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Rigorous derivations of the approach of
individual elements of large isolated sys-
tems to a state of thermal equilibrium,
starting from arbitrary initial states, are
exceedingly rare. This is particularly true
for quantum mechanical systems. We
demonstrate here how, through a mech-
anism of repeated scattering, an approach
to equilibrium of this type actually occurs
in a specific quantum system, one that can
be viewed as a natural quantum analog of
several previously studied classical mod-
els. In particular, we consider an opti-
cal mode passing through a reservoir com-
posed of a large number of sequentially-
encountered modes of the same frequency,
each of which it interacts with through a
beam splitter. We first analyze the de-
pendence of the asymptotic state of this
mode on the assumed stationary common
initial state o of the reservoir modes and
on the transmittance 7 = cos A of the beam
splitters. This analysis allow us to estab-
lish our main result, namely that at small
A such a mode will, starting from an ar-
bitrary initial system state p, approach a
state of thermal equilibrium even when
the reservoir modes are not themselves
initially thermalized. We show in addi-
tion that, when the initial states are pure,
the asymptotic state of the optical mode
is maximally entangled with the reservoir
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and exhibits less nonclassicality than the
state of the reservoir modes.

1 Introduction

There is continued interest (see for example [1, 2,
3,4, 5, 6] and references therein) in the longstand-
ing problem of how large systems, particularly
quantum mechanical ones, undergo the ubiqui-
tous process of thermalization, i.e., how it is that
they are inevitably observed to approach a state
of thermal equilibrium, starting from essentially
arbitrary initial conditions. For large isolated
quantum mechanical systems, much of this recent
interest has focused on the difficult task of ver-
ifying the (weak or strong) Eigenstate Thermal-
ization Hypothesis (ETH) of Deutsch in specific
systems. According to the ETH, energy eigen-
states of large systems tend, overwhelmingly, to
have macroscopic properties consistent with the
thermodynamically-equilibrated states that the
systems are expected to approach. We refer
to [1, 6] for overviews of this topic and its link
with the problem of thermalization. In [6], the
validity of the ETH in translationally invariant
lattice systems is in particular discussed.

In addition to this recent progress made
through a study of the validity of the ETH, it
is the authors’ view that valuable insight into the
problem of the approach to equilibrium of large
classical and quantum mechanical systems can
be obtained through the identification of specific
models in which an approach to equilibrium can
be rigorously demonstrated.

Recently, for example, the approach to a uni-
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Figure 1: A sequence of K beam-splitters with the “reservoir” state o on each of their lower input ports and an

incoming “system” mode in state p.

form spatial number density profile for a freely
expanding classical gas has been rigorously es-
tablished |7]. Entropy growth has also been in-
vestigated [8] for this process, a quantum version
of which has, independently, been studied [9] nu-
merically. Note, however, that in this system the
absence of any interaction between the gas par-
ticles does not allow for actual thermalization,
since the elements of the system do not exchange
energy and momentum.

It has on the other hand also recently been
shown for several models [10, 11] that when a
classical particle undergoes repeated collisions or
scattering events with the local degrees of free-
dom of a medium through which it passes and
with which it exchanges energy, the particle’s mo-
mentum and energy distribution can be driven to
thermal equilibrium, even when the local degrees
of freedom of the medium are not, themselves,
already thermally equilibrated.

In this paper we present a fully quantum me-
chanical model in which a similar mechanism of
repeated scattering drives a single degree of free-
dom of a many-body system to thermal equilib-
rium. We show that the state of the single degree
of freedom converges to an equilibrium state, even
though the many-body environment it is coupled
to, is itself not in equilibrium. We call this dy-
namical process “approach to equilibrium”. It is
more intriguing than, and different from, the well-
known process of “return to equilibrium”, whereby
the single degree of freedom is driven to equilib-
rium when coupled to a many-body system which
is itself in equilibrium.

The model we use belongs to a general class
of models referred to as “collision models” or “re-

peated interaction models”. They have long been
used as a versatile tool to efficiently model a
variety of phenomena in equilibrium and non-
equilibrium statistical mechanics,
in quantum information theory. An extensive
overview of the use of and physical intuition be-
hind such collision models can be found in the
recent survey paper [12] and references therein.
The mathematical formalism to analyse such
models was developed in [13, 14, 15, 16].

In our model, a single optical field mode (the
“system” mode) couples to a large reservoir of K
independent optical field modes of the same fre-
quency through a sequence of K identical beam
splitters, each having a transmittance 7 = cos A,
where the parameter A can be viewed as a “cou-
pling constant” and where it is understood that
all field modes in the system are treated quantum
mechanically. (Fig. 1 indicates the geometric lay-
out, with a horizontally propagating system mode
interacting with vertically propagating reservoir
modes.)

The system mode is assumed to be in an ar-
bitrary initial state described by a density ma-
trix p when it encounters the first beam splitter,
at a moment when each element of the reservoir
is in the same stationary initial state .  The
reservoir is therefore initially in a product state.
In what follows, we establish under rather mild
conditions on the common initial reservoir mode
state o, that the reduced system state px that
emerges from the K-th beam splitter asymptot-
ically converges for large K to a unique limiting
state

as well as

by .
Poo = lim px (1)

that generally depends on the coupling constant
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A, but not on the initial state p of the system
mode.

We then further establish that for weak cou-
pling (i.e. small A, corresponding to nearly per-
fect transmittance), the state pé‘o that the sys-
tem mode asymptotically approaches is precisely
that “equipartitioned” state of thermal equilib-
rium having the same mean energy as each of
the identically-prepared reservoir modes through
which it has passed.

