
A High Performance Compiler for Very Large Scale Surface
Code Computations
George Watkins1,2, Hoang Minh Nguyen2, Keelan Watkins3, Steven Pearce2, Hoi-Kwan Lau3,4, and
Alexandru Paler1

1Department of Computer Science, Aalto University, 00076 Espoo, Finland
2School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
3Department of Physics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
4Quantum Algorithms Institute, Surrey, B.C., Canada V3T 5X3

We present the first high performance
compiler for very large scale quantum er-
ror correction: it translates an arbitrary
quantum circuit to surface code opera-
tions based on lattice surgery. Our com-
piler offers an end to end error correc-
tion workflow implemented by a pluggable
architecture centered around an interme-
diate representation of lattice surgery in-
structions. Moreover, the compiler sup-
ports customizable circuit layouts, can be
used for quantum benchmarking and in-
cludes a quantum resource estimator. The
compiler can process millions of gates us-
ing a streaming pipeline at a speed geared
towards real-time operation of a physical
device. We compiled within seconds 80
million logical surface code instructions,
corresponding to a high precision Clif-
ford+T implementation of the 128-qubit
Quantum Fourier Transform (QFT). Our
code is open-sourced at https://github.
com/latticesurgery-com.

1 Introduction
Applying surface quantum error correcting codes
(QECCs) efficiently to large computations is
challenging in terms of classical computing re-
sources necessary for the compilation process.
Compilers tailored for QECC are only starting

George Watkins: invio.george@gmail.com
Hoang Minh Nguyen: hoangminh98@gmail.com
Keelan Watkins: keelan w@outlook.com
Steven Pearce: stevenp@sfu.ca
Hoi-Kwan Lau: hklau.physics@gmail.com
Alexandru Paler: alexandrupaler@gmail.com

to appear, often with significant limitations with
respect to the scale of the circuits that can be
handled or the compilation time.

Large scale QECC compilation is a neces-
sity, because practical algorithms, like Shor’s and
Grover’s assume high-quality qubits with a very
low error rate [1], but we are unlikely to obtain
hardware (physical) qubits with such fidelity in
the near future [2]. QECCs solve this issue by us-
ing a large number of error prone physical qubits
to encode higher fidelity logical qubits. For exam-
ple, a quantum factoring algorithm needs roughly
1000 qubits to factor a 1000-bit number and mil-
lions of gates [3, 4]. Consequently, practical algo-
rithm require very large scale quantum comput-
ers, while only some carefully crafted examples
of problems where quantum hardware has an ad-
vantage with small devices exist [5].

Surface codes are a family of QECCs that re-
quire low qubit connectivity and a reasonably
high hardware error rate (such as between 0.1%
and 1%) to create good logical (computational)
qubits [6, 7, 8] and only require degree four
nearest neighbour connectivity. These properties
make them a promising option for error correct-
ing devices with a couple hundred logical qubits.
Physical devices with compatible layouts have al-
ready been made or proposed, albeit on a small
scale [5, 9, 10, 11, 12]. Examples of larger scale
quantum circuits protected by surface QECCs
were compiled manually in [13, 14]. The com-
plexity of optimising surface code circuits has
been shown to be related to NP-hardness [15, 16].

We present and demonstrate the extremely
high scalability of our efficient QECC compiler.
This is a step forward for quantum software: we
create a streaming pipeline and a compilation

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

30
2.

02
45

9v
3

 [
qu

an
t-

ph
]

 1
6

M
ay

 2
02

4

https://quantum-journal.org/?s=A%20High%20Performance%20Compiler%20for%20Very%20Large%20Scale%20Surface%20Code%20Computations&reason=title-click
https://quantum-journal.org/?s=A%20High%20Performance%20Compiler%20for%20Very%20Large%20Scale%20Surface%20Code%20Computations&reason=title-click
https://github.com/latticesurgery-com
https://github.com/latticesurgery-com
mailto:invio.george@gmail.com
mailto:hoangminh98@gmail.com
mailto:keelan_w@outlook.com
mailto:stevenp@sfu.ca
mailto:hklau.physics@gmail.com
mailto:alexandrupaler@gmail.com

Figure 1: Example output of from the compiler: sequence of discrete time steps, called slices, of a surface code
computation. Each slice has an associated time instant when it is taking place. The slices are obtained after
mapping a circuit to a layout, where patches end up being used for holding error-corrected logical qubits (brown),
distillation procedures (pink), routing merge and split operations of patches (blue), or not used (white). 1) There is
a merge and split operation (blue) taking place between logical qubits 0 and 3. 2) Qubits 11 and 13 are measured;
3) logical operation between qubits 4 and 9, and logical operation between 5 and 6, and the bottom right distillation
is outputing a distiiled state; 4) qubit 9 is measured, merge and split between 1 and 2, and the right most distillation
region is outputing a distilled state.

environment for the compilation and optimisa-
tion of very large scale QECCs. Our high per-
formance pipeline makes it possible to process
extremely large circuits (would not fit in mem-
ory). We can compile directly, in a streaming
process, by reading and writing to mass storage.
Streaming enables the real-time operation of our
compiler, meaning that this tool may be inte-
grated in the classical control software necessary
to operate quantum computers [17].

This paper is organised as follows: In Sec. 2 we
introduce the concepts necessary for presenting
the compilation methods and workflow. Sec. 3
describes the two-stage compilation pipeline that
consists of gate level processing (Sec. 3.2) and
logical operation routing (Sec. 3.3). The latter in-
cludes also a fast method to perform state vector
simulation that takes into account the entangling
and disentangling action of the lattice surgery
operations. Finally, Sec. 4 illustrates the perfor-

mance of our compiler. We compile within sec-
onds a high-precision 128-qubit Quantum Fourier
Transform (QFT) [18]. To the best of our knowl-
edge, this is the largest-scale compilation of this
kind.

2 Background

This section introduces the necessary background
details for describing the compilation process.
The application of error correction to quantum
circuits resembles the process well known to clas-
sical computer scientists of program compilation:
the compiler reads code in a programming lan-
guage (higher level quantum gates) and outputs
machine instructions (lattice surgery quantum
gates).

We opted for flexibility and developed a com-
piler with a well-defined intermediate representa-
tion to separate circuit pre-processing from sur-

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 2

face code instruction layout. Surface code in-
structions for large scale computations at present
is interesting for at least two purposes, one is be-
ing able to produce reliable resource estimates,
and the other is to start preparing for when we
will have such devices, so that hardware engineers
can start designing devices with instruction sets
for error correction in mind.

We assume the reader is familiar with the ba-
sic concepts of quantum computing and quantum
information [18, 19]. We assume the conventional
meaning for common quantum gates (Phase gates
S and T, Hadamard gate H, CNOT, Toffoli) and
the Pauli matrices (I, X, Y, Z). By the phase ro-
tation gate RZ(θ) we mean:

RZ(θ) =
[
1 0
0 ei θ

2

]

We will frequently use Pauli product rota-
tions, for which we assume the following: given
an axis P (which may be a Pauli matrix or a
tensor product of Pauli matrices) we denote by
P (θ) = exp(−iθP) = cos(θ)I − i sin(θ)P . Note
that under this convention, RP (θ) = P (θ

2) for
P = X, Z. Also, when the Pauli matrices ap-
pear with sub-indices, e.g. Z1Z2Z3Z4 in Fig. 2,
we mean the tensor product X ⊗ Z of the Pauli
matrices applied to qubits indexed 1 and 2. Sim-
ilarly, we use gate RX(θ) = HRZ(θ)H.

