund
3School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantifying entanglement is an important task by which the resourcefulness of a quantum state can be measured. Here, we develop a quantum algorithm that tests for and quantifies the separability of a general bipartite state by using the quantum steering effect, the latter initially discovered by Schrödinger. Our separability test consists of a distributed quantum computation involving two parties: a computationally limited client, who prepares a purification of the state of interest, and a computationally unbounded server, who tries to steer the reduced systems to a probabilistic ensemble of pure product states. To design a practical algorithm, we replace the role of the server with a combination of parameterized unitary circuits and classical optimization techniques to perform the necessary computation. The result is a variational quantum steering algorithm (VQSA), a modified separability test that is implementable on quantum computers that are available today. We then simulate our VQSA on noisy quantum simulators and find favorable convergence properties on the examples tested. We also develop semidefinite programs, executable on classical computers, that benchmark the results obtained from our VQSA. Thus, our findings provide a meaningful connection between steering, entanglement, quantum algorithms, and quantum computational complexity theory. They also demonstrate the value of a parameterized mid-circuit measurement in a VQSA.

Entanglement is a unique feature of quantum mechanics, initially brought to light by Einstein, Podolsky, and Rosen. Determining whether a general quantum state is entangled or not, known as the separability problem, is of fundamental interest and relevant to various fields of physics: condensed matter, quantum gravity, quantum optics, and quantum information science. Motivated by the rapid development of quantum computers, we provide a variational quantum steering algorithm (VQSA) to address the separability problem. The quantum steering effect, discovered by Schrödinger, is central to the design of our algorithm, which is implementable on quantum computers that are available today. We provide benchmarks and simulations of our algorithm and establish a meaningful connection between steering, entanglement, quantum algorithms, and quantum computational complexity theory.

► BibTeX data

► References

[1] Albert Einstein, Boris Podolsky, and Nathan Rosen. ``Can quantum-mechanical description of physical reality be considered complete?''. Physical Review 47, 777–780 (1935).

[2] Reinhard F. Werner. ``Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model''. Physical Review A 40, 4277–4281 (1989).

[3] Leonid Gurvits. ``Classical deterministic complexity of Edmonds' problem and quantum entanglement''. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing. Pages 10–19. San Diego, California, USA (2003).

[4] Sevag Gharibian. ``Strong NP-hardness of the quantum separability problem''. Quantum Information and Computation 10, 343–360 (2010).

[5] Patrick Hayden, Kevin Milner, and Mark M. Wilde. ``Two-message quantum interactive proofs and the quantum separability problem''. In Proceedings of the 18th Annual IEEE Conference on Computational Complexity. Pages 156–167. Palo Alto, California, USA (2013).

[6] Patrick Hayden, Kevin Milner, and Mark M. Wilde. ``Two-message quantum interactive proofs and the quantum separability problem''. Quantum Information and Computation 14, 384–416 (2014).

[7] Gus Gutoski, Patrick Hayden, Kevin Milner, and Mark M. Wilde. ``Quantum interactive proofs and the complexity of separability testing''. Theory of Computing 11, 59–103 (2015).

[8] Luigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral. ``Entanglement in many-body systems''. Reviews of Modern Physics 80, 517–576 (2008).

[9] Marcus Cramer, Martin B. Plenio, and Harald Wunderlich. ``Measuring entanglement in condensed matter systems''. Physical Review Letters 106, 020401 (2011).

[10] Nicolas Laflorencie. ``Quantum entanglement in condensed matter systems''. Physics Reports 646, 1–59 (2016).

[11] Tadashi Takayanagi. ``Entanglement entropy from a holographic viewpoint''. Classical and Quantum Gravity 29, 153001 (2012).

[12] Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim, and Gerard Milburn. ``Spin entanglement witness for quantum gravity''. Physical Review Letters 119, 240401 (2017).

[13] Chiara Marletto and Vlatko Vedral. ``Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity''. Physical Review Letters 119, 240402 (2017).

[14] Xiao-Liang Qi. ``Does gravity come from quantum information?''. Nature Physics 14, 984–987 (2018).

[15] Brian Swingle. ``Spacetime from entanglement''. Annual Review of Condensed Matter Physics 9, 345–358 (2018).

[16] Claude Fabre and Nicolas Treps. ``Modes and states in quantum optics''. Reviews of Modern Physics 92, 035005 (2020).

[17] Artur K. Ekert. ``Quantum cryptography based on Bell's theorem''. Physical Review Letters 67, 661–663 (1991).

[18] Umesh Vazirani and Thomas Vidick. ``Fully device-independent quantum key distribution''. Physical Review Letters 113, 140501 (2014).

[19] Charles H. Bennett and Stephen J. Wiesner. ``Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states''. Physical Review Letters 69, 2881 (1992).

