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We propose efficient algorithms for classically simulating fermionic linear
optics operations applied to non-Gaussian initial states. By gadget construc-
tions, this provides algorithms for fermionic linear optics with non-Gaussian
operations. We argue that this problem is analogous to that of simulating Clif-
ford circuits with non-stabilizer initial states: Algorithms for the latter problem
immediately translate to the fermionic setting. Our construction is based on
an extension of the covariance matrix formalism which permits to efficiently
track relative phases in superpositions of Gaussian states. It yields simulation
algorithms with polynomial complexity in the number of fermions, the desired
accuracy, and certain quantities capturing the degree of non-Gaussianity of the
initial state. We study one such quantity, the fermionic Gaussian extent, and
show that it is multiplicative on tensor products when the so-called fermionic
Gaussian fidelity is. We establish this property for the tensor product of two
arbitrary pure states of four fermions with positive parity.
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1 Introduction
While universal polynomial-time quantum computation is believed to exceed the capa-
bilities of efficient classical algorithms, restricted classes of quantum computations are
amenable to efficient classical simulation. Identifying such models and corresponding sim-
ulation algorithms is a central goal in the study of quantum computing. On the one hand,
a good characterization of the boundary between the computational power of classical and
quantum computational models provides insight into potential quantum advantages. On
the other hand, efficient classical simulation methods can be used to assess the merits and
scalability of quantum information-processing proposals. For example, the resilience of
certain quantum codes against restricted noise models has successfully been studied by
means of classical simulation methods giving threshold estimates for large-scale systems,
see e.g., [1–6] for an incomplete list of relevant references.

1.1 Efficiently simulable quantum computations
Most known examples of efficiently simulable quantum computations can be summarized
by the following ingredients:

(i) A set D of states with the property that each element Ψ ∈ D has a succinct classical
description dΨ. In the following, we will refer to D as a dictionary.
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(ii) A set E of operations (unitary or non-unitary evolutions), again with the property
that each element E ∈ E has a succinct classical description dE . Following resource-
theoretic conventions, we call E the set of free operations.

(iii) A setM of measurements (quantum instruments) with an efficient classical descrip-
tions dM for each M ∈ M, and the property that every post-measurement state
(associated with different measurement outcomes) obtained by applying M ∈ M to
a state Ψ ∈ D belongs to D.

A triple (D, E ,M) gives rise to a (generally restricted) quantum computational model by
composing these ingredients. A typical (non-adaptive) computation proceeds by preparing
an initial state Ψ ∈ D, applying a sequence {Et}Tt=1 ⊂ E of operations, and performing
measurements {Mk}Lk=1 ⊂ M in succession. Assuming for simplicity that E consists of a
set of unitaries, and that for each k ∈ [L] = {1, . . . , L}, the measurement Mk realizes a

POVM Mk = {M (k)
m }m∈Mk

with outcomes in a set Mk, such a computation produces a
sample m = (m1, . . . , mL) ∈M1 × · · · ×ML from the distribution

p(m1, . . . , mL) = ⟨ΨT , M (L)
mL
· · ·M (1)

m1 ΨT ⟩ where ΨT = ET ◦ · · · ◦ E1(Ψ) . (1)

More generally, one may consider circuits where operations are chosen adaptively depend-
ing on intermediate measurement results, assuming that the dependence is given by an
efficiently computable function.

The task of classically simulating the computational model associated with (D, E ,M)
comes in two flavors. The input in both cases is the collection (dΨ, {dEt}Tt=1, {dMk

}Lk=1) of
descriptions of the initial state, the set of operations applied, and the measurements. The
problem of weak simulation then consists in producing a sample m ∈M1×· · ·×ML drawn
according to the (ideal) output distribution p(m) of the circuit given by Eq. (1). In con-
trast, the problem of strong simulation consists of computing the output probability p(m)
for a given (potential) measurement outcome m.

Relaxing the requirements of weak and strong simulation, one may allow for an ap-
proximation error. For weak simulation, this is typically formalized by demanding that
the (probabilistic) classical algorithm outputs a sample m drawn from a distribution p̃
which is δ-close in L1-distance (for a chosen error parameter δ > 0) to the ideal output
distribution p. Similarly, for strong simulation, the output p̃ is required to be close to the
value p(m) with a controlled (additive or multiplicative) error.

In cases where a computational model specified by (D, E ,M) is amenable to efficient
classical simulation, associated classical simulation algorithms are typically constructed
by considering evolution and measurement separately. The basic problem then consists in
constructing efficient classical algorithms with the following functionalities:

(a) An algorithm evolve which, given classical descriptions dΨ of a state Ψ ∈ D and dE of
an evolution operation E ∈ E , computes a classical description dE(Ψ) of the evolved
state E(Ψ).

(b) Given a classical description dΨ of a state Ψ ∈ D, a classical description dM of a
measurement M ∈ M (with associated set of measurement outcomes MM ) and a
measurement outcome m ∈MM ,

(b1) an algorithm measureprob which outputs the probability p(m) (determined by
Born’s rule) of obtaining measurement outcome m, and

(b2) an algorithm postmeasure which outputs a classical description of the post-
measurement state
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when applying the measurement M to Ψ.

It is clear that a triple (evolve, measureprob, postmeasure) of such algorithms immediately
gives rise to an efficient algorithm for strong simulation of the model (D, E ,M), with a
runtime

T · time(evolve) + L · (time(measureprob) + time(postmeasure))

which is linear in the number T of operations applied, and linear in the number L of
measurements. Assuming that for any measurement M ∈M, the set of measurement out-
comes MM associated with M is of constant cardinality, the triple (evolve, measureprob,
postmeasure) also gives rise to a randomized algorithm for weak simulation: Such an algo-
rithm is obtained by using measureprob to compute the entire distribution {p(m)}m∈MM

of
measurement outcomes (when applying a measurement M), and then drawing m ∈ MM

randomly according to this distribution. The runtime of this probabilistic algorithm is

T · time(evolve) + L · (time(measureprob) · w + time(postmeasure))

where w = maxM∈M |MM | bounds the maximal cardinality of the set of measurement
outcomes.

1.1.1 Clifford circuits / Stabilizer computations

Perhaps the most well-known example of a computational model (D, E ,M) where ef-
ficient algorithms (evolve, measureprob, postmeasure) can be provided is the Gottesman-
Knill-theorem for stabilizer computations on n qubits. Here D is the set STABn of n-qubit
stabilizer states (whose elements can be specified by their stabilizer generators, i.e., cor-
responding stabilizer tableaux), E is the set of Clifford unitaries (described by symplectic
matrices), and M are measurements of single-qubit Pauli Z operators (described by an
index j ∈ [n]). In this case, there are efficient algorithms with runtimes given in Table 1.

algorithm time

evolve O(n)

measureprob O(n)

postmeasure O(n2)

Table 1: Runtimes of building blocks evolve, measureprob, postmeasure for classical simulation of n-
qubit stabilizer circuits as given in [7]. Evolution corresponds to application of an n-qubit Clifford
unitary, and each measurement is that of a Pauli observable Zj with j ∈ [n].

1.1.2 Fermionic linear optics / Fermionic Gaussian computations

A different class of efficiently simulable computations – the one we are interested in here –
is that of fermionic linear optics on n fermions. We focus on pure-state computations: Here
the dictionary D consists of the set Gn of pure fermionic Gaussian states. An element Ψ ∈
Gn in the dictionary can be described by its covariance matrix ΓΨ, an antisymmetric 2n×
2n matrix with real entries. The set E = EGauss can be taken as the set of Gaussian
unitary operations. Each such unitary U = UR is fully determined by an element R ∈
O(2n) of the orthogonal group on R2n, where R 7→ UR defines a (projective) unitary

Accepted in Quantum 2024-05-03, click title to verify. Published under CC-BY 4.0. 4



representation of O(2n) on the space Hn of n fermions. The set M = Mnumber consists
of all occupation number measurements. As in the case of stabilizer states, there are
polynomial-time algorithms (evolve, measureprob, postmeasure) for classical simulation with
runtimes summarized in Table 2. In particular, the covariance matrix ΓURΨ of a Gaussian
state Ψ evolved under a Gaussian unitary UR can be computed in time O(n3) from ΓΨ
and R. The outcome probability of observing 0 (respectively 1) when performing an
occupation number measurement can be computed in time O(1), and the covariance matrix
of the post-measurement state can be computed in time O(n2) [8–10] (see also [3]).

algorithm time

evolve O(n3)

measureprob O(1)

postmeasure O(n2)

Table 2: Runtimes of building blocks evolve, measureprob, postmeasure for classical simulation of n-
fermion linear optics circuits as proposed in [8–10], see also [3]. Evolution amounts to application of
a fermionic Gaussian unitary. Measurement corresponds to measuring an observable a†

jaj (occupation
number) for j ∈ [n].

1.2 Classical simulation algorithms and measures of magic
A natural way of extending the power of a quantum computational model specified
by (D, E ,M) consists in providing resources/capabilities that do not belong to the speci-
fied sets. “Magic states” are a prime example: Here a state Ψ ̸∈ D not belonging to the
dictionary is provided as an (initial) state in the quantum computation, thereby providing
additional capabilities to the computational model. For example, non-Clifford unitaries
can be realized by certain stabilizer-computations (sometimes referred to as “gadgets”)
applied to so-called magic states [11]. Similarly, non-Gaussian initial states can be com-
bined with fermionic linear optics operations to realize non-Gaussian operations [12, 13].
While such a magic state can even promote the computational model to universal quantum
computation, this is generally not the case for all states Ψ. It is thus a natural question
to quantify the degree of “magicness” provided by a state Ψ ̸∈ D. For the set STABn

of n-qubit stabilizer states, corresponding magic monotones considered in the literature
include the robustness of magic [14,15], the exact and approximate stabilizer rank [16–18],
the stabilizer extent [18,19], the stabilizer nullity [20], the generalized robustness [21] and
the magic entropy [22].

The maximum overlap of a given state Ψ with an element of the dictionary D, i.e., the
quantity

FD(Ψ) = sup
φ∈D
|⟨φ, Ψ⟩|2 , (2)

is arguably one of the most direct ways of quantifying how far Ψ is from a “free” state, i.e.,
a state belonging to D. Motivated by the analogously defined notion of stabilizer fidelity
in Ref. [18], we call FD(Ψ) the D-fidelity of Ψ in the following. This quantity plays an
important role in our arguments when considering multiplicativity properties. However,
the D-fidelity FD(Ψ) is not a good quantifier of hardness of classical simulation because
simply replacing Ψ by an element of D typically leads to a significant approximation error.
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From the point of view of classical simulation, a relevant magicness measure for a
state Ψ ̸∈ D relates to the (added) complexity when trying to simulate a quantum com-
putation with initial state Ψ, built from a triple (D, E ,M) allowing for efficient classical
simulation. One such measure, introduced in Ref. [16] for the case of stabilizer compu-
tations, is the D-rank χD(Ψ) of Ψ. (For D = STABn, this is called the stabilizer rank
of Ψ.) It is defined as the minimum number of terms when decomposing Ψ as a linear
combination of elements of D, i.e.,

χD(Ψ) = min

χ ∈ N | ∃{φj}χj=1 ⊂ D, {γj}χj=1 ⊂ C such that Ψ =
χ∑

j=1
γjφj

 . (3)

In the context of signal processing, the corresponding optimization problem is referred to as
a sparse approximation problem. The D-rank χD(Ψ) appears naturally when constructing
and analyzing simulation algorithms, but it suffers from a number of shortcomings: On
the one hand, the set of states Ψ ∈ H whose D-rank is less than the dimension of the
Hilbert space H is a set of zero Lebesgue measure [23, Proposition 4.1]. On the other hand,
the quantity χD(Ψ) relates to the classical simulation cost of exactly simulating dynamics
involving the state Ψ. In practice, some approximation error is typically acceptable,
and corresponding simulations can be achieved with lower cost. In other words, the
quantity χD(Ψ) does not accurately reflect the cost of approximate simulation.

A more operationally relevant quantity is the δ-approximate D-rank χδ
D(Ψ) of Ψ intro-

duced in Ref. [17], again for stabilizer computations. For a fixed approximation error δ > 0,
this is given by the minimum D-rank of any state Ψ′ that is δ-close to Ψ, i.e.,

χδ
D(Ψ) = min

{
χD(Ψ′) | Ψ′ ∈ H such that ∥Ψ−Ψ′∥ ≤ δ

}
. (4)

An exact classical simulation algorithm whose complexity scales with the exact D-rank
χD(Ψ) provides an approximate simulation at a cost with an identical scaling in the approx-
imate (instead of exact) D-rank χδ

D(Ψ) of Ψ. Here approximate weak simulation means
that instead of sampling from the ideal output distribution P of a circuit, the simulation
samples from a distribution P ′ whose L1-distance from P is bounded by O(δ). Similarly, in
approximate (strong) simulation, output probabilities are approximately computed with
a controlled approximation error.

A different quantity of interest is obtained by replacing the ill-behaved rank function
(i.e., size of the support) in the definition of the D-rank χD(Ψ) by the L1-norm of the
coefficients when representing Ψ as a linear combination. In the context of stabilizer states
the corresponding quantity was introduced by Bravyi et al. [18] under the term stabilizer
extent: For a state Ψ ∈ (C2)⊗n it is defined as

ξSTABn(Ψ) = inf

∥γ∥21 | γ : STABn → C such that Ψ =
∑

φ∈STABn

γ(φ)φ

 ,

where ∥γ∥1 =
∑

φ∈STABn
|γ(φ)| denotes the 1-norm of γ. The corresponding convex opti-

mization problem is known as the basis pursuit problem [24] (when STABn is replaced by
e.g., a finite dictionary D). Sufficient conditions for when the basis pursuit problem yields
a solution of the sparse approximation problem where investigated in a series of works
culminating in Fuchs’ condition [25] (see also [26]). More importantly for (approximate)
simulation, feasible solutions of the basis pursuit problem provide upper bounds on the
sparse approximation problem. For the stabilizer rank, a sparsification result (see [18, The-
orem 1]) gives an upper bound on the δ-approximate stabilizer rank χSTABn(Ψ) in terms
of the stabilizer extent ξSTABn(Ψ), for any δ > 0 (see Section 4.2).
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Building on earlier results [17], it was shown in Ref. [18] that a stabilizer circuit
on n qubits with L Clifford gates initialized in a state Ψ can be weakly simulated with
error δ in a time scaling as O(ξSTABn(Ψ)/δ2 · poly(n, L)). The error δ expresses the L1-
norm distance of the distribution of simulated measurement outcomes from the output
distribution of the actual quantum computation. Here we are not accounting for the time
required to perform classical computations when adaptive quantum circuits are considered.
In addition, Ref. [27] provided a classical algorithm for strong simulation of a circuit U
with L Clifford gates and t T -gates initialized in a stabilizer state Ψ with an additive
error δ. Their algorithm outputs an estimate of the probability |⟨x, UΨ⟩|2 of obtain-
ing measurement outcome x ∈ {0, 1}n up to an additive error δ, with success probability
greater than 1−pf . It has runtime O(ξSTABn(|T ⟩⊗t) log(1/pf ) ·poly(n, L, δ−1)), scaling lin-
early with the stabilizer extent ξSTABn(|T ⟩⊗t) of t copies of the single-qubit magic state |T ⟩
associated with a T -gate [11].

1.3 The fermionic Gaussian extent
In the following, we generalize the notion of the extent beyond stabilizer computations to
any dictionary D. We refer to the corresponding quantity as the D-extent ξD(Ψ) of Ψ.
We assume throughout that we are interested in pure state quantum computations on
a Hilbert space H, and that the dictionary D is a subset of pure states on H. Then
the D-extent ξD(Ψ) of Ψ ∈ H is defined as

ξD(Ψ) = inf
N∈N

inf
φ1,...,φN ∈D

∥γ∥21 ∣∣ γ ∈ CN such that
N∑

j=1
γjφj = Ψ

 . (5)

Here ∥γ∥1 =
∑N

j=1 |γj | is the L1-norm of the vector γ. That is, the D-extent ξD(Ψ)
is the L1-norm of the coefficients minimized over all decompositions of Ψ into a finite
linear combination of elements of the dictionary D. As mentioned above, quantities of the
form (5) are well-studied in the context of signal-processing.

When the dictionary D is a finite subset of a Hilbert spaceH ∼= Cd, the D-extent ξD(Ψ)
of a state Ψ ∈ H can be expressed as a second-order cone program [28] (see also e.g., [29]),
as in Appendix A of Ref. [19]. Second-order cone programs can be solved in time poly-
nomial in max(d, |D|). We are typically interested in cases where D contains a basis
of H (such that every state can indeed be represented as a linear combination of dic-
tionary elements): Here this runtime is at least polynomial in d. For example, in the
case D = STABn of stabilizer states on n qubits, this leads to an exponential scaling
in n2. Beyond algorithmic considerations related to the evaluation of the extent, the fact
that ξD(Ψ) is given by a second-order cone program provides useful analytical insight by
convex programming duality. Indeed, this fact has previously been exploited both for
showing multiplicativity of the stabilizer extent for states of small dimension [18], as well
as to show non-multiplicativity in high dimensions [19]. In Section 6, we also exploit this
connection to relate the D-fidelity FD(Ψ) with the D-extent ξD(Ψ).

In contrast, the D-extent ξD(Ψ) for an infinite, i.e., continuously parameterized, dictio-
nary D constitutes additional mathematical challenges as an optimization problem. This
is the case of interest here as we are considering the dictionary D = Gn consisting of
all n-fermion Gaussian states in the following. We call the associated quantity ξGn(Ψ)
the (fermionic) Gaussian extent of an n-fermion state Ψ. Our focus here is on discussing
the role of the quantity ξGn(Ψ) in the context of classically simulating fermionic linear
optics, and its behavior on tensor products. A detailed discussion of the algorithmic prob-
lem of computing ξGn(Ψ) for an arbitrary state Ψ, and finding a corresponding optimal
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decomposition of Ψ into a linear combination of Gaussian states is beyond the scope of
this work. We refer to e.g., [30] where semidefinite relaxations are given for the related
atomic norm minimization problem in cases where the atomic set (corresponding to the
dictionary) has algebraic structure. Similar techniques may be applicable to the fermionic
Gaussian extent.

1.4 On the (sub)multiplicativity of the extent
Consider a situation where an operation E ̸∈ E not belonging to the set E of efficiently
simulable operations is implemented by using a “magic” resource state Ψ ̸∈ D. For
example, if D = STABn is the set of stabilizer states, E the set of Clifford unitaries andM
the set of single-qubit Pauli-Z-measurements, then a non-Clifford gate (such as the T -gate)
can be realized by an (adaptive) Clifford circuit at the cost of consuming a non-Clifford
state (such as the state |T ⟩) [11]. Similar “gadget constructions” exist for fermionic linear
optics, where non-Gaussian unitaries are realized by Gaussian unitaries and non-Gaussian
states [12, 13]. A natural question arising in this situation is to characterize the cost
of simulating the application of two independent magic gates E1, E2 ̸∈ E , each realized
by efficiently simulable operations (belonging to E) using magic states Ψ1, Ψ2. For any
reasonable simulation algorithm, we expect the required simulation effort to increase at
most multiplicatively. Indeed, this feature is reflected in the submultiplicativity property

ξD3(Ψ1 ⊗Ψ2) ≤ ξD1(Ψ1)ξD2(Ψ2) for all Ψ1 ∈ H1 and Ψ2 ∈ H2 (6)

of the D-extent. In Eq. (6), we are considering Hilbert spaces H1, H2 and their tensor
product H3 = H1⊗H2, as well as dictionaries Dj ⊂ Hj for j ∈ [3]. The submultiplicativity
property (6) follows immediately from the definition of the extent if the three dictionaries
satisfy the inclusion property

D1 ⊗D2 ⊂ D3 . (7)

In particular, this is satisfied e.g., when the dictionary Dj = STABnj ⊂ (C2)⊗nj is the set
of nj-qubit stabilizer states for j ∈ [3], with n3 = n1 + n2, or when considering the set of
(even) Gaussian states (see below).

While the submultiplicativity property (6) is a trivial consequence of Eq. (7), the
question of whether or not the stronger multiplicativity property

ξD3(Ψ1 ⊗Ψ2) = ξD1(Ψ1)ξD2(Ψ2) for all Ψ1 ∈ H1 and Ψ2 ∈ H2 (8)

holds for the D-extent is a much less trivial problem. If the multiplicativity property (8)
is satisfied, then computing the extent of a product state can be broken down into sev-
eral smaller optimization problems: It suffices to compute the extent of each factor in
the tensor product. Furthermore, the classical simulation cost (with typical algorithms)
when applying several non-free (“magic”) gates constructed by gadgets increases at an
exponential rate determined by the individual gates. In contrast, if the extent is not mul-
tiplicative (i.e., the equality in (8) is not satisfied for some states Ψj ∈ Hj , j ∈ [2]), then
such a simplification is not possible. More surprisingly, such a violation of multiplicativity
implies that the classical simulation cost of applying certain non-free gates can be reduced
by treating these jointly instead of individually. We note that in the slightly different
context of so-called circuit knitting, similar savings in complexity have been shown to be
significant [31].
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Previous work established that the stabilizer extent is multiplicative even for multiple
factors, that is,

ξSTABn1+···+nr
(Ψ1 ⊗ · · · ⊗Ψr) =

r∏
j=1

ξSTABnj
(Ψj) for all Ψj ∈ (C2)⊗nj , j ∈ [r]

if the factors are single-qubit, 2- or 3-qubit states, i.e., nj ∈ [3], see Ref. [18]. An ex-
ample is the stabilizer extent of a tensor product of t copies of the magic (single-qubit)
state |T ⟩ = (|0⟩ + eiπ/4 |1⟩)/

√
2 associated with the T -gate. Multiplicativity for qubit

states gives ξSTAB1(|T ⟩⊗t) = ξSTABt(|T ⟩)t, where ξSTAB1(|T ⟩) is known to be approxi-
mately 1.17 [17]. This translates to an overhead exponential in t in the runtime of sta-
bilizer computations supplemented with t T -gates. Surprisingly, the stabilizer extent has
been shown not to be multiplicative (for all pairs of states) in high dimensions [19].

For (pure) Gaussian states, the Gaussian extent of a 1-, 2- and 3-mode pure fermionic
state is trivially one because any 1-, 2- and 3-mode pure fermionic state is Gaussian [32] and
is thus an element of the dictionary. Hence the Gaussian extent is (trivially) multiplicative
if the factors are 1-, 2- or 3-mode fermionic states. The simplest non-trivial case is that
of n = 4 fermionic modes in each factor.