2.1 Surface Codes

A major challenge with the current generation
of quantum computers is the occurrence of er-
rors while performing computations. Errors may
occur because of control system faults or stray
interaction with the environment. A proposed
solution for avoiding errors are Quantum Er-
ror Correcting Codes (QECC). These codes add
some degree of fault tolerance to computations
by using many physical qubits to form fewer but
more reliable abstract logical qubits[22]. Surface
codes are a family of QECCs that aim at improv-
ing computational fidelity by entangling physi-
cal qubits in a physical lattice [23, 18]. This
kind of codes, with topological properties, was
first theorized with exotic particles known as
“anyons” [24]. Surface codes are appealing be-
cause they are well understood, and feature a
high error threshold. In near future, quantum
computing hardware with thousands of qubits

Figure 2: A graphical depiction of surface code layout.
The white circles are data qubits protected from errors
by measuring stabilizers around them. The squares in
the lighter and darker shades of yellow represent sta-
bilizer measurements. For example, the squares marked
with Z and X represent the Z1Z2Z3Z4 and X5X6X7X8
stabilizer measurements respectively. If an error occurs
in a data qubit, such as a phase flip occurring on 9, the X
stabilizers around it will pick it up by changing outcome
(syndromes, highlighted in purple). There are advanced
methods to decode sets of errors (e.g [6, 20, 21]). Errors
can either be corrected on the spot or tracked classically
by inverting later readouts. This cycle of detecting, de-
coding and correcting is referred to as the surface code
cycle.

might be realized [25, 26, 12] which would be
able to operate a surface code cycle on a lattice
of qubits.
The key step of surface code error detection is

stabilizer measurement, as shown by the shaded
squares in Fig. 2. These measurements act as
parity checks on bit flips or phase flips of a square
lattice of data qubits. The surface code and its
cycle (the sequence of quantum gates applied for
enforcing the code constraints) only tell us how to
protect a lattice from error. The surface code dis-
tance indicates how much error is tolerated [27].

2.2 Logical Qubits and Logical Operations
Logical (computational) qubits are encoded by
“cutting out” portions of a device’s physical lat-
tice into patches, which are cluster states error
corrected by the surface code cycle. This en-
coding of logical qubits is known as the planar
code [27, 28]. Patches have boundaries outside of
which they don’t interact, except when perform-
ing certain logical operations (Sec. 2.2). Fig. 3
outlines how patches relate to the surface code.

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 3

Figure 3: Abstracting physical qubits to patches. We
omit the details of stabilizers and data qubits that make
up patches, and instead represent distance-independent
features. It is always possible to compute back these
details about stabilizers from the output format and code
distance. The picture to the left shows how this abstract
representation relates to the physical implementation,
and to the right there is a fully abstract patch, which
has its own logical state. The different stabilizers on the
boundaries yield two different kinds of boundaries, which
are often referred to as rough and smooth.

The patch-based approach has been shown to be
a resource-efficient choice for quantum error cor-
rection [29, 30, 31].

We will be looking at square patches with
two kinds of boundaries that encode a single
qubit. Patch size is proportional to code dis-
tance and the performance of the decoding al-
gorithm (e.g. [6, 21]). For our intents, it suffices
to know that the size of the patches will depend
on the physical error rate of the device, length of
the computation and desired success rate of the
logical computation. In Sec. 4 we estimate the
resources [32] necessary to execute the compiled
output.

Having obtained logical qubits, we require a
method to perform operations between them.
Table 1 offers an overview of all the surface code
operations supported by our compiler at the log-
ical level. Some logical operations are performed
directly on patches: Pauli X and Z [33], and
Hadamard gates [29], can be implemented in this
way and are called transversal operations. It is
also possible to directly initialize a patch in the
|0⟩ or |+⟩ states and to measure in the X or Z
basis [31]. For the remaining operations needed
to complete a universal gate set we use lattice
surgery [29]. This protocol achieves entangling
multibody measurements by merging and split-
ting patches.

We use these measurements along with pre-
pared ancillae states (and corresponding patches)
to implement CNOT as shown in [29], and the S
and the T gates (Fig. 12 in Appendix). T gates

utilize a magic state, |m⟩ = 1√
2(|0⟩ + e

iπ
4 |1⟩),

Figure 4: Lattice surgery of patches. Patches are merged
by activating the stabilizer measurements with the data
qubits between them (blue regions). This operation
causes the two patches to become one, hence losing a
degree of freedom and projecting the logical state into
a subspace. After stopping the stabilizer measurements
and measuring the mediating data qubits, the patches
are split. Overall, this operation is equivalent to a logical
multi body measurement [29]. The observable depends
on the boundaries: rough for X and smooth for Z. This
figure shows measurements of the observables Z ⊗ Z
(top) and Z ⊗ X (bottom)

which in the surface code cannot be initialized
directly with a high fidelity. These states have
to be prepared by distillation. There are sev-
eral protocols for magic state distillation [34, 35],
but for our compilation purposes it suffices to ac-
knowledge the fact that these distillations occupy
some amount of space on the device’s lattice and
that they have a certain duration in time: dis-
tillation regions are described by their bounding
box which includes a time axis for how long it
will take to produce the next magic state.

2.3 Related Work

Compilers for surface codes have been previ-
ously presented in the literature, and most of
the times, the compilation problem has been de-
coupled from the challenges of optimising the
resulting circuits. In general, automatic opti-
misation is performed by implementing heuris-
tic algorithms for the efficient layout of the logi-

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 4

cal operations, and this includes parallelizing as
many as possible operations, using fewer patches
for the routing etc. Surface code computations
can be implemented through braiding (e.g. Surf-
braid [36]) or lattice surgery like the tool pre-
sented herein (e.g. OpenSurgery [37] or the com-
pilers from [38, 39, 40]).

Our compiler is distinct from the others in the
following ways. Our compiler’s source and target
are similar to OpenSurgery, but improves on the
compilation time performance, offers new opti-
mizations, adds the ability to customize layouts,
and handles parallel magic state distillation.
The compilers from [39, 40] focus specifically

on routing long range surface code interactions.
While we do tackle such problem, as it is neces-
sary for our overall compilation goal, the focus of
this project is broader in scope and we organise
our compilation into a very modular, highly ef-
ficient pipeline which can handle both short and
long range interactions.
Our compiler supports very large scale layouts

through a layout specification and the compiler
can automatically map large-scale circuits to the
layouts. In contrast, the compiler from [38] is a
small scale procedure that explores the trade offs
of different layouts for mapping algorithms onto
surface code architectures.
Our compiler is modular and can include man-

ual optimisation techniques, for example, by re-
placing existing gate decompositions, or reconfig-
uring the bounding boxes of the distillation sub-
circuits. For completeness, manually obtained
surface code layouts with techniques such as
the AutoCCZ for optimizing ripple carry adders
where presented for example by [14]. Finally,
one last approach to quantum compilers worth
mentioning are variational compilers [41], which
share with our project the challenges of circuit
pre-processing.
Compared to existing surface code compilers,

our tool extends the state of the art by including
at least the following novelties:

• support for an intermediate language for
compiling high-level circuits from different
languages (e.g. Q#, Cirq, Qiskit) and de-
scriptions (e.g. Clifford+T, multibody mea-
surements);

• highly configurable layouts for qubits, rout-
ing space and multiple parallel distillation
procedures;

Operation Method
Patch initializa-
tion in the |0⟩
and |+⟩ states

Direct Initialization of
data qubits [29]

Single patch
measurements

Direct measurement of
data qubits [29]

Pauli X and Z Transversal in surface
codes [6]

Hadamard gates Transversal in planar code
patches [29]

Entangling
multi body
measurements

Lattice surgery merges and
splits, mediated by ancilla
patches for routing [31]

Boundary
Rotation

Patch deformation[31]

S gates Lattice surgery with twist
defects [42]

Preparation
of Magic
states |m⟩ =
|0⟩ + e

iπ
4 |1⟩

Distillation in dedicated
regions [35]

Table 1: The list of logical surface code operations sup-
ported by the compiler. The operations are formalized
into logical lattice instructions (LLI), which serve as a
central intermediate representation to our compiler. LLI
decouples the pre-processing to surface code instructions
from laying them out on an abstract lattice.

