
Magic in generalized Rokhsar-Kivelson wavefunctions
Poetri Sonya Tarabunga1,2,3 and Claudio Castelnovo4

1The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
2International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
3INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
4TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

Magic is a property of a quantum state
that characterizes its deviation from a sta-
bilizer state, serving as a useful resource
for achieving universal quantum computa-
tion e.g., within schemes that use Clifford
operations. To date little is known about
properties and behaviour of magic in many
body quantum systems. In this work, we
study magic, as quantified by the stabilizer
Renyi entropy, in a class of models known
as generalized Rokhsar-Kivelson systems,
i.e., Hamiltonians that allow a stochastic
matrix form (SMF) decomposition. The
ground state wavefunctions of these sys-
tems can be written explicitly through-
out their phase diagram, and their prop-
erties can be related to associated classi-
cal statistical mechanics problems, thereby
allowing powerful analytical and numeri-
cal approaches that are not usually avail-
able in conventional quantum many body
settings. As a result, we are able to ex-
press the SRE of integer Renyi index n > 1
in terms of wave function coefficients that
can be understood as a free energy dif-
ference of related classical problems. We
apply this insight to a range of quantum
many body SMF Hamiltonians, which af-
fords us to study numerically the SRE of
large high-dimensional systems, unattain-
able with existing tensor network-based
techniques, and in some cases to obtain
analytical results. We observe that the be-
haviour of the SRE is relatively featureless
across quantum phase transitions in these
systems, although it is indeed singular (in
its first or higher order derivative, depend-
ing on the first or higher order nature of
the transition). On the contrary, we find
that the maximum of the SRE generically

occurs at a cusp away from the quantum
critical point, where the derivative sud-
denly changes sign. Furthermore, we com-
pare the SRE and the logarithm of over-
laps with specific stabilizer states, asymp-
totically realised in the ground state phase
diagrams of these systems. We find that
they display strikingly similar behaviors,
which in turn establish rigorous bounds on
the min-relative entropy of magic.

1 Introduction

Stabilizer states are an important class of quan-
tum states in quantum information theory [1, 2].
They have very rich structures [3, 4] and can be
highly entangled [5, 6, 7, 8]. However, it is well-
known by the Gottesman-Knill theorem (and its
subsequent extensions) that quantum computa-
tion using only stabilizer states and Clifford cir-
cuits can be efficiently simulated on a classical
computer [1, 9, 10, 11]. In quantum computation
using the state injection scheme [12, 13, 14], uni-
versal quantum computation is achieved by in-
jection of states outside the stabilizer set, known
as magic states, while keeping the set of oper-
ations restricted to Clifford operations. Magic
thus serves as a fundamental resource that would
be required to outperform classical simulations.
To quantify the amount of magic resource in a
quantum state, the notion of a magic measure
has been introduced within the framework of re-
source theory [15]. These measures assess the
amount of resource a state can provide in quan-
tum computation by state injection scheme, of-
fering insights into the computational power and
quantum capabilities of different states. Most
measures that have been introduced require opti-
mization procedures to compute them (see, e.g.,
Refs. [16, 17, 18, 19, 20]), and are thus diffi-
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cult to evaluate beyond a few qubits [21]. More
recently, a computable measure of magic has
been introduced, called Stabilizer Renyi Entropy
(SRE) [22], which is relatively easier to compute
as it is expressed only in terms of expectation
values of Pauli strings. Nonetheless, examples
of analytical results for the SRE remain few and
far between, and computational cost often limits
numerical studies to relatively small systems.

In recent years, there is an increasing interest
in characterizing the role of magic in the ground
states of quantum many-body systems [23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35] – namely,
‘how far’ such states are from being stabilizer
states. Notable progress has also been made in
its experimental measurements [36, 37, 38, 31,
39, 40]. The study of quantum information con-
cepts in the realm of many-body theory has a
long history, with a prominent example being
entanglement, which has proven to be a power-
ful tool for investigating various many-body phe-
nomena [41, 42]. The comprehensive exploration
of many-body magic thus represents a promis-
ing avenue that holds significant relevance for
characterizing the quantum complexity of differ-
ent phases of matter. This includes understand-
ing the computational cost of simulating specific
phases and assessing their computational capa-
bilities. In a more practical context, this would
also provide insights into the potential of many-
body states to be an input in magic state distilla-
tion [43], for applications in quantum information
processing.

The investigation of many-body magic has
been enabled by the recent development of nu-
merical methods based on tensor networks to ef-
ficiently compute the SRE [28, 29, 30, 31, 33]. In
particular, these studies have suggested a con-
nection between magic and criticality in one-
dimensional quantum systems. Notwithstand-
ing these interesting developments, the cost of
computing the SRE remains very high, often re-
stricting the study to simple one-dimensional sys-
tems. Further studies of highly entangled states,
such as higher-dimensional systems, appear to be
practically out of reach with current methods (see
however Ref. [31]).