1.5 Our contribution
Our results concern fermionic linear optics, the computational model introduced in Sec-
tion 1.1.2 described by the triple (Gn, EGauss,Mnumber) of fermionic Gaussian pure states
on n fermions, Gaussian unitary operations and number state measurements. We propose
classical simulation algorithms for the case where the initial state Ψ ∈ Hn is an arbitrary
pure state in the n-fermion Hilbert space Hn (instead of belonging to the set Gn ⊂ Hn of
Gaussian states). Our results are two-fold:

New simulation algorithms. We give algorithms realizing the functionalities de-
scribed in Section 1.1 exactly for the triple (Hn, EGauss,Mnumber). This immediately gives
rise to efficient algorithms for weak and strong simulation of circuits with non-Gaussian
initial states. The corresponding runtimes of these building blocks, which we refer to
as (χevolve, χmeasureprob, χpostmeasure), depend on the Gaussian rank χ = χGn(Ψ) of
the initial state Ψ and are summarized in Table 3.

algorithm time

χevolve O(χn3)

χmeasureprob O(χ2n3)

χpostmeasure O(χn3)

Table 3: Runtimes of the building blocks χevolve, χmeasureprob, χpostmeasure for exact simulation
of n-qubit fermionic linear optics circuits with a non-Gaussian initial state Ψ of Gaussian rank χ =
χGn(Ψ). Evolution corresponds to the application of a Gaussian unitary from a set EGauss of generators
(specified below), and the set of measurements is given by occupation number measurements on each
of the modes.

Key to the construction of these algorithms is a novel way of keeping track of relative
phases in superpositions of Gaussian states, see Section 3. We argue that our techniques
can be applied more generally to adapt simulation procedures developed, e.g., for Clifford
circuits, to the setting of fermionic linear optics. In order to illustrate this procedure,
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we apply it to the simulation algorithms of [17, 18] for efficient (approximate) classical
simulation algorithms. In this way, we obtain new approximate simulation algorithms
with runtimes depending linearly on the fermionic Gaussian extent ξ = ξGn(Ψ) of the
initial state Ψ, see Table 4 for a summary of the corresponding runtimes. They depend

algorithm time

approxevolve O(ξδ−2n3)

approxmeasureprob O(ξδ−2ϵ−2p−1
f n7/2)

approxpostmeasure O(ξδ−2n3)

Table 4: Runtimes of building blocks approxevolve, approxmeasureprob, approxpostmeasure for ap-
proximate simulation of n-qubit fermionic linear optics circuits with a non-Gaussian initial state Ψ of
Gaussian extent ξ = ξGn

(Ψ). The parameters (ϵ, δ, pf ) determine the quality of the approximation.

inverse-polynomially on parameters (δ, ϵ, pf ) determining the accuracy of the simulation.
The error δ describes a certain “offset”, i.e., a systematic error: Instead of simulating the
dynamics of the circuit with the (ideal) initial state Ψ, the simulation algorithm emulates
the dynamics when using a different starting state Ψ̃ which is δ-close to Ψ, i.e., which sat-
isfies ∥Ψ − Ψ̃∥ ≤ δ. The algorithm approxevolve computes evolution exactly on the state
used in the simulation (i.e., it preserves the approximation error δ relative to the ideal ini-
tial state). In contrast, the procedure approxmeasureprob can fail with probability pf , and
both approxmeasureprob and approxpostmeasure introduce an additional error quantified
by ϵ (if approxmeasureprob succeeds): Instead of returning the probability p(0) of obtaining
zero occupation number when measuring the state, the output of approxmeasureprob is a
value p̃ which satisfies |p̃ − p(0)| ≤ O(ϵ). Similarly, the output of approxpostmeasure is
a description of a state that is O(ϵ)-close to the actual post-measurement state. These
parameters and runtimes are analogous to those obtained in [18] for simulating Clifford
circuits with non-stabilizer initial states. In particular, they imply that a circuit with
initial state Ψ involving T Gaussian unitaries and L occupation number measurements
can be weakly simulated in time Õ(ϵ−2ξ), such that the sampled measurement outcomes
are ϵ-close in L1-distance to the ideal (joint) output distribution of all measurements.
Here the notation Õ(·) suppresses a factor polynomial in n, T, L and log(ϵ−1), see [17] for
details.

On the multiplicativity of the Gaussian extent and the Gaussian fidelity.
Motivated by the relevance of the Gaussian extent ξGn(Ψ) for characterizing the complexity
of classical simulation, we study multiplicativity properties of both the D-fidelity FD(Ψ)
as we well as the D-extent ξD(Ψ) for a general infinite, i.e., continuously parameterized,
dictionary D. We show that multiplicativity of the D-fidelity is closely related to that
of the D-extent: For a general family of (discrete or continuous) dictionaries Dj ⊂ Hj

for j ∈ [3] with the property

D1 ⊗D2 ⊂ D3 ,

multiplicativity of the D-fidelity, i.e.,

FD3 (Ψ1 ⊗Ψ2) = FD1 (Ψ1) FD2 (Ψ2) for all Ψj ∈ Hj for j ∈ [2]

implies multiplicativity of the D-extent, i.e.

ξD3 (Ψ1 ⊗Ψ2) = ξD1 (Ψ1) ξD2 (Ψ2) for all Ψj ∈ Hj for j ∈ [2] .
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We note that for stabilizer states D = STABn, a similar route was followed in Ref. [18]
to show multiplicativity of the stabilizer extent ξSTABn with respect to the tensor product
of 1-, 2- and 3-qubit states. Our main contribution is an extension of this connection to
the case of infinite dictionaries by the use of nets. We expect this connection to be helpful
in proving or disproving multiplicativity of the extent more generally.

We subsequently make use of this connection to the Gaussian fidelity to show that
the fermionic Gaussian extent is multiplicative for the tensor product of any two 4-mode
fermionic states with positive parity, i.e.,

ξG8(Ψ1 ⊗Ψ2) = ξG4(Ψ1)ξG4(Ψ2) for all Ψ1, Ψ2 ∈ H4
+ . (9)

Here H4
+ denotes the set of 4-mode fermionic states with positive parity. The proof of (9)

relies on the Schmidt decomposition of fermionic Gaussian states and specific properties
of 4-mode (positive parity) fermionic states.

The result (9) gives the first non-trivial example of multiplicativity of the Gaussian
extent. Multiplicativity for more general cases such as that of multiple 4-mode fermionic
factors remains an open problem.

1.6 Prior and related work
The starting point of our work is the fact that fermionic Gaussian operations acting on
Gaussian states can be efficiently simulated classically as shown in pioneering work by
Terhal and DiVincenzo [9] and Knill [10]. The model and its simulability are closely
related to that of matchgate computations introduced by Valiant [8], where so-called
matchgates correspond to a certain certain subset of Gaussian operations (see also [33]).
In analogy to the fermionic context, the efficient simulability of bosonic Gaussian circuits
was recognized at around the same time [34, 35]. In an effort to identify commonalities
between simulation algorithms for a variety of quantum computational models, Somma
et al. [36] provided a unifying Lie algebraic treatment which gives a counterpart to the
Gottesman-Knill theorem for the simulability of Clifford circuits [7, 37].

While matchgate circuits, fermionic and bosonic linear optics, and Clifford circuits
provide rich classes of efficiently simulable models for the study of many-body dynamics
associated with quantum circuits, it is desirable to extend the applicability of such simu-
lation methods. There has been significant interest in this problem resulting in a range of
approaches. We only briefly discuss these here to give an overview, without attempting
to give an exhaustive treatment.

A first prominent approach is the use of quasi-probability distributions to describe
states and corresponding dynamics. Such a description typically applies to a subset of
density operators: For example, it has been shown in [38,39] in the context of continuous-
variable systems that circuits applying bosonic Gaussian operations to initial states with
a positive Wigner function (a strict superset of the set of bosonic Gaussian states) can be
simulated efficiently. Negativity of the Wigner function (both in the continuous-variable
as well as the qubit context) thus serves as a resource for quantum computation, also
see e.g., [40, 41]. It is also closely related to contextuality, see [42], and thus connects
contextuality to the complexity of classical simulation [43, 44]. Not unlike the notorious
sign problem in quantum Monte-Carlo methods applied in many-body physics, the run-
times of corresponding (randomized) simulation algorithms scale with certain measures of
“negativity” of the initial state.

The concept of a convex-Gaussian state was introduced and studied in [32] to extend
the range of fermionic linear optics simulation methods. This is related to quasi-probability
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representations in the sense that initial states of a particular form are shown to lead to
efficient simulability. Here a density operator is called convex-Gaussian if it is a convex
combination of fermionic Gaussian states. The utility of this concept was illustrated
in [32] by showing a converse to the fault-tolerance threshold theorem: Sufficiently noisy
quantum circuits can be simulated classically because the corresponding states turn out
to be convex-Gaussian. A detailed characteriziation of convex-Gaussianity is necessary
to translate this into explicit (numerical) threshold estimates. An infinite hierarchy of
semidefinite programs was constructed in [32] to detect convex-Gaussianity, and this was
subsequently shown to be complete [45]. This hierarchy also provides a way of determining
whether a state is close to being convex-Gaussian [45].

A second important class of approaches are rank-based methods. Here the non-free
resource (either a state or an operation) is decomposed into a linear combination of free
(i.e., efficiently simulable) resources. Our work follows this approach, which is detailed in
Section 4.1 for pure states. For Clifford computations, this involves writing general states
as superpositions of stabilizer states. The development of such simulators was pioneered by
Bravyi, Smith, and Smolin [16] with subsequent work dealing with approximate stabilizer
decompositions [17].

The concept of low-rank (approximate) decompositions of quantum states or operations
into more easily treatable basic objects appears in a variety of forms: For example, the
work [18] also discusses – in addition to state vector decompositions – decompositions of
non-Clifford unitaries into sums of Clifford operations. In Ref. [46], a similar approach
was taken to approximately decompose non-Gaussian fermionic unitary operations into
linear combinations of Gaussian channels. In all these cases, the main challenge is to
identify optimal (or simply good) decompositions (e.g., in terms of rank or an extent-like
quantity).

In more recent work, Mocherla, Lao and Browne [47] study the problem of simulating
matchgate circuits using universality-enabling gates. They provide a simulation algorithm
and associated runtime estimates for estimating expectation values of single-qubit observ-
ables in output states obtained by applying a matchgate circuit to a product state. This
problem is closely related to the problem considerd in this work as matchgate circuits effi-
ciently describe evolution under a quadratic fermionic Hamiltonian. The approach taken
in [47] is quite different from ours, however: The classical simulator keeps track of the den-
sity operator by tracking its coefficients in the Pauli (operator) basis, using the structure
of corresponding linear maps associated with matchgates. The effect of a specific set of
universality-enabling gates is then analyzed in detail. This extends the sparse simulation
method for matchgate circuits to circuits augmented with such gates. The runtime esti-
mates of [47] apply to certain universality-providing gates. In contrast, our constructions
can in principle also be applied to (gadget-based) constructions of arbitrary gates and
provide gate-specific information. For gates close to the identity, for example, this may
provide additional resource savings (in terms of e.g., the rate of growth for several uses of
such a gate).

Near the completion of our work, we became aware of concurrent independent work
on fermionic circuits with non-Gaussian operations, see the papers [48, 49] which were
posted simultaneously with our work to the arXiv. Reference [48] proposes an alternative
classical simulation algorithm for such circuits whose basic building blocks have identical
runtime as our algorithm. In particular, when applying a generator exp(ϑ/2cjck) of the
Gaussian unitary group, the runtime of the corresponding state update routine is O(n3)
as in our work. Specifying a circuit in terms of a sequence of generators is a common
assumption when discussing restricted gate sets. If instead, a general Gaussian unitary
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is specified by an element R ∈ SO(2n), the runtimes are different: By decomposing R
into O(n2) Givens rotations (generators), our techniques yield a runtime of order O(n5),
whereas the algorithm of [48] runs in time O(n4) in this case. A more significant distinction
is the underlying approach: While we rely on a minimal extension of the covariance matrix
formalism, the approach of [48] involves an explicit decomposition of fermionic Gaussian
unitaries inspired by a certain canonical form of Clifford circuits [18]. This decomposition
of a Gaussian unitary U is subsequently used to specify a Gaussian state U |0⟩ including
its global phase.

The work [49] analyses the set of fermionic Gaussian states to investigate properties of
the (exact and approximate) Gaussian rank, the Gaussian fidelity and the Gaussian extent.
A major result obtained in [49] is the multiplicativity of the extent for a tensor product
state with any number of 4-mode factors. This mirrors what is known for two-qubit and
three-qubit factors in the stabilizer context [18]. The proof in Ref. [49] is inspired by
Ref. [19] and makes use of tools from convex optimization. It involves the use of a net
of Gaussian states to establish an upper bound on the Gaussian fidelity. While we only
establish multiplicativity for two factors (i.e., a special case of their result), our approach is
different and may be of independent interest: We use a net to show that multiplicativity
of the Gaussian fidelity implies that of the Gaussian extent, and employ the Schmidt
decomposition [50] of fermionic Gaussian states.

1.7 Outline
The paper is structured as follows. In Section 2, we give some background on fermionic
linear optics, reviewing fermionic Gaussian operations and states, inner product formulas
for Gaussian states and tensor products of fermionic systems. In Sections 3 and 4 we de-
scribe classical algorithms for simulation of Gaussian and non-Gaussian fermionic circuits,
respectively. Specifically, in Section 3 we provide an algorithm overlap for computing the
overlap of two Gaussian states, an algorithm evolve to simulate unitary evolution of a
Gaussian state, and algorithms measureprob and postmeasure to simulate measurements of
occupation numbers. All these algorithms keep track of the phase of the state. In Section 4
we extend the simulation described in Section 3 to allow for non-Gaussian input states.
The remainder of this work is focused on the multiplicativity of the fermionic Gaussian
extent. In Section 5, we prove the multiplicativity of the fermionic Gaussian fidelity for
the tensor product of any two 4-mode fermionic states with positive parity. Section 6 is
devoted to showing that the multiplicativity of the D-fidelity implies multiplicativity of
the D-extent for general (finite and infinite, i.e., continuously parameterized) dictionaries.
Finally, the results from Sections 5 and 6 are used to prove the main result in Section 7,
namely the multiplicativity of the fermionic Gaussian extent for the tensor product of any
two 4-mode fermionic states with positive parity.

2 Background
In this section, we give some background on fermionic linear optics to fix notation.

2.1 Dirac and Majorana operators
Throughout, we consider fermionic systems composed of n modes, with (Dirac) creation-

and annihilation operators a†
j , aj , j ∈ [n], satisfying the canonical anticommutation rela-
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tions

{aj , a†
k} = δj,kI and {aj , ak} = {a†

j , a†
k} = 0 for all j, k ∈ [n] .

The fermionic vacuum state |0F ⟩ is the (up to a phase) unique unit vector satisfying
aj |0F ⟩ = 0 for all j ∈ [n]. For x = (x1, . . . , xn) ∈ {0, 1}n, we define the number state |x⟩
by

|x⟩ = (a†
1)x1 · · · (a†

n)xn |0F ⟩ . (10)

The states {|x⟩}x∈{0,1}n are an orthonormal basis of the underlying Hilbert space Hn ∼=
(C2)⊗n. A state |x⟩ is a simultaneous eigenstate of the occupation number operators a†

jaj ,

j ∈ [n], where xj is the eigenvalue of a†
jaj . For later reference, we note that

aj |x⟩ = (−1)ηj(x)xj |x⊕ ej⟩ and a†
j |x⟩ = (−1)ηj(x)xj |x⊕ ej⟩ , (11)

with the definition

ηj(x) =
j−1∑
k=1

xk for j ∈ [n] , (12)

where we write 0 = 1 and 1 = 0, where ej ∈ {0, 1}n is given by (ej)k = δj,k for k ∈ [n],
and where ⊕ denotes bitwise addition modulo 2.

It will be convenient to work with Majorana operators {cj}2n
j=1 defined by

c2j−1 = aj + a†
j and c2j = i

(
aj − a†

j

)
. (13)

Majorana operators are self-adjoint and satisfy the relations

{cj , ck} = 2δjkI and c2
j = I for j, k ∈ [2n] .

For α ∈ {0, 1}2n, we call the self-adjoint operator

c(α) = i|α|·(|α|−1)/2cα1
1 · · · c

α2n
2n

a Majorana monomial. Here |α| =
∑2n

j=1 αj denotes the Hamming weight of α ∈ {0, 1}2n.
The set {c(α)}α∈{0,1}n constitutes an orthonormal basis of the real vector space of self-
adjoint operators on Hn equipped with the (normalized) Hilbert-Schmidt inner prod-
uct ⟨A, B⟩ = 2−n tr(A†B). The Majorana monomials satisfy

c(y)c(x) = (−1)|x|·|y|+x·yc(x)c(y) with x, y ∈ {0, 1}2n ,

where x · y =
∑n

j=1 xjyj . In particular, if either x or y have even Hamming weight
then c(x)c(y) = (−1)x·yc(y)c(x). In the following, we will denote the set of even- and
odd-weight 2n-bit strings by {0, 1}2n

+ and {0, 1}2n
− , respectively.

The parity operator

P = inc1c2 · · · c2n

is the Majorana monomial associated with α = 12n = (1, . . . , 1). The parity operator
commutes with every even-weight Majorana monomial and anti-commutes with every
odd-weight Majorana monomial, i.e., we have

Pc(α) = (−1)|α|c(α)P for every α ∈ {0, 1}2n . (14)
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The Hilbert space Hn = Hn
+ ⊕ Hn

− associated with n fermions decomposes into a direct
sum of positive- and negative-parity vectors

Hn
+ = {Ψ ∈ Hn | PΨ = Ψ} and

Hn
− = {Ψ ∈ Hn | PΨ = −Ψ} .

We call a state Ψ ∈ Hn of definite parity if either Ψ ∈ Hn
+ or Ψ ∈ Hn

−. An element X ∈
B(Hn) belonging to the set B(Hn) of linear operators on Hn is called even (odd) if it is a
linear combination of Majorana monomials c(α) with α ∈ {0, 1}2n of even (odd) weight.
An immediate consequence of these definitions is that a state Ψ ∈ Hn has definite parity
if and only if |Ψ⟩⟨Ψ| is even (see e.g., [51, Proposition 1] for a proof).

2.2 Gaussian unitaries
A unitary operator U on Hn is Gaussian if and only if it maps a Majorana operator cj to
a linear combination of Majorana operators, i.e.

UcjU † =
2n∑

k=1
Rjkck , (15)

where R ∈ O(2n) is a real orthogonal matrix. Ignoring overall phases, the group of
Gaussian unitary operators is generated by operators of the form

Uj,k(ϑ) = exp(ϑ/2cjck) with ϑ ∈ [0, 2π) and j < k ∈ [2n]

and by operators

Uj = cj with j ∈ [2n] .

The operator Uj,k(ϑ) implements the rotation

Uj,k(ϑ)cjUj,k(ϑ)† = cos(ϑ)cj − sin(ϑ)ck

Uj,k(ϑ)ckUj,k(ϑ)† = sin(ϑ)cj + cos(ϑ)ck

Uj,k(ϑ)cℓUj,k(ϑ)† = cℓ for ℓ ̸∈ {j, k} .

(16)

The operator Uj = cj leaves cj invariant and flips the sign of each ck with k ̸= j, i.e., it
implements the reflection

UjcjU †
j = cj

UjckU †
j = −ck for k ̸= j . (17)

We note that by relation (14), every generator Uj,k(ϑ) is parity-preserving, whereas every
generator Uj reverses the parity, i.e.,

Uj,k(ϑ)PUj,k(ϑ)† = P for all k > j ∈ [n], ϑ ∈ [0, 2π) ,

UjPU †
j = −P for all j ∈ [n] .

(18)

Every orthogonal matrix R gives rise to a Gaussian unitary UR satisfying (15). The
unitary UR is unique up to a global phase, and R 7→ UR is called the metaplectic repre-
sentation. We can fix the global phase of UR uniquely, e.g., by the following procedure.
Every element R ∈ O(2n) can be uniquely decomposed into a product

R = S0S1 · · ·SL (19)
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with L ≤ 2n(2n−1)
2 and where

S0 =
{

I if R ∈ SO(2n)
R1 otherwise ,

where for each r ∈ [L], the matrix Sr is of the form

Sr = Rjr,kr (ϑr) for some jr < kr ∈ [2n], ϑr ∈ [0, 2π) .

Here R1 ∈ O(2n) is associated with the unitary U1 by Eq. (17), whereas Rj,k(ϑ) ∈ SO(2n)
is associated with Uj,k(ϑ) according to Eq. (16). We note that Rj,k(ϑ) ∈ SO(2n) is a
so-called Givens rotation, introduced in Ref. [52], and a decomposition of the form (19)
can be found by a deterministic algorithm with runtime O(n3) (see e.g., Section 5.2.3
in Ref. [53]). In particular, application of this algorithm defines a function taking an
arbitrary element R ∈ O(2n) to a unique product of the form (19). Given the (unique)
decomposition (19) of R ∈ O(2n), we can then define UR as the product

UR = U1Uj1,k1(ϑ1) · · ·UjL,kL
(ϑL) .

Overall, this defines a function R 7→ UR from O(2n) to the set of Gaussian unitaries, fixing
the phase ambiguity. Throughout the remainder of this work, UR will denote the Gaussian
unitary uniquely fixed by R.

2.3 Fermionic Gaussian (pure) states
The set of pure fermionic Gaussian states is the orbit of the vacuum state |0F ⟩ under
the action of O(2n) defined by the metaplectic representation, i.e., fermionic Gaussian
states are of the form UR |0F ⟩ with UR a fermionic Gaussian unitary. In more detail, every
fermionic Gaussian state eiθUR |0F ⟩ is uniquely specified by a pair (θ, R) with θ ∈ [0, 2π)
and R ∈ O(2n). We will denote the set of all fermionic Gaussian states by

Gn =
{

eiθUR |0F ⟩ | θ ∈ [0, 2π), R ∈ O(2n)
}

.

By Eq. (18) and because P |0F ⟩ = |0F ⟩, every pure fermionic Gaussian state Ψ has a
fixed parity, i.e., it is an eigenvector of the parity operator P . This defines a disjoint
partition Gn = G+

n ∪G−
n of the set of fermionic Gaussian states into positive- and negative-

parity states.

2.4 Gaussianity condition
In Ref. [54] Bravyi established a necessary and sufficient condition to determine if a (pos-
sibly mixed) state ρ ∈ B(Hn) is Gaussian (see Theorem 1 therein). Here Gaussianity of a
density operator ρ is defined by the condition that ρ has the form

ρ = K exp

i
2n∑

j,k=1
Aj,kcjck

 (20)

for an antisymmetric matrix A = −AT ∈ Mat2n×2n(R) and a constant K > 0. We note
that a pure state Ψ ∈ Hn is Gaussian if and only if the associated density operator ρ =
|Ψ⟩⟨Ψ| is Gaussian. (This follows from the fact that |0F ⟩⟨0F | = 1

2n/2 exp
(
iπ

4
∑n

j=1 c2j−1c2j

)
.