• very high-speed, configurable routing heuris-
tics which can be easily replaced with more
sophisticated approaches including based on
machine learning;

• pipelined, modular design that is compatible
with distributed computing platforms such
that compilations and optimisations can be
performed on multi-core/paralell computers.

3 Methods
We address the problem of taking a circuit speci-
fied in a machine readable format, and converting
the circuit to the surface code operations outlined
in Table 1. For small circuits it is easy enough to
perform such conversion by hand, but automa-
tion is necessary for large scale circuits.

Our compiler is a computer program that reads
text in a source formal language and outputs ma-
chine code in another language, called the target.
In our case the source is a quantum circuit in a

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 5

subset of OpenQASM 2.0 [43] (Sec. 5.1), while
the target is a JSON logical operation instruc-
tions (Sec. 2.2 and Fig. 1).

We implemented our compiler and the source
code is open sourced at https://github.com/
latticesurgery-com. In order to improve the
readability of this paper, we keep the engineering
and implementation details to a minimum, and
point the interested reader to the open sourced
code. The latter is written with modern C++
features which increase the comprehension of the
code’s functionality.

The compiler is continuously tested and veri-
fied for functional correctness with modern con-
tinuous integration, while practical performance
plays a significant role. Our compiler offers a
wide range of configuration options, ranging from
optimization heuristics, intermediate representa-
tions of the computations, as well as flexible lay-
outs.

3.1 The Compilation Pipeline

The compiler operates a two-stage pipeline
(Fig. 5): 1) a pre-processing stage, and 2) a lay-
out and routing stage. The two stages communi-
cate through an intermediate representation we
refer to as logical lattice instructions (LLI from
Table 1). The LLI contains all the information
about the logical operations happening on the
lattice, but none about the physical locations of
the patches, or about routing and distillation re-
gions. The physical qubit lattice will be operated
according to LLI instructions (Table 1).

The first stage, the gate level processing stage,
operates mostly at the logical circuit level. We
resort to a universal gate set based on surface
code operations. We gradually process the in-
put circuit’s gates to align with our surface code
instructions. Once the circuit is in a suitable for-
mat (only Clifford+T gates or certain Pauli rota-
tions), the circuit maps 1-to-1 with surface code
operations and is written down as LLI.

The second stage is the slicer. Herein, the LLI
are combined with a layout specification in space
and time (Fig. 7). The LLI language is circuit
layout agnostic, meaning that the mapping of the
logical qubits to the physical lattice may have a
great impact on the efficiency of the compiled cir-
cuit. The result of these steps is a “sequence” of
slices of the physical lattice. The slices depict the
state of the computation at each point in time,

Figure 5: The pipeline as implemented in the compiler.

as shown in (Fig. 1). We offer two such slicers:
one written in Python, geared towards the veri-
fication of small scale circuits (Sec. 3.3.1) and a
high performance one written in C++ for large
scale circuits (Sec. 3.3.2).

3.2 Gate Level Processing
The first stage takes a logical circuit specified
in our own minimal dialect of OpenQASM 2.0.
We offer two ways to pre-process the circuit: 1)
with Pauli rotations and Pauli product measure-
ments, and 2) directly with higher level quantum
gates such as Toffoli gates. In both cases, we first
parse the circuit into a list of gates, using either
Qiskit [44], PyZX [45], a custom parser or a com-
bination of the three depending on the circuit.

The gate list expression of the input circuit
might use gates which are not supported by the
error-correction procedure. In this step we re-
duce the gate set so that it easily translates to
LLI. Our custom parser is able to break down
very small angle rotations, such as Z(π

2128) by
symbolic processing of the argument. These ro-
tations are needed to compile, for example, a 128-
qubit quantum Fourier transformation (QFT)
circuit. After parsing, the list of gates is passed
through the pipeline to the next stage.

First, controlled gates are broken down to
CNOTs and single qubit rotations using the iden-
tity in Fig. 13. The circuit now only has single

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 6

https://github.com/latticesurgery-com
https://github.com/latticesurgery-com

qubit Clifford gates, CNOTs and single qubit ro-
tations. At the last stage of pre-processing in the
gate model single qubit rotations smaller than
π
4 are approximated to single qubit Clifford+T
gates.

It is possible to convert controlled-rotation
gates to Clifford operations plus some small an-
gle Z(θ) rotations (Figure 13 in Appendix). The
latter are not Clifford+T and are difficult to per-
form in a fault-tolerant way [46]. We achieve
arbitrary Z(θ) rotations by approximating them
with Clifford+T gates, for which we leverage the
Gridsynth package [47] which outputs approxi-
mations constituted of sequences of H, X, Z, S
and T gates. The T gates are performed by con-
suming magic states, which are prepared in ded-
icated distillation regions[33, 35].

We utilize two methods to convert the
Gridsynth appproximation to LLI. The first is
to directly apply the gates with the methods of
Table 1: H, X and Z transversally, S with a twist
and T as Z(π

8) rotation as shown in Fig. 12. The
second approach, we refer to as Pauli rotation
compression, is shown in Fig. 6, and consists of
interpreting the gate sequences returned by the
Gridsynth approximations as a sequence of Pauli
rotations of varying angles.

The direct application of gates is simpler and
results in the same Clifford corrective terms for
every rotation. With Pauli rotation compression
the Clifford corrective terms change for every an-
gle, thus more complex classical control would
be required by a downstream stage. In the Ap-
pendix we present an algorithm for Clifford gate
optimization.

3.3 Slices and Routing

To overcome the logistical challenges of structur-
ing a computation on surface code device, we ar-
range the computation in space and time. Space
structure is given by partitioning the physical lat-
tice into square cells. A cell may hold or may not
hold a patch, be part of a distillation region, or
may be used for routing, but patches, distillation
regions and routing areas are always placed in
accordance to cell boundaries (Figs. 1, 3 and 7).

Time structure is given by thinking of the com-
putation in terms of slices. Surface code compu-
tations can be viewed as 3D structures in space-
time [48, 37, 14], and a slice is a plane through
the structure at a fixed time value (Fig. 1). In a

Figure 6: Pauli rotation compression of Cliffod+T ap-
proximations of small angle rotations E.g. RZ(π

2128):
gate sequences obtained from Gridsynth are interpreted
in the Pauli Frame by breaking it into subsequences.
For instance, the sequence HSHTSHX would be split
as HSH, TS, H, X and would become the sequence
X π

4
Z 3π

8
HX

nutshell, a slice is a temporally discretized parti-
tion of the computation (clock timesteps in Litin-
ski [31] or moments in Google Cirq [49] terminol-
ogy, for example). Each slice represents a snap-
shot of the the LLIs that are happening simulta-
neously on the lattice – slice duration is given by
the duration of the slowest LLI.