[20] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. ``Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels''. Physical Review Letters 70, 1895 (1993).

[21] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters. ``Mixed state entanglement and quantum error correction''. Physical Review A 54, 3824–3851 (1996).

[22] Vlatko Vedral, Martin B. Plenio, M. A. Rippin, and Peter L. Knight. ``Quantifying entanglement''. Physical Review Letters 78, 2275–2279 (1997).

[23] Vlatko Vedral and Martin B. Plenio. ``Entanglement measures and purification procedures''. Physical Review A 57, 1619–1633 (1998).

[24] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, and Karol Horodecki. ``Quantum entanglement''. Reviews of Modern Physics 81, 865–942 (2009).

[25] J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey, and A. M. Steane. ``Deterministic entanglement and tomography of ion–spin qubits''. New Journal of Physics 8, 188–188 (2006).

[26] Matthias Steffen, M. Ansmann, Radoslaw C. Bialczak, N. Katz, Erik Lucero, R. McDermott, Matthew Neeley, E. M. Weig, A. N. Cleland, and John M. Martinis. ``Measurement of the entanglement of two superconducting qubits via state tomography''. Science 313, 1423–1425 (2006).

[27] Asher Peres. ``Separability criterion for density matrices''. Physical Review Letters 77, 1413–1415 (1996).

[28] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. ``Separability of mixed states: necessary and sufficient conditions''. Physics Letters A 223, 1–8 (1996).

[29] Reinhard F. Werner. ``An application of Bell's inequalities to a quantum state extension problem''. Letters in Mathematical Physics 17, 359–363 (1989).

[30] Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. ``Complete family of separability criteria''. Physical Review A 69, 022308 (2004).

[31] Margarite L. LaBorde, Soorya Rethinasamy, and Mark M. Wilde. ``Testing symmetry on quantum computers''. Quantum 7, 1120 (2023).

[32] Erwin Schrödinger. ``Die gegenwärtige situation in der quantenmechanik''. Die Naturwissenschaften 23, 844–849 (1935).

[33] Erwin Schrödinger. ``Discussion of probability relations between separated systems''. Mathematical Proceedings of the Cambridge Philosophical Society 31, 555–563 (1935).

[34] Daniel Cavalcanti and Paul Skrzypczyk. ``Quantum steering: a review with focus on semidefinite programming''. Reports on Progress in Physics 80, 024001 (2016).

[35] Roope Uola, Ana C. S. Costa, H. Chau Nguyen, and Otfried Gühne. ``Quantum steering''. Reviews of Modern Physics 92, 015001 (2020).

[36] Shuheng Liu, Dongmei Han, Na Wang, Yu Xiang, Fengxiao Sun, Meihong Wang, Zhongzhong Qin, Qihuang Gong, Xiaolong Su, and Qiongyi He. ``Experimental demonstration of remotely creating Wigner negativity via quantum steering''. Physical Review Letters 128, 200401 (2022).

[37] Marie Ioannou, Bradley Longstaff, Mikkel V. Larsen, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen, Daniel Cavalcanti, Nicolas Brunner, and Jonatan Bohr Brask. ``Steering-based randomness certification with squeezed states and homodyne measurements''. Physical Review A 106, 042414 (2022).

[38] Bernhard Wittmann, Sven Ramelow, Fabian Steinlechner, Nathan K. Langford, Nicolas Brunner, Howard M. Wiseman, Rupert Ursin, and Anton Zeilinger. ``Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering''. New Journal of Physics 14, 053030 (2012).

[39] Meng Wang, Yu Xiang, Qiongyi He, and Qihuang Gong. ``Detection of quantum steering in multipartite continuous-variable Greenberger-Horne-Zeilinger–like states''. Physical Review A 91, 012112 (2015).

[40] Michael A. Nielsen and Isaac L. Chuang. ``Quantum computation and quantum information''. Cambridge University Press. (2000).

[41] John Watrous. ``Quantum computational complexity''. Encyclopedia of Complexity and System Science (2009).

[42] Thomas Vidick and John Watrous. ``Quantum proofs''. Foundations and Trends in Theoretical Computer Science 11, 1–215 (2016).

[43] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. ``Barren plateaus in quantum neural network training landscapes''. Nature Communications 9, 4812 (2018).

[44] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. ``Cost function dependent barren plateaus in shallow parametrized quantum circuits''. Nature Communications 12, 1791 (2021).

[45] Mirko Consiglio, Tony John George Apollaro, and Marcin Wieśniak. ``Variational approach to the quantum separability problem''. Physical Review A 106, 062413 (2022).

[46] Xu-Fei Yin, Yuxuan Du, Yue-Yang Fei, Rui Zhang, Li-Zheng Liu, Yingqiu Mao, Tongliang Liu, Min-Hsiu Hsieh, Li Li, Nai-Le Liu, Dacheng Tao, Yu-Ao Chen, and Jian-Wei Pan. ``Efficient bipartite entanglement detection scheme with a quantum adversarial solver''. Physical Review Letters 128, 110501 (2022).