Indeed, if ρ = |Ψ⟩⟨Ψ| is a rank-one projection of the form (20), then it follows from
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Williamson’s normal form for antisymmetric matrices that there is R ∈ O(2n) such

that RART =
⊕n

j=1
( 0 1

−1 0
)
. This implies that UR|Ψ⟩⟨Ψ|U †

R = |0F ⟩⟨0F | and thus |Ψ⟩ =
U †

R |0F ⟩. Conversely, for a Gaussian state |Ψ⟩ = eiθUR |0F ⟩ ∈ Gn, we can use the expression
for |0F ⟩⟨0F | to argue that |Ψ⟩⟨Ψ| is of the form (20), i.e., Gaussian.) The characterization
of Gaussian density operators established in [54] is the following.

Theorem 2.1 (Theorem 1 in [54]). Define Λ =
∑2n

j=1 cj ⊗ cj. An even state ρ ∈ B(Hn)
is Gaussian if and only if [Λ, ρ⊗ ρ] = 0.

Based on this characterization [54], the following was shown in [32].

Lemma 2.2 (Corollary 1 in [32]). Let ρ ∈ B(Hn) be an even state. Then ρ is a Gaussian
pure state if and only if Λ (ρ⊗ ρ) = 0.

In the following, we only use the statement of Lemma 2.2 applied to pure states in
order to distinguish between Gaussian and non-Gaussian pure states. We formulate this
as follows:

Lemma 2.3. Let Ψ ∈ Hn be a pure state with fixed parity. Then Ψ is Gaussian if and
only if

Λ(|Ψ⟩ ⊗ |Ψ⟩) = 0 .

Proof. This follows immediately from the equivalence of the concepts of Gaussianity of
pure states (vectors) and density operators because the density operator |Ψ⟩⟨Ψ| is even
for any fixed-parity state Ψ.

We note that there is an elegant representation-theoretic interpretation of this char-
acterization of Gaussianity [55]. It is derived from the fact that Gaussian states are the
orbit of the vacuum state |0F ⟩ (a highest weight state) under the action of the metaplectic
group, cf. [56, Section IV] and [57]. We use a version of this reformulation for 4 fermions,
see Lemma 5.1 below, that has first been obtained in [58].

2.5 Covariance matrices, Gaussian states and Wick’s theorem
The covariance matrix Γ = Γ(Ψ) ∈ Mat2n×2n(R) of a state Ψ ∈ Hn is the antisymmetric
matrix with entries

Γj,k(Ψ) =
{
⟨Ψ, icjckΨ⟩ for j ̸= k

0 for j = k
(21)

with j, k ∈ [2n]. It satisfies ΓΓT = I for any state Ψ ∈ Hn.
The expectation value of a Hermitian operator with respect to a Gaussian state Ψ is

fully determined by its covariance matrix Γ = Γ(Ψ). This is because the expectation value
of a Majorana monomial c(α), α ∈ {0, 1}2n, is given by Wick’s theorem

⟨Ψ, c(α)Ψ⟩ =
{

Pf(Γ[α]) if |α| is even
0 otherwise

. (22)

Here Γ[α] ∈ Mat|α|×|α|(R) is the submatrix of Γ which includes all rows and columns with
index j ∈ [2n] such that αj = 1. Evaluating such expectation values, i.e., computing
Pfaffians of |α| × |α|-matrices (with |α| even), takes time O(|α|3). (Here and below we
use the number of elementary arithmetic operations to quantify the time complexity of
algorithms.)

Accepted in Quantum 2024-05-03, click title to verify. Published under CC-BY 4.0. 17



2.6 Inner product formulas for Gaussian states
The modulus of the inner product of two Gaussian states Φ1, Φ2 with identical parity σ ∈
{±1} and covariance matrices Γ1, Γ2 is given by the expression [59]

|⟨Φ1, Φ2⟩|2 = σ2−nPf(Γ1 + Γ2) . (23)

For three Gaussian states Φ0, Φ1, Φ2, the expression ⟨Φ0, Φ1⟩ · ⟨Φ1, Φ2⟩ · ⟨Φ2, Φ0⟩ is
invariant under a change of the global phase of any of the states, and can therefore be
computed by the covariance matrix formalism. An explicit expression was derived by
Löwdin in [59]. In Ref. [60] Bravyi and Gosset gave the formula

⟨Φ0, Φ1⟩ · ⟨Φ1, Φ2⟩ · ⟨Φ2, Φ0⟩ = σ4−nin Pf

 iΓ0 −I I
I iΓ1 −I
−I I iΓ2

 (24)

for three Gaussian states {Φj}2j=0 of identical parity σ ∈ {±1}, where Γj = Γ(Φj) is the
covariance matrix of Φj for j = 0, 1, 2. More generally, they obtained the formula

⟨Φ0, Φ1⟩ · ⟨Φ1, c(α)Φ2⟩ · ⟨Φ2, Φ0⟩ = σ4−nin+|α|·(|α|−1)/2 Pf (Rα) , (25)

for any even-weight Majorana monomial c(α), α ∈ {0, 1}2n
+ , where

Rα =


iΓ0 −I I 0
I iΓ1 −I 0
−I I iDαΓ2Dα JT

α + iDαΓ2JT
α

0 0 −Jα + iJαΓ2Dα iJαΓ2JT
α

 ∈ Mat(6n+|α|)×(6n+|α|)(R) .(26)

Here Dα = diag({1−αj}2n
j=1) is a diagonal matrix, whereas Jα ∈ Mat|α|×2n(R) has entries

defined in terms of the indices {i ∈ [2n] | αi ̸= 0} = {i1 < · · · < ir} associated with
non-zero entries of α, that is,

(Jα)j,k =
{

δij ,k if j ≤ r

0 otherwise .

In other words, (Jα)j,k = 1 if and only if k is the position of the j-th nonzero element of α.
As argued in [60], expressions (24) and (25) determine the inner product ⟨Φ1, Φ2⟩ and

an expression of the form ⟨Φ1, c(α)Φ2⟩ entirely in terms of covariance matrices, assuming
that the remaining two overlaps ⟨Φ0, Φ1⟩, ⟨Φ2, Φ0⟩ with a Gaussian reference state Φ0 are
given and non-zero. In this situation, these quantities can be computed in time O(n3).

2.7 Gaussian evolution and occupation number measurement
Underlying the known classical simulation algorithms for fermionic linear optics is the
fact that Gaussian unitaries and occupation number measurements preserve Gaussianity.
Explicitly, this can be described as follows: Given a Gaussian state Ψ with covariance
matrix Γ(Ψ)

(i) the covariance matrix Γ(URΨ) of Ψ evolved under the Gaussian unitary UR, R ∈
O(2n), is given by Γ(URΨ) = RΓ(Ψ)RT .
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(ii) measurement of the observable a†
jaj for j ∈ [n] gives the outcome s ∈ {0, 1} with

probability

Pj(s) = ∥Πj(s)Ψ∥2 (27)
= ⟨Ψ, Πj(s)Ψ⟩

= 1
2 (1 + (−1)s⟨Ψ, ic2j−1c2jΨ⟩)

= 1
2(1 + (−1)sΓ2j−1,2j) .

where the third identity follows from the definition

Πj(s) = 1
2(1 + (−1)sic2j−1c2j)

and the last identity follows from the definition of the covariance matrix in Eq. (21).
Given that the measurement outcome is s ∈ {0, 1}, the post-measurement state

Ψ(s) = (Πj (s) |Ψ⟩) /
√

Pj (s)

is Gaussian with covariance matrix Γ(Ψ(s)) defined by the lower-diagonal entries
(see e.g., [3, Proof of Lemma 4])

Γ(Ψ(s))k,ℓ =

(−1)s if (k, ℓ) = (2j, 2j − 1)
Γk,ℓ + (−1)s

2Pj(s) (Γ2j−1,ℓΓ2j,k − Γ2j−1,kΓ2j,ℓ) otherwise
(28)

for k > ℓ.

In particular, the corresponding resulting covariance matrices can be computed in time
O(n3) [8–10,54] and O(n2) [3] for unitary evolution and measurement, respectively.

2.8 The tensor product of two fermionic states
Two density operators ρj ∈ B(Hnj ), j ∈ [2], have a joint extension if and only if there is
an element ρ ∈ B(Hn1+n2) such that

tr(c(α1∥α2)ρ) = tr(c(α1)ρ1) tr(c(α2)ρ2) for all αj ∈ {0, 1}2nj , j ∈ [2] . (29)

Here α1∥α2 ∈ {0, 1}2(n1+n2) denotes the concatenation of α1 and α2. Theorem 1 in [61]
implies that if either ρ1 or ρ2 is even, then a unique joint extension ρ of (ρ1, ρ2) exists.
Furthermore, this extension is even if and only if both ρ1 and ρ2 are even. Theorem 2
in [61] shows that if ρ is even and ρ1 and ρ2 are pure, then ρ is also pure.

In particular, this means that for states Ψ1, Ψ2 of definite parity, there is a unique
joint pure extension ρ = |Ψ⟩⟨Ψ| of (|Ψ1⟩⟨Ψ1|, |Ψ2⟩⟨Ψ2|). Since ρ is pure, this also means
that Ψ is of definite parity. We will write Ψ = Ψ1⊗̃Ψ2 for this state in the following, and
we call ⊗̃ the fermionic tensor product. Note that Ψ is only defined up to a global phase.
It follows immediately from these definitions that

|⟨x, y|Ψ1⊗̃Ψ2⟩| = |⟨x, Ψ1⟩ · ⟨y, Ψ2⟩| for all x ∈ {0, 1}n1 and y ∈ {0, 1}n2 .(30)
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Proof. Let x ∈ {0, 1}n1 and y ∈ {0, 1}n2 be arbitrary. By definition, we have

|x, y⟩⟨x, y| =

 n1∏
j=1

1
2(I + (−1)xj ic2j−1c2j)

( n2∏
k=1

1
2(I + (−1)ykic2n1+2k−1c2n1+2k)

)

=

 ∑
α∈{0,1}2n1

+

γx(α)c(α||02n2)


 ∑

β∈{0,1}2n2
+

γy(β)c(02n1 ||β)

 .

for certain coefficients {γx(α)}
α∈{0,1}2n1

+
and {γy(β)}

β∈{0,1}2n2
+

. Since ρ = |Ψ1⊗̃Ψ2⟩⟨Ψ1⊗̃Ψ2|

is an extension of (|Ψ1⟩⟨Ψ1|, |Ψ2⟩⟨Ψ2|) and c(α||02n2)c(02n1 ||β) = i−|α|·|β|c(α||β) = c(α||β)
for (even-weight) α ∈ {0, 1}2n1

+ and β ∈ {0, 1}2n2
+ , it follows that

|⟨x, y|Ψ1⊗̃Ψ2⟩|2 =
∑

α∈{0,1}2n1
+

γx(α)
∑

β∈{0,1}2n2
+

γy(β) tr(c(α∥β)ρ)

= ⟨Ψ1,

 ∑
α∈{0,1}2n1

+

γx(α)c(α)

Ψ1⟩ · ⟨Ψ2,

 ∑
β∈{0,1}2n2

+

γy(β)c(β)

Ψ2⟩

= |⟨x, Ψ1⟩|2 · |⟨y, Ψ2⟩|2 .

Refining Eq. (30), (relative) phase information between these matrix elements can be
obtained from the explicit construction of Ψ1⊗̃Ψ2 given in [61, Section 3.1] (see also [51,
Proof of Theorem 1]): Consider the isometry

U : Hn1+n2 → Hn1 ⊗Hn2

|x1, . . . , xn1+n2⟩ 7→ |x1, . . . , xm⟩ ⊗ |xn1+1, . . . , xn1+n2⟩

whose action is given by

UajU † =
{

aj ⊗ I if j ∈ [n1]
P1 ⊗ aj−n1 if j ∈ {n1 + 1, . . . , n1 + n2} .

where P1, the parity operator acting on Hn1 , introduces phases. Then

Ψ1⊗̃Ψ2 = U †(Ψ1 ⊗Ψ2) .

It is straightforward from this definition to check that Ψ1⊗̃Ψ2 is the extension of (Ψ1, Ψ2)
and

⟨x, y|Ψ1⊗̃Ψ2⟩ = (−1)|x| · ⟨x, Ψ1⟩ · ⟨y, Ψ2⟩ for all x ∈ {0, 1}n1 and y ∈ {0, 1}n2 .(31)

We note that the fermionic tensor product preserves Gaussianity in the following sense.

Lemma 2.4. Let Ψj ∈ G+
nj

be positive-parity fermionic Gaussian states for j ∈ [2]. Then
Ψ1⊗̃Ψ2 ∈ G+

n1+n2, i.e., it is an even fermionic Gaussian state.

Proof. By definition of an extension (see Eq. (29)) and Wick’s theorem (Eq. (22)), the
tensor product Ψ = Ψ1⊗̃Ψ2 satisfies

⟨Ψ, c(α1∥α2)Ψ⟩ =
{

Pf(Γ1[α1])Pf(Γ1[α1]) if both |α1| and |α2| are even
0 otherwise

(32)
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for all αj ∈ {0, 1}2nj , where Γj is the covariance matrix of Ψj for j ∈ [2]. Because the
Pfaffian satisfies

Pf(A1 ⊕A2) = Pf
(

A1 0
0 A2

)
= Pf(A1)Pf(A2)

for block-matrices, it follows from (32) that the tensor product Ψ satisfies Wick’s theo-
rem (22) with covariance matrix Γ1 ⊕ Γ2. In particular, it is Gaussian.

3 Tracking relative phases in fermionic linear optics
The covariance matrix Γ(Ψ) of a fermionic Gaussian state |Ψ⟩ = eiθUR |0F ⟩ ∈ Gn fully
determines expectation values by Wick’s theorem, which is why Gaussian states and dy-
namics are amenable to efficient classical simulation (see Section 2.7). However, the de-
scription of Ψ in terms of the covariance matrix Γ(Ψ) does not capture information on
the global phase eiθ of the state. For processes involving non-Gaussian states expressed
as superpositions of Gaussian states, such phase information needs to be available for
computing norms, expectation values and overlaps.

Here we provide an extended (classical) description of fermionic Gaussian states that
incorporates phase information. A central feature of our construction is the fact that
this description permits to compute overlaps (including relative phases, i.e., not only the
absolute value) of Gaussian states in an efficient manner.

Our construction is motivated by and relies on expression (24), which relates the inner
product ⟨Ψ1, Ψ2⟩ of two Gaussian states Ψ1, Ψ2 ∈ Gn to their inner products ⟨Ψ0, Ψ1⟩,
⟨Ψ0, Ψ2⟩ with a Gaussian reference state Ψ0 ∈ Gn and their covariance matrices Γ0, Γ1, Γ2.
This suggests fixing a reference state Ψ0 ∈ Gn and using the pair (Γ(Ψ), ⟨Ψ0, Ψ⟩) as a
classical description of any state |Ψ⟩ ∈ Gn relevant in the computation. The problem with
this idea is that ⟨Ψ0, Ψ⟩ may vanish, preventing the application of (24). To avoid this
problem, we use – instead of a single state Ψ0 – a (potentially) different reference state
for each state Ψ. Specifically, we will show that using number states, i.e., states of the
form (10), suffices. This motivates the following definition.

Definition 3.1. Let |Ψ⟩ = eiθUR |0F ⟩ ∈ Gn be a Gaussian state. We call a tuple

d = (Γ, x, r) ∈ Mat2n×2n(R)× {0, 1}n × C

a (valid) description of |Ψ⟩ if the following three conditions hold:

(i) Γ = Γ(Ψ) is the covariance matrix of |Ψ⟩.

(ii) x ∈ {0, 1}n is such that ⟨x, Ψ⟩ ≠ 0, where |x⟩ is the number state defined by Eq. (10).
In our algorithms we will in fact ensure that |⟨x, Ψ⟩|2 ≥ 2−n, i.e., only a subset of
valid descriptions is used. A description d = (Γ, x, r) with this property, i.e., satisfy-
ing |r|2 ≥ 2−n, will be called a good description. The restriction to good descriptions
is necessary to make our algorithms work with finite-precision arithmetic.

(iii) r = ⟨x, Ψ⟩.

More explicitly, necessary and sufficient conditions for d = (Γ(Ψ), x, r) to constitute a
description of Ψ are that

r ̸= 0 and |r|4 = 2−2nDet(Γ(|x⟩) + Γ(Ψ))
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because of formula (23) for the overlap of two states and because Det(·) = Pf2(·). Here

Γ(|x⟩) =
n⊕

j=1

(
0 (−1)xj

−(−1)xj 0

)
(33)

is the covariance matrix of |x⟩. Since a Gaussian state Ψ generally has non-zero overlap
with more than a single occupation number state |x⟩, there are several distinct valid
descriptions of Ψ. We will denote the set of descriptions of |Ψ⟩ ∈ Gn by Desc(Ψ).

We note that a description d = (Γ, x, r) uniquely fixes a Gaussian state Ψ ∈ Gn:
The covariance matrix Γ determines all expectation values, and the global phase of Ψ is
fixed by the overlap ⟨x, Ψ⟩, i.e., by r. Denoting by Descn =

⋃
Ψ∈Gn

Desc(Ψ) the set of all
descriptions of fermionic Gaussian n-mode states, this means that we have a function

Ψ : Descn → Gn

d 7→ Ψ(d) .
(34)

The main result of this section shows that expectation values, overlaps, and matrix ele-
ments of (Majorana) operators with respect to Gaussian states can be efficiently computed
from their classical descriptions. Furthermore, when evolving a Gaussian state under a
Gaussian unitary, the description of the resulting state can be computed efficiently. The
same is true for the post-measurement state when applying an occupation number mea-
surement.

For evolution, we note that it suffices to consider Gaussian unitaries of the form UR

where R ∈ O(2n) belongs to the set of generators Gen(O(2n)) introduced in Section 2.2,
that is,

Gen(O(2n)) = {Rj,k(ϑ) | j < k ∈ [2n], ϑ ∈ [0, 2π)} ∪ {Rj}2n
j=1 .

Here Rj,k(ϑ) is a Givens rotation and Rj = −diag({(−1)δj,k}2n
k=1) a reflection. We note

that each element of Gen(O(2n)) can be specified by a tuple (j, k, ϑ) ∈ [2n]× [2n]× [0, 2π)
or an index j ∈ [2n], respectively. We assume that this parameterization is used in the
following algorithms (but leave this implicit).

To state the properties of our (deterministic) algorithms, it is convenient to express
these as functions.

Theorem 3.2 (Overlap, evolution, and measurement). Let Ψ(d) ∈ Gn be the Gaussian
state associated with a description d ∈ Descn, see Eq. (34). Then the following holds:

(i) The algorithm overlap : Descn × Descn → C given in Fig. 7 has runtime O(n3) and
satisfies

overlap(d1, d2) = ⟨Ψ(d1), Ψ(d2)⟩ for all d1, d2 ∈ Descn .

(ii) The algorithm evolve : Descn × Gen(O(2n)) → Descn given in Fig. 9 has run-
time O(n3) and satisfies

Ψ(evolve(d, R)) = URΨ(d) for all d ∈ Descn and R ∈ Gen(O(2n)) ,

where UR denotes the Gaussian unitary associated with R ∈ O(2n).

Accepted in Quantum 2024-05-03, click title to verify. Published under CC-BY 4.0. 22



(iii) The algorithm measureprob : Descn × [n] × {0, 1} → R given in Fig. 11 has run-
time O(1) and satisfies

measureprob(d, j, s) = ∥Πj(s)Ψ(d)∥2 for all d ∈ Descn, j ∈ [n], s ∈ {0, 1} ,

where Πj(s) = 1
2(I + (−1)sic2j−1c2j) is the projection onto the eigenspace of a†

jaj

with eigenvalue s.

(iv) The algorithm postmeasure : Descn × [n] × {0, 1} × [0, 1] → Descn given in Fig. 12
has runtime O(n3). The algorithm satisfies

Ψ(postmeasure(d, j, s, p(d, j, s))) = Πj(s)Ψ(d)
∥Πj(s)Ψ(d)∥

for all d ∈ Descn, j ∈ [n], s ∈ {0, 1}, with p(d, j, s) = ∥Πj(s)Ψ(d)∥2.

The output of both evolve and postmeasure is a good description for any input.

We argue that descriptions of relevant initial states can be obtained efficiently. Clearly,
this is the case for any state of the form |Ψ⟩ = URL

· · ·UR1 |0F ⟩ obtained by applying a
sequence {Rj}j∈[L] ⊂ Gen(O(2n)) of generators to the vacuum state |0F ⟩: Here we can
use the algorithm evolve L times, producing a description of |Ψ⟩ in time O(Ln3).

We we will at times need a description of a state |Ψ⟩ but do not require fixing its
global phase. This is the case for example when subsequent computational states only
involve phase-insensitive expressions, e.g., terms of the form |⟨Ψ, Φ⟩|2. Such a description
can be found efficiently from the covariance matrix Γ of |Ψ⟩. Since the phase can be fixed
arbitrarily, the problem here is to find x ∈ {0, 1}n such that ⟨x, Ψ⟩ is non-zero.

Theorem 3.3. There is an algorithm describe : Mat2n×2n(R)→ Descn with runtime O(n3)
such that for any covariance matrix Γ, the state Ψ(describe(Γ)) is a Gaussian state with
covariance matrix Γ, and describe(Γ) is a good description.

For example, consider states of the form |Φ(π, y)⟩ = URπ |y⟩, where Rπ ∈ O(2n) is a
permutation matrix specified by an element π ∈ S2n and y ∈ {0, 1}n. (Such states are
used in Ref. [60] to give a fast norm estimation algorithm, see Section 4.3.) The covariance
matrix of this state is Γ(π, y) = RπΓ(|y⟩)RT

π (with Γ(|y⟩) defined by Eq. (33)). We thus
conclude that |Ψ(describe(Γ(π, y)))⟩ is proportional to |Φ(π,y)⟩ with a global phase eiθ

possibly depending on the pair (π, y).
The remainder of this section is devoted to the proofs of Theorem 3.2 and Theorem 3.3:

We describe the algorithms evolve, overlap, measureprob, postmeasure and describe in detail,
providing pseudocode, and verify that these satisfy the desired properties.