Routing is the problem of deciding how the
cells of a slice are allocated to patches or reserved
for other purposes. Finding optimal layouts has
a great impact on the depth of the computa-
tion. Different layouts can for example be used
to trade off space for time [38]. Layouts may
need to change depending on the task during an
algorithm. For example, the oracle in Grover’s
search algorithm may be very different from the
implementation of the diffusion operator [50]. We
defined our own configurable layout specification
(Fig. 7). The compiler reads a text file containing
the layout specification and produces slices with
patches arranged accordingly.

3.3.1 On-the-fly, Functionally Verified Slicer

Our first slicer supports the real-time, on-the-
fly functional verification for correctness. This
slicer can be used as a preliminary verification of
smaller scale lattice surgery circuits. The slicer
and the simulation operate on an array of patches
of variable length and assumes that all magic
states have been prepared ahead of time. The
verified slicer is very powerful when it comes to
understanding the details of small computation
and we used it in the development of the com-

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 7

Figure 7: ASCII specification for patch layouts. Q indi-
cates a patch holding a logical qubit, r marks cells that
are reserved for routing (the cyan “snakes” of Fig. 1).
Numbers 0 to 9 are used to identify distillation regions.
The boundaries of the distillation regions are computed
by connected components search for same numbers, so
it is possible to have more than 10 distillation regions.
Magic states produced by these regions are queued in
the r cells neighbouring a distillation block. Finally, A
marks cells reserved to allocate new ancillae patches in
the states, such as the |+⟩ states that mediate CNOTs
or the places for the Y eigenstates used by n

4 Pauli ro-
tations. The layout file format is described in the Ap-
pendix.

piler.

The simulator, called the Lazily Tensored
State-vector Simulation (LTSvS), has the major
feature of being able to simulate patch states
at the LLI instruction level, such as simulat-
ing multi body measurements and Pauli opera-
tor gates. LTSvS tensors at the matrix level only
when strictly required, otherwise just tracks the
fact that the global state is given by a tensor
product of sub vectors. LTSvS offers a great
performance advantage over näive state vector
simulation: our simulator doesn’t expand the
full state vector of all logical qubits on the lat-
tice. In particular, qubits that are known to not
be entangled, because they were just initialized
or measured, are automatically tracked in sepa-
rate sub-state vectors. Qubits may be entangled
within a sub-state vector. An example of unen-
tangled qubits is the array of magic states waiting
to be used or ancillae patches.

Methodologically, the LTSvS simulator is very
similar to the matrix-product-states (MPS) sim-
ulation techniques [51], which are efficient on
circuits with low counts of entangling gates.
Compared to the MPS simulators, e.g. from
Qiskit [44], ours is fine tuned for computations

with many ancillae and measurements, can han-
dle classical control and can be executed in par-
allel with the compilation process.

3.3.2 High Performance Slicer

The main goal of our compiler is to handle
very large scale circuits with thousands of log-
ical qubits and millions of LLIs. At this scale
every CPU clock cycle and every byte are pre-
cious. Our high performance compiler is written
in C++ because it comes with zero cost abstrac-
tion [52].

The first step of the slicer is to read a layout
file (Fig. 7) in order to create an abstract lay-
out representation that describes the device lay-
out. The layout is used to initialize a slice tem-
plate which will be reused for the routing. The
template will be recomputed once the layout dic-
tates this. Our implementation of slice process-
ing keeps memory usage to a minimum because
O(1) slices are ever kept in memory by the slicer
itself. Moreover, this representation is stored in
a high performance data structure based on bit-
streams and hash-maps. The representation will
be used for computing routes using a variant of
Dijkstra’s algorithm.

The slicer streams LLI from text or standard
input, updating the slice with each instruction,
evolving the slices over time. Since the slicer can
also stream read from standard input and write
to standard output, its possible to implement ex-
ternal programs (e.g. Python scripts or other
command line tools) that visit slices by read-
ing from standard input. Given the capability
of evolving the lattice state, the slice processing
functionality is implemented by defining a C++
functor to visit all slices.

The streamed evolution of slices includes man-
aging distillation, queuing magic states [48, 53],
initializing ancillae and LLI operations. A user
may collect statistics on slices, such as magic
state queue and routing space usage in seconds,
without having to store in terabytes of memory
that slow down the processing. At the same time
this functor approach has the advantage of hid-
ing the implementation details from the client so
that they can focus on the processing functional-
ity.

To place routing regions, we used our own im-
plementation of Dijkstra’s algorithm, which is
implemented in place, such that our tool can

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 8

Figure 8: Time taken to compile a QFT with the C++
slicer on a laptop (Intel i5350U, 8GB RAM) and num-
ber of LLI instructions for different QFT sizes. The Clif-
ford+T implementation of the QFT requires thousands
of gates for each controlled rotation, to retain the rota-
tion accuracy we set (10−41).

search the lattice without constructing a graph
of it. Our implementation has close to zero cost
overheads with respect to memory and CPU in-
structions needed to translate back and forth be-
tween the lattice layout and the graph needed
for performing Dijkstra’s algorithm. To further
speed up routing, we employ a cached routing
technique where previously computed routes are
saved and reused later.

4 Results
We present results for compiling very large quan-
tum circuits, and focus on scalability and re-
source estimation.

4.1 128-Qubit QFT

To validate the performance of our compiler and
high performance slicer we took a circuit that
has wide spread use and presents technical fault-
tolerant execution challenges. The Quantum
Fourier Transform (QFT) is a crucial component
providing quantum speedup to algorithms such
as Shor’s algorithm and quantum phase estima-
tion [18]. The fault-tolerant implementation of
the QFT is challenging because of the presence
of small angle controlled rotations. For the QFT
to retain the desired level of precision, these have
to be approximated by a long sequence of Clif-
ford+T, which results in a very long computa-
tion. We set Gridsynth’s precision to 10−41 for
the Clifford+T approximations for small angle

Figure 9: A snapshot of the resource requirement land-
scape for random H, T and CNOT circuits. The horizon-
tal axes show circuit width (number of qubits) and depth
(number of gates). The vertical axis shows the code dis-
tance required to execute the desired circuit with a suc-
cess rate of 99%. The colour scale represents the space-
time volume of the computation, which relates closely
with code distance.

rotations, which results in thousands of gates.
Such number was chosen as it is 3 orders of mag-
nitude less than the smallest angle rotation in
our circuit π

2128 ≈ 10−38, after expanding out the
controlled rotations (Sec. 3.2).

The number of controlled rotations increases
quadratically with the number of qubits the QFT
is applied to. Thus, at 128 qubits and after
small angle rotation approximation, the QFT cir-
cuit has more than 80 Million LLI without gate
to Pauli compression. The number of LLI in-
cludes Clifford corrective terms that are meant
to be applied depending on measurement out-
comes. Thanks to concurrent magic state distil-
lation, there are no idle slices waiting for magic
states to be produced. We used the high perfor-
mance slicer to compile the 128-qubit QFT: for
example, laying out the slices for the roughly 80
million LLI of the 128-qubit QFT takes less than
15 minutes on an ordinary laptop. The genera-
tion of LLI of a QFT on 128 qubits takes negli-
gible time (under 10s on a laptop). Fig. 8 illus-
trates the performance of the C++ slicer for the
QFT128 circuit.