We note that the dynamical process we con-
sider is unitary and hence purely deterministic.
Indeed, the only probabilistic element occurring
in the model comes from that inherent in any
quantum mechanical treatment. That is to say,
no Stosszahlansatz is required for demonstrating
this instance of approach to equilibrium. We
further stress that, since the reservoir considered
in this work is not in a thermal equilibrium state,
the phenomenon highlighted here is not one of “re-
turn to equilibrium”, which is better understood
and has been much more extensively studied, in-
cluding for collision models [12, 17], and more
generally through the use of Lindblad equations,
in the weak coupling limit. There are also ex-
tensions to the non-equilibrium situation, where
an open system is in contact with several reser-
voirs at different temperatures [18, 19]. The con-
tinuous time limit of a non-equilibrium collision
model was analyzed in [20], for arbitrary coupling
strength.

Return to equilibrium is intuitively understood
as a stability result. The reservoir is supposed to
be initially in equilibrium, while the probe de-
gree of freedom, assumed to be weakly coupled
to the reservoir, is not, so that the state of the
full system can be viewed as a small perturbation
of the global equilibrium state. At long times,
the full coupled system then “returns” to equilib-
rium. Return to equilibrium occurs in the model
we consider here as well. In fact, it is not lim-
ited to small coupling, but holds at all coupling
strengths, as we will see below. Moreover, we do
not resort to the continuous time limit of the re-
peated scattering model we consider. Rather, we
analyze the discrete time collision model directly.
To the best of our knowledge, the more elusive
and difficult phenomenon of approach to equilib-
rium demonstrated here has not been previously
shown to occur in collision models.

Analysis of the asymptotic state for more gen-

eral (e.g., non-stationary) initial reservoir states
shows, moreover, that when p and o are both
pure states, the asymptotic system state p), that
emerges is maximally entangled with the reser-
voir and has less nonclassicality than the original
reservoir states.

The rest of the paper is organised as follows.
In Section 2 the model under study is fully de-
scribed. In Section 3.1 we prove the existence
and uniqueness of the limit implied by Eq. (1)
and establish properties of the asymptotic state
pa.. In Section 3.2 we explore properties of the
limiting state for arbitrary values of the coupling
constant and show that it is Gaussian (in a sense
to be defined) if the initial reservoir state o is
itself Gaussian and provide examples when it is
not. In Section 3.3, we study the leading order
behaviour in A of the asymptotic state p2 for gen-
eral o, and show it is always Gaussian if o is, in
a certain sense, centered. We then use the above
results to establish approach to equilibrium for
the state of the system mode. In Section 4 we
analyse two typical quantum mechanical proper-
ties of the asymptotic state: its entanglement to
the reservoir and its nonclassicality.

2 The Model

As described above, we consider a single mode
of an optical field, with annihilation and creation
operators a,al, that we shall refer to as the a-
mode or the system mode. This mode, starting
from an initial input state p, enters sequentially
the “horizontal” input ports of a long sequence
of K beam splitters. (See Fig. 1) The mode at
the “vertical” input port of the k-th beam split-
ter is characterized by annihilation and creation
operators by, bL. To begin our analysis we simply
assume that the reservoir mode associated with
each beam splitter is initially in the same (not
necessarily stationary) state o. In what follows,
a state o is said to be stationary if [o, bLbk] =0,
and to be centered if (by), = <b£>g = 0. The op-
eration of the k-th beam splitter on the a-mode is
determined by the unitary scattering matrix [21]

Sk = e)‘(aTbk*abD, where 0<A<T  (2)

and where, e.g., we will often simply write ab in-
stead of a ® b for the tensor product of operators
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from different factor spaces. It follows that’
S,iaSk = acos A + by sin \. (3)

The state pi of the a-mode at the output of the
k-th beam splitter can be computed recursively
through the relation

pr. = TrpSk(pr—1 © 0) 8], (4)

in which Tr; denotes the partial trace over the
mode corresponding to bg. Since the beam split-
ters are passive elements, one has

[Sk,afa + bLbr] =0,

so that the total photon number, and thus the
total energy of the full system, is preserved in
each scattering event. Not to encumber the nota-
tion unnecessarily, we suppress the A-dependence
in the notation for both Sj and the sequentially
evolving states of the small subsystem, although
this dependence is essential in what follows.

We think of the family of modes by, each asso-
ciated with an identical Fock space H; = Hp, as
forming a reservoir and write Hg = H1®- - -QHK
for the corresponding product Fock space. The
reservoir is assumed to be initially in the K-fold
product state 0 ® --- ® 0. The a-mode, that we
think of as a small subsystem, has a correspond-
ing Fock space H, and is initially in the state
p. The initial state of the total system-reservoir
complex is thus the product state pRo®---®o.

The small subsystem undergoes successive in-
teractions with each of the modes by, and in what
follows we establish properties of the asymptotic
state

pro = lim pr (5)

K—o0
that it approaches as the number of beam split-
ters K tends to infinity. This corresponds to a
natural thermodynamic limit for this open sys-
tem. We will see that the asymptotic state p2,
depends on ¢ and possibly on A, but not on the
initial state p of the a-mode.