3.1 Subroutines
Our algorithms make use of subroutines called findsupport, relatebasiselements, overlaptriple
and convert which we describe here.
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Require: Γ ∈ Mat2n×2n(R) covariance matrix of a pure Gaussian state
1: function findsupport(Γ)
2: Γ(0) ← Γ
3: x← 0n ∈ {0, 1}n.
4: for j ← 1 to n do ▷ simulate a measurement of a†

jaj

5: qj ← 1
2(I + Γ(j−1)

2j−1,2j)
6: if qj ≥ 1/2 then ▷ choose the higher-probability outcome
7: xj ← 0
8: pj ← qj

9: else
10: xj ← 1
11: pj ← 1− qj

12: Γ(j) ← 0 ∈ Mat2n×2n(R) ▷ covariance matrix of the post-measurement
state

13: Γ(j)
2j,2j−1 ← (−1)xj

14: for ℓ← 1 to n− 1 do
15: for k ← ℓ + 1 to n do
16: if (k, ℓ) ̸= (2j, 2j − 1) then
17: Γ(j)

k,ℓ ← Γ(j−1)
k,ℓ + (−1)xj

2pj
(Γ(j−1)

2j−1,ℓΓ
(j−1)
2j,k − Γ(j−1)

2j−1,kΓ(j−1)
2j,ℓ )

18: Γ(j) ← Γ(j) − (Γ(j))T

19: return x

Figure 1: The algorithm findsupport: Given the covariance matrix Γ of a Gaussian state |Ψ⟩, it com-
putes x ∈ {0, 1}n such that ⟨x, Ψ⟩ ≠ 0.

The subroutine findsupport takes as input the covariance matrix Γ of a Gaussian state Ψ
and produces a string x ∈ {0, 1}2n with the property that ⟨x, Ψ⟩ ≠ 0. It is given in Fig. 1.
It has the following properties:

Lemma 3.4. The algorithm findsupport : Mat2n×2n(R) → {0, 1}n runs in time O(n3). It
satisfies

|⟨findsupport(Γ(Ψ)), Ψ⟩|2 ≥ 2−n for every Ψ ∈ Gn , (35)

where Γ(Ψ) is the covariance matrix of Ψ.

Proof. The main idea of the algorithm is to mimic a measurement in the number state basis
executed in a sequential manner. Consider the following process: Suppose we start with the
state Ψ(0) = Ψ, and then measure a†

jaj successively for j = 1, . . . , n. Let P (xj |x1 · · ·xj−1)
denote the conditional probability of observing the outcome xj ∈ {0, 1} (when measur-
ing a†

jaj), given that the previous measurements yielded (x1, . . . , xj−1). According to
Born’s rule, this is given by

P (xj |x1 · · ·xj−1) = ⟨Ψ(j−1)
x1···xj−1 , Πj(xj)Ψ(j−1)

x1···xj−1⟩

where Ψ(j−1)
x1···xj−1 is the post-measurement state after the first (j − 1) measurements. The

probability of observing the sequence x ∈ {0, 1}n of outcomes then is

|⟨x, Ψ⟩|2 =
n∏

j=1
P (xj |x1 · · ·xj−1) (36)
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by Bayes’ rule.
The algorithm findsupport simulates this process: For each j ∈ [n], the quantity qj

computed in line 5 is equal to the conditional probability P (0|x1 · · ·xj−1) that the j-th
measurement results in the outcome 0. Lines 6–11 ensure that the outcome xj ∈ {0, 1}
with higher probability of occurrence is selected at each step, guaranteeing Property (35)
(because of Eq. (36)). The matrix Γ(j) computed in steps 12–18 is the covariance matrix
of the post-measurement state Ψ(j)

x1···xj .
Each measurement is thus realized in time O(n2) yielding the overall complexity

of O(n3).

The algorithm relatebasiselements is more straightforward: Given x, y ∈ {0, 1}n, it
outputs (α, ϑ) ∈ {0, 1}2n × R such that c(α) |x⟩ = eiϑ |y⟩. That is, it finds a Majorana
monomial c(α) which maps the basis state |x⟩ to |y⟩ up to a phase and computes the
corresponding phase. In Fig. 2 we give pseudocode for this algorithm.

Require: x ∈ {0, 1}n, y ∈ {0, 1}n
1: function relatebasiselements(x,y)
2: α← 02n ∈ {0, 1}2n.
3: for j ← 1 to n do
4: α2j−1 ← xj ⊕ yj

5: ϑ← π
4 |x⊕ y|+ π

∑n
j=1(x⊕ y)jηj(x)

6: return (α, ϑ) ▷ (α, ϑ) is such that c(α) |x⟩ = eiϑ |y⟩

Figure 2: Given x, y ∈ {0, 1}n, the algorithm relatebasiselements computes α ∈ {0, 1}2n and ϑ ∈ R
such that c(α) |x⟩ = eiϑ |y⟩. The expression ηj(x) in line 5 is defined by Eq. (12), and x⊕ y ∈ {0, 1}n

denotes the bitwise addition modulo two for x, y ∈ {0, 1}n.

Lemma 3.5. The algorithm relatebasiselements : {0, 1}n → {0, 1}2n×C runs in time O(n)
and satisfies

c(α) |x⟩ = eiϑ |y⟩ where (α, ϑ) = relatebasiselements(x, y) for all x, y ∈ {0, 1}n .

Proof. Let x, y ∈ {0, 1}n be arbitrary. Define

α2j−1 = xj ⊕ yj and α2j = 0 for j ∈ [n] ,

as in line 4 of algorithm relatebasiselements. Then

c(α) |y⟩ = i|α|·(|α|−1)/2cx1⊕y1
1 cx2⊕y2

3 · · · cxn⊕yn
2n−1 |y⟩

= i

(∑n

j=1 xj⊕yj

)
·
((∑n

j=1 xj⊕yj

)
−1
)

/2
(−1)

∑n

j=1(xj⊕yj)ηj(x) |y ⊕ (x⊕ y)⟩

= i|x⊕y|·(|x⊕y|−1)/2(−1)
∑n

j=1(x⊕y)jηj(x) |x⟩

where in the second identity, we used that

c2j−1 |x⟩ = (−1)ηj(x) |x⊕ ej⟩ for all x ∈ {0, 1}n and j ∈ [n]

because of Eq. (11). Because i|x⊕y|·(|x⊕y|−1)/2(−1)
∑n

j=1(x⊕y)jηj(x) = eiϑ for

ϑ = π

4 |x⊕ y| · (|x⊕ y| − 1) + π
n∑

j=1
(x⊕ y)jηj(x) ,

comparison with line 5 of the algorithm relatebasiselements gives the claim.

Accepted in Quantum 2024-05-03, click title to verify. Published under CC-BY 4.0. 25



The algorithm overlaptriple takes covariance matrices Γ0, Γ1, Γ2 of three Gaussian states
Φ0, Φ1, Φ2 of the same parity σ ∈ {−1, 1} and α ∈ {0, 1}n+, as well as overlaps u = ⟨Φ0, Φ1⟩,
v = ⟨Φ1, c(α)Φ2⟩ (which both have to be non-zero), and computes the overlap ⟨Φ2, Φ0⟩.
It is obtained by direct application of the formula (25). For completeness, we include
pseudocode in Fig. 3. Since this algorithm involves computing Pfaffians of matrices that
have size linear in n, its runtime is O(n3).

Require: Γj covariance matrix of a Gaussian state Φj for j = 0, 1, 2
Require: σ = Pf(Γ0) = Pf(Γ1) = Pf(Γ2)
Require: α ∈ {0, 1}n+ such that ⟨Φ1, c(α)Φ2⟩ ≠ 0
Require: ⟨Φ0, Φ1⟩ ≠ 0
Require: u = ⟨Φ0, Φ1⟩ and v = ⟨Φ1, c(α)Φ2⟩

1: function overlaptriple(Γ0, Γ1, Γ2, α, u, v)
2: Rα ∈ Mat(6n+|α|)×(6n+|α|)(R)
3: Rα ← evaluate Eq. (26)
4: o← u−1 · v−1 · σ · 4−nin+|α|·(|α|−1)/2Pf(Rα) ▷ compute the overlap ⟨Φ2, Φ0⟩
5: return o

Figure 3: The algorithm overlaptriple takes as input the covariance matrices Γj of three Gaussian
states Φj , j = 0, 1, 2 with identical parity, α ∈ {0, 1}n

+ and the overlaps ⟨Φ0, Φ1⟩, ⟨Φ1, c(α)Φ2⟩. The
latter have to be non-zero. The algorithm computes the overlap ⟨Φ2, Φ0⟩ using Eq. (25).

Fig. 4 gives a graphical representation of what the algorithm overlaptriple achieves. These
graphical representations will be helpful to construct and analyze other algorithmic build-
ing blocks.

(a) The input to the algorithm overlaptriple consists
of (descriptions of) three Gaussian states Φ0, Φ1, Φ2
and α ∈ {0, 1}2n, together with overlaps u =
⟨Φ0, Φ1⟩ and v = ⟨Φ1, c(α)Φ2⟩ that are both non-
zero.

(b) Applying overlaptriple provides the inner prod-
uct ⟨Φ0, Φ2⟩. In this diagrammatic representation,
this completes the triangle with vertices Φ0, Φ1, Φ2.

Figure 4: A graphical representation of the functionality provided by the algorithm overlaptriple. Solid
lines represent inner products that are given / have been computed, and are non-zero. Inner products
of the form ⟨Φ1, c(α)Φ2⟩ are represented by arrows.

The algorithm convert takes a description d = (Γ, x, r) of a Gaussian state Ψ(d) and y ∈
{0, 1}n such that ⟨y, Ψ(d)⟩ ≠ 0, and outputs a description d′ = (Γ, y, s) of the same state.
In other words, it converts a description d of the state involving the reference state |x⟩ to
a description d′ of the same state but involving a different reference state |y⟩. In Fig. 5
we give pseudocode for this algorithm.
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Require: d = (Γ, x, r) ∈ Descn, y ∈ {0, 1}n such that ⟨y, Ψ(d)⟩ ≠ 0
1: function convert(d,y)
2: (α, ϑ)← relatebasiselements(y, x) ▷ find (α, ϑ) such that c(α) |y⟩ = eiϑ |x⟩
3: Γ0 ← Γ, Γ1 ← Γ(|x⟩), Γ2 ← Γ(|y⟩) ▷ covariance matrices of Ψ(d), |x⟩ and |y⟩
4: u← r ▷ u = ⟨Ψ(d), x⟩
5: v ← eiϑ ▷ v = ⟨x, c(α)y⟩
6: w ← overlaptriple(Γ0, Γ1, Γ2, α, u, v) ▷ compute the overlap ⟨y, Ψ(d)⟩
7: return (Γ, y, w)

Figure 5: The algorithm convert takes a description d ∈ Descn and y ∈ {0, 1}n such that ⟨y, Ψ(d)⟩ ≠ 0.
It outputs a description d′ ∈ Descn of Ψ(d) such that the second entry of d′ is equal to y, i.e.,
d′ = (Γ, y, s). It makes use of the subroutines relatebasiselements and overlaptriple. For x ∈ {0, 1}n,
Γ(|x⟩) denotes the covariance matrix of the state |x⟩, see Eq. (33).

The algorithm convert is illustrated in Fig. 6.

(a) The input to the algo-
rithm convert specifies a Gaus-
sian state Ψ, x ∈ {0, 1}n such
that ⟨x, Ψ⟩ ̸= 0, the value r =
⟨x, Ψ⟩ and an element y ∈ {0, 1}n

such that ⟨y, Ψ⟩ ̸= 0. The value
of ⟨y, Ψ⟩ is not given.

(b) The algorithm applies the
subroutine relatebasiselements to
find (α, ϑ) such that c(α) |y⟩ =
eiϑ |x⟩. In particular, after this
step, the value ⟨x, c(α)y⟩ = eiϑ

is known and it is non-zero.

(c) The algorithm then applies the
subroutine overlaptriple to com-
pute w = ⟨y, Ψ⟩. The triple
(Γ, y, w) is a valid description of Ψ.

Figure 6: An illustration of the algorithm convert. Dotted lines represent inner products that are non-
zero, but that are not provided / have not yet been computed by the algorithm.

Lemma 3.6. The algorithm convert : Descn × {0, 1}n → Descn given in Fig. 5 runs in
time O(n3). Assume that d ∈ Descn and y ∈ {0, 1}n satisfy ⟨y, Ψ(d)⟩ ≠ 0. Then

Ψ(convert(d, y)) = Ψ(d) . (37)

Furthermore, denoting the output of convert(d, y) by d′ = (Γ′, y′, s′) we have

y′ = y

as well as

|s′|2 = |⟨y′, Ψ(d)⟩|2 = |⟨y, Ψ(d)⟩|2 . (38)

Proof. Let us denote the input to convert by (d, y), where d = (Γ, x, r) ∈ Descn and y ∈
{0, 1}n. Then

⟨x, Ψ(d)⟩ ≠ 0 (39)
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since d is a description of Ψ(d). Furthermore, for (α, ϑ) as defined in line 2 we have

⟨x, c(α)y⟩ = eiϑ ̸= 0 (40)

by definition of the algorithm relatebasiselements. In line 3 of convert, the matrices Γj ,
j ∈ [3] are the covariance matrices of the states

(Φ0, Φ1, Φ2) = (Ψ(d), |x⟩ , |y⟩) .

We note that Eq. (39) and the assumption ⟨y, Ψ(d)⟩ ̸= 0 imply that these three states
have identical parity. The value w computed in line 6 using overlaptriple is equal to the
overlap

w = ⟨Φ2, Φ0⟩ = ⟨y, Ψ(d)⟩ , (41)

because

u = r = ⟨x, Ψ(d)⟩ = ⟨Ψ(d), x⟩ = ⟨Φ0, Φ1⟩ ≠ 0
v = eiϑ = ⟨x, c(α)y⟩ = ⟨Φ1, c(α)Φ2⟩ ≠ 0

by Eqs. (39) and (40). Eq. (41) together with the assumption ⟨y, Ψ(d)⟩ ̸= 0 show that
the output (Γ, y, w) is a description of Ψ(d). This completes the proof of Eq. (37).

Eq. (38) is trivially satisfied because

s′ = w = ⟨y, Ψ(d)⟩ .

The complexity of the algorithm is dominated by overlaptriple, which takes time O(n3).

3.2 Computing overlaps and descriptions of evolved/measured states
Based on the subroutines findsupport, relatebasiselements, overlaptriple and convert, we
can now describe our main algorithms overlap, evolve, measureprob and postmeasure for
overlaps, Gaussian unitary evolution, to compute the outcome probability and the post-
measurement state when measuring the occupation number, respectively. We give pseu-
docode for each algorithm and establish the associated claims.

We give pseudocode for the algorithm overlap in Fig. 7 and we illustrate it in Fig. 8.

Require: d1 = (Γ1, x1, r1), d2 = (Γ2, x2, r2) ∈ Descn

1: function overlap(d1,d2)
2: σ1 ← Pf(Γ1) ▷ compute the parity σj of Ψ(dj)
3: σ2 ← Pf(Γ2)
4: if σ1 ̸= σ2 then
5: return 0 ▷ states with different parities have zero overlap
6: (α, ϑ)← relatebasiselements(x2, x1) ▷ (α, ϑ) satisfies c(α) |x2⟩ = eiϑ |x1⟩
7: Γ′

0 ← Γ1, Γ′
1 ← Γ(|x1⟩), Γ′

2 ← Γ2 ▷ covariance matrices of Ψ(d1), |x1⟩
and Ψ(d2)

8: u← r1 ▷ u = ⟨Ψ(d1), x1⟩
9: v ← eiϑr2 ▷ v = ⟨x1, c(α)Ψ(d2)⟩

10: w ← overlaptriple(Γ′
0, Γ′

1, Γ′
2, α, u, v) ▷ compute the overlap ⟨Ψ(d2), Ψ(d1)⟩

11: return w

Figure 7: The algorithm overlap takes descriptions d1, d2 ∈ Descn and outputs the over-
lap ⟨Ψ(d1), Ψ(d2)⟩.
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(a) The input to the algo-
rithm overlap consists of (descrip-
tions of) two Gaussian Ψ1, Ψ2,
x1, x2 ∈ {0, 1}n and the over-
laps rj = ⟨xj , Ψj⟩, j ∈ [2]. The
latter are both assumed to be non-
zero.

(b) The algorithm uses the sub-
routine relatebasiselements
to find (α, ϑ) such that
c(α) |x2⟩ = eiϑ |x1⟩. In par-
ticular, this means that the
value ⟨x1, c(α)x2⟩ = eiϑ is
computed, and it is non-zero.
Furthermore, this implies that
⟨x1, c(α)Ψ2⟩ = ⟨c(α)x1, Ψ2⟩ =
eiϑ⟨x2, Ψ2⟩ = eiϑr2 is also known
and non-zero.

(c) In the last step of the algo-
rithm, the subroutine overlaptriple
is applied to complete a trian-
gle: This amounts to computing
w = ⟨Ψ2, Ψ1⟩. The algorithm re-
turns the complex conjugate w =
⟨Ψ1, Ψ2⟩.

Figure 8: An illustration of the algorithm overlap.

Lemma 3.7. The algorithm overlap : Descn × Descn → C given in Fig. 7 runs in
time O(n3). It satisfies

overlap(d1, d2) = ⟨Ψ(d1), Ψ(d2)⟩ for all d1, d2 ∈ Descn . (42)

Proof. Let dj = (Γj , xj , rj) ∈ Descn for j ∈ [2]. Then

rj = ⟨xj , Ψ(dj)⟩ ≠ 0 for j ∈ [2] , (43)

by assumption.
Line 4 treats the case where Ψ(d1) and Ψ(d2) have different parity, and are thus orthog-

onal. Starting from line 6, we can hence assume that the parities σ1, σ2 of Ψ(d1), Ψ(d2)
are identical, σ = σ1 = σ2. By Eq. (43), this implies that both |x1⟩ and |x2⟩ also have
parity σ, that is,

σ(|x1⟩) = σ(|x2⟩) = σ(|Ψ(d1)⟩) = σ(|Ψ(d2)⟩) . (44)

By definition of relatebasiselements, the pair (α, ϑ) computed in line 6 satisfies

c(α) |x2⟩ = eiϑ |x1⟩ . (45)

Consider the triple of states

(Φ0, Φ1, Φ2) = (Ψ(d1), |x1⟩ , Ψ(d2)) .

Then the matrices Γ′
j , j ∈ [3] defined in line 7 of the algorithm are the covariance matrices

of Φj , j ∈ {0, 1, 2}. We have

u = r1 = ⟨x1, Ψ(d1)⟩ = ⟨Ψ(d1), x1⟩ = ⟨Φ0, Φ1⟩ ≠ 0 ,
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by Eq. (43), and similarly

v = eiϑr2

= eiϑ⟨x2, Ψ(d2)⟩
= ⟨e−iϑx2, Ψ(d2)⟩
= ⟨c(α)x1, Ψ(d2)⟩ with (45)
= ⟨x1, c(α)Ψ(d2)⟩ because c(α) is self-adjoint
= ⟨Φ1, c(α)Φ2⟩
̸= 0 because r2 ̸= 0 by Eq. (43) .

Furthermore, by Eq. (44) the states (Φ0, Φ1, Φ2) have identical parity. It thus follows from
the properties of overlaptriple that the quantity w computed in step line 10 is equal to

w = ⟨Ψ(d2), Ψ(d1)⟩ .

Since the output of the algorithm is the complex conjugate w = ⟨Ψ(d1), Ψ(d2)⟩, this implies
the claim (42).

The runtime of overlap is dominated by overlaptriple, hence it is of order O(n3).

We give pseudocode for the algorithm evolve in Fig. 9 and we illustrate it in Fig. 10.

Lemma 3.8. The algorithm evolve : Gen(O(2n))×Descn → Descn given in Fig. 9 runs in
time O(n3). Consider an arbitrary generator R ∈ Gen(O(2n)) and a description d ∈ Descn.
Then

Ψ(evolve(R, d)) = URΨ(d) ,

that is, the output of evolve is a description of the evolved state URΨ(d). Furthermore,
denoting the output by d′ = (Γ′, x′, r′) = evolve(R, d) we have

|r′|2 = |⟨x′, Ψ(d′)⟩|2 ≥ 2−n . (46)

Proof. Let us denote the input of evolve by (R, d) where R ∈ Gen(O(2n)) and d =
(Γ, x, r) ∈ Descn. The state URΨ(d) has covariance matrix Γ0 = RΓRT computed in
line 2 (see Section 2.7). By the properties of findsupport (see Lemma 3.4), the state |y⟩
with y = findsupport(Γ0) ∈ {0, 1}n computed in line 3 is such that

|⟨y, URΨ(d)⟩|2 ≥ 2−n . (47)

In particular, it is non-zero. The remainder of the algorithm computes ⟨y, URΨ(d)⟩.
We first show the following:

Claim 3.9. Lines 4–15 compute (z, s) ∈ {0, 1}n × C such that

|⟨z, URx⟩|2 ≥ 1/2 (48)

and

s = ⟨z, URx⟩ . (49)

Proof. Here we are using the fact that for any generator R ∈ Gen(O(2n)), the associated
Gaussian unitary UR has a local action on the mode operators. In particular, we can easily
compute the image UR |x⟩ of a number state |x⟩ under UR. We distinguish two cases:
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Require: R ∈ Gen(O(2n))
Require: d = (Γ, x, r) ∈ Descn

1: function evolve(R, d)
2: Γ0 ← RΓRT ▷ covariance matrix of URΨ(d)
3: y ← findsupport(Γ0) ▷ gives y such that |⟨y, URΨ(d)⟩|2 ≥ 2−n

4: if R = Rj,k(ϑ) for j < k ∈ [2n], ϑ ∈ R then ▷ R = Rj,k(ϑ) is a Givens
rotation

5: if cos2(ϑ/2) ≥ 1/2 then
6: z ← x
7: s← cos(ϑ/2)
8: else
9: z ← x⊕ ej ⊕ ek

10: β ← βj(x) + βk(x)
11: s← eiπβ sin(ϑ/2)
12: if R = Rj for j ∈ [2n] then ▷ R = Rj is a reflection
13: z ← x⊕ ej

14: β ← βj(x)
15: s← eiπβ

▷ (s, z) satisfies s = ⟨z, URx⟩, |s|2 ≥ 1/2
16: (α, γ)← relatebasiselements(y, z) ▷ (α, γ) satisfies c(α) |y⟩ = eiγ |z⟩
17: Γ1 ← RΓ(|x⟩)RT , Γ2 ← Γ(|y⟩) ▷ covariance matrices of UR |x⟩ and |y⟩
18: u← r ▷ u = ⟨URΨ, URx⟩
19: v ← eiγs ▷ v = ⟨URx, c(α)y⟩
20: w ← overlaptriple(Γ0, Γ1, Γ2, α, u, v) ▷ compute the overlap ⟨y, URΨ(d)⟩
21: return (Γ0, y, w) ▷ return a description of UR |Ψ(d)⟩

Figure 9: The algorithm evolve takes a description d ∈ Descn and an orthogonal matrix R ∈ Gen(O(2n))
associated with the Gaussian unitary UR and computes a description for the state URΨ(d). In this
algorithm, the functions βs : {0, 1}n → R for s ∈ [n] are defined as βs(x) = ηs(x) +

(
xs − 1

2
)
· (s + 1),

x ∈ {0, 1}n with ηs(x) given in Eq. (12).