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 9

4.2 Resource Estimation

A challenging problem in the community of fault-
tolerant QC is determining the amount of physi-
cal resource that is necessary to carry out a log-
ical computation with a certain degree of preci-
sion. Such resource is often quantified by phys-
ical qubits over time – often called a space time
volume. The depth of the circuit and the re-
quired magic state fidelity affect the code dis-
tance, which in turn affect the number of physical
qubits required. Moreover, the degree of paral-
lelization achieved at the routing stage will affect
computation depth.

Our compiler includes a prototypical resource
estimator for surface code computations. We
use the Qentiana [54] software to estimate such
values, and computed some code distances for
randomized circuits of H, T and CNOT gates
(Fig. 9).

5 Conclusion

We introduced and described a compiler for lat-
tice surgery quantum circuits and showcased
some of the results achieved with it. We mo-
tivated the design choices behind our two stage
pipeline. The first stage included how input cir-
cuits are parsed, pre-processed, reduced to Clif-
ford+T and viewed as Pauli rotations. The sec-
ond stage focuses on laying out circuits on phys-
ical devices, which presents substantial perfor-
mance challenges.

We demonstrated the compiler’s performance
by compiling a 128-qubit QFT. We believe this
is a notable achievement: despite its widespread
appearance in algorithms, to the best of our
knowledge, no surface code compiler is able to
handle such large scale circuits. We also show-
cased the compiler’s ability to estimate resource
requirements, in particular patch code distance,
which is promising in the perspective of quantum
benchmarking.

Our project is laying the foundation for a full-
stack quantum circuit compilation framework.
Future work will leverage hybrid classical and
quantum instruction sets such as LLVM/QIR to
program high performance classical control while
integrating the Quantum Processing Unit (QPU)
instructions.

Acknowledgements
We thank Tyler LeBond for contributing impor-
tant code supporting the improved layout func-
tionality, and Niki Loppi of the NVIDIA AI Tech-
nology Center Finland for his help with the im-
plementation. We thank Varun Seshadri for his
feedback and helpful discussions.

George Watkins and Alexandru Paler were
with funding from the Defense Advanced Re-
search Projects Agency [under the Quantum
Benchmarking (QB) program under award no.
HR00112230007 and HR001121S0026 contracts].
The views, opinions and/or findings expressed
are those of the authors and should not be in-
terpreted as representing the official views or
policies of the Department of Defense or the
U.S. Government. Hoang Minh Nguyen, Kee-
lan Watkins and George Watkins have been sup-
ported by the Unitary.fund. Hoi-Kwan Lau ac-
knowledges support from the Canada Research
Chair. Alexandru Paler acknowledges a Google
Gift 2023, and funding received from the Finnish-
American Research and Innovation Accelerator,
one of eight global pilots funded by the Finnish
Ministry of Education and Culture.

References
[1] Martin Suchara, John Kubiatowicz, Arvin

Faruque, Frederic T. Chong, Ching-Yi Lai,
and Gerardo Paz. “Qure: The quantum re-
source estimator toolbox”. In 2013 IEEE
31st International Conference on Computer
Design (ICCD). Pages 419–426. (2013).

[2] John Preskill. “Quantum Computing in
the NISQ era and beyond”. Quantum 2,
79 (2018).

[3] S. Parker and M. B. Plenio. “Efficient fac-
torization with a single pure qubit and logN
mixed qubits”. Phys. Rev. Lett. 85, 3049–
3052 (2000).

[4] Craig Gidney and Martin Eker̊a. “How to
factor 2048 bit RSA integers in 8 hours us-
ing 20 million noisy qubits”. Quantum 5,
433 (2021).

[5] Frank Arute, Kunal Arya, Ryan Bab-
bush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo,
Fernando GSL Brandao, David A Buell,

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 10

https://dx.doi.org/10.1109/ICCD.2013.6657074
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1103/PhysRevLett.85.3049
https://dx.doi.org/10.1103/PhysRevLett.85.3049
https://dx.doi.org/10.22331/q-2021-04-15-433
https://dx.doi.org/10.22331/q-2021-04-15-433

et al. “Quantum supremacy using a pro-
grammable superconducting processor”. Na-
ture 574, 505–510 (2019).

[6] Austin G Fowler, Matteo Mariantoni,
John M Martinis, and Andrew N Cleland.
“Surface codes: Towards practical large-
scale quantum computation”. Physical Re-
view A 86, 032324 (2012).

[7] David S Wang, Austin G Fowler, and
Lloyd CL Hollenberg. “Surface code quan-
tum computing with error rates over 1%”.
Physical Review A 83, 020302 (2011).

[8] Yu Tomita and Krysta M Svore. “Low-
distance surface codes under realistic quan-
tum noise”. Physical Review A 90,
062320 (2014).

[9] Sebastian Krinner, Nathan Lacroix, Ants
Remm, Agustin Di Paolo, Elie Genois,
Catherine Leroux, Christoph Hellings, Ste-
fania Lazar, Francois Swiadek, Johannes
Herrmann, Graham J. Norris, Chris-
tian Kraglund Andersen, Markus Müller,
Alexandre Blais, Christopher Eichler, and
Andreas Wallraff. “Realizing repeated quan-
tum error correction in a distance-three sur-
face code” (2021).

[10] Christian Kraglund Andersen, Ants Remm,
Stefania Lazar, Sebastian Krinner, Nathan
Lacroix, Graham J. Norris, Mihai Gabureac,
Christopher Eichler, and Andreas Wallraff.
“Repeated quantum error detection in a
surface code”. Nature Physics 16, 875–
880 (2020).

[11] Rajeev Acharya, Igor Aleiner, Richard
Allen, Trond I Andersen, Markus Ansmann,
Frank Arute, Kunal Arya, Abraham Asfaw,
Juan Atalaya, Ryan Babbush, et al. “Sup-
pressing quantum errors by scaling a sur-
face code logical qubit”. Nature 614, 676–
681 (2023).

[12] J. Eli Bourassa, Rafael N. Alexander,
Michael Vasmer, Ashlesha Patil, Ilan Tz-
itrin, Takaya Matsuura, Daiqin Su, Ben Q.
Baragiola, Saikat Guha, Guillaume Dauphi-
nais, Krishna K. Sabapathy, Nicolas C.
Menicucci, and Ish Dhand. “Blueprint for a
Scalable Photonic Fault-Tolerant Quantum
Computer”. Quantum 5, 392 (2021).

[13] Michael Hanks, Marta P. Estarellas,
William J. Munro, and Kae Nemoto. “Ef-
fective compression of quantum braided
circuits aided by zx-calculus”. Phys. Rev.
X 10, 041030 (2020).

[14] Craig Gidney and Austin G. Fowler.
“Flexible layout of surface code com-
putations using autoccz states” (2019).
arXiv:1905.08916.

[15] Daniel Herr, Franco Nori, and Simon J De-
vitt. “Optimization of lattice surgery is
np-hard”. npj Quantum Information 3,
35 (2017).

[16] Kunihiro Wasa, Shin Nishio, Koki Suetsugu,
Michael Hanks, Ashley Stephens, Yu Yokoi,
and Kae Nemoto. “Hardness of braided
quantum circuit optimization in the surface
code”. IEEE Transactions on Quantum En-
gineering 4, 1–7 (2023).

[17] Alexandru Paler. “Aggregated control of
quantum computations: When stacked ar-
chitectures are too good to be practical
soon”. Computer 53, 74–78 (2020).