Since the reservoir modes all start off in the
same initial state o, it is clear from Eq. (4) that
the dynamics of the a-mode is given by iteration
of the following k-independent quantum channel:

L(p) = Try(S(p® 0)ST), S = eMalb=abh) ()

10One readily finds the
2
4 StaS, = —SfaS.

d\2

differential  equation

where the partial trace is taken over the single
b-mode degree of freedom. After the a-mode has
passed through k beam splitters, its state pg is
thus

pk = L*(p). (7)

The scattering operator S is both unitary and
Gaussian, where by the latter we mean that it is
an exponential function of a sum of at most bi-
linear products of annihilation and creation oper-
ators from any of the factor spaces. As a result, it
is convenient to characterize the states pj of the
system mode and the initial states o of the reser-
voir by their characteristic functions. To this end
we introduce the displacement operator

Dy(2) = exp(zbl — 2*D), ze€C, (8)

for a mode associated with the operators b, bf.
The characteristic function of a density matrix
p = pp on Hp is then defined by

Xp(2) = Tro(pDp(2)) == (Du(2))p- ~ (9)

We will apply these definitions both to the sys-
tem mode and to the reservoir modes and we de-
note the system (a-mode) displacement operator
by Dg(z).

We will also refer to a single-mode state o as
Gaussian [22] if its characteristic function is a
Gaussian function of z, i.e., if

Xo(2) = Try(0Dy(2)) = %), (10)
where

G(z) = 1270"A0Z — ATQZ. (11)

(). (4 )

and A and A are, respectively, the covariance ma-
triz and the displacement vector of b, bt, defined
by

Here,

i
4 2<Covg[b,b] Cove[b, b]

Covy[bt,b] Covy b, bﬂ) » and (12)

8 = <<<bbf>>i> ‘ (13)

In this last expression,

Covglz,y] = %(wy +yx)e — (T)o(y)o.  (14)
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Clearly, for a centered state A = 0.

A particular case of a stationary Gausssian
state is the thermal state at inverse temperature
B8 > 0, given by the density matrix

—1
op = Z5 " exp(—pb'b), (15)
where Zg = Tr e=Ab'b — (1 — e #)~1 is the parti-
tion function. The associated characteristic func-
tion is

(Dy())sy = exp [ — &[22 coth(8/2)].

The covariance matrix and displacement vector
associated with the thermal state og are

_ 0 2ng +1 _
Ag = <2n5 41 0 ) and Ag =0,
(16)
where 1
ﬁﬁ = <bTb>aﬁ = B 1

is the average photon occupation number in og.

3 The asymptotic state and its prop-
erties

3.1 Convergence to and expressions for the
asymptotic state pg\o

The goal of this subsection is to establish the con-
vergence implied by Eq. (5) and to study some
general features of the asymptotic state pg‘o. More
precisely, we will show that for (almost) arbitrary
initial reservoir states c and 0 < A < %, the char-
acteristic function after K interactions has a limit
as K — oo given by the relation

lim (L¥ (p) Da(2)),

K—oo
0

= J[(De(sinX[cos AFz))e, (17)
k=0

Xoo(2) =

and that there exists an asymptotic state, i.e., an
a-mode density matrix p),, with a characteristic
function x2,(z) = (Da(2)),n given by the right
hand side of this last expression.

Notice that, once established, Eq. (17) implies
that the asymptotic state p, does not depend on
the initial state p, whether the reservoir state o is
stationary or not. Thus, all memory of the initial
system state is lost in the repeated scattering pro-
cess. Equation (17) therefore establishes that the

quantum channel L defined in Eq. (6) admits a
unique stationary state, asymptotically attained
by the system mode after it has interacted with
many reservoir modes.

Generally, however, the asymptotic state does
depend on A\ and on o. Indeed, Eq. (17) implies
that (where 8, = (0, — i), 0. = 3(0y +10y))

(@ = Tr(apk)

A B sin A

= 0 (0) = T (), (19)
(ahd = Tr(alpd)

N A N Sin)\ T

= 0 0) = (bl (19)

It follows that the mean displacement of the
asymptotic state is, up to a A dependent fac-
tor, equal to that of each of the reservoir modes.
Moreover, it follows from Eq. (17) and a straight-
forward computation that

_azaz* Xéo (0) = _azaz* Xo (0)

sin A sin A
" 1— cos )\az*xg(()) 1 — cos AaZXU(O)
+0,+ XU(O)OZXU(O)‘

Consequently, using Eq. (18) and Eq. (19), as well
as

1
Tr(aTapg‘o) + 5 = _azaz*Xé\o (0),
1
TI‘(bTbJ) + 5 - _azaz*Xa(O)>
one finds readily that
Covyy laf,a] = Trpl(al = (a)3)(a = (a)%) +

)
= Tt — o) - (o) + 5

= Cov,[b',b].

In other words, second order fluctuations about
the mean displacement of the asymptotic system
state are the same as those of the reservoir states.
They do not, therefore, depend on A. This im-
plies, in particular, that when the initial reservoir
state o is centered, the mean photon number in
the asymptotic state of the a-mode is the same
as in each of the initial reservoir modes. We de-
duce, for example, that if the a-mode initially has
more photons than each of the reservoir modes, it
will lose photons on average to the reservoir, and
vice versa. Thus, in this situation, an equipar-
tition of photon number and energy develops as
the system mode passes through the reservoir.
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Technical details of the derivation of Eq. (5)
and Eq. (17) are presented in Appendix A.1. Here
we present the essential ideas of the argument in
simplified form.