[47] Kun Wang, Zhixin Song, Xuanqiang Zhao, Zihe Wang, and Xin Wang. ``Detecting and quantifying entanglement on near-term quantum devices''. npj Quantum Information 8, 52 (2022).

[48] A. D. Muñoz Moller, L. Pereira, L. Zambrano, J. Cortés-Vega, and A. Delgado. ``Variational determination of multiqubit geometrical entanglement in noisy intermediate-scale quantum computers''. Physical Review Applied 18, 024048 (2022).

[49] George Androulakis and Ryan McGaha. ``Variational quantum algorithm for approximating convex roofs''. Quantum Information and Computation 22, 1081–1109 (2022).

[50] John Watrous. ``The theory of quantum information''. Cambridge University Press. (2018).

[51] Michal Horodecki, Peter W. Shor, and Mary Beth Ruskai. ``Entanglement breaking channels''. Reviews in Mathematical Physics 15, 629–641 (2003).

[52] A. Uhlmann. ``The "transition probability" in the state space of a $\ast$-algebra''. Reports on Mathematical Physics 9, 273–279 (1976).

[53] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. ``Variational quantum algorithms''. Nature Reviews Physics 3, 625–644 (2021).

[54] Sanjeev Arora and Boaz Barak. ``Computational complexity: A modern approach''. Cambridge University Press. (2009).

[55] Chris Marriott and John Watrous. ``Quantum Arthur–Merlin games''. In Proceedings of the 19th IEEE Annual Conference on Computational Complexity. Pages 275–285. IEEE (2004).

[56] John Watrous. ``Zero-knowledge against quantum attacks''. In Proceedings of the thirty-eighth annual ACM symposium on Theory of Computing. Pages 296–305. (2006).

[57] Soorya Rethinasamy, Rochisha Agarwal, Kunal Sharma, and Mark M. Wilde. ``Estimating distinguishability measures on quantum computers''. Physical Review A 108, 012409 (2023).

[58] Matthew Treinish et al. ``Qiskit: An open-source framework for quantum computing'' (2023). https:/​/​​10.5281/​zenodo.2573505.

[59] Xuanqiang Zhao, Benchi Zhao, Zihe Wang, Zhixin Song, and Xin Wang. ``Practical distributed quantum information processing with LOCCNet''. npj Quantum Information 7, 159 (2021).

[60] Brian Doolittle, R. Thomas Bromley, Nathan Killoran, and Eric Chitambar. ``Variational quantum optimization of nonlocality in noisy quantum networks''. IEEE Transactions on Quantum Engineering 4, 1–27 (2023).

[61] Yun-Fei Niu, Shuo Zhang, Chen Ding, Wan-Su Bao, and He-Liang Huang. ``Parameter-parallel distributed variational quantum algorithm''. SciPost Phys. 14, 132 (2023).

[62] Alexander Streltsov, Hermann Kampermann, and Dagmar Bruß. ``Linking a distance measure of entanglement to its convex roof''. New Journal of Physics 12, 123004 (2010).

[63] Tillmann Baumgratz, Marcus Cramer, and Martin B. Plenio. ``Quantifying coherence''. Physical Review Letters 113, 140401 (2014).

[64] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau. ``Repeated quantum error correction on a continuously encoded qubit by real-time feedback''. Nature Communications 7, 11526 (2016).

[65] Laird Egan, Dripto M. Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R. Brown, Marko Cetina, and Christopher Monroe. ``Fault-tolerant control of an error-corrected qubit''. Nature 598, 281–286 (2021).

[66] Rajeev Acharya et al. ``Suppressing quantum errors by scaling a surface code logical qubit''. Nature 614, 676–681 (2023).

[67] T. M. Graham, L. Phuttitarn, R. Chinnarasu, Y. Song, C. Poole, K. Jooya, J. Scott, A. Scott, P. Eichler, and M. Saffman. ``Midcircuit measurements on a single-species neutral alkali atom quantum processor''. Physical Review X 13, 041051 (2023).

[68] Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner. ``One-and-a-half quantum de Finetti theorems''. Communications in Mathematical Physics 273, 473–498 (2007).

[69] Gavin K. Brennen. ``An observable measure of entanglement for pure states of multi-qubit systems''. Quantum Information and Computation 3, 619–626 (2003).

[70] Aram Harrow and Ashley Montanaro. ``An efficient test for product states with applications to quantum Merlin–Arthur games''. In Proceedings of the 51st Annual IEEE Symposium on the Foundations of Computer Science (FOCS). Pages 633–642. Las Vegas, Nevada, USA (2010).