(i) R = Rj,k(ϑ), j < k ∈ [2n], ϑ ∈ [0, 2π) is a Givens-rotation (see Lines 4–11): In this
case, R is associated with the unitary evolution operator

Uj,k = exp(ϑ/2cjck) = cos(ϑ/2)I + sin(ϑ/2)cjck .

It maps a basis state |x⟩, x ∈ {0, 1}n, to

Uj,k(ϑ) |x⟩ = cos(ϑ/2) |x⟩+ eiπ(βj(x)+βk(x)) sin(ϑ/2) |x⊕ ej ⊕ ek⟩ (50)

where we introduced the quantities

βs(x) = ηs(x) +
(

xs −
1
2

)
· (s + 1) for any s ∈ [n] ,

with ηs(x) defined in Eq. (12). To obtain Eq. (50), we used that

cj |x⟩ = eiπβj(x) |x⊕ ej⟩ for all j ∈ [2n] and x ∈ {0, 1}n (51)

because

c2j−1|x⟩ = (−1)ηj(x)|x⊕ ej⟩ and c2j |x⟩ = −i(−1)ηj(x)+xj |x⊕ ej⟩ .

Eq. (50) motivates the following case distinction:
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(a) The input to the algo-
rithm evolve is (the description
of) a Gaussian state Ψ, x ∈
{0, 1}n and the non-zero over-
lap r = ⟨x, Ψ⟩, as well as an ele-
ment R ∈ Gen(O(2n)) associated
with a Gaussian unitary UR.

(b) By unitarity of UR, the input
data also provides the inner prod-
uct ⟨URx, URΨ⟩ = ⟨x, Ψ⟩ = r,
which is non-zero.

(c) The algorithm invokes the
subroutine findsupport applied to
the covariance matrix Γ0 of the
evolved state URΨ in order to
find an element y ∈ {0, 1}n such
that ⟨y, URΨ⟩ ≠ 0. (The value
of this inner product is not com-
puted/available at this point.)

(d) Using the fact the action of UR

for a generator R ∈ Gen(O(2n)) is
local, the algorithm determines an
element z ∈ {0, 1}n such that s =
⟨z, URx⟩ ≠ 0, and computes the
value s.

(e) The algorithm then uses the
subroutine relatebasiselements to
find (α, γ) such that c(α) |y⟩ =
eiγ |z⟩. This means that the inner
product ⟨z, c(α)y⟩ = eiγ is known
and non-zero. Since ⟨z, URx⟩ is
known and non-zero (as ensured
by the previous step (10d)), the
value ⟨URx, c(α)y⟩ = eiγ⟨z, URx⟩
is also non-zero and can be com-
puted.

(f) In the last step, the subrou-
tine overlaptriple is used to com-
pute the quantity w = ⟨y, URΨ⟩.
It is non-zero by step (10c).
Thus (Γ0, y, w) is a valid descrip-
tion of URΨ.

Figure 10: An illustration of the algorithm evolve. Dotted lines correspond to inner products whose
value is non-zero, but has not been computed at that stage of the algorithm.

(a) cos2(ϑ/2) ≥ 1/2 (see Lines 6–7): Here |x⟩ has higher amplitude than |x⊕ ej ⊕ ek⟩
in the state Uj,k(ϑ) |x⟩. The algorithm picks z = x (Line 6) and sets s = cos(ϑ/2)
(line 7). In particular, comparing with (50), it follows immediately that the
claims (48) and (49) are satisfied.

(b) cos2(ϑ/2) < 1/2 (see Lines 9–11): In this case the algorithm ensures that

z = x⊕ ej ⊕ ek by Line 9 (52)
β = βj(x) + βk(x) by Line 10
s = eiπ(βj(x)+βk(x)) sin(ϑ/2) by Lines 10 and 11 . (53)

Because cos2(ϑ/2) + sin2(ϑ/2) = 1 we have

|s|2 ≥ 1
2

by the assumption that cos2(θ/2) < 1/2. To prove the claims (48) and (49), it
thus suffices to show the second claim (49). But this again follows from (50) and
the definitions (52) of z and (53) of s, i.e., we have s = ⟨z, Uj,k(ϑ)x⟩.
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(ii) R = Rj , j ∈ [2n] is a reflection (see Lines 12–15): Here R is associated with the
unitary evolution operator

Uj = cj .

Its action on |x⟩, x ∈ {0, 1}n, is described by Eq. (51), i.e., we have

Uj |x⟩ = eiπβj(x) |x⊕ ej⟩ .

This state is proportional to |x⊕ ej⟩, showing that the choice

z = x⊕ ej (Line 13)
β = βj(x) (Line 14)
s = eiπβ (Line 15)

indeed ensures that the claims (48) and (49) are satisfied.

Equipped with Claim 3.9, we can show that the algorithm evolve has the desired
functionality. The matrix Γ0 computed in Line 2 is the covariance matrix of the evolved
state URΨ(d), whereas Γ1, Γ2 computed in Line 17 are the covariance matrices of UR |x⟩
and |y⟩, respectively. Thus overlaptriple in Line 20 is invoked on the triple of states

(Φ0, Φ1, Φ2) = (URΨ(d), UR |x⟩ , |y⟩) .

To check that the requirements of overlaptriple are satisfied, first observe that

u = r by Line 18
= ⟨Ψ(d), x⟩ by definition of r

= ⟨URΨ(d), URx⟩ by unitarity of UR

= ⟨Φ0, Φ1⟩ .

Furthermore, this is non-zero because r (part of the input) is non-zero by definition of the
description d = (Γ0, x, r) of Ψ(d).

By the defining property of the subroutine relatebasiselements, Line 16 of the algorithm
computes (α, γ) ∈ {0, 1}2n × [0, 2π) such that

c(α) |y⟩ = eiγ |z⟩ . (54)

We also have

v = eiγs by line 18
= eiγ⟨z, URx⟩ by (49)
= ⟨URx, c(α)y⟩ by (54)
= ⟨Φ1, c(α)Φ2⟩ .

Because |s|2 ≥ 1/2 (see Claim 3.9), this is non-zero.
We conclude from the the properties of overlaptriple that

w = ⟨Φ2, Φ0⟩ see Line 20
= ⟨y, URΨ(d)⟩ .
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By construction of y using findsupport, we have

|w|2 ≥ 2−n ,

see Eq. (47). In particular, we conclude that the triple (Γ0, y, w) is a valid description
of URΨ(d) with the desired property (46). This is what the algorithm returns.

The runtime of the algorithm evolve is dominated by the runtime O(n3) of the algorithm
overlaptriple.

We give pseudocode for the algorithm measureprob in Fig. 11.

Require: d = (Γ, x, r) ∈ Descn

Require: j ∈ [n]
Require: s ∈ {0, 1}

1: function measureprob(d, j, s)
2: return 1

2(1 + (−1)sΓ2j−1,2j)

Figure 11: The subroutine measureprob takes as input a description d = (Γ, x, r) ∈ Descn of a
Gaussian state Ψ(d), an integer j ∈ [n] and a bit s ∈ {0, 1}. It outputs the probability of obtaining
the measurement outcome s when measuring the occupation number operator a†

jaj . The outcome
probability does not depends on the global phase of Ψ(d) (which is determined by its reference state x
and the overlap r), but only on its covariance matrix Γ.

Lemma 3.10. The algorithm measureprob : Descn × [n] × {0, 1} → R given in Fig. 11
runs in time O(1). It satisfies

measureprob(d, j, s) = ⟨Ψ(d), Πj(s)Ψ(d)⟩ for all d ∈ Descn, j ∈ [n], s ∈ {0, 1} ,

where Πj(s) = 1
2(I + (−1)sic2j−1c2j) is the projection onto the eigenvalue-s eigenspace

of a†
jaj.

Proof. We denote the input to measureprob by (d, j, s) where d = (Γ, x, r) ∈ Descn is a
description of a state Ψ(d), j ∈ [n] and s ∈ {0, 1}. Given the state Ψ(d), the probability of
obtaining measurement outcome s when measuring the occupation number operator a†

jaj

is given by Eq. (27). This is the output of the algorithm in line 2 and gives the claim.
Computing line 2 requires a constant number of arithmetic operations, giving the run-
time O(1).

We give pseudocode for the algorithm postmeasure in Fig. 12 and we illustrate it in
Fig. 13.

Lemma 3.11. The algorithm postmeasure : Descn × [n] × {0, 1} × [0, 1] → Descn given
in Fig. 12 runs in time O(n3). Let d ∈ Descn, j ∈ [n] and s ∈ {0, 1} be arbitrary.
Let Πj(s) = 1

2(I+(−1)sic2j−1c2j) be the projection onto the eigenvalue-s eigenspace of a†
jaj

and let p = ∥Πj(s)Ψ(d)∥2. Then

Ψ(postmeasure(d, j, s, p) = Πj(s)Ψ(d)
∥Πj(s)Ψ(d)∥ ,
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Require: d = (Γ, x, r) ∈ Descn

Require: j ∈ [n]
Require: s ∈ {0, 1}
Require: p = ∥Πj(s)Ψ(d)∥2 ∈ [0, 1] ▷ probability of outcome s when measuring a†

jaj

1: function postmeasure(d, j, s, p)
2: Γ′ ← 0 ∈ Mat2n×2n(R) ▷ compute covariance matrix of post-measurement

state Ψ′

3: Γ′
2j,2j−1 ← (−1)s

4: for ℓ← 1 to n− 1 do
5: for k ← ℓ + 1 to n do
6: if (k, ℓ) ̸= (2j, 2j − 1) then
7: Γ′

k,ℓ ← Γk,ℓ + (−1)s

2p (Γ2j−1,ℓΓ2j,k − Γ2j−1,kΓ2j,ℓ)

8: Γ′ ← Γ′ − (Γ′)T

9: y ← findsupport(Γ′) ▷ find y such that |⟨y, Ψ′⟩|2 ≥ 2−n

10: (α, ϑ)← relatebasiselements(y, x) ▷ (α, ϑ) are such that c(α) |y⟩ = eiϑ |x⟩
11: Γ0 ← Γ, Γ1 ← Γ(|x⟩), Γ2 ← Γ(|y⟩) ▷ covariance matrices of Ψ(d), |x⟩ and |y⟩
12: u← r ▷ u = ⟨Ψ(d), x⟩
13: v ← eiϑ ▷ v = ⟨x, c(α)y⟩
14: w ← overlaptriple(Γ0, Γ1, Γ2, α, u, v) ▷ w = ⟨y, Ψ(d)⟩
15: return (Γ′, y, w/

√
p) ▷ return a description of Ψ′

Figure 12: The algorithm postmeasure takes as input a description d ∈ Descn, an integer j ∈ [n], a
bit s ∈ {0, 1} and a real number p ∈ [0, 1]. Assuming p = ∥Πj(s)Ψ(d)∥2, the algorithm outputs a de-
scription of the post-measurement state Ψ′ = (Πj(s)Ψ(d))/∥Πj(s)Ψ(d)∥ when measuring the number
operator a†

jaj and obtaining the outcome s where s ∈ {0, 1}. Here, Πj(s) = (I + (−1)sic2j−1c2j)/2
is the projection onto the eigenvalue s eigenspace of a†

jaj .

that is, postmeasure computes a description of the post-measurement state when measur-
ing a†

jaj and obtaining outcome s. Denoting the output of the algorithm by

d′ = (Γ′, x′, r′) = postmeasure(d, j, s, p) ,

we further have

|r′|2 = |⟨x′, Ψ(d′)⟩|2 ≥ 2−n . (55)

Proof. We denote the input to postmeasure by (d, j, s, p), where d ∈ Descn, j ∈ [n],
s ∈ {0, 1} and p ∈ [0, 1]. For brevity, let us denote the post-measurement state when
measuring the observable a†

jaj and obtaining outcome s by

Ψ′ = Πj(s)Ψ(d)
∥Πj(s)Ψ(d)∥ .

In lines 2–7, the algorithm postmeasure computes the covariance matrix Γ′ of Ψ′ ac-
cording to Eq. (28). In line 9 the algorithm uses findsupport to find y ∈ {0, 1}n such
that ∣∣⟨y, Ψ′⟩

∣∣2 ≥ 2−n . (56)
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(a) The algorithm postmeasure is
given the covariance matrix Γ of
a Gaussian state Ψ, x ∈ {0, 1}n

as well as the value r = ⟨x, Ψ⟩
(which is non-zero). It is addi-
tionally given the probability p =
∥Πj(s)Ψ∥2 of observing the out-
come s.

(b) After computing the co-
variance matrix Γ′ of the
post-measurement state Ψ′,
the algorithm uses the sub-
routine findsupport to find
an element y ∈ {0, 1}n such
that ⟨y, Ψ′⟩ ̸= 0. (The value of
this inner product is not computed
at this point.)

(c) The subroutine
relatebasiselements is then
used to find (α, ϑ) such that
c(α) |y⟩ = eiϑ |x⟩.

(d) The algorithm overlaptriple is
used to compute the overlap w =
⟨y, Ψ⟩.

(e) As argued in the proof of
Lemma 3.11, the inner prod-
uct ⟨y, Ψ′⟩ can be computed
from w and the probability p:
it is equal to ⟨y, Ψ′⟩ = w/

√
p.

Thus (Γ′, y, w,
√

p) is a description
of Ψ′.

Figure 13: An illustration of the algorithm postmeasure, which computes a description of the post-
measurement state Ψ′ = Πj(s)Ψ

∥Πj(s)Ψ∥ given a description of Ψ.

Line 10 provides (α, ϑ) ∈ {0, 1}2n × R such that

c(α) |y⟩ = eiϑ |x⟩ . (57)

Line 11 of the algorithm sets the matrices (Γ0, Γ1, Γ2) equal to the covariance matrices of
the three states

(Φ0, Φ1, Φ2) = (Ψ(d), |x⟩ , |y⟩) .

We check that the conditions for applying overlaptriple in Line (14) are satisfied. We have

u = r by Line 12
= ⟨Ψ(d), x⟩ by definition of r

= ⟨Φ0, Φ1⟩ ,

and this is non-zero because d = (Γ, x, r) is a valid description (hence r ̸= 0). Similarly as
before, we also have

v = eiϑ by Line 13
= ⟨x, c(α)y⟩ by Eq. (57)
= ⟨Φ1, c(α)Φ2⟩ .
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In particular, this is also non-zero. The requirements to run overlaptriple in Line 14 are
therefore met, and Line 14 returns

w = ⟨Φ2, Φ0⟩
= ⟨y, Ψ(d)⟩ . (58)

It remains to show that (Γ′, y, w/
√

p) (the expression returned by the algorithm) is a
valid description of the post-measurement state Ψ′, and to establish the bound

|w/
√

p|2 ≥ 2−n (59)

in order to prove Eq. (55).
Inserting Ψ′ = Πj(s)Ψ/

√
p, Eq. (56) implies that

2−n ≤ |⟨y, Ψ′⟩|2 = 1
p
|⟨y, Πj(s)Ψ⟩|2 = 1

p
|⟨Πj(s)y, Ψ⟩|2 ≤ 1

p
∥Πj(s)y∥2 · ∥Ψ∥2 (60)

because Πj(s) is self-adjoint and with the Cauchy-Schwarz inequality. In particular, we
have Πj(s)y ̸= 0 and thus

Πj(s)y = y (61)

since any number state |y⟩ is an eigenvector of the projection Πj(s). Inserting (61) into (60)
and using (58) we obtain the bound

2−n ≤ 1
p
|⟨y, Ψ⟩|2 = |w|

2

p
,

establishing (59). Eq. (61) and the self-adjointness of Πj(s) also imply that

⟨y, Ψ′⟩ = 1
√

p
⟨y, Πj(s)Ψ⟩ = 1

√
p
⟨y, Ψ⟩ = w

√
p

.

Since Γ′ is the covariance matrix of Ψ′ and p = ∥Πj(s)Ψ(d)∥2 is the probability of obtaining
outcome s when measuring a†

jaj , this shows that (Γ′, y, w/
√

p) is a valid description of Ψ′

as claimed.
The complexity of the algorithm is dominated by overlaptriple, which takes time O(n3).

3.3 Initial states for computation
Using the algorithm evolve, it is straightforward to generate a description of a state that is
obtained by applying a sequence of Gaussian unitaries (generators) to the vacuum state.
This is all that is typically needed to describe initial states.

In cases where we do not need to fix the overall phase, we can generate a description
from the covariance matrix. The algorithm describe takes as input the covariance ma-
trix Γ of a Gaussian state Ψ and outputs a description d ∈ Descn of a Gaussian state
which is equal to Ψ up to a global phase. It is given in Fig. 14 and it simply uses the
subroutine findsupport and Eq. (23).
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Require: Γ ∈ Matn×n(R) covariance matrix of a pure Gaussian state Ψ
1: function describe(Γ)
2: y ∈ {0, 1}n
3: y ← findsupport(Γ) ▷ find y such that |⟨y, Ψ⟩|2 ≥ 2−n

4: σ ← Pf(Γ)
5: r ←

√
σ2−nPf(Γ(|y⟩) + Γ) ▷ compute |⟨y, Ψ⟩|

6: return (Γ, y, r)

Figure 14: The algorithm describe: Given the covariance matrix Γ of a Gaussian state |Ψ⟩, it outputs d ∈
Descn such that |⟨Ψ(d), Ψ⟩| = 1.

Lemma 3.12. The algorithm describe : Mat2n×2n(R) → Descn runs in time O(n3). Its
output is such that for every covariance matrix Γ, the state Ψ(describe(Γ)) is a Gaussian
state with covariance matrix Γ. We have

|r|2 = |⟨x, Ψ(d)⟩|2 ≥ 2−n (62)

for d = (Γ, x, r) = Ψ(describe(Γ)).

Proof. Let Γ ∈ Mat2n×2n(R) be a covariance matrix and let Ψ be a Gaussian state with
covariance matrix Γ. By definition of the algorithm findsupport, the value y ∈ {0, 1}n
computed in line 3 satisfies

|⟨y, Ψ⟩|2 ≥ 2−n .

By Eq. (23), the value r computed in Line 5 satisfies

r = |⟨y, Ψ⟩| .

In particular, there is an angle ϑ ∈ [0, 2π) such that

r =
√

σ2−nPf(Γ(|y⟩) + Γ) = ⟨y, eiϑΨ⟩ .

It follows immediately that d = (Γ, y, r) is a valid description of the Gaussian state eiϑΨ =
Ψ(d) with the required property (62).

4 Classical simulation of fermionic Gaussian circuits with non-Gaussian
initial states

In this section, we argue that the techniques developed in Section 3 to describe fermionic
Gaussian states (including relative phases) give rise to efficient classical simulation algo-
rithms for computations composed of non-Gaussian initial states, Gaussian unitaries and
occupation number measurements. Specifically, we argue that algorithms developed in
the context of stabilizer circuits can immediately be translated to this fermionic setup.
Furthermore, this translation maintains runtime bounds when the stabilizer extent is re-
placed by the fermionic Gaussian extent. Because of the generality of this adaptation
procedure – it being applicable to a variety of simulation algorithms both for strong and
weak simulation – we restrict our attention to the key substitutions.

Our algorithms apply to the efficient classical simulation of fermionic circuits of the
following form, involving n fermions.
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(i) The initial state Ψ(0) = Ψ is a possibly non-Gaussian state Ψ. We assume that
its fermionic Gaussian extent ξ(Ψ) and a corresponding optimal decomposition into
a superposition of Gaussian states is known. This is the case for example for any
four-fermion state, or a tensor product of two four-fermion states, see Section 5.
Alternatively, we may assume that an upper bound ξ(Ψ) ≥ ξ(Ψ) and a corresponding
decomposition of Ψ achieving this value is known: In this case, runtime upper bounds
will depend on ξ(Ψ) instead of ξ(Ψ).

(ii) The computation proceeds in a sequence of timesteps. At each step t ∈ [T ], one of
the following is performed:

(a) A Gaussian unitary UR, R ∈ Gen(O(2n)) is applied to the state. Here the choice
of R may depend (in an efficiently computable manner) on measurement results
obtained previously. We will leave this dependence implicit and do not take it
into account in our runtime estimates, as it will typically depend heavily on the
circuit considered.

(b) An occupation number measurement, i.e., measurement of the operator a†
jaj

for some j ∈ [n] is performed, yielding a measurement outcome s ∈ {0, 1} and
a corresponding post-measurement state. The choice of the mode j ∈ [n] to
be measured may again depend (in an efficient manner) on the measurement
outcomes already obtained.

We note that the restriction to the set of Gaussian unitaries associated with generators
of O(2n) in (iia) incurs no loss of generality at the cost of possibly increasing T by a factor
of order O(n2) and an additive term in the runtime of order O(n3) since a decomposition
of an arbitrary element R ∈ O(2n) of the form (19) as a product of L ≤ O(n2) generators
can be found in time O(n3), see the discussion below Theorem 3.2.

The use of arbitrary initial states Ψ in (i) allows us to model, in particular, the ap-
plication of certain “magic gates” using so-called gadgets. These can be realized by using
non-Gaussian auxiliary states combined with Gaussian operations, see e.g., [12,13]. Since
all 1-, 2- and 3-fermion states are Gaussian [32], 4-fermion states provide the smallest non-
trivial examples; these will also be our main focus in Section 5. We refer to e.g., [12, 13]
for a discussion of these constructions.

We proceed as follows: In Section 4, we formulate in general terms how simulation
algorithms for a model can be generalized to initial states that are superpositions: This
follows known approaches for stabilizer circuits augmented by magic states. In Section 4.2
we review the relationship between the D-extent and the D-rank defined by a dictio-
nary D. In Section 4.3 we discuss fast algorithms for estimating norms of superpositions
of dictionary states. In Section 4.4 we apply these constructions to our setup.

4.1 Extending simulation algorithms to superpositions
Here we discuss how to extend simulation algorithms for an efficiently simulable model
(D, E ,M) in such a way that the resulting extended algorithms (χevolve, χmeasureprob,
χpostmeasure) work with any initial state Ψ which is a superposition of χ elements of D
(i.e., has D-rank bounded by χD(Ψ) ≤ χ). Our discussion is standard and is included only
for the reader’s convenience: It follows that for stabilizer states as discussed in [18].

Recall that the dictionary D is a set of states, E a set of operations and M a set
of measurements. In addition to the subroutines evolve, measureprob and postmeasure for
evolution and measurement associated with (D, E ,M), the construction discussed here
requires an efficient algorithm overlap which computes inner products ⟨Ψ(d1), Ψ(d2)⟩ from
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descriptions (d1, d2) ∈ Desc2
n. This means that the description d ∈ Descn of a state Ψ(d)

must include phase information. For Gaussian states, the covariance matrix formalism
has to be extended as discussed in Section 3.