In the interest of compactness, we abbreviate
s = sin(\) and ¢ = cos(A), and infer from Eq. (3)
that ST(zal — 2%a)S = (cz)al — (c2)*a+ (s2)bT —
(sz)*b, so that

STD4(2)S = exp {(cz)aJr — (cz)*a)}

X exp [(sz)bJr - (sz)*b)}
= Dgy(cz)Dy(sz).
Denoting traces over the single modes a, b and
the combined modes ab by Tr,, Try and Tryy, re-
spectively, we then obtain
Tra(L(p)Da(z))
Trap ((p @ 0)ST(Do(2) @ 1))

= Tro(pDy(cz)) Try(oDy(sz)).  (20)

After k applications, the initial density matrix p

is transformed into L*(p) = L(L*1(p)). Eq. (20)
then gives

{(Da(2)) Lk (p)
= Tra(L*(p)Da(2))
Trap (L (p) ® 0)(Da(cz) ® Di(s2)))
= (Da(cz)) pr-1() (Dp(82))o- (21)
Iterating this formula yields for K > 1,
K-1
(Da(2)) L (p) = (Da(c"2)), kH (Dy(s¢2)) o
=0

(22)
In this last expression, under the assumptions
previously stated, ¢ — 0 as K — oo, in which
limit Eq. (22) reduces to Eq. (17). Full techni-
cal details of the derivation of the results in this

section are presented in Theorem 1 of Appendix
Al

3.2 Gaussian and non-Gaussian asymptotic
system states and return to equilibrium

We now establish that the asymptotic system
state p), is Gaussian whenever the initial reser-
voir state o is. To this end, let ¢ be a Gaussian
reservoir state with covariance matrix A and dis-
placement vector A, as defined in Eq. (10). We
then have

Xo(scF2) = exp [1s2c* 20T AQZ —scF ATQZ],

where we have again used the abbreviations s =
sin A and ¢ = cos A\. By Eq. (17), the characteris-
tic function of the asymptotic state p), is

H XU(sckz)
k>0
= exp [%82( Z A ZTOT A0Z
k>0
—5( Z M ATQZ]
k>0
= exp[tzT0TA0Z - 2. ATQZ]. (23)

Xao(2) =

Equation (23) thus establishes the following:

Proposition 1. If o is Gaussian with covari-
ance matrix A and displacement vector A, then
the asymptotic state p), is also Gaussian, with
covariance matriz A, and displacement vector
A), given by

AN = A and Ag:% .

Note that the Proposition holds for arbitrary (i.e.,
Gaussian or non-Gaussian) initial system states
p. Thus, although a non-vanishing interaction is
crucial for driving the system to an asymptotic
state, the covariance matrix of the latter ends up
being independent of the strength of that inter-
action.

As an important special case of this last Propo-
sition note also that, when A = 0, so that o is a
centered Gaussian, then p), = o. This then leads
to

Proposition 2. When a system mode in an ar-
bitrary initial state p passes through a reservoir,
the modes of which are all in the same thermal
state o = og at inverse temperature (3 then, inde-
pendent of the interaction strength X\, the system
state of the a-mode will converge to a thermal
state at the same inverse temperature, i.e.,

péo = O‘B.

Thus, this fully quantum mechanical model ex-
hibits a ‘return to equilibrium”, in which the
small system mode is driven to the same ther-
mal equilibrium shared by the already equili-
brated reservoir. Similar return to equilibrium
processes are familiar from the open quantum sys-
tems literature, where one often considers the dy-
namics to be generated by a Hamiltonian H =
Hgs + Hr + AV, consisting of a system term,
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a reservoir term, and an interaction term with
coupling constant A. Return to equilibrium for
such systems, where the system has finitely many
levels, the reservoir is thermodynamically large,
and the coupling suitably small, was proven in
[23, 24, 25, 26, 27| (see also references therein).
The setup considered in the current manuscript is
somewhat different. The dynamics of the ¢ mode
(the system), given by Eq. (4), is that of a re-
peated scattering process, as the system is in con-
tact with fresh reservoir elements sequentially in
time (each element being a b mode). The main
idea of return to equilibrium remains neverthe-
less the same: a unique system mode being out
of equilibrium constitutes only a small perturba-
tion to the global equilibrium of the joint system-
reservoir universe. Our analysis above shows that
we do indeed have return to equilibrium for all
values of the coupling constant .

To end this subsection, we consider a final ex-
ample in which neither the initial reservoir state
o nor the asymptotic state p), is Gaussian. In
particular, we consider the case in which each of
the reservoir modes is in a Fock state o = |n)(n|
where |n) = ﬁ(aT)”m}, and n > 0.
Eq. (17) one finds for this case that

From

L1 T
Xoo(2) = Tr(phDa(2)) = e 21" T pu(Isc™2[?),
k=0

(24)
in which p,(z) = >, (?)%(fx)J is the nth
Laguerre polynomial [21], which is known to be
the characteristic function of the state |n). It
is straightforward to show that the state asso-
ciated with (24) is then not Gaussian except
when n = 0. Indeed, expanding” the logarithm
In[xA (t)] for small ¢t € R, it is straightforward
to establish that the Taylor coefficient of ¢* in
that expansion is —%32, which implies that the
asymptotic state pé‘o is not Gaussian for n > 0.
The system mode in this case is thus not
driven to a Gaussian equilibrium state by the
non-equilibrium reservoir. Nevertheless, from the
previous section it follows that the mean number
of photons in the asymptotic state is the same
as the actual initial number n of photons in each
of the reservoir modes. In this sense, a form of

*We have In[x%, (t)] = —3t*+), ., In[pa(s”c**t%)]. By
expanding pn(e) = 1 — ne+ sn(n— 1)e* + O(€®) for small
€, and then expanding the logarithm, one readily obtains
the above mentioned expression.

equipartition still takes place. For the particular
case n = 1, we explicitly obtain

1
Xoo(2) = Tr(p Da(2)) = 2127 (2]21% ),

where
o0

(a:0)00 = [J (1 = ag)
k=0
is the ¢-Pochhammer symbol, which defines a
function of ¢ analytic in |g| < 1. In our case,
q=c?=cos?(\).

