Quantum Phase Transitions in periodically quenched systems

Á. Sáiz1,2, J. Khalouf-Rivera3,2,4, J. M. Arias1,5, P. Pérez-Fernández2,5, and J. Casado-Pascual6

1Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain.
2Departamento de Física Aplicada III, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, E-41092 Sevilla, Spain
3School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
4Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemática y Computación, Universidad de Huelva, 21071 Huelva, Spain
5Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
6Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum phase transitions encompass a variety of phenomena that occur in quantum systems exhibiting several possible symmetries. Traditionally, these transitions are explored by continuously varying a control parameter that connects two different symmetry configurations. Here we propose an alternative approach where the control parameter undergoes abrupt and time-periodic jumps between only two values. This approach yields results surprisingly similar to those obtained by the traditional one and may prove experimentally useful in situations where accessing the control parameter is challenging.

In the study of quantum phase transitions, which encompass various phenomena in quantum systems with multiple symmetries, the traditional approach involves gradually varying a control parameter. However, our research introduces an innovative alternative. We propose a method where this parameter abruptly and periodically switches between two values. Surprisingly, this approach yields results similar to traditional techniques and could prove invaluable in experiments where controlling the parameter is challenging.

By employing a time-periodic Hamiltonian that alternates between two symmetries, we effectively capture essential information about phase transitions in quantum systems. This novel approach not only offers a fresh perspective on studying complex quantum phenomena but also provides a practical tool for experimental investigations.

► BibTeX data

► References

[1] H.E. Stanley. ``Introduction to phase transitions and critical phenomena''. International series of monographs on physics. Oxford University Press. (1987).

[2] H. Nishimori and G. Ortiz. ``Elements of phase transitions and critical phenomena''. Oxford University Press. (2010).

[3] S. Sachdev. ``Quantum phase transitions''. Cambridge University Press. (2011).

[4] M. Vojta. ``Quantum phase transitions''. Rep. Prog. Phys. 66, 2069 (2003).

[5] L. Carr, editor. ``Understanding quantum phase transitions''. CRC Press. (2010).

[6] P. Cejnar, P. Stránský, M. Macek, and M. Kloc. ``Excited-state quantum phase transitions''. J. Phys. A: Math. Theor. 54, 133001 (2021).

[7] V. M. Bastidas, P. Pérez-Fernández, M. Vogl, and T. Brandes. ``Quantum criticality and dynamical instability in the kicked-top model''. Phys. Rev. Lett. 112, 140408 (2014).

[8] V. M. Bastidas, G. Engelhardt, P. Pérez-Fernández, M. Vogl, and T. Brandes. ``Critical quasienergy states in driven many-body systems''. Phys. Rev. A 90, 063628 (2014).

[9] M. Rodriguez-Vega, M. Vogl, and G. A. Fiete. ``Low-frequency and Moiré–Floquet engineering: A review''. Ann. Phys. 435, 168434 (2021).

[10] L. Zhou and Q. Du. ``Floquet dynamical quantum phase transitions in periodically quenched systems''. J. Phys.: Condens. Matter 33, 345403 (2021).

[11] A. Deger, S. Roy, and A. Lazarides. ``Arresting classical many-body chaos by kinetic constraints''. Phys. Rev. Lett. 129, 160601 (2022).

[12] S. K. Zhao, Z.-Y. Ge, Z. Xiang, G. M. Xue, H. S. Yan, Z. T. Wang, Z. Wang, H. K. Xu, F. F. Su, Z. H. Yang, H. Zhang, Y.-R. Zhang, X.-Y. Guo, K. Xu, Y. Tian, H. F. Yu, D. N. Zheng, H. Fan, and S. P. Zhao. ``Probing operator spreading via Floquet engineering in a superconducting circuit''. Phys. Rev. Lett. 129, 160602 (2022).

[13] M. Jangjan, L. E. F. Foa Torres, and M. V. Hosseini. ``Floquet topological phase transitions in a periodically quenched dimer''. Phys. Rev. B 106, 224306 (2022).

[14] H. J. Lipkin, N. Meshkov, and A. J. Glick. ``Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory''. Nucl. Phys. 62, 188 (1965).

[15] N. Meshkov, A. J. Glick, and H. J. Lipkin. ``Validity of many-body approximation methods for a solvable model: (II). Linearization procedures''. Nucl. Phys. 62, 199 (1965).

[16] A. J. Glick, H. J. Lipkin, and N. Meshkov. ``Validity of many-body approximation methods for a solvable model: (III). Diagram summations''. Nucl. Phys. 62, 211 (1965).

[17] M. Grifoni and P. Hänggi. ``Driven quantum tunneling''. Phys. Rep. 304, 229 (1998).

[18] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, and C. Monroe. ``Non-local propagation of correlations in quantum systems with long-range interactions''. Nature 511, 198 (2014).

[19] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. ``Quasiparticle engineering and entanglement propagation in a quantum many-body system''. Nature 511, 202 (2014).

[20] A. Frank and P. Van Isacker. ``Algebraic methods in molecular and nuclear structure physics''. John Wiley and Sons, New York. (1994).

[21] S. Dusuel and J. Vidal. ``Finite-Size Scaling Exponents of the Lipkin-Meshkov-Glick Model''. Phys. Rev. Lett. 93, 237204 (2004).

[22] E. Romera, M. Calixto, and O. Castaños. ``Phase space analysis of first-, second- and third-order quantum phase transitions in the Lipkin–Meshkov–Glick model''. Phys. Scr. 89, 095103 (2014).

[23] P. Ribeiro, J. Vidal, and R. Mosseri. ``Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections''. Phys. Rev. E 78, 021106 (2008).

[24] Luca D’Alessio and Anatoli Polkovnikov. ``Many-body energy localization transition in periodically driven systems''. Ann. Phys. 333, 19 (2013).

[25] B. J. Hall. ``Lie Groups, Lie Algebras, and Representations''. Springer New York. (2015).

[26] R. A. Horn and C. R. Johnson. ``Matrix analysis''. Cambridge University Press. (1985).

[27] P. Pérez-Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E. García-Ramos, and A. Relaño. ``Quantum quench influenced by an excited-state phase transition''. Phys. Rev. A 83, 033802 (2011).

[28] J. Vidal, J. M. Arias, J. Dukelsky, and J. E. García-Ramos. ``Scalar two-level boson model to study the interacting boson model phase diagram in the casten triangle''. Phys. Rev. C 73, 054305 (2006).

[29] F. Pérez-Bernal and F. Iachello. ``Algebraic approach to two-dimensional systems: Shape phase transitions, monodromy, and thermodynamic quantities''. Phys. Rev. A 77, 032115 (2008).

[30] M. Tavis and F. W. Cummings. ``Exact Solution for an $N$-Molecule—Radiation-Field Hamiltonian''. Phys. Rev. 170, 379–384 (1968).

Cited by

[1] Haiting Zhang, Yifan Qian, Zhen-Xia Niu, and Qian Wang, "Excited-state quantum phase transitions and the entropy of the work distribution in the anharmonic Lipkin-Meshkov-Glick model", Physical Review E 109 6, 064110 (2024).

[2] Pragna Das, Devendra Singh Bhakuni, Lea F. Santos, and Auditya Sharma, "Periodically and quasiperiodically driven anisotropic Dicke model", Physical Review A 108 6, 063716 (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-06-18 00:08:49). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-06-18 00:08:48).