[18] Michael A. Nielsen and Isaac L. Chuang.
“Quantum computation and quantum in-
formation”. Cambridge University Press.
(2000).

[19] N David Mermin. “Quantum computer sci-
ence: an introduction”. Cambridge Univer-
sity Press. (2007).

[20] Savvas Varsamopoulos, Koen Bertels, and
Carmen G. Almudever. “Decoding sur-
face code with a distributed neural net-
work–based decoder”. Quantum Machine
Intelligence 2, 1–12 (2020).

[21] Mark Shui Hu and David Elkouss. “Quasi-
linear time decoding algorithm for topolog-
ical codes with high error threshold”. Mas-
ter’s thesis, TU Delft (2020).

[22] Barbara M. Terhal. “Quantum error cor-
rection for quantum memories”. Rev. Mod.
Phys. 87, 307–346 (2015).

[23] Joschka Roffe. “Quantum error correc-
tion: an introductory guide”. Contemporary
Physics 60, 226–245 (2019).

[24] A.Yu. Kitaev. “Fault-tolerant quantum
computation by anyons”. Annals of Physics
303, 2–30 (2003).

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 11

https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1103/PhysRevA.83.020302
https://dx.doi.org/10.1103/PhysRevA.90.062320
https://dx.doi.org/10.1103/PhysRevA.90.062320
https://dx.doi.org/10.1038/s41567-020-0920-y
https://dx.doi.org/10.1038/s41567-020-0920-y
https://dx.doi.org/10.1038/s41586-022-05434-1
https://dx.doi.org/10.1038/s41586-022-05434-1
https://dx.doi.org/10.22331/q-2021-02-04-392
https://dx.doi.org/10.1103/PhysRevX.10.041030
https://dx.doi.org/10.1103/PhysRevX.10.041030
http://arxiv.org/abs/1905.08916
https://dx.doi.org/10.1038/s41534-017-0035-1
https://dx.doi.org/10.1038/s41534-017-0035-1
https://dx.doi.org/10.1109/TQE.2023.3251358
https://dx.doi.org/10.1109/TQE.2023.3251358
https://dx.doi.org/10.1109/MC.2020.2997277
https://dx.doi.org/10.1007/s42484-020-00015-9
https://dx.doi.org/10.1007/s42484-020-00015-9
https://dx.doi.org/10.13140/RG.2.2.13495.96162
https://dx.doi.org/10.13140/RG.2.2.13495.96162
https://dx.doi.org/10.1103/RevModPhys.87.307
https://dx.doi.org/10.1103/RevModPhys.87.307
https://dx.doi.org/10.1080/00107514.2019.1667078
https://dx.doi.org/10.1080/00107514.2019.1667078
https://dx.doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://dx.doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0

[25] Google Research. “Google quantum ai jour-
ney” (2022).

[26] IBM Research. “Ibm quantum
roadmap” (2022).

[27] S. B. Bravyi and A. Yu. Kitaev. “Quantum
codes on a lattice with boundary” (1998).
arXiv:quant-ph/9811052.

[28] Eric Dennis, Alexei Kitaev, Andrew Lan-
dahl, and John Preskill. “Topological quan-
tum memory”. Journal of Mathematical
Physics 43, 4452–4505 (2002).

[29] Dominic Horsman, Austin G Fowler, Si-
mon Devitt, and Rodney Van Meter. “Sur-
face code quantum computing by lattice
surgery”. New Journal of Physics 14,
123011 (2012).

[30] Hendrik Poulsen Nautrup, Nicolai Friis, and
Hans J Briegel. “Fault-tolerant interface
between quantum memories and quantum
processors”. Nature communications 8, 1–
8 (2017).

[31] Daniel Litinski. “A game of surface codes:
Large-scale quantum computing with lattice
surgery”. Quantum 3, 128 (2019).

[32] Daniel Herr, Alexandru Paler, Simon J. De-
vitt, and Franco Nori. “Time versus hard-
ware: Reducing qubit counts with a (surface
code) data bus” (2019). arXiv:1902.08117.

[33] Sergey Bravyi and Alexei Kitaev. “Univer-
sal quantum computation with ideal clifford
gates and noisy ancillas”. Phys. Rev. A 71,
022316 (2005).

[34] Sergey Bravyi and Jeongwan Haah. “Magic-
state distillation with low overhead”. Phys.
Rev. A 86, 052329 (2012).

[35] Daniel Litinski. “Magic state distillation:
Not as costly as you think”. Quantum 3,
205 (2019).

[36] Alexandru Paler. “Surfbraid: A concept
tool for preparing and resource estimating
quantum circuits protected by the surface
code” (2019). arXiv:1902.02417.

[37] Alexandru Paler and Austin G. Fowler.
“Opensurgery for topological assemblies”.
In 2020 IEEE Globecom Workshops (GC
Wkshps. Pages 1–4. (2020).

[38] Lingling Lao, Bas van Wee, Imran Ashraf,
J van Someren, Nader Khammassi, Koen
Bertels, and Carmen G Almudever. “Map-
ping of lattice surgery-based quantum
circuits on surface code architectures”.
Quantum Science and Technology 4,
015005 (2018).

[39] Fei Hua, Yanhao Chen, Yuwei Jin, Chi
Zhang, Ari Hayes, Youtao Zhang, and
Eddy Z. Zhang. “Autobraid: A frame-
work for enabling efficient surface code com-
munication in quantum computing”. In
MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture.
Page 925–936. MICRO ’21New York, NY,
USA (2021). Association for Computing Ma-
chinery.

[40] Michael Beverland, Vadym Kliuchnikov,
and Eddie Schoute. “Surface code compi-
lation via edge-disjoint paths”. PRX Quan-
tum 3, 020342 (2022).

[41] Xiaosi Xu, Simon C. Benjamin, and Xiao
Yuan. “Variational circuit compiler for
quantum error correction”. Phys. Rev. Appl.
15, 034068 (2021).

[42] Daniel Litinski and Felix von Oppen. “Lat-
tice surgery with a twist: Simplifying clif-
ford gates of surface codes”. Quantum 2,
62 (2018).

[43] Andrew W. Cross, Lev S. Bishop, John A.
Smolin, and Jay M. Gambetta. “Open
quantum assembly language” (2017).
arXiv:1707.03429.

[44] H Abraham et al. “Qiskit: An open-source
framework for quantum computing” (2021).

[45] Aleks Kissinger and John van de Weter-
ing. “PyZX: Large Scale Automated Di-
agrammatic Reasoning”. In Bob Coecke
and Matthew Leifer, editors, Proceedings
16th International Conference on Quantum
Physics and Logic, Chapman University, Or-
ange, CA, USA., 10-14 June 2019. Volume
318 of Electronic Proceedings in Theoreti-
cal Computer Science, pages 229–241. Open
Publishing Association (2020).