In the next subsection, we show that even when
the reservoir states o are not Gaussian, as long
as they are centered, the asymptotic system state
pa, will itself approach a Gaussian state as the
coupling strength A goes to zero. This result will
allow us to establish that at weak coupling the
system exhibits a true “approach to equilibrium?”,
provided the reservoir modes are in a stationary
state o.

3.3 The asymptotic system state at weak cou-
pling and approach to equilibrium

We now investigate the asymptotic system states
pA, that arise at small values of the coupling
strength A\. We first consider the situation in
which the initial states o of the reservoir modes
are centered (A = 0), but are not necessarily
Gaussian. Our main finding for this case is that
the dominant term of the asymptotic state,

Pl = lim p., (25)

is a Gaussian state having zero displacement and
a covariance matrix equal to that of the initial
states o of the reservoir, even when the latter
states are not, themselves, Gaussian. This result
is proven in Appendix A.2, see Theorem 2. We
sketch the main argument of the proof here. For
that purpose, we introduce the notation

o(z) = 2bT — 2%, (26)
and then compute
Dy(z) = 1),
€@y, = 1+ (p(2))o + 3(0(2)20 + O(l2]%).

We show in Appendix A.2 (see Proposition 4)
that

Xa(2) = Tr(p%,Dal(2)) (27)
= exp {2)\*1@(2»0— + 3 Varg (¢(2)) + O(A)},
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where Var,(X) = (X?), — (X)2.
reservoir states o, the displacement A vanishes,
and thus so does the mean value (p(z)),. For

centered reservoir states, therefore,

For centered

Tr(pgoDa(Z)) (28)
= lim Tr(p3, Da(2))

= exp {%Varg (cp(z))} :

Furthermore, one directly verifies that

Vars (¢(2)) = Covolp(2), ¢(2)] (29)
—Cov, [bf, 1] z
Covg b, b] z* )7

- (z z*) Cov,[bT, b1]
N —Cov,[b, bl
where Cov,[z,y] is given in Eq. (14). Now using

the fact that Q7Q = 1 = QQ7, we find from
Eq. (30) that

Var, (p(2)) = ZTQTAQZ, (30)

where A is precisely the covariance matrix of o,
defined in Eq. (12). Combining this with Eq. (28)
we conclude that the state pY_ is the centered
Gaussian state having the same covariance matrix
A as the single-mode reservoir state o.

Suppose now the reservoir states o are sta-
tionary, so that their covariance matrix defined
in Eq. (12) is anti-diagonal. The corresponding
Gaussian state is then a thermal state. This im-
mediately leads to the following result.

Proposition 3. When a system mode in an ar-
bitrary initial state p passes through a reservoir,
the modes of which are all in the same stationary
(but not necessarily thermal) state o, the asymp-
totic system state associated with the a-mode will,
as the transmittance ™ = cos A of the beam split-
ters governing the interaction increases towards
unity, approach a thermal state having the same
average photon number and energy as that of
each of the reservoir modes through which it has
passed.

Unlike the result summarized in Proposition 2,
which demonstrates the return to equilibrium
that the small system undergoes as it passes
through a thermal reservoir, we find that a re-
peated sequence of sufficiently weak interactions
with the elements of a stationary but non-thermal
reservoir suffices to drive the system mode to
thermal equilibrium, at a temperature consistent

with equipartition of the energy of the entire sys-
tem. This is the main result of our analysis.

A similar phenomenon of approach to equilib-
rium has been shown to occur in classical sys-
tems where a particle moves through an array of
scatterers that are not in equilibrium and with
which it can exchange energy and momentum.
At strong coupling, the array will then drive the
particle to a stationary state that will not, in gen-
eral, be a state of thermal equilibrium. In the
limit of small coupling, however, this asymptotic
state will approach a thermally equilibrated state
compatible with equipartition [11].

To further round out the analysis presented
above, we note that when the state ¢ is not cen-
tered, we can translate péo in order to center it,
i.e., we can define the centered state

P = Da (~1 2000 ) 53D (17 00 ).
(31)

for which

S

= exp (T (0 ) A
It then follows again from Eq. (27) that the
asymptotic state Pgo,* is the centered Gaussian
state with the same covariance matrix as o.

To end this section we briefly explain the link
between our results, the van Hove limit, and
the quantum central limit theorem as discussed
in 28, 29]. For that purpose it is helpful to
consider a slightly more general situation where
the coupling parameter A is allowed to be differ-
ent from one beam splitter to the next. Writ-
ing Sy, = exp(—i\,(alby + abL)), one has, in the
Heisenberg picture,

ag = SESk_,...5181a8,S;... Sk 15k

K
= (Hszlck)a + 1 Z Skbk, (32)
k=1

where, as before, ¢ = cos A\g, s = sin A. Since
the first term tends to zero, one sees that, essen-
tially, the annihilation operator ax of the system
mode of the beam after K beam splitters, is a
sum of the independent random variables given
by the sibg, since all modes of the reservoir are
in the same initial state o. If for fixed K one
now chooses A\, = 1/\/? forall 1 < k < K, then
one is clearly in the situation of the central limit
theorem as discussed in [28]|. Note that this also
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corresponds precisely to the well known van Hove
limit, in which K — +oo while A> K remains con-
stant. It is easy to see that the proof of Theorem 2
of Appendix A.2 simplifies in this case and that,
provided ¢ has vanishing first moments,

lim p) =
A—)OpK PG,

where pg is the Gaussian state with the same
variance as o. Alternatively, one can take