Our goal is to find classical simulation algorithms for circuits of the following form:

(i) The initial state Ψ(0) = Ψ is a superposition of the form

Ψ =
χ∑

j=1
γjφj .

of χ states {φj}χj=1 ⊂ D with complex coefficients {γj}χj=1. We assume that this
decomposition is explicitly provided as an input to the classical algorithm in the
form of a χ-tuple {(γj , dj)}Dj=1, where dj is an efficient classical descriptions of the
state φj .

(ii) In each timestep t ∈ [T ],

(a) either an evolution operation E ∈ E , or

(b) a measurement M ∈M

is applied to the state. We assume that corresponding efficient descriptions of E
respectively M are given to the classical simulation algorithm.

The algorithms (evolve, measureprob, postmeasure, overlap) associated with the model
(D, E ,M) then immediately give rise to algorithms (χevolve, χmeasureprob, χpostmeasure)
for simulating a more general circuit: At each time step t ∈ [T ], the resulting algorithm

maintains the data {γ(t)
j , d

(t))
j }Dj=1 describing the instantaneous state Ψ(t) after step t as a

linear combination

Ψ(t) =
χ∑

j=1
γ

(t)
j Ψ(d(t)

j )

of vectors belonging to the dictionary D, and the subroutines (χevolve, χmeasureprob,
χpostmeasure) are used to successively update this description (respectively sample from
corresponding measurement outcomes).

Before describing the extended routines χevolve, χmeasureprob, χpostmeasure in more
detail, it is convenient to introduce a subroutine χnorm which takes as input a tuple
{(γj , dj)}χj=1 ∈ (C× Descn)χ and outputs the squared norm ∥

∑χ
j=1 γjΨ(dj)∥2. It is clear

that such a primitive can be realized naively by using the algorithm overlap for computing
inner products. This naive implementation, which we refer to as χnaivenorm, requires time

time(χnaivenorm) = χ2time(overlap) .

Let us now describe the procedures χevolve, χmeasureprob and χpostmeasure, building on
a (general) norm computation subroutine χnorm.

(a) if an evolution operation E ∈ E with description dE is applied at time t, then the
description is updated by setting

γ
(t)
j = γ

(t−1)
j and d

(t)
j = evolve(dE , d

(t−1)
j ) for j ∈ [χ] .

This defines the algorithm χevolve. The runtime of this update is

time(χevolve) = χ · time(evolve) .
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(b) if a (projective) measurement M = {Ms}s∈M ∈ M with description dM is applied to
the state at time t, then the probability of obtaining s ∈M is given by

p(s|Ψ(t−1)) = ∥MsΨ(t−1)∥2 =

∥∥∥∥∥∥
χ∑

j=1
γ

(t−1)
j

√
p(s|Ψ(t−1)

j )Ψ(t−1)
j (M, s)

∥∥∥∥∥∥
2

.

Here the probability p(s|Ψ(t−1)
j ) = ∥MsΨ(t−1)

j ∥2 = measureprob(d(t−1)
j , dM , s) of ob-

taining outcome s when measuring Ψ(t−1)
j can be efficiently obtained from the de-

scription d
(t−1)
j of Ψ(t−1)

j and the description dM of M . (Summands j where the

probability p(s|Ψ(t−1)
j ) vanishes can be omitted from this sum.) Similarly, a de-

scription dj(s) = postmeasure(d(t−1)
j , dM , s) of the (normalized) post-measurement

state Ψ(t−1)
j (M, s) = 1√

p(s|Ψ(t−1)
j )

MsΨ(t−1)
j (when measuring Ψ(t−1)

j ) can be obtained

efficiently. In particular, setting γ̃j = γ
(t−1)
j

√
p(s|Ψ(t−1)

j ), we conclude that the out-
come probability

p(s|Ψ(t−1)) =

∥∥∥∥∥∥
χ∑

j=1
γ̃jΨ(dj(s))

∥∥∥∥∥∥
2

(63)

is the squared norm of a superposition of elements from D. This expression (to-
gether with the norm computation routine χnorm) defines the algorithm χmeasureprob.

In particular, given {γ̃j , dj(s), p(s|Ψ(t−1)
j )}χj=1, the probability p(s|Ψ) can be eval-

uated (exactly) in runtime time(χnorm). Since χmeasureprob first has to compute

the descriptions dj(s) of the post-measurement states Ψ(t−1)
j (M, s) and the probabili-

ties {p(s|Ψ(t−1)
j )}χj=1, its runtime is

time(χmeasureprob) = time(χnorm) + χ · (time(measureprob) + time(postmeasure)) .

One can easily verify that the post-measurement state after time step t is given by

Ψ(t) =
χ∑

j=1
γ

(t)
j Ψ(d(t)

j ) ,

where

γ
(t)
j = γ̃j√

p(s|Ψ(t−1))
and d

(t)
j = dj(s) .

In particular, this means that (similarly as for χmeasureprob) we have an algorithm

χpostmeasure which given {(γj , d
(t−1)
j )}χj=1 and p(s|Ψ(t−1)), computes a description of

the post-measurement state in time

time(χpostmeasure) = χ · (time(postmeasure) + time(measureprob)) .

Given the ability to compute p(s|Ψ) and assuming, e.g., that the number |M| of
measurement outcomes is constant, one can then sample from this distribution (when
the goal is to perform weak simulation) to get an outcome s ∈M.

Accepted in Quantum 2024-05-03, click title to verify. Published under CC-BY 4.0. 41



Using the naive algorithm χnaivenorm for χnorm gives runtimes

time(χevolve) = χ · time(evolve)
time(χmeasureprob) = χ2 · time(overlap) + χ · (time(postmeasure) + time(measureprob))
time(χpostmeasure) = χ · (time(postmeasure) + time(measureprob))

.

(64)
As a function of χ, this is dominated by the computation of the squared norm (63)
in χmeasureprob which takes time O(χ2).

4.2 Sparsification: Relating D-extent to approximate D-rank
Algorithms whose complexity depends on the D-extent ξD(Ψ) instead of the (exact) D-
rank χD(Ψ) (see Eq. (3)) of the initial state Ψ can be obtained as follows. The idea
consists in replacing Ψ by a state Ψ̃ which is δ-close to Ψ and has bounded D-rank.
More precisely, it relies on the following result which connects the D-extent ξD(Ψ) to the
approximate D-rank χδ

D(Ψ) defined in Eq. (4).

Theorem 4.1 (Theorem 1 in [18]). Suppose Ψ =
∑m

j=1 γjφj is a decomposition of a nor-
malized vector Ψ into a superposition of elements {φj}mj=1 belonging to the dictionary D.
Then

χδ
D(Ψ) ≤ 1 + ∥γ∥21/δ2

where ∥γ∥1 =
∑m

j=1 |γj | is the 1-norm of γ. In particular, we have the relationship

χδ
D(Ψ) ≤ 1 + ξD(Ψ)/δ2 .

In [18], this result was established for the dictionary D = STABn consisting of n-
qubit stabilizer states. Inspection of the proof immediately shows that the statement
is applicable to any dictionary D (independently of, e.g., whether or not it is finite).
In particular, Theorem 4.1 implies that in runtime upper bounds, the quantity χD can
always be replaced by (the potentially much smaller quantity) ξD(Ψ)/δ2, at the cost of
introducing an O(δ)-error in L1-distance in the sampled distribution. For example, using
the naive norm estimation algorithm (i.e., inserting into (64)), this gives a quadratic
scaling (for computing output probabilities) in ξD(Ψ). Note that here we are assuming
that a decomposition of Ψ with squared L1-norm ∥γ∥21 of coefficients achieving ξD(Ψ) is
given.

4.3 Fast norm estimation and approximate simulation
In pioneering work, Bravyi and Gosset [17] improved upon the sketched algorithm in
the case of stabilizer states. This was achieved by replacing the O(χ2)-runtime (naive)
estimation algorithm χnaivenorm for the norm of a superposition of stabilizer states by
a probabilistic algorithm χfastnorm. With success probability at least 1 − pf , the algo-

rithm χfastnorm provides an estimate N̂ of the squared norm N = ∥Ψ∥2 of a superposi-
tion Ψ =

∑χ
j=1 γjφj of n-qubit stabilizer states {φj}χj=1 with multiplicative error ϵ (i.e.,

N̂ ∈ [(1−ϵ)N, (1+ϵ)N ]), and has runtime O(χ ·n3ϵ−2p−1
f ) The key observation underlying

the algorithm is the fact that the norm of interest can be expressed as

N = 2nEΘ
[
|⟨Θ, Ψ⟩|2

]
, (65)
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i.e., it is proportional to the expected (squared) overlap of Ψ with a state |Θ⟩ drawn
uniformly at random from the set of n-qubit stabilizer states. Given {γj , φj}χj=1, this

algorithm proceeds by taking R = ⌈p−1
f ϵ−2⌉ stabilizer states Θ1, . . . , ΘR chosen uniformly

from the set of all stabilizer states, and producing the estimate

N̂ = 2n

R

R∑
k=1
|⟨Θk, Ψ⟩|2 (66)

of N . Importantly, expression (66) can be computed from (the descriptions of) {Θk}Rk=1,
{φj}χj=1 and the coefficients {γj}χj=1, using χ ·R calls of a subroutine overlap which com-
putes the overlap of two stabilizer states (including phases). This is because each summand
in (66) can be written as a sum

|⟨Θk, Ψ⟩| =

∣∣∣∣∣∣
χ∑

j=1
γj⟨Θk, φj⟩

∣∣∣∣∣∣ (67)

of χ such products. The resulting runtime of this norm estimation algorithm is thus O(χ ·
R · time(overlap)) which amounts to the claimed runtime O(χ · n3ϵ−2p−1

f ).
We note that a similar reasoning can be applied to any situation where the norm of

a superposition of dictionary elements of interest can be expressed as in Eq. (65) as the
expected overlap of the inner product of Ψ with a state Θ randomly chosen according to a
suitable distribution over dictionary states. Specifically, as derived in Appendix B of [60]
and discussed below (see Section 4.4), this is the case for the set of fermionic Gaussian
states. The corresponding norm estimation algorithm then has a runtime of the form

time(χfastnorm) = O(χ ·R · time(overlap) + R · time(samplestate))
= O(p−1

f ϵ−2(χtime(overlap) + time(samplestate))
(68)

where samplestate is an algorithm producing a description of a state Θ drawn randomly
form the appropriate distribution. Importantly, the runtime (68) is linear in χ, resulting
in a linear dependence when replacing χ by the stabilizer extent ξD(Ψ) as discussed in
Section 4.2.

Algorithms (approxevolve, approxmeasureprob, approxpostmeasure) can now be obtained
by using χfastnorm in place of χnorm. The algorithm approxevolve is identical to χevolve
since it does not involve norm computations. In contrast, approxmeasureprob is a prob-
abilistic algorithm that can fail with probability pf and both approxmeasureprob and
approxpostmeasure introduce an error (in the sampled distribution and the post-mea-
surement state, respectively). This is because χfastnorm only estimates the norm of a
superposition.

Finally, replacing χ by the D-extent ξD(Ψ), see Section 4.2 results in a triple of ap-
proximate algorithms (approxevolve, approxmeasureprob, approxpostmeasure) with parame-
ters (ϵ, δ, pf ) describing the quality of approximation and failure probability as discussed
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in Section 1.5. By construction, the runtimes of these algorithms are

time(approxevolve) = O

(
ξD(Ψ)

δ2 time(evolve)
)

time(approxmeasureprob) = O

(
p−1

f ϵ−2
(

ξD(Ψ)
δ2 time(overlap) + time(samplestate)

))
+ O

(
ξD(Ψ)

δ2 (time(postmeasure) + time(measureprob))
)

time(approxpostmeasure) = O

(
ξD(Ψ)

δ2 (time(postmeasure) + time(samplestate))
)

.

(69)

4.4 Fermionic linear optics with non-Gaussian initial states
The algorithms described above can be adapted in a straightforward manner to the prob-
lem of classically simulating fermionic linear optics with non-Gaussian initial states: We
can simply use the efficient description of Gaussian states introduced in Section 3 and make
use of the associated procedures overlap, evolve as well as measureprob and postmeasure.
In particular, observe that combining Eq. (64) with the runtimes O(n3) for the algo-
rithms evolve, postmeasure and overlap, and O(1) for measureprob (see Section 3) results
in the runtimes given in Table 3 for exact simulation.

To get a linear scaling in the Gaussian extent ξGn(Ψ) of the initial state (for ap-
proximate simulation), the naive norm estimation needs to be replaced. A fast norm
estimation scheme for superpositions of fermionic Gaussian has been described in Ap-
pendix C of Ref. [60]: Consider the following probabilistic process defined for a superpo-
sition Ψ =

∑χ
j=1 γjφj , φj ∈ Gn, γj ∈ C of n-mode fermionic Gaussian states:

(i) Sample K random Gaussian states {Θk}Kk=1 independently and identically from the
distribution induced by picking a permutation π ∈ S2n and a string y ∈ {0, 1}n
uniformly at random and outputting

|Θ(π, y)⟩ = URπ |y⟩ .

Here Rπ = O(2n) is a permutation matrix specified by an element π ∈ S2n and y ∈
{0, 1}n.

(ii) Set

N̂ = 1
K

K∑
k=1

2n|⟨Θk, Ψ⟩|2 . (70)

The following was shown in [60].

Lemma 4.2 (Lemma 10 in Ref. [60]). For any pf ∈ [0, 1] and ϵ > 0, consider the prob-
abilistic process described above with the choice K = ⌈2

√
nϵ−2p−1

f ⌉. Then the random
variable N̂ satisfies

(1− ϵ)∥Ψ∥2 ≤ N̂ ≤ (1 + ϵ)∥Ψ∥2 .

with probability at least 1− pf .
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A description of a state proportional to Θk can be computed from the associated
pair (πk, yk) ∈ S2n × {0, 1}n using the subroutine describe, for each k ∈ [K], as follows
(see Fig. 15 for pseudocode for the algorithm). The covariance matrix Γk = Rπk

Γ(|y⟩)R†
πk

of such a state can be computed in time O(n3) from (πk, y), and applying describe to Γk

gives the desired description. We note that any such state can be used in place of Θk since
the expression (70) (and, in particular, (67)) does not depend on the global phase of Θk.
With the definition (70), it follows that the probabilistic process described here can be
simulated in time given by Eq. (68) using K calls to the subroutine samplestate shown in
Fig. 15, and subsequent use of overlap to compute the empirical average (70).

1: function samplestate
2: y ← uniform random string in {0, 1}n
3: π ← uniform random permutation in S2n

4: Rπ ∈ O(2n)
5: for j ∈ [2n] do ▷ compute the permutation matrix Rπ

6: Rπ[j]← eπ(j)

7: Γ← RπΓ(|y]⟩)R†
π ▷ compute the covariance matrix of |Θ(π, y)⟩ = Rπ |y⟩

8: return describe(Γ) ▷ output a description of |Θ(π, y)⟩

Figure 15: The algorithm samplestate outputs a classical description of a state |Θ(π, y)⟩ = Rπ |y⟩
where π ∈ S2n and y ∈ {0, 1}n are taken uniformly at random.

Because the runtimes of describe and overlap are both upper bounded by O(n3), this

leads to an overall runtime of O
(
n7/2ϵ−2p−1

f χ
)

of this algorithm for computing the esti-

mate N̂ of ∥Ψ∥2. We note this conclusion about the runtime was also reached in Ref. [60],
although the issue of a potential lack of a phase reference applicable throughout the com-
putation was not considered there. This issue is resolved by our description of Gaussian
states, see Section 3.

Combing this algorithm with the runtimes given in Eq. (69) and with the runtimes O(n3)
for the algorithms evolve, postmeasure and overlap, and O(1) for measureprob (see Section 3)
gives runtimes claimed in Table 4 for the algorithms approxevolve, approxmeasureprob and
approxpostmeasure.

To give an idea of the feasibility of running these algorithms, let us compare to [17],
where Clifford circuits on n = 40 qubits with up to t = 48 T -gates were simulated by
means of an algorithm relying on the stabilizer formalism augmented with stabilizer-
decompositions of magic states. These simulations were performed using MATLAB on
a laptop with a 2.6GHz Intel i5 Dual Core CPU. Runtimes of individual building blocks
are given in [17, Table I] and are of the order of tens of milliseconds even for 100 qubits.
The algorithms of [17] have a scaling which is linear in the approximate (stabilizer) rank.
Since this quantity scales exponentially in the number of copies of a single magic state,
this dominates the runtime, which includes additional factors that are polynomial in the
number of qubits and gates. In more detail, the authors of [17] consider the non-stabilizer
state

|A⟩ = 1√
2

(|0⟩+ eiπ/4|1⟩) .

A copy of this (magic) state can be used together with stabilizer operations to implement
the (non-Clifford) T -gate [11]. The approximate stabilizer rank (which is defined in terms
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of fidelity rather than distance in [17]) of t copies of this state is shown to be bounded by

χ̃δ(|A⟩⊗t) = O(2γtδ−1) where γ ≈ 0.228 . (71)

Now consider our simulation procedure: Here the dependence of the runtime is linear in
the Gaussian extent ξGn and thus again essentially linear in the δ-approximate Gaussian
rank χδ

Gn
(see Theorem 4.1), and this quantity dominates the runtime (which includes

polynomial factors in the number of fermionic modes and gates). Thus our simulation
algorithms have a runtime comparable to that of [17] when substituting the fermionic
Gaussian extent of the initial state with the approximate stabilizer rank (respectively the
stabilizer extent) of the initial state in the Clifford setting.

To make this more concrete, consider the state

|a8⟩ = 1√
2

(|0000⟩+ |1111⟩) , (72)

which is a magic state for Gaussian computations: As shown in [12, Lemma 1], the non-
Gaussian unitary (magic gate) Umagic = exp(iπc1c2c3c4) can be implemented with Gaus-
sian operations and a single copy of this state. The state |a8⟩ has Gaussian extent

ξGn(|a8⟩) = 2 (73)

and thus we have

ξGn(|a8⟩⊗t′) ≤ 2t′ (74)

for t′ copies of |a8⟩. (We note that in fact, the results of [49] imply that equality holds
in (74).) Eq. (73) can be shown as follows: The upper bound ξGn(|a8⟩) ≤ 2 is a direct
consequence of the decomposition given in (72) into a sum of the Gaussian states |0000⟩
and |1111⟩. The dual formulation of the extent implies that

ξGn(|Ψ⟩) ≥ 1
FGn(|Ψ⟩) for any state Ψ ∈ Hn , (75)

see (98) with the choice y = |Ψ⟩/
√

FGn(|Ψ⟩). Using the fact that FGn(|a8⟩) = 1/2 (see [50]
– the inequality FGn(|a8⟩) ≤ 1/2 which is needed here was previously shown in [32])
and (75) gives the lower bound ξGn(|a8⟩) ≥ 2, establishing (73).

Comparing the exponents in (71) and (74), we can give the following rough estimate:
we expect that the cost (runtime) of simulating t = 48 T -gates in the stabilizer framework
is comparable with the cost of simulation of roughly t′ ≈ 10 gates Umagic in the fermionic
context. Similar estimates apply to other non-Gaussian operations such that the SWAP
gate, a magic gate in the context of fermionic Gaussian computation. The latter can be
implemented using a certain non-Gaussian state as shown in [13].

4.5 Efficient additive-error strong simulation
In a different direction of generalization, building upon the work [17] and making inno-
vative use of a concentration inequality by Hayes [62] for vector martingales, Ref. [27]
gives a randomized algorithm which, for a state Ψ obtained by applying n-qubit Clif-
ford gates and t (non-Clifford) T -gates to |0⟩⊗n, provides an additive-error estimate p̂(x)
for the probability p(x) = ∥(⟨x| ⊗ I⊗(n−a))|Ψ⟩∥2 of observing a qubits in the state |x⟩,
with x ∈ {0, 1}a. The algorithm is based on a procedure by which the probability p(x) of
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interest is expressed in terms of the squared norm
∥∥∥(⟨0|⊗t−r ⊗ I⊗r

)
W |Ψ⟩

∥∥∥2
of a partially

projected state, where Ψ is a tensor product of t non-stabilizer single-qubit states (arising
from gadgetization), W a certain Clifford unitary, and r a circuit-dependent integer. The
failure probability of the constructed algorithm is then upper bounded (see [27, Theorem
3]) by an expression depending on p(x), the error ϵ, the stabilizer rank ξSTABn(Ψ) (taking
the role of χ) of the product state Ψ, as well as two additional parameters than be chosen
freely, but enter into the (polynomial) runtime estimate.

The described method of adapting fast algorithms for simulating Clifford circuits with
non-stabilizer initial states can be applied in a similar manner to this algorithm, since this
also reduces to computing inner products (including phases) between Gaussian states.

5 Multiplicativity of the Gaussian fidelity for 4 fermions
The main result of this section is a proof that the fermionic Gaussian fidelity is multiplica-
tive for the tensor product of any two positive-parity 4-fermion states.

We begin in Section 5.1 by laying out some specific properties of 4-fermion states. We
discuss a Gaussianity condition specific to 4-fermion states [58] and we write an explicit
expression for any 4-fermion state as a superposition of two orthogonal (Gaussian) states.
This was first introduced in Refs. [56, 58]. In Section 5.2 we establish properties of the
fermionic Gaussian fidelity for 4-fermion states which are subsequently used in Section 5.3
to prove that the fermionic Gaussian fidelity is multiplicative for the tensor product of
any two 4-fermion states.

5.1 Four-fermion Gaussian and non-Gaussian states
Key to our considerations is a certain antiunitary map θ acting on H4

+, the positive-parity
subspace of 4 fermions spanned by {|x⟩}x∈{0,1}4

+
. It is defined by its action

θ |x⟩ = (−1)ϑ(x) |x⟩ , (76)

for x ∈ {0, 1}4+, on basis states (antilinearly extended to all of H4
+), where ϑ(x) = x1 + x3

mod 2 = x2 + x4 mod 2 = ϑ(x̄). Here x = (x1, . . . , xn) is obtained by flipping each bit
of x. The relevant properties of this map are the following. We note that the following
statement has been given in [58, Eq. (9)], along with a negative-parity version.

Lemma 5.1 ([58]). A state Ψ ∈ H4
+ is Gaussian if and only if

⟨Ψ, θΨ⟩ = 0 .

Proof. This follows from the Gaussianity criterion given in Lemma 2.3. We give the proof
in Appendix A.

Lemma 5.2. We have θcjck = cjckθ for all j, k ∈ [8].

Proof. See Appendix B.

The following result was first shown in Ref. [56].