[46] Tomas Jochym-O’Connor, Aleksander Ku-
bica, and Theodore J. Yoder. “Disjoint-
ness of stabilizer codes and limitations on

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 12

http://arxiv.org/abs/quant-ph/9811052
https://dx.doi.org/10.1063/1.1499754
https://dx.doi.org/10.1063/1.1499754
https://dx.doi.org/10.1088/1367-2630/14/12/123011
https://dx.doi.org/10.1088/1367-2630/14/12/123011
https://dx.doi.org/10.1038/s41467-017-01418-2
https://dx.doi.org/10.1038/s41467-017-01418-2
https://dx.doi.org/10.22331/q-2019-03-05-128
http://arxiv.org/abs/1902.08117
https://dx.doi.org/10.1103/PhysRevA.71.022316
https://dx.doi.org/10.1103/PhysRevA.71.022316
https://dx.doi.org/10.1103/PhysRevA.86.052329
https://dx.doi.org/10.1103/PhysRevA.86.052329
https://dx.doi.org/10.22331/q-2019-12-02-205
https://dx.doi.org/10.22331/q-2019-12-02-205
http://arxiv.org/abs/1902.02417
https://dx.doi.org/10.1109/GCWkshps50303.2020.9367489
https://dx.doi.org/10.1088/2058-9565/aadd1a
https://dx.doi.org/10.1088/2058-9565/aadd1a
https://dx.doi.org/10.1145/3466752.3480072
https://dx.doi.org/10.1103/PRXQuantum.3.020342
https://dx.doi.org/10.1103/PRXQuantum.3.020342
https://dx.doi.org/10.1103/PhysRevApplied.15.034068
https://dx.doi.org/10.1103/PhysRevApplied.15.034068
https://dx.doi.org/10.22331/q-2018-05-04-62
https://dx.doi.org/10.22331/q-2018-05-04-62
http://arxiv.org/abs/1707.03429
https://dx.doi.org/10.4204/EPTCS.318.14
https://dx.doi.org/10.4204/EPTCS.318.14
https://dx.doi.org/10.4204/EPTCS.318.14

fault-tolerant logical gates”. Phys. Rev. X
8, 021047 (2018).

[47] Neil J. Ross and Peter Selinger. “Opti-
mal ancilla-free clifford+t approximation of
z-rotations”. Quantum Info. Comput. 16,
901–953 (2016).

[48] Alexandru Paler, Simon J Devitt, and
Austin G Fowler. “Synthesis of arbitrary
quantum circuits to topological assembly”.
Scientific reports 6, 1–16 (2016).

[49] Cirq Developers. “Cirq”. Zenodo (2021).

[50] Samuel Jaques, Michael Naehrig, Martin
Roetteler, and Fernando Virdia. “Imple-
menting grover oracles for quantum key
search on aes and lowmc”. In Advances in
Cryptology – EUROCRYPT 2020: 39th An-
nual International Conference on the Theory
and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part II. Page 280–310. Berlin,
Heidelberg (2020). Springer-Verlag.

[51] Guifré Vidal. “Efficient classical simula-
tion of slightly entangled quantum computa-
tions”. Phys. Rev. Lett. 91, 147902 (2003).

[52] Bjarne Stroustrup. “Keynote speech: Ab-
straction and the c++ machine model”. In
Proceedings of the First International Con-
ference on Embedded Software and Sys-
tems. Page 1–13. ICESS’04Berlin, Heidel-
berg (2004). Springer-Verlag.

[53] Alexandru Paler, Austin G Fowler, and
Robert Wille. “Synthesis of arbitrary quan-
tum circuits to topological assembly: Sys-
tematic, online and compact”. Scientific re-
ports 7, 1–16 (2017).

[54] Daniel Herr, Franco Nori, and Simon J De-
vitt. “Lattice surgery translation for quan-
tum computation”. New Journal of Physics
19, 013034 (2017).

[55] JQ-Authors. “Command-line JSON pro-
cessor”. https://github.com/stedolan/
jq (2022).

[56] Taewan Kim and Byung-Soo Choi. “Effi-
cient decomposition methods for controlled-
r n using a single ancillary qubit”. Scientific
Reports8 (2018).

[57] Scott Aaronson and Daniel Gottesman. “Im-
proved simulation of stabilizer circuits”.
Phys. Rev. A 70, 052328 (2004).

Appendix
5.1 OpenQASMMin
The natively supported subset of OpenQASM 2.0
instructions is presented in Table 2. Our compiler
can parse a small subset of OpenQASM 2.0 in-
stead of LLI. We call this type of assembly Open-
QASMmin. In general, OpenQASMmin should
be valid OpenQASM, with the restrictions be-
low:

• Program must begin with OPENQASM 2.0;
• Only one register is allowed (whether the
names match will not be checked)

• At most one gate per line
• Single qubit gates must be in the form g

q[n]; where g is one of h,x,z,s,t and n
is a non-negative integer

• rz(expr) and crz(expr) where expr has
form pi/m or n*pi/m for n, m integers. No
whitespace.

• CNOTs must be in the form cx q[n],q[m];
where n and m are non-negative, and target
is first;

• No classical control is supported;
• No measurement operators are supported;
• Only inline comments, e.g. cx q[0],q[7];

//cnot on 0 and 7.

Table 2: OpenQASMMin: Supported instructions

Classical registers, barriers and include di-
rectives are ignored.
Unsupported instructions and gates raise an
exception.
h, x, z, s, sdg,
t, tdg

Single qubit gates with the
usual meaning. The -dg suf-
fix stands for dagger.

cnot or cx, cz Controlled X and Z gates.
rx(theta),
rz(theta)

RZ and RX gates. Argu-
ment theta has to have form
[N*pi/D for integers N and D,
with the D being a non nega-
tive power of two. Both N and
D can be of arbitrary size.

crx(theta),
crz(theta)

Controlled RZ and RX gates.
The argument has the same
form as for the RZ and RX

gates.
qreg Only one quantum register is

supported.

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 13

https://dx.doi.org/10.1103/PhysRevX.8.021047
https://dx.doi.org/10.1103/PhysRevX.8.021047
https://dx.doi.org/10.1038/s41598-017-10657-8
https://dx.doi.org/10.5281/zenodo.5182845
https://dx.doi.org/10.1007/978-3-030-45724-2_10
https://dx.doi.org/10.1103/PhysRevLett.91.147902
https://dx.doi.org/10.1007/11535409_1
https://dx.doi.org/10.1038/s41598-017-10657-8
https://dx.doi.org/10.1038/s41598-017-10657-8
https://dx.doi.org/10.1088/1367-2630/aa5709
https://dx.doi.org/10.1088/1367-2630/aa5709
https://github.com/stedolan/jq
https://github.com/stedolan/jq
https://dx.doi.org/10.1038/s41598-018-23764-x
https://dx.doi.org/10.1038/s41598-018-23764-x
https://dx.doi.org/10.1103/PhysRevA.70.052328

5.2 Compiler Pipeline and Operating Systems

It is possible to accept a wider range of circuits
with additional processing by using Qiskit and
PyZX. For example, we have successfully pro-
cessed Grover circuits with multi qubit gates and
Toffoli based adders by decomposing additional
gates such as mcx, ccx and rccx which are not
in the natively supported set. This kind of gate
decomposition is done on a case by case basis.

Figure 10 is a diagram of how the C++ slicer
can take advantage of the operating systems abil-
ity to broker messages by using POSIX pipes and
an example shell command to run such a pipeline.

E.g.: $./qft to stdout.py 128 |
lsqecc slicer -l 12by12.txt | jq .[][][]

| grep null | wc -l

Figure 10: qft to stdout.py is our tool to stream
LLI for a high precision QFT, the 128 argument indi-
cates the number of qubits. lsqecc slicer -f json
is our C++ slicer, which lays out the LLI instructions
and outputs a stream of JSON slices to stout, the -l
12by12.txt flag tells it which layout to use. Finally
jq [55] is a streaming JSON processor that can extract
information from the sequence of slices, here combined
with some POSIX utilities to count the total number of
routing cells.