1
k+1

A =

for all k, independently of K. The limit K — 400
can in this case be taken in the same manner as
in the previous section, and the asymptotic state
is again a Gaussian. This is the situation stud-
ied in [29], where the rate of convergence to the
asymptotic state is analyzed. Note that in these
approaches, the limit A — 0 and K — oo are
taken simultaneously, whereas we consider here
the more natural regime where first \ is kept fixed
while K is taken to infinity, leading to the asymp-
totic state p,, which is not necessarily Gaussian.
Then only is A taken to be small.

4  Entanglement and (non)classicality
of the asymptotic state

In this section we study two typically quantum
mechanical features of the asymptotic state p°.
Specifically, we evaluate the degree to which the
a-mode and the reservoir modes are asymptoti-
cally entangled, as well as the degree to which
the state p$° of the a-mode is nonclassical.

We focus on the case in which all system and
reservoir modes are initially in pure states, so that
the entire system state is also initially pure. Since
the evolution is unitary, this purity of the entire
system state is preserved, and is thus also a fea-
ture of the entire system state after all the scat-
tering processes have occurred.

Under these circumstances, the purity Pé‘o =
Tr(p),)? of the asymptotic state p) provides a
faithful measure of the asymptotic entanglement
of the @ mode with the reservoir. It is easily com-
puted to leading order in A by remarking first that
the purity of p), is the same as the purity of the
centered state péq*, which, as we have seen, con-
verges to a centered Gaussian as A goes to zero.

Hence

Pl = lim Te(pX)” = lim Tr(p), )’

= Trpd = det(V,) /2, (33)

where pg is the centered Gaussian state with
quadrature covariance matrix V,, given by

V=2 (COVU (X, X]

Cove [P, X] Cov,[P, P]

Covg[X, P])

Here the quadratures X, P are defined as X =
%(a]L +a),P = %(a]L — a) and the last equality
in Eq. (33) is a known property of Gaussian states
(see, for example [30]). From the Schrodinger-
Robertson uncertainty relation, which asserts
that det V, > 1 for all o, and the fact that only
Gaussian pure states saturate this inequality [30],
one concludes that the asymptotic state of the a
mode is entangled with the reservoir if and only if
o, which we recall is supposed pure, is not Gaus-
sian. In that situation, the von Neumann entropy

S(pd) = —Tr(p In ply)

of the asymptotic state péo is a measure of the
entanglement of the a-mode and the reservoir. It
can be similarly evaluated to leading order in A —

0:
S5 = lim S(p5) = —~Tr(pc Inpa) = g(V/det V),
—

with [30]

r+1
2

_w+1

gla) = = In

)=
Gaussian states are known to maximize the von
Neumann entropy among all states with a given
covariance matrix [31]. This means that when
both the initial system state p and the initial
reservoir mode state o are pure, and the cou-
pling is small, the repeated scattering process
drives the system mode to the state with max-
imal entanglement with the reservoir under the
constraint that its covariance matrix equals that
of the reservoir modes.

We have already remarked that, when the
reservoir states o are stationary, the small cou-
pling asymptotic state p is thermal. In that
case, this asymptotic state is therefore classical,
in the precise sense that it is a convex mixture
of coherent states [32]. For general o, however,
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the asymptotic state is Gaussian and not neces-
sarily classical in this sense. We now investigate
how strongly nonclassical the asymptotic state
can be. As above, we concentrate on the case
where 0 = [¢)(1| is pure. There exists a large
variety of nonclassicality measures and witnesses,
among which Wigner negativity [33] is a popular
choice. However, since the asymptotic state is
Gaussian, it is Wigner positive. This means that
the reservoir does not transfer or imprint any of
its potential Wigner negativity on the a-mode in
the repeated scattering process. It could how-
ever still transfer other nonclassical features. To
evaluate this phenomenon, another nonclassical-
ity measure is therefore needed. We choose to
use the quadrature coherence scale (QCS), intro-
duced in [34, 35|, and which has shown its effi-
ciency as a nonclassicality measure on large fam-
ilies of benchmark states |36, 37]. It has also been
shown to be experimentally measurable [38] using
a protocol proposed in [39]. The QCS of a single
mode state p is defined as

C¥(p) = 5 (Telp, X|[X. p] + Tilp, PI[P ).
where P = Trp? is the purity of p. As its
name indicates, the QCS is a measure of the scale
on which the coherences p(x,2’) = (z|p|a’) and
p(p,p") = (plp|p’) of the state p are sizeable [35].
The QCS is a nonclassicality witness since, when
p is nonclassical, C?(p) > 1. In addition, a large
value of C2(p) is an indication of strong nonclas-
sicality of the state p [34]. Note that the QCS
is translationally invariant. For a Gaussian state
pG, one finds [40]

1

C*(pa) = QTTV;E-

For an arbitrary pure state o = |1)(¢| (Gaussian
or not), one has

C*(0) = AX?+ AP? = %TrVU.
Since, for a pure state o = |¢)(¢],
1
AX? + AP? = 5 det Vo (Trv, b,

it follows from the uncertainty relation in the
form det V,; > 1 that

C*(0) > C*(pc),

where pg is the Gaussian state with covariance
matrix V.