Lemma 5.3 ([56]). Let Ψ ∈ H4
+ be a unit vector. Then there are two orthogonal unit

vectors Ψ1, Ψ2 ∈ H4
+, φ ∈ [0, 2π) and a ∈ [0, 1/

√
2] such that

θΨj = Ψj for j ∈ [2] (77)
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and

Ψ = eiφ
(√

1− a2Ψ1 + iaΨ2
)

. (78)

Proof. We first argue that it suffices to consider the case where Ψ satisfies

⟨Ψ, θΨ⟩ ∈ R . (79)

This is because

⟨(eiφΨ), θ(eiφΨ)⟩ = e−2iφ⟨Ψ, θΨ⟩ for every φ ∈ [0, 2π) ,

which implies that (79) can be ensured by replacing Ψ with eiφΨ for a suitably chosen φ ∈
[0, 2π).

Let Ψ be such that (79) holds. We define “real” and “imaginary” parts of Ψ by the
expressions

ΨR = 1
2 (Ψ + θΨ)

ΨI = 1
2i

(Ψ− θΨ) .

It follows immediately from this definition that

Ψ = ΨR + iΨI

and

θΨR = ΨR

θΨI = ΨI .

because θ is antiunitary and an involution. Furthermore, Eq. (79) implies that the vec-
tors ΨR,ΨI are orthogonal: We have

4i⟨ΨR, ΨI⟩ = ⟨Ψ + θΨ, Ψ− θΨ⟩
= ∥Ψ∥2 − ∥θΨ∥2 + ⟨θΨ, Ψ⟩ − ⟨Ψ, θΨ⟩
= −2iIm⟨Ψ, θΨ⟩
= 0

where we used that θ is an antiunitary in the first step, and assumption (79) in the last
step. The claim now follows by setting

(a, Ψ1, Ψ2) =


(
∥ΨI∥, ΨR

∥ΨR∥ , ΨI
∥ΨI∥

)
if ∥ΨI∥ ≤ 1/

√
2(

∥ΨR∥, ΨI
∥ΨI∥ , ΨR

∥ΨR∥

)
otherwise .

Theorem 5.4 ([56, 58]). Let Ψ ∈ H4
+ be an arbitrary unit vector. Then there are a

Gaussian pure state Ψg ∈ G+
4 , φ ∈ [0, 2π) and f ∈ [1/2, 1] such that the state θΨg is

Gaussian and orthogonal to Ψg and

Ψ = eiφ
(√

fΨg +
√

1− fθΨg

)
. (80)

The triple (Ψg, φ, f) is uniquely defined by Ψ, i.e., a function of Ψ. Furthermore, the
quantity f = f(Ψ) is invariant under the action of Gaussian unitaries associated with
special orthogonal rotations: We have

f(UΨ) = f(Ψ) for any Gaussian unitary U = UR with R ∈ SO(2n) . (81)
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Proof. Let Ψ ∈ H4
+ be an arbitrary unit vector. Let Ψ1, Ψ2 ∈ H4

+, φ ∈ [0, 2π) and a ∈ [0, 1]
be as in Lemma 5.3. Define

Ψ±
g = 1√

2
(Ψ1 ± iΨ2) .

Then

θΨ−
g = Ψ+

g (82)

because of property (77). It follows that

⟨Ψ−
g , Ψ+

g ⟩ = ⟨Ψ−
g , θΨ−

g ⟩

= 1
2
(
∥Ψ1∥2 + 2iRe⟨Ψ1, Ψ2⟩ − ∥Ψ2∥2

)
= 0

since Ψ1 and Ψ2 are orthogonal unit vectors.
Using (82) and the orthogonality of Ψ−

g , Ψ+
g implies that

⟨Ψ+
g , θΨ+

g ⟩ = ⟨Ψ+
g , Ψ−

g ⟩ = 0

and similarly (because θ is an involution)

⟨Ψ−
g , θΨ−

g ⟩ = ⟨Ψ−
g , Ψ+

g ⟩ = 0 .

According to the Gaussianity criterion in Lemma 5.1, we conclude that both Ψ+
g and Ψ−

g

are Gaussian.
Rewriting Eq. (78) by expressing (Ψ1, Ψ2) in terms of (Ψ+

g , Ψ−
g ) gives

Ψ = eiφ
(√

fΨ−
g +

√
1− fΨ+

g

)
where f = 1

2 + a
√

1− a2 .

The claim (80) now follows with (82).
It remains to show property (81) of the function f . This follows immediately from the

fact that the antiunitary θ commutes with all quadratic monomials cjck of Majorana op-
erators (see Lemma 5.2), and hence with any Gaussian unitary U = UR with R ∈ SO(2n),
i.e., Uθ = θU . Retracing the steps of the proof, it is easy to check that if (Ψ1, Ψ2) are
the states of Lemma 5.3, and Ψg the state in expression (80) for Ψ, then the correspond-
ing states (Ψ′

1, Ψ′
2) and Ψ′

g for the state Ψ′ = UΨ are given by Ψ′
j = UΨj for j ∈ [2]

and Ψ′
g = UΨg, respectively. This implies the claim.

5.2 The Gaussian fidelity for 4-fermion states
For a subset E ⊂ {0, 1}4, we define E = {x | x ∈ E}. We also write ΠE =

∑
x∈E |x⟩⟨x|

for the projection onto the span of {|x⟩}x∈E .

Lemma 5.5. Let E ⊂ {0, 1}4+, |E| = 4 be a subset of even-weight strings such that E∪E =
{0, 1}4+. Let f(Ψ) ∈ [1/2, 1] be defined as in Theorem 5.4. Then

∥ΠEΨ∥2 ≤ f(Ψ) for any unit vector Ψ ∈ H4
+ . (83)
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Proof. Let f = f(Ψ) ∈ [1/2, 1], φ ∈ [0, 2π) and Ψg ∈ G+
n be as in Theorem 5.4 such that

Ψ = eiφ
(√

fΨg +
√

1− fθΨg

)
. (84)

We define

αx = ⟨x, Ψg⟩
βx = ⟨x, θΨg⟩

for every x ∈ E .

We claim that we have the identities∑
x∈E

(|αx|2 + |βx|2) = 1 (85)

∑
x∈E

αxβx = 0 . (86)

Observe that these two identities immediately imply (83): Using expression (84), we have

∥ΠEΨ∥2 =
∑
x∈E

|⟨x, Ψ⟩|2

=
∑
x∈E

|
√

fαx +
√

1− fβx|2

=
∥∥∥√fα⃗ +

√
1− fβ⃗

∥∥∥2
(87)

where we defined the vectors α⃗ = (αx)x∈E , β⃗ = (βx)x∈E ∈ C4. Since (85) and (86) are
equivalent to the statement that

∥α⃗∥2 + ∥β⃗∥2 = 1 (88)
⟨α⃗, β⃗⟩ = 0, (89)

we obtain ∥∥∥√fα⃗ +
√

1− fβ⃗
∥∥∥2

= f∥α⃗∥2 + (1− f)∥β⃗∥2

≤ max{f, 1− f}
= f (90)

by the Pythagorean theorem in C4 (using (89)) and by maximizing over (α, β) satisfy-
ing (88). Inserting (90) into (87) results in the upper bound (83) on ∥ΠEΨ∥2.

It remains to prove the claimed identities (85) and (86). We argue that these are a
consequence of the fact that Ψg is normalized and Gaussian, respectively.

Proof. Observe that by definition of the antiunitary θ, we have

βx = ⟨x, θΨg⟩
= (−1)ϑ(x)⟨x, Ψg⟩ for all x ∈ E .

In particular, this implies that

|βx|2 = |⟨x, Ψg⟩|2 for every x ∈ E . (91)

Accepted in Quantum 2024-05-03, click title to verify. Published under CC-BY 4.0. 50



Eq. (85) now follows from the fact that Ψg is normalized and positive-parity: we have∑
x∈E

(
|αx|2 + |βx|2

)
=
∑
x∈E

(
|⟨x, Ψg⟩|2 + |⟨x, Ψg⟩|2

)
= ∥Ψg∥2

= 1

where we used the definition of αx and (91) in the first step, and the assumption E ∪E =
{0, 1}4+ in the second identity.

Similarly, Eq. (86) is a consequence of the fact that Ψg is Gaussian: we have∑
x∈{0,1}4

+

αxβx =
∑

x∈{0,1}4
+

⟨Ψg, x⟩⟨x, θΨg⟩

= ⟨Ψg, θΨg⟩
= 0

where we used the definition of αx and βx in the first step, the fact that Ψg ∈ H4
+ in

the second step, and the characterization of Gaussianity from Lemma 5.1 in the last
identity.

Lemma 5.5 immediately implies the following expression for the fermionic Gaussian
fidelity. We note that a more general expression for the “Gaussian fidelity” of a mixed
state has previously been obtained in [58]. The proof for pure states given here is more
elementary and illustrates the use of Lemma 5.5.

Theorem 5.6 (Fermionic Gaussian fidelity for 4-mode pure states [56, 58]). Let Ψ ∈ H4
+

be a unit vector. Let f(Ψ) ∈ [1/2, 1] be defined as in Theorem 5.4. Then

FG+
4

(Ψ) = f(Ψ) .

Proof. Let f = f(Ψ), φ ∈ [0, 2π) and Ψg ∈ G+
4 be as in Theorem 5.4. Then we have

FG+
4

(Ψ) ≥
∣∣∣⟨Ψg, eiφ

(√
fΨg + fθΨg

)
⟩
∣∣∣2

= f

since θΨg is orthogonal to Ψg. It thus suffices to show the upper bound

FG+
4

(Ψ) ≤ f . (92)

Let Φg ∈ G+
4 be an arbitrary positive-parity Gaussian pure state. Then there is a Gaussian

unitary U = UR with R ∈ SO(2n) and a phase µ ∈ [0, 2π) such that Φg = eiµU |0F ⟩. We
will use any subset E ⊂ {0, 1}4+ of even-weight strings as in Lemma 5.5 with the additional
property that 0000 ∈ E, e.g., E = {0000, 1100, 1010, 1001}. Then |0F ⟩ = ΠE |0F ⟩ is in the
image of ΠE . It follows that

|⟨Φg, Ψ⟩| =
∣∣∣⟨0F , U †Ψ⟩

∣∣∣
=
∣∣∣⟨ΠE0F , U †Ψ⟩

∣∣∣
=
∣∣∣⟨0F , ΠEU †Ψ⟩

∣∣∣
≤
∥∥∥ΠEU †Ψ

∥∥∥
≤
√

f(U †Ψ) ,
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where we used the Cauchy-Schwarz inequality in the penultimate step, and Lemma 5.5
applied to the state U †Ψ. Since Φg ∈ G+

4 was arbitrary, the claimed inequality (92) follows
by taking the square and using that f(U †Ψ) = f(Ψ), see Eq. (81) of Theorem 5.4.

Combining Lemma 5.5 with Theorem 5.6 yields the following statement, which directly
relates the weight of a state on certain subspaces to the fermionic Gaussian fidelity. It will
be our main technical tool in the following.

Corollary 5.7. Let E ⊂ {0, 1}4+, |E| = 4 be a subset of even-weight strings such that E ∪
E = {0, 1}4+. Then

∥ΠEΨ∥2 ≤ FG+
4

(Ψ) for any unit vector Ψ ∈ H4
+ .

5.3 Multiplicativity of the Gaussian fidelity for 4-fermion states
Here we prove that the fermionic Gaussian fidelity is multiplicative for 4-fermion states
(see Theorem 5.10). We use two intermediate results stated as Lemmas 5.8 and 5.9. In
Lemma 5.8, we bound the overlap of a tensor product of two (arbitrary) positive-parity
pure states ΨA, ΨB with a state Φ written as a Schmidt decomposition of a bipartite
fermionic pure state. In Theorem 5.10, this result is used to bound the fermionic Gaussian
fidelity. More specifically, Lemma 5.9 is used to upper bound the Schmidt coefficients,
giving the multiplicativity result for the Gaussian fidelity.

Lemma 5.8. Let {mx}x∈{0,1}4 ⊂ C be arbitrary. Define

|Φ⟩ =
∑

x∈{0,1}4

mx |x, x⟩ ∈ H8
+ . (93)

Let E ⊂ {0, 1}4+, |E| = 4 be a subset of even-weight strings such that E ∪ E = {0, 1}4+.
Then

|⟨Φ, ΨA⊗̃ΨB⟩|2 ≤ FG+
4

(ΨA)FG+
4

(ΨB)
(

max
x∈E
|mx|+ max

y∈E
|my|

)2

for all states ΨA, ΨB ∈ H4
+.

Proof. Because ΨA and ΨB are supported on H4
+ by assumption, we have by Eq. (31)

⟨Φ, ΨA⊗̃ΨB⟩ =
∑

x∈{0,1}4
+

mx(−1)|x|⟨x, ΨA⟩⟨x, ΨB⟩

=
∑

x∈{0,1}4
+

mxeiνx⟨ΨA, x⟩⟨x, ΨB⟩ (94)

where νx is defined by the identity

(−1)|x|⟨x, ΨA⟩ = eiνx⟨ΨA, x⟩ for x ∈ {0, 1}4+ .

Defining the operator

MΩ =
∑
x∈Ω

mxeiνx |x⟩⟨x|
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for any subset Ω ⊂ {0, 1}4+, it follows from Eq. (94) that

⟨Φ, ΨA⊗̃ΨB⟩ = ⟨ΨA, MEΨB⟩+ ⟨ΨA, MEΨB⟩ . (95)

Since ME is supported on span{|x⟩}x∈E , we have ⟨ΨA, MEΨB⟩ = ⟨ΠEΨA, MEΠEΨB⟩.
With the Cauchy-Schwarz inequality and the definition of the operator norm ∥ME∥ we
thus get

|⟨ΨA, MEΨB⟩| ≤ ∥ΠEΨA∥ · ∥ΨEΨB∥ · ∥ME∥

≤
√

FG+
4

(ΨA) ·
√

FG+
4

(ΨB) · ∥ME∥ , (96)

where we applied Corollary 5.7. Identical reasoning applies to E and yields the inequality∣∣⟨ΨA, MEΨB⟩
∣∣ ≤ √FG+

4
(ΨA) ·

√
FG+

4
(ΨB) · ∥ME∥ . (97)

Combining Eqs. (96), (97) with Eq. (95), we conclude that

|⟨Φ, ΨA⊗̃ΨB⟩| ≤ |⟨ΨA, MEΨB⟩|+
∣∣⟨ΨA, MEΨB⟩

∣∣
≤
√

FG+
4

(ΨA)FG+
4

(ΨB)
(
∥ME∥+ ∥ME∥

)
.

Taking the square and observing that

∥MΩ∥ = max
x∈Ω
|mxeiνx | = max

x∈Ω
|mx|

gives the claim.

The following lemma will be useful to prove the main theorem.

Lemma 5.9. The function

f(θ, x) =
4∏

j=1
(cos θj)1−xj (sin θj)xj for θ = (θ1, . . . , θ4) ∈ R4 and x ∈ {0, 1}4

satisfies

|f(θ, x)|+ |f(θ, y)| ≤ 1

for all θ ∈ R4 and x, y ∈ {0, 1}4 with x, y even-weight and x ̸= y.

Proof. Because x, y have even and different weight, it suffices to consider two cases, namely
with |x− y| ∈ {2, 4}.

Consider first the case where |x − y| = 2. Without loss of generality, assume that
(x1, x2) = (y1, y2), x3 ̸= y3, x4 ̸= y4. Since translating θ by −π/2 interchanges |sin θ|
and |cos θ|, it suffices to show the claim for x = (0, 0, 0, 0) and y = (0, 0, 1, 1). In this case
we have

|f(θ, x)|+ |f(θ, y)| = |cos θ1 cos θ2 cos θ3 cos θ4|+ |cos θ1 cos θ2 sin θ3 sin θ4|
= |cos θ1 cos θ2| · (| cos θ3 cos θ4|+ | sin θ3 sin θ4|)
≤ |cos θ1 cos θ2|
≤ 1 ,
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where the first inequality follows from the Cauchy-Schwarz inequality in R2. Since θ ∈ R4

was arbitrary, this concludes the proof for |x− y| = 2.
The proof for |x− y| = 4, i.e., y = x proceeds similarly. Again it suffices to show the

claim for x = (0, 0, 0, 0). In this case

|f(θ, x)|+ |f(θ, y)| = | cos θ1 cos θ2 cos θ3 cos θ4|+ | sin θ1 sin θ2 sin θ3 sin θ4|
≤ | cos θ1 cos θ2|+ | sin θ1 sin θ2|
≤ 1 ,

where the first inequality follows from | cos θ3 cos θ4| ≤ 1 and | sin θ3 sin θ4| ≤ 1 and the
second one from the Cauchy-Schwarz inequality.

Theorem 5.10 (Multiplicativity of the fermionic Gaussian fidelity for 4-mode pure states.).
Let Hn

+ be the set of pure n-fermion states with positive parity and let G+
n be the set of

pure n-fermion Gaussian states with positive parity. We have that

FG8(ΨA⊗̃ΨB) = FG4(ΨA)FG4(ΨB) for all ΨA, ΨB ∈ H4
+ .

Proof. We first observe that H8 is a direct sum of the four spaces H4
+⊗̃H4

+, H4
+⊗̃H4

−,
H4

−⊗̃H4
+ and H4

−⊗̃H4
−. This is because states in these subspaces have different eigen-

values with respect to the corresponding parity operators on the factors (interpreted as
Majorana monomials on H8 these are the monomials c(1808) and c(0818)). It follows im-
mediately that the overlap with a state of the form ΨA⊗̃ΨB ∈ H4

+⊗̃H4
+ is maximized for

a decomposition into states belonging to H4
+⊗̃H4

+ only. In particular, it follows that

FG8(ΨA⊗̃ΨB) = FG+
8

(ΨA⊗̃ΨB) for all ΨA, ΨB ∈ H4
+

and by the same reasoning, we have

FG4(Ψ) = FG+
4

(Ψ) for all Ψ ∈ H4
+ .

We conclude that it suffices to show that

FG+
8

(ΨA⊗̃ΨB) = FG+
4

(ΨA)FG+
4

(ΨB) for all ΨA, ΨB ∈ H4
+ .

Let ΨA, ΨB ∈ H4
+ be arbitrary. The inequality FG+

8
(ΨA⊗̃ΨB) ≥ FG+

4
(ΨA)FG+

4
(ΨB) fol-

lows trivially from the definition of fermionic Gaussian fidelity in Eq. (2), because G+
4 ⊗̃G

+
4 ⊆

G+
8 .

The inequality FG+
8

(ΨA⊗̃ΨB) ≤ FG+
4

(ΨA)FG+
4

(ΨB) is a consequence of the Schmidt
decomposition for fermionic states put forward in Ref. [50] and of Lemmas 5.8 and 5.9.
According to Ref. [50], an arbitrary pure fermionic state Φ ∈ Hn admits a Schmidt de-
composition of the form

|Φ⟩ =
∑

x∈{0,1}n

mx|x, x⟩

with

mx =
n∏

j=1
(cos θj)1−xj (− sin θj)xj with θj ∈ R for j ∈ [n] .
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With this definition of mx for n = 4, an arbitrary state Φ ∈ G+
8 can be written as in

Eq. (93) and the conditions for Lemma 5.8 apply. We have

FG+
8

(ΨA⊗̃ΨB) = max
Φ∈G+

8

|⟨Φ, ΨA ⊗ΨB⟩|

≤ FG+
4

(ΨA)FG+
4

(ΨB)
(

max
x∈E
|mx|+ max

y∈E
|my|

)2

where E ⊂ {0, 1}4+ with |E| = 4 a subset of even weight strings such that E∪E = {0, 1}4+.
Notice that x, y have even-weight and that x ̸= y because E and E are disjoint sets.
Identifying mx (whose dependence on θ ∈ R4 is implicit) with f(θ, x) in Lemma 5.9 (apart
from a minus sign that is not relevant because we take the absolute value) we have

FG+
8

(ΨA⊗̃ΨB) ≤ FG+
4

(ΨA)FG+
4

(ΨB)
(

max
x∈E
|mx|+ max

y∈E
|my|

)2

≤ FG+
4

(ΨA)FG+
4

(ΨB) ,

giving the claim.

6 Multiplicativity of D-fidelity implies that of D-extent
In this section, we show that multiplicativity of the D-fidelity implies multiplicativity of
the D-extent. In Section 6.1 we prove this for finite dictionaries: This follows immediately
from the fact that FD(Ψ) and ξD(Ψ) are related by (convex programming) duality. In
Section 6.2, we extend this results for infinite, i.e., continuously parameterized dictionaries.
We achieve this extension by using (finite) ϵ-nets for the set of Gaussian states. Similar
approaches have been applied in the signal processing context, see e.g., the work [63],
which shows how to approximately solve atomic norm minimization problems for sparse
recovery when the parameters indexing the dictionary lie in a small-dimensional space.

6.1 Multiplicativity for finite dictionaries
We will restrict our attention to finite dictionaries in this section. For |D| < ∞, the D-
fidelity is related to the dual formulation of the D-extent as (see [19, Eq. (3.2)] and [18,
Theorem 4])

ξD(Ψ) = max
y∈H:FD(y)≤1

|⟨Ψ, y⟩|2 . (98)

Let H1,H2 and H3 be a triple of Hilbert spaces. Let {Dj}j∈[3] be a family of dictionaries,
where Dj ⊂ Hj for j ∈ [3]. We assume that

D1 ⊗D2 ⊆ D3 . (99)

We are interested in the following two properties:

Multξ(D1,D2,D3) : ξD3(Ψ1 ⊗Ψ2) = ξD1(Ψ1)ξD2(Ψ2) for all Ψj ∈ Hj for j ∈ [2]
MultF (D1,D2,D3) : FD3(Ψ1 ⊗Ψ2) = FD1(Ψ1)FD2(Ψ2) for all Ψj ∈ Hj for j ∈ [2] .

As an important example, let nj ∈ N for j ∈ [2], n3 = n1+n2, Hj = (C2)⊗nj and let STABn

be the set of stabilizer states on (C2)⊗n. Then Multξ(STABn1 , STABn1 , STABn1+n2) does
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not hold for certain (large) choices of n1 and n2 [19]. On the other hand, for n1, n2 ≤
3 the multiplicativity property Multξ(STABn1 , STABn1 , STABn1+n2) holds (see Ref. [18,
Proposition 1]). This was shown using that the stabilizer fidelity is multiplicative, i.e.,
MultF (STABn1 , STABn1 , STABn1+n2).

We claim the property MultF (D1,D2,D3) implies property Multξ(D1,D2,D3).

Theorem 6.1. Property MultF (D1,D2,D3) implies property Multξ(D1,D2,D3).

Proof. We clearly have

ξD3(Ψ1 ⊗Ψ2) ≤ ξD1(Ψ1)ξD2(Ψ2) (100)

for all Ψ1 ∈ H1 and Ψ2 ∈ H2 because of property (99) of the dictionaries {Dj}3j=1 and the
definition (5) of ξD. To show the converse inequality, assume that y1 ∈ H1, y2 ∈ H2 are
such that

FDj (yj) ≤ 1 and ξDj (Ψj) = |⟨Ψj , yj⟩|2 for j ∈ [2] .