5.3 Circuit Simulation and Gate Decomposi-
tion

For verification purposes, we require a state-
vector snapshot of the logical state of the lat-
tice computation at every time-step. To meet
both goals, we use a form of state-vector track-
ing that stores patch states without tensoring
non-entangled states states together. This ap-
proach greatly extends what is possible to ver-
ify and debug compared to a naive state-vector
simulator. Since this simulation is for debug-
ging and verification purposes it is also able
to detect when simulated states are numerically
close enough to some common state such as

|0⟩ , |+⟩ , |m⟩ and display them as such. Figure 11
is a graphical depiction of a circuit with inter-
mediate states in a Lazily Tensored State-vector
Simulation (LTSvS).

2 c.v.

23 c.v.22 c.v.

22 c.v.
2 c.v.

2 c.v.

2 c.v.

2 c.v.

2 c.v. 2 c.v.

2 c.v.

2 c.v.

Figure 11: Simulating a deep lattice surgery computa-
tion is challenging, because there are constantly patches
being entangled and measured out, but at a given time
few are actually entangled. Each state is represented by
certain number of complex variables (c.v.).

Conversion of gates and Pauli rotations to
multi-body measurements and other LLI are pre-
sented in Fig. 12.

Figure 12: This figure only shows rotations by π
8 and

π
4 , but other angles with the same denominator are also
possible by adjusting the classical logic controlling the
corrective terms that follow. The π

8 Pauli rotations con-
sume a distilled magic state, while the π

4 rotations con-
sume a positive Y eigenstate which is prepared by ap-
plying a twist based measurement[42].

In Figure 13, controlled rotations are common
in circuit such as the QFT. The first step towards
converting them to fault-tolerant instructions is
breaking them down into single qubit rotations
and CNOTs [56]. Single qubit rotations of angles
greater than π

8 have to be approximated, while
CNOTs we implement with lattice surgery [29].

Fig. 14 illustrates the efficiency of the rota-
tion compression technique we described in Fig. 6
from Sec. 3.2. How much compression we get ex-
actly depends on the types of gate sequences ap-
pearing in the approximations (e.g. both HSSSTH
and a lone T compress to a single Pauli rotation).

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 14

Z(π
n)

=
Z(π

2n)

Z(π
2n) Z(− π

2n)

Figure 13: Decomposing controlled rotations into
CNOTs and single qubit rotations.

Testing on rotations from RZ(π
28) to RZ(π

2128) we
observed a factor of ≈ 2.5 fewer LLI per small
angle rotation – this is an an illustration of our
optimisation heuristics.

Figure 14: Benchmarking the decomposition techniques
for arbitrary rotations to surface code instructions with
and without Pauli rotation compression. The benchmark
circuit is a single RZ(π

2n) rotation. It is possible to
see how grouping gates that rotate in the same basis
(as shown in Fig. 6) drastically reduces the number of
required surface code instructions.

5.4 Clifford Elimination

According to the Gottesman-Knill theorem, it is
possible to efficiently simulate circuits which only
contain a particular set of gates, known as Clif-
ford gates [18, 57]. It is natural to ask whether it
is possible to leverage classical computing to re-
duce the load on the QPU when processing such
circuits. Litinski [31] outlined an algorithm to
remove the Clifford part of the circuit at compile
time, when all we care about are measurement
outcomes (i.e. we are not compiling the circuit
to be a state preparation routine). We call this
algorithm the Litinski Transform (LT) and pro-
vide an implementation in the following manner.

The first step of LT is to convert each gate
of the input circuit into a sequence of rotations

about π
2 ,

π
4 or π

8 , or multibody measurements
with Pauli product observables. Of these blocks,
only the π

8 rotations are not Clifford, so we apply
Litinski’s commutation rules to bring them all
to the front of the circuit. Next the π

2 and π
4

rotations are commuted past the previously end-
of-circuit measurements. Since this case we only
care about measurement outcomes, the Clifford
rotations that are now after measurement can be
discarded.

5.5 Layout File Format

The layout determines how computation ele-
ments are placed on the lattice. Herein we de-
scribe the technical details, limitations, examples
and future enhancements of the layout format
introduced in Sec.3.3. The online source code
repository includes more layout examples.

Structure. The purpose of our layouts is to de-
fine the structure of a lattice intended for lattice
surgery operations, abstracting the details of the
physical implementation. The layout is stored
as an ASCII plain text file, in order to make
it easy for humans to view and edit and to en-
able good portability (i.e. special tools needed to
edit). The layout is specified by a grid of ASCII
characters where each cell has a specific meaning
based on the character it contains. For example,
the text QrQ represents two logical qubits sepa-
rated by an inactive routing space:

The layout is always assumed to be rectangu-
lar. If a layout file is not rectangular in content,
then the compiler will assume that the bound-
ing box of it’s contents is available and pad with
empty routing space.

Qubits Q: Represents a patch holding a logical
qubit encoded using the surface code planar code.
The boundaries are assumed to be rough north-
south, and smooth east-west, so it’s the users re-
sponsibility that connectivity between each qubit
is possible.

Routing r: In their default or quiescent state,
these cells are inactive. This means they do not
actively participate in quantum computations.
However, when required, the contents of these
routing cells can be ”activated” to facilitate long-
range merges and splits between distant Q cells,

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 15

as shown in Fig. 4.
Ancilla A: These cells are reserved to allocate

new ancillae patches. Ancillae patches are aux-
iliary qubits used in quantum computations to
assist in the construction of measurement-based
gates. These patches can be in states like the
|+⟩ state, which mediates CNOT operations, or
they can be places for the Y eigenstates used by
n
4 Pauli rotations.
Distillation regions numbers 0-9: Distillation

regions are specialized areas designated for the
production of magic states, as defined in section
2.2. These regions are represented by areas with
the same number in the ASCII layout. The ex-
tents of these regions are identified by running
a connected components search on areas with
matching numbers. This means that contiguous
cells with the same number are considered part
of the same distillation region.
The magic states produced by these regions

are output to a neighboring r cell. Distillation
time is assumed to be the same for every distilla-
tion region. The compiler makes no assumptions
about the internal operations or processes occur-
ring within distillation regions. It is the user’s
responsibility to ensure that the size and config-
uration of a region is correct.
Example 1. The layout below supports two

logical qubits, and routing. No two-qubit gates
can be applied immediately, because there are no
A patches.
QrQ
rrr
Example 2. Seven qubits and four distillation

regions can operate on the layout below. The A
ancilla can be used for performing CNOTs be-
tween the logical qubits, for example.
rrrrrrr444
rQQrQQr444
rQQrQAr444
rrrrrrrrrr
r111222333
r111222333
r111222333
Planned future extensions of the layout file in-

clude: a) incorporation of multi-cell patches sup-
port; b) qubit indexing enhancements; c) initial-
ization of square patches with alternate boundary
configurations; d) introduction of a in browser
editor equipped with syntax highlighting.

Accepted in Quantum 2024-05-15, click title to verify. Published under CC-BY 4.0. 16

	Introduction
	Background
	Surface Codes
	Logical Qubits and Logical Operations
	Related Work

	Methods
	The Compilation Pipeline
	Gate Level Processing
	Slices and Routing
	On-the-fly, Functionally Verified Slicer
	High Performance Slicer

	Results
	128-Qubit QFT
	Resource Estimation

	Conclusion
	Acknowledgements
	References
	Appendix
	OpenQASMMin
	Compiler Pipeline and Operating Systems
	Circuit Simulation and Gate Decomposition
	Clifford Elimination
	Layout File Format