From these general considerations it follows
that

C*(0) 2
detv, ¢
(35)
Eq. (35) shows that the scattering process im-
prints a fraction only of the QCS, hence of the
nonclassicality, of the reservoir states on the
asymptotic state. This fraction will be small if
det V, is large. In that case, the purity of the
asymptotic state is also small, see Eq. (33), and
its von Neumann entanglement entropy is large,
see Eq. (34). In other words, the entanglement of
the a-mode with the reservoir is large, while its
nonclassicality is small. One has in fact

€20 = lim C2(p)) = C?(pa) =
A—=0

€3 = (Pa)*C(o).

More precisely, one may note that Eq. (34)
implies that the von Neumann entropy of the
asymptotic state is a slowly growing function of
det V,,. Indeed, for large x, we have

T 2
g(z) ~In(5) +1, == —exp(g).

So
€20 = lim C¥(pd) = C¥(pc)
A—0
o\ 2
~ (2> CQ(a)exp(—2S’go),
and

PO = det(V,) V2 ~ gexp(—Sgo).

As an example, when o = |n)(n|, one finds

1
2 0,2
=2n+1 2=
R S, =g(2n+1)
® 2p41’ T '

In other words, the more nonclassical o is (large
n), as measured by the QCS, the more classical
p% is. The entanglement of the a-mode with the
reservoir, on the other hand, grows slowly (loga-
rithmically) with n.
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A Proofs

A.1 Existence of the asymptotic state

It is the goal of this appendix to give a precise
proof of Eq. (5) and Eq. (17). For that pur-
pose, we need the regularity assumption (Al) on
the characteristic function x,(z) of the reservoir
modes, stated below.

Given a density matrix ¢ and a fixed complex
number z € C, we introduce the function

R 3>z xo(z2) = (Dp(22))s € C.

The assumption then reads as follows:

(A1) There is a 6 > 0 such that for every z € C
and every x with |z| < 4,

— The function z — x,(zz) is differen-
tiable.

— There is a (possibly z-dependent) con-
stant Co(z) such that

| L o (22)] < Co(2).

— There is an 17 > 0 such that for all |z| <
n, we have Cy(z) < Cp.

This technical condition is typically satisfied for
many states considered. This includes Gaussian
states, Fock states, and cat states.

Theorem 1. Suppose that the condition (Al)

holds. Then, for all 0 < X\ < m/2, there exists
a density matriz p, so that for all z € C,
Tr(/oéoDa(Z)) =
K—1
lim (Dy(sin(N){cos(N)}*2))s. (36)
K—o0 =0

Proof. We first show that the limit K — oo in
Eq. (17) exists. Recall the abbreviation s = sin \,
c=cosA. Let z € C be fixed. As ¢ < 1 there is
an integer ko such that ¢* < § for all k > ko. We
use the fundamental theorem of calculus for the
function = — In[x,(szz)], to get, for k > ko,

/ fln (X0 (syz)]dy

@xa<syz>
Yo (57)

Infyo(scF2)] =

:/Oc

Since x,(0) = 1 another application of the fun-
damental theorem of calculus gives

dy.  (37)

Xo(syz) — 1= /Oy %Xg(swz)dw. (38)

Due to ]%Xg(swzﬂ < Cy(sz) we obtain from
Eq. (38) that [xo(syz) — 1] < yCo(sz) <
c#Cy(sz). Hence there is a k1 (depending on sz)
such that for k > k1, we have

IXo(syz)| > 1/2 (39)

for all 0 < y < c*. Using Eq. (39) we obtain from
Eq. (37) the bound,

| In[x,(sc¥2)]| < 2c¢FCo(s2), k> k. (40)

This shows that the series 34~ In[x, (sc¥2)] con-
verges absolutely, which implies that the limit of
the infinite product in Eq. (17) exists.

Next we show that the series converges uni-
formly in z for |z| < n. Once we know this
we conclude that z — S .ooIn[xpo(scF2)] is a
continuous function of z for |z| < 7, so that
[Tx>0 Xbo(sctz) = eXp{Zkzoln[Xb,a(Sckz)]} is
also continuous in this domain. Let us address the
uniform convergence now. The relations Eq. (37),
Eq. (38) are still valid for k& > ko (with ko inde-
pendent of z). For |z| < n we have |sz| < n
and so Eq. (38) implies |xp(swz) — 1| < cFCy,
where the right hand side is now independent of
z for |z| < n. Then the bound Eq. (39) is valid
for all & > ko with a ko independent of z and so
we get, analogous to Eq. (40), |In[xp . (sckz)]| <
2c8Cy, k > ko, uniformly in |z| < 1. Now
S k>0 I [xb.0 (5¢F2)] converges absolutely and uni-
formly in |z| < 7 by the Weierstrass M-test.