Then

FD3(y1 ⊗ y2) = FD1(y1)FD2(y2) ≤ 1

where we used the assumption that property MultF (D1,D2,D3) holds to obtain the equal-
ity. This implies that y1 ⊗ y2 is a feasible point of the dual program for the quan-
tity ξD3(Ψ1 ⊗Ψ2), see Eq. (98). Thus

ξD3(Ψ1 ⊗Ψ2) ≥ |⟨Ψ1 ⊗Ψ2, y1 ⊗ y2⟩|2

= |⟨Ψ1, y1⟩|2 · |⟨Ψ2, y2⟩|2

= ξD1(Ψ1)ξD2(Ψ2) . (101)

Expression (101) together with Eq. (100) gives the claim.

6.2 Multiplicativity for infinite dictionaries
In this section, we extend the results of Section 6.2 to dictionaries D that may contain
infinitely many elements. Our strategy is to use an ϵ-net for D ∈ H with a finite number
of elements, we denote by Dϵ. We relate the extent and fidelity with respect to the
dictionary D to the extent and fidelity with respect to its net Dϵ (see Lemmas 6.2 and
6.3) to prove that multiplicativity of the D-fidelity implies multiplicativity of the D-extent
in Theorem 6.6. This result is a generalization of Theorem 6.1 (that considered finite
dictionaries) for (possibly) infinite dictionaries.

We will make use of the notion of ϵ-net to replace our infinite set D by a finite set Dϵ.
Let ∥Ψ∥ =

√
⟨Ψ, Ψ⟩ for Ψ ∈ H denote the norm on H. Let D ⊂ H and let ϵ > 0.

Then a set Dϵ ⊂ H is called an ϵ-net for D if for any Ψ ∈ D there is some Φ ∈ Dϵ such
that ∥Φ−Ψ∥ ≤ ϵ.

We are interested in the case where for every ϵ > 0 there is a finite ϵ-net Dϵ for D, with
the additional property that Dϵ ⊂ D, i.e., the net consists of elements of D. A sufficient
condition for this being the case is that the subset D ⊂ H is compact.

Lemma 6.2. Let D ⊂ H be a set of states. Assume that there is a finite ϵ-net Dϵ for D
such that Dϵ ⊂ D, for some ϵ > 0. Assume further that Dϵ contains an orthonormal basis
of H. Let d be the dimension of H. Then

ξD(Ψ) ≤ ξDϵ(Ψ) ≤ ξD(Ψ)
(
1 +
√

dϵ
)2

for all Ψ ∈ H .
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Proof. The first inequality follows immediately from the definition of ξD and from the
assumption that Dϵ ⊂ D.

To prove the second inequality, let Ψ ∈ H be arbitrary. By definition of ξD(Ψ) as an
infimum, we have the following: For every m ∈ N, there exist N(m) ∈ N, {φj(m)}N(m)

j=1 ⊂
D and {cj(m)}N(m)

j=1 ⊂ C such that

Ψ =
N(m)∑
j=1

cj(m)φj(m)

and

∥c(m)∥1 <
√

ξD(Ψ) + 1
m

. (102)

Furthermore, we have

∥c(m)∥21 ≥ ξD(Ψ) for any N(m) ∈ N, {sj}N(m)
j=1 ⊂ D and {cj(m)}N(m)

j=1 ⊂ C .

Fix such an m ∈ N. Since Dϵ is an ϵ-net for D, there is, for every j ∈ [N(m)], an
element φϵ

j(m) ∈ Dϵ and δj(m) ∈ H such that

φj(m) = φϵ
j(m) + δj(m) and ∥δj(m)∥ ≤ ϵ .

It follows that

Ψ =

N(m)∑
j=1

cj(m)φϵ
j(m)

+ δ(m) where δ(m) =
N(m)∑
j=1

cj(m)δj(m) .

By the triangle inequality we have

∥δ(m)∥ ≤ ϵ

N(m)∑
j=1
|cj(m)| = ϵ∥c(m)∥1 . (103)

Suppose {ek}dk=1 is an orthonormal basis contained in Dϵ. Then we can expand

δ(m) =
d∑

k=1
αk(m)ek ,

and it follows from (103) and the Cauchy-Schwarz inequality that

∥α(m)∥1 ≤
√

d∥α(m)∥2
=
√

d∥δ(m)∥2 by the Cauchy-Schwarz inequality in Cd

≤
√

dϵ∥c(m)∥1 because of Eq. (103) .

where ∥ · ∥2 is the Euclidean norm in Cd. In summary, we have

Ψ =
N(m)∑
j=1

cj(m)φϵ
j(m) +

d∑
k=1

αk(m)ek ,
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with (c, α) ∈ CN(m)+d satisfying

∥(c, α)∥1 =
N(m)∑
j=1
|cj(m)|+

d∑
k=1
|αk(m)|

≤ ∥c(m)∥1 ·
(
1 +
√

dϵ
)

≤
(√

ξD(Ψ) + 1
m

)
·
(
1 +
√

dϵ
)

,

by (102). Because φϵ
j(m) ∈ Dϵ for every j ∈ [N(m)] and ek ∈ Dϵ for every k ∈ [d], this

implies that √
ξDϵ(Ψ) ≤

(√
ξD(Ψ) + 1

m

)
·
(
1 +
√

dϵ
)

.

Since m ∈ N was arbitrary, we can take the limit m→∞ and obtain√
ξDϵ(Ψ) ≤

√
ξD(Ψ) ·

(
1 +
√

dϵ
)

.

This gives the claim.

Lemma 6.3. Let Dϵ ⊂ D ⊂ H be as in Lemma 6.2. Then we have√
FDϵ(Ψ) ≤

√
FD(Ψ) ≤

√
FDϵ(Ψ) + ∥Ψ∥ · ϵ for all Ψ ∈ H .

Proof. The first inequality follows trivially from the definitions using Dϵ ⊂ D. For the
second inequality, let Ψ ∈ H be arbitrary. Let φ ∈ D be such that

FD(Ψ) = |⟨φ, Ψ⟩|2 .

Then (by the fact that Dϵ is an ϵ-net for D and φ ∈ D) there is an element φϵ ∈ Dϵ

and δ ∈ H such that

φ = φϵ + δ where ∥δ∥ ≤ ϵ .

It follows that √
FD(Ψ) = |⟨φ, Ψ⟩|

≤ |⟨φϵ, Ψ⟩|+ |⟨δ, Ψ⟩|

≤
√

FDϵ(Ψ) + |⟨δ, Ψ⟩|

≤
√

FDϵ(Ψ) + ∥Ψ∥ · ∥δ∥

≤
√

FDϵ(Ψ) + ∥Ψ∥ · ϵ

where we used the definition of FDϵ(Ψ) and the Cauchy-Schwarz inequality (in the penul-
timate step). The claim follows.

Lemma 6.4. We have

∥y∥2 ≤ d2 · FDϵ(y) for every y ∈ H ,

where d = dimH.
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Proof. Let {ek}dk=1 be an orthonormal basis contained in Dϵ. Then

|⟨ek, y⟩|2 ≤ FDϵ(y) for every k ∈ [d]

because ek ∈ Dϵ for every k ∈ [n]. We have

∥y∥ =
(

d∑
k=1
|⟨ek, y⟩|2

)1/2

≤
d∑

k=1
|⟨ek, y⟩|

≤ d ·
√

FDϵ(y)

where we used that ∥v∥2 ≤ ∥v∥1 for v ∈ Cd. The claim follows.

Lemma 6.5. Let dj = dimHj for j ∈ [2]. Assuming that the property MultF (D1,D2,D3)
holds, we have

ξD3(Ψ1 ⊗Ψ2) ≥ g(d1, d2, d3, ϵ)ξD1(Ψ1)ξD2(Ψ2)

for a function g which satisfies

lim
ϵ→0

g(d1, d2, d3, ϵ) = 1 .

Proof. Suppose yj ∈ Hj for j ∈ [2] is such that

FDϵ
j
(yj) ≤ 1 (104)

and

ξDϵ
j
(Ψj) = |⟨yj , Ψj⟩|2 (105)

for j ∈ [2]. Such a pair (y1, y2) exists since Dϵ
1 and Dϵ

2 are finite sets and the dual definition
definition of the extent in terms of a maximum applies (see Eq. (98)). Equation (104)
implies that

∥yj∥ ≤ dj for j ∈ [2] ,

see Lemma 6.4.
We have√

FDϵ
3
(y1 ⊗ y2) ≤

√
FD3(y1 ⊗ y2) by Lemma 6.3

=
√

FD1(y1) ·
√

FD2(y2) by the assumption that MultF (D1,D2,D3) holds

≤
(√

FDϵ
1
(y1) + ∥y1∥ · ϵ

) (√
FDϵ

2
(y2) + ∥y2∥ · ϵ

)
by Lemma 6.3

≤
√

FDϵ
1
(y1) ·

√
FDϵ

2
(y2) · (1 + d1 · ϵ) (1 + d2 · ϵ) by Lemma 6.4

≤ (1 + d1ϵ)(1 + d2ϵ) by Eq. (104) . (106)

Defining

ỹj = (1 + djϵ)−1 yj for j ∈ [2]
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it follows from Eq. (106) that

FDϵ
3
(ỹ1 ⊗ ỹ2) ≤ 1 .

By the dual formulation (98) of the quantity ξDϵ
3
(Ψ1 ⊗Ψ2) this implies that

ξDϵ
3
(Ψ1 ⊗Ψ2) ≥ |⟨ỹ1 ⊗ ỹ2, Ψ1 ⊗Ψ2⟩|2

=

 2∏
j=1

(1 + djϵ)−2 |⟨yj , Ψj⟩|2


=

 2∏
j=1

(1 + djϵ)−2

 ξDϵ
1
(Ψ1)ξDϵ

2
(Ψ2) because of Eq. (105)

≥

 2∏
j=1

(1 + djϵ)−2

 ξD1(Ψ1)ξD2(Ψ2) according to Lemma 6.2. (107)

Lemma 6.2 also implies that(
1 +

√
d3ϵ
)2

ξD3(Ψ1 ⊗Ψ2) ≥ ξDϵ
3
(Ψ1 ⊗Ψ2) . (108)

Combining Eqs. (107) and (108) gives the claim, with

g(d1, d2, d3ϵ) =
(
1 +

√
d3ϵ
)−2

 2∏
j=1

(1 + djϵ)−2

 .

Theorem 6.6. Let H1,H2 and H3 be a triple of Hilbert spaces and let {Dj}j∈[3] be a
family of dictionaries, where Dj ⊂ Hj. Assume that Dj contains an orthonormal basis
of Hj, for j ∈ [3], and that D1 ⊗ D2 ⊂ D3. Assume further that for any ϵ > 0 there is
an ϵ-net Dϵ

j for Dj such that Dϵ
j ⊂ Dj, i.e., the net consists of elements of Dj. Finally,

assume that

FD3(Ψ1 ⊗Ψ2) = FD1(Ψ)FD2(Ψ2) for all Ψ1 ∈ H1, Ψ2 ∈ H2 .

Then

ξD3(Ψ1 ⊗Ψ2) = ξD1(Ψ1)ξD2(Ψ2) for all Ψ1 ∈ H1 and Ψ2 ∈ H2 .

Proof. By (if necessary) replacing Dϵ
j by Dϵ

j ∪ {e
(j)
k }dk=1, for j ∈ [3], where {e(j)

k }dk=1 is an
orthonormal basis of Hj with e

(j)
k ∈ Dj , for n ∈ [3], we have that each Dϵ

j is finite and
contains an orthonormal basis of the respective space. The inequality

ξD3(Ψ1 ⊗Ψ2) ≥ ξD1(Ψ1)ξD2(Ψ2) for all Ψ1 ∈ H1 and Ψ2 ∈ H2

now follows immediately from Lemma 6.5 by taking the limit ϵ → 0. The converse in-
equality is trivial because D1 ⊗D2 ⊂ D3.
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7 Multiplicativity of the Gaussian extent for four fermions
In this section we prove that the Gaussian extent is multiplicative for the tensor product
of any two 4-fermion pure states with positive parity.

Theorem 7.1 (Multiplicativity of the Gaussian extent for 4-fermion pure states.). Let H4
+

be the set of pure 4-fermion states with positive parity and let Gn be the set of Gaussian
states on n fermions. Then

ξG8(ΨA⊗̃ΨB) = ξG4(ΨA)ξG4(ΨB) for all ΨA, ΨB ∈ H4
+ .

Proof. Since the metaplectic representation defines a surjective, continuous map

f : [0, 2π]× SO(2n) → Gn

(φ, R) 7→ eiφUR |0F ⟩

from the compact set [0, 2π]×SO(2n) to Gn, the set Gn ⊂ Hn is compact. We also observe
that the occupation number states

{|x⟩ | x ∈ {0, 1}n}

form an orthonormal basis contained in Gn. By compactness, we conclude that for
any ϵ > 0, there is a finite ϵ-net Gϵ

n ⊂ Gn consisting of Gaussian states and containing an or-
thonormal basis of Hn. Finally, we note that we also have the inclusion Gn1⊗Gn2 ⊂ Gn1+n2

for n1, n2 ∈ N arbitrary.
Let us now specialize to n1 = n2 = 4. In this case, we have multiplicativity of the

fermionic Gaussian fidelity by Theorem 5.10. In particular, the conditions for Theorem 6.6
apply and the claim follows.

Acknowledgements
BD and RK gratefully acknowledge support by the European Research Council under
grant agreement no. 101001976 (project EQUIPTNT).

A Alternative Gaussianity condition for 4-fermion states
In the following, we prove Lemma 5.1.

Proof. Consider Ψ ∈ H4
+. We will show that ⟨Ψ, θΨ⟩ = 0 is equivalent to Λ (|Ψ⟩ ⊗ |Ψ⟩) =

0. According to Lemma 2.3, this is a sufficient and necessary condition for Ψ to be
Gaussian.

Let E ⊂ {0, 1}4+, |E| = 4 be a subset of even-weight strings such that E∪E = {0, 1}4+.
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We first compute ⟨Ψ, θΨ⟩. We have

⟨Ψ, θΨ⟩ =
∑

x,y∈{0,1}4
+

⟨Ψ, x⟩ ⟨x| θ (|y⟩ ⟨y, Ψ⟩)

=
∑

x,y∈{0,1}4
+

⟨Ψ, x⟩⟨x, θy⟩⟨y, Ψ⟩

=
∑

x,y∈{0,1}4
+

(−1)ϑ(y)⟨x, y⟩⟨Ψ, x⟩⟨Ψ, y⟩

=
∑

x∈{0,1}4
+

(−1)ϑ(x)⟨Ψ, x⟩⟨Ψ, x⟩

=
∑
x∈E

(−1)ϑ(x)⟨Ψ, x⟩⟨Ψ, x⟩+ (−1)ϑ(x)⟨Ψ, x⟩⟨Ψ, x⟩

= 2
∑
x∈E

(−1)ϑ(x)⟨Ψ, x⟩⟨Ψ, x⟩ ,

where the second step follows from θu = uθ for all u ∈ C due to the antiunitarity of θ, the
third step from Eq. (76) and the fourth and final steps from ϑ(x) = ϑ(x) for x ∈ {0, 1}4+.
Thus,

⟨Ψ, θΨ⟩ = 0 if and only if
∑

x∈{0,1}4
+

(−1)ϑ(x)⟨Ψ, x⟩⟨Ψ, x⟩ = 0 . (109)

We proceed to prove that Λ(|Ψ⟩ ⊗ |Ψ⟩) = 0 is equivalent to Eq. (109). We start by
using Eq. (13) to write the operator Λ in terms of creation and annihilation operators:

Λ =
8∑

j=1
cj ⊗ cj

=
4∑

j=1
(c2j−1 ⊗ c2j−1 + c2j ⊗ c2j)

=
4∑

j=1

(
(aj + a†

j)⊗ (aj + a†
j) + i(aj − a†

j)⊗ i(aj − a†
j)
)

= 2
4∑

j=1

(
aj ⊗ a†

j + a†
j ⊗ aj

)
.

Applying this expression to |Ψ⟩ ⊗ |Ψ⟩ and using Eq. (11) gives

Λ (|Ψ⟩ ⊗ |Ψ⟩) = 2
∑

x,y∈{0,1}4
+

4∑
j=1

(
aj ⊗ a†

j + a†
j ⊗ aj

)
(|x⟩ ⊗ |y⟩) ⟨x, Ψ⟩⟨y, Ψ⟩

= 2
∑

x,y∈{0,1}4
+

4∑
j=1

(−1)ηj(x+y)(xjyj + xjyj) (|x⊕ ej⟩ ⊗ |y ⊕ ej⟩) ⟨x, Ψ⟩⟨y, Ψ⟩

= 2
∑

x,y∈{0,1}4
+

4∑
j=1

(−1)ηj(x+y)(yj ⊕ xj) (|x⊕ ej⟩ ⊗ |y ⊕ ej⟩) ⟨x, Ψ⟩⟨y, Ψ⟩

= 2
∑

x,y∈{0,1}4
−

 4∑
j=1

(−1)ηj(x+y)(yj ⊕ xj)⟨x⊕ ej , Ψ⟩⟨y ⊕ ej , Ψ⟩

 (|x⟩ ⊗ |y⟩)

(110)
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where in the third line we used uv + uv = u ⊕ v for all u, v ∈ {0, 1} and in the last line
we used

{
x⊕ ej |x ∈ {0, 1}4+

}
= {0, 1}4− , ηj(x⊕ ej) = ηj(x) and u⊕ v⊕ 2ej = u⊕ v valid

for x ∈ {0, 1}4+, j ∈ [4] and u, v ∈ {0, 1}. It follows that Λ (|Ψ⟩ ⊗ |Ψ⟩) = 0 if and only if

4∑
j=1

(−1)ηj(x+y)(yj ⊕ xj)⟨x⊕ ej , Ψ⟩⟨y ⊕ ej , Ψ⟩ = 0 for all x, y ∈ {0, 1}4+ . (111)

Since x and y have the same parity, either |x − y| = 4 (i.e., y = x), |x − y| = 2
or |x− y| = 0 (i.e., y = x). The expression (111) is non-zero only if |x− y| = 4 (we argue
below why). For |x− y| = 4 Eq. (111) becomes

4∑
j=1

(−1)ηj(x+x̄)⟨x⊕ ej , Ψ⟩⟨x̄⊕ ej , Ψ⟩ = 0 if and only if
4∑

z∈E

(−1)ϑ(z)⟨z, Ψ⟩⟨z, Ψ⟩ = 0 ,

where we used {x ⊕ ej | j ∈ [4]} = E with E ⊂ {0, 1}4+, |E| = 4 a subset of even-weight
strings such that E ∪ E = {0, 1}4+. We also used that (−1)ηj(x+x) = (−1)j−1 can be
replaced by (−1)ϑ(x)+ϑ(z) upon changing the summation over j ∈ [4] to a summation
over z ∈ E. We recovered the right hand side of Eq. (109), proving the claim.

It remains to argue that Eq. (111) is zero for |x−y| ∈ {0, 2}. For |x−y| = 0, i.e., x = y,
Eq. (111) is zero because xj ⊗ xj = 0 for j ∈ [4]. We exemplify that terms ∝ |x⟩ ⊗ |y⟩
with |x− y| = 2 are zero by considering x = 1000 and y = 0100. Starting from Eq. (110)
we obtain

(⟨1000| ⊗ ⟨0100|) Λ (|Ψ⟩ ⊗ |Ψ⟩) = ((−1)η1(1100) + (−1)η2(1100))⟨0000, Ψ⟩⟨1100, Ψ⟩ = 0 ,

where η1(1100) = 0 and η2(1100) = 1. The remaining cases with |x − y| = 2 proceed
similarly.

B Commutativity of the map θ and quadratic Majorana monomials
In the following, we prove Lemma 5.2.

Proof. We start by showing that θ = c1c3c5c7K, where K denotes the antiunitary given
by complex conjugation in the number state basis. For this, it suffices to show that θ is
antiunitary, which directly follows from unitarity of c1c3c5c7, and that it satisfies Eq. (76).
We show the later using Eqs. (13) and (11): We have

θ |x⟩ = c1c3c5c7K |x⟩

= (a1 + a†
1)(a2 + a†

2)(a3 + a†
3)(a4 + a†

4) |x⟩
= (−1)η4(x)+η3(x)+η2(x)+η1(x)(x1 + x1)(x2 + x2)(x3 + x3)(x4 + x4) |x⟩
= (−1)ϑ(x) |x⟩ ,

where we used (−1)η4(x)+η3(x)+η2(x)+η1(x) = (−1)3x1+2x2+x3 = (−1)x1+x3 = (−1)ϑ(x)

and xj + xj = 1 for j ∈ [4].
The result θcjck = cjckθ follows from simple algebra considering c2jK = Kc2j

and c2j−1K = −Kc2j−1. We show these last two equalities by explicitly computing their
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action on x ∈ {0, 1}4+:

Kc2j |x⟩ = K(aj + a†
j) |x⟩ = (xj + xj) |x⊕ ej⟩ = |x⊕ ej⟩ ,

c2jK |x⟩ = (aj + a†
j) |x⟩ = (xj + xj) |x⊕ ej⟩ = Kc2j |x⟩

and

Kc2j+1 |x⟩ = Ki(aj − a†
j) |x⟩ = −i(xj − xj) |x⊕ ej⟩ ,

c2j+1K |x⟩ = i(aj − a†
j) |x⟩ = i(xj − xj) |x⊕ ej⟩ = −Kc2j+1 |x⟩ .

Proof. We will prove that θcj = −cjθ for j ∈ [8], which implies the result.
We prove this for j odd, the proof for j even proceeds similarly. We use Eq. (13) to

write the Majorana operators as creation and annihilation operators which act on basis
states according to Eq. (11), and we apply θ according to Eq. (76):

θc2j−1 |x⟩ = θ(aj + a†
j) |x⟩

= θ(−1)ηj(x)(xj + xj) |x⊕ ej⟩
= (−1)ηj(x)(−1)ϑ(x⊕ej)(xj + xj) |x⊕ ej⟩ ,

c2j−1θ |x⟩ = (−1)ϑ(x)(aj + a†
j) |x⟩

= (−1)ηj(x)(−1)ϑ(x)(xj + xj) |x⊕ ej⟩ .

The equality θc2j−1 = −c2j−1θ follows from |x⊕ ej⟩ = |x⊕ ej⟩ for j ∈ [4], from (−1)ηj(x) =
(−1)j+1(−1)ηj(x) and from (−1)ϑ(x) = (−1)j(−1)ϑ(x⊕ej).
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