[71] Adriano Barenco, André Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara Macchiavello. ``Stabilization of quantum computations by symmetrization''. SIAM Journal on Computing 26, 1541–1557 (1997).

[72] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. ``Quantum fingerprinting''. Physical Review Letters 87, 167902 (2001).

[73] Bartosz Regula, Ludovico Lami, and Alexander Streltsov. ``Nonasymptotic assisted distillation of quantum coherence''. Physical Review A 98, 052329 (2018).

[74] John Watrous. ``Simpler semidefinite programs for completely bounded norms''. Chicago Journal of Theoretical Computer Science (2013).

[75] Hamza Fawzi. ``The set of separable states has no finite semidefinite representation except in dimension $3\times 2$''. Communications in Mathematical Physics 386, 1319–1335 (2021).

[76] Eric M. Rains. ``Bound on distillable entanglement''. Physical Review A 60, 179–184 (1999).

[77] Eric M. Rains. ``A semidefinite program for distillable entanglement''. IEEE Transactions on Information Theory 47, 2921–2933 (2001).

[78] Lukasz Pankowski, Fernando G. S. L. Brandao, Michal Horodecki, and Graeme Smith. ``Entanglement distillation by extendible maps''. Quantum Information and Computation 13, 751–770 (2013).

[79] Eneet Kaur, Siddhartha Das, Mark M. Wilde, and Andreas Winter. ``Extendibility limits the performance of quantum processors''. Physical Review Letters 123, 070502 (2019).

[80] Eneet Kaur, Siddhartha Das, Mark M. Wilde, and Andreas Winter. ``Resource theory of unextendibility and nonasymptotic quantum capacity''. Physical Review A 104, 022401 (2021).

[81] Mario Berta, Francesco Borderi, Omar Fawzi, and Volkher Scholz. ``Semidefinite programming hierarchies for constrained bilinear optimization''. Mathematical Programming 194, 781–829 (2022).

[82] Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles. ``Quantum-assisted quantum compiling''. Quantum 3, 140 (2019).

[83] L. Zambrano, A. D. Muñoz-Moller, M. Muñoz, L. Pereira, and A. Delgado. ``Avoiding barren plateaus in the variational determination of geometric entanglement''. Quantum Science and Technology 9, 025016 (2024).

[84] Alexey E. Rastegin. ``Sine distance for quantum states'' (2006). arXiv:quant-ph/​0602112.

[85] Christopher A. Fuchs and Jeroen van de Graaf. ``Cryptographic distinguishability measures for quantum-mechanical states''. IEEE Transactions on Information Theory 45, 1216 (1999).

[86] Joel J. Wallman and Steven T. Flammia. ``Randomized benchmarking with confidence''. New Journal of Physics 16, 103032 (2014).

[87] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets''. Nature 549, 242–246 (2017).

[88] Guillaume Sagnol and Maximilian Stahlberg. ``PICOS: A Python interface to conic optimization solvers''. Journal of Open Source Software 7, 3915 (2022).

[89] Lieven Vandenberghe. ``The CVXOPT linear and quadratic cone program solvers''. url: http:/​/​​ vandenbe/​publications/​coneprog.pdf.

[90] Vincent Russo. ``TOQITO–theory of quantum information toolkit: A python package for studying quantum information''. Journal of Open Source Software 6, 3082 (2021).

[91] Benjamin Schumacher. ``Quantum coding''. Physical Review A 51, 2738–2747 (1995).

[92] Nilanjana Datta, Min-Hsiu Hsieh, and Mark M. Wilde. ``Quantum rate distortion, reverse Shannon theorems, and source-channel separation''. IEEE Transactions on Information Theory 59, 615–630 (2013).

[93] Koenraad M. R. Audenaert, Christopher A. Fuchs, Christopher King, and Andreas Winter. ``Multiplicativity of accessible fidelity and quantumness for sets of quantum states''. Quantum Information and Computation 4, 1–11 (2004).

[94] Valerio Scarani, Sofyan Iblisdir, Nicolas Gisin, and Antonio Acín. ``Quantum cloning''. Reviews of Modern Physics 77, 1225–1256 (2005).

[95] John Watrous. ``Limits on the power of quantum statistical zero-knowledge''. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science. Pages 459–468. (2002).

[96] Carl W. Helstrom. ``Detection theory and quantum mechanics''. Information and Control 10, 254–291 (1967).

[97] Carl W. Helstrom. ``Quantum detection and estimation theory''. Journal of Statistical Physics 1, 231–252 (1969).

Cited by

[1] L. Zambrano, A. D. Muñoz-Moller, M. Muñoz, L. Pereira, and A. Delgado, "Avoiding barren plateaus in the variational determination of geometric entanglement", Quantum Science and Technology 9 2, 025016 (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-06-18 01:52:25). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-06-18 01:52:23).