We have shown so far that the limit as K — oo
in Eq. (22) exists. This means that the limit of
the characteristic function associated to the den-
sity matrix L% (p) exists as K — oo. Moreover,
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we have shown that this limit characteristic func-
tion, Xéo? is continuous in z at the origin z = 0. It
is known [41] that then, x2, corresponds to a limit
density matrix p7,, meaning that there is a den-
sity matrix p, such that x2 (2) = Tr(pd Da(2)),
and that furthermore, L¥(p) — p) in trace
norm, as K — oo. L]

A.2  Approach to equilibrium

The main result of this section is Theorem 2,
which we have used in Section 3.3. With the def-
inition Eq. (26) of ¢(z) we have the Taylor series
expansion,

Dy(2) = €@ = 1+ p(2) + 30(2)* + -+

We now impose a regularity condition on the ini-
tial single-mode reservoir state o:

(A2) Suppose (b),, (b'b), and (b?), are finite.
Moreover, suppose there is a ¢y > 0 such
that for all |z| < co,

(Dy(2))o = 14 {p(2))o + 5(¢(2)?)0 + Rg((z)),
41
where |R,(z)| < C|z|? for some constant C.

Recall the assumption (Al), given before Theo-
rem 1. Our main result of this section is:

Theorem 2. Suppose o satisfies (Al) and (A2)
and has vanishing first moment, (b), = 0. Then
the limit

lim p? = °
/\_>0poo P

exists and pQ, is the centered Gaussian state
which has the same covariance matrix as the state
.

Moreover, if the moment (b), does not vanish,
then p, does not have a limit as A — 0.

Proof of Theorem 2. Condition (A2) means that
(0(2))s and {(p(2)?), are finite and

(D)o = 14 (p(2))o +3(0(2)*)o + Bo(2). (42)

The proof of Theorem 2 is based on the following
result.

Proposition 4. Suppose o satisfies the assump-
tions (A1) and (A2). For each z € C there is a
Ao > 0 such that if 0 < X < Ag, then

Tr(p3 Dal(2)) (43)
= exp {2)\*1@0(/2)% + 3 Varg (p(2)) + AL(A, z)},

where Vary(X) = (X?), — (X)2 and where the

remainder term t(\, z) satisfies [t(A, z)| < C(z)
for a constant C(z).

We give a proof of Proposition 4 below. For
now we use the result to show Theorem 2. First, if
(p(2))s # 0, then Eq. (43) shows that the average
of Dy(2) in p), does not have a limit as A — 0.
This means that p2, does not have a limit. Next
suppose (¢(z))s = 0 for all z. Then according to
Eq. (43)

/l\ii% Tr(pd, Da(z)) = exp {%Varg (go(z))} (44)

By condition (A2), the map z — Var,(¢(z2)) is
continuous at the origin. Eq. (44) means that
the characteristic function of p}, has a limit as
A — 0, and this limit is continuous in z at the
origin z = 0. It follows from [41] (“SWO'T conver-
gence Lemma”) that p} converges in trace norm
to some density matrix we denote p2 , as A — 0,
and that moreover, the characteristic function of
p, is the limit characteristic function of the pJ..
In other words, for all z € C,

Te(pS.Da(2)) = exp [3Vare(p(2))]-

This shows that p, is Gaussian. By proceeding
as in Eq. (30)-(30), we identify p2, as the centered
Gaussian having the same covariance matrix A as
o. This completes the the proof of Theorem 2,
modulo a proof of Proposition 4, which we give
now.

Proof of Proposition 4. Theorem 1 gives the limit
state expectation functional as

Tr(phDa(2)) = [[(e2),
k>0

= exp[) In(e(<:2)y, ],

k>0

where employed Dy(z) = e#(*) and we set, for
notational simplicity,

e = sc”, s =sin(\), c=-cos(A). (45)

Choose A small enough (depending on z) such
that s|z| < ¢, where ¢ is the constant appearing
in Assumption (A2). We expand using Eq. (42),

In(e?©2)), = In[1+e(p(2))o + S (0(2)%0
+Ro‘(6kz)}
= Yyt (16)
n>1
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where we set

& = ex(9(2))o + F(0(2)*)o + Roler2).  (47)

The power series for the logarithm in Eq. (46)
converges (absolutely) since

&k] < scfC(2) < sC(2) < 1 (48)

for s small enough (that is, A small enough, with
an upper bound possibly depending on z), and
where C(z) is some constant not depending on k.
We split off the main terms in the series Eq. (46),

Z(-U"H% =& — 38+ (-

n>1 n>3

n+1 fk 49)

and we estimate the infinite sum with n > 3 as

‘Z n+1£k‘ < Z|£ |n_ ’é‘k’k

n>3 n>3 ’ ’
< $*0(2), (50)

provided that s is small enough (with an upper
bound possibly depending on z), and where C(z)
is a constant independent of k. By using Eq. (47)
the linear and quadratic terms in Eq. (49) satisfy
the bound

2o + sk Vars(¢(2))}
< $3SRC(z) (51)

’ ng {ek

for a constant C'(z) not depending on k. Com-
bining Eq. (46), Eq. (49), Eq. (50), and Eq. (51)
gives

| (e (2}, — {ex(p(2))o + sk Var ((2))}|

<30 (z) (52)

provided s is small enough (with an upper bound
possibly depending on z), and where C(z) is a
constant independent of k. The bound Eq. (52)
shows that there exists a A\g (possibly depending
on z) such that whenever A < \g, then we have,
for any integer K,

K

|37 [n(er ), — (st ()

k=0
K

+ 152 Var, (¢ (z))}” <s°C(z) Y *F (53)
k=0

By taking K — oo we get

3 In(ef ')y,
k>0
S

1—c

(p(2))o + 5 Vars(p(2)) +t(s, 2)

with [t(s,2)] < C(z) lig < C(z)s < C(2)A
(where we use the symbol C(z) for a constant
which can vary from bound to bound). As %~ =
2/A+O()) for small A, this completes the proof of
Proposition 4 and hence this completes the proof
of Theorem 2. g
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