In this work, we introduce an approach to com-
pute the SRE with integer Renyi index n >
1 in many-body wavefunction, by expressing it
in terms of wavefunction coefficients that make

it amenable to computation using Monte Carlo
sampling (provided the wavefunction can be
gauged to have non-negative coefficients).

We apply this approach to a class of mod-
els known as generalized Rokhsar-Kivelson sys-
tems [44, 45], or Hamiltonians that allow
a stochastic matrix form (SMF) decomposi-
tion [46]. The ground state wavefunctions of
these systems can be written explicitly through-
out their phase diagram, and their properties
can be related to associated classical statistical
mechanics problems in thermodynamic equilib-
rium at temperature T , which plays the role of
a parameter in the phase diagram of the original
quantum systems. This correspondence allows
powerful analytical and numerical approaches to
be deployed, that are not usually available in con-
ventional quantum many body settings 1.

Since the early work of Rokhsar and Kivel-
son [48], SMF Hamiltonian and wavefunctions
have appeared in many different physics con-
texts. Of late, a resurgence of attention has de-
rived from the fact that they can be naturally
realised using tensor networks and PEPS [49],
and they can be implemented in measurement-
prepared quantum states and (monitored) quan-
tum circuits [50, 51, 52, 53, 54, 55]. In this con-
text, the magic of SMF wavefunctions thus di-
rectly quantifies the amount of non-Clifford re-
sources required to prepare these systems in the
circuits.

We are able to express the SRE of SMF wave-
functions in terms of a free energy difference of
related classical problems, which can then be ef-
ficiently computed by thermodynamic integra-
tion. We apply this insight to a range of quan-
tum many body SMF Hamiltonians, which af-
fords us to study numerically the SRE of large
high-dimensional systems, unattainable using ex-
isting tensor network-based techniques, and in
some cases we obtain explicit analytical results.

We observe that the behaviour of the SRE is
relatively featureless across quantum phase tran-
sitions in these systems [56], although it is indeed
singular in its first or higher order derivative, de-
pending on the first or higher order nature of
the transition. On the contrary, we find that the
maximum of the SRE generically occurs at a cusp
away from the quantum critical point, where the

1We note that a study of the SRE in related Rokhsar-
Kivelson-sign wavefunctions was presented in Ref. [47].
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derivative suddenly changes sign. Furthermore,
we compare the SRE to the logarithm of overlaps
with specific stabilizer states, that are asymptot-
ically realised in the ground state phase diagrams
of these systems. We find that they display strik-
ingly similar behaviors, which in turn establish
rigorous bounds on the min-relative entropy of
magic.

The rest of the paper is structured as follows.
In Sec. 2 and Sec. 3 we give a brief review of SMF
Hamiltonians and SRE, respectively. We then
state our general results in Sec. 4 about the SRE
and its upper bounds in SMF systems. In Sec. 5
we then present a study of a range of models,
encompassing the Ising ferromagnet in 1D, 2D,
3D, and infinite dimensions; the J1 − J2 model
on the square lattice; the triangular Ising antifer-
romagnet; and the Edwards-Anderson model on
the cubic lattice. Finally, we conclude in Sec. 6.

2 Brief review of Stochastic Matrix
Form (SMF) Hamiltonians
The stochastic matrix form wavefunctions, de-
pendent on the parameter β, are given by [44,
45, 46]

|ψSMF⟩ = 1√
Z(β)

∑
σ

e−βEσ/2|σ⟩ , (1)

where
Z(β) =

∑
σ

e−βEσ . (2)

Z(β) can be seen as a classical partition function
at temperature T = 1/β. One can design a quan-
tum Hamiltonian for arbitrary choice of Eσ, such
that |ψSMF⟩ is the ground state of the Hamilto-
nian. In particular, for a locally interacting Eσ,
the Hamiltonian also contains only local interac-
tions. The quantum Hamiltonian is said to be
SMF decomposable [46]. The equal-time correla-
tion function of diagonal operators of SMF wave-
functions are given by the equal-time correlations
functions in the associated classical systems in
thermal equilibrium. It follows that the ground
state phase diagram of the quantum Hamiltonian
contains the thermal phase diagram of the clas-
sical system in thermal equilibrium. Since the
wave function coefficients are known exactly by
design, the wave function can be sampled with
classical Monte Carlo simulations of the corre-
sponding classical system.

3 Stabilizer Rényi entropy
Stabilizer Rényi Entropies (SREs) are a mea-
sure of nonstabilizerness recently introduced in
Ref. [22]. For a pure quantum state |ψ⟩ of a sys-
tem of N qubits (equivalently, spin-1/2 degrees
of freedom), SREs are expressed in terms of the
expectation values of all Pauli strings in PN :

Mn (|ψ⟩) = 1
1 − n

log

 ∑
P ∈PN

⟨ψ|P |ψ⟩2n

2N

 . (3)

Eq. (3) can be seen as the Rényi-n entropy of
the classical probability distribution ΞP (|ψ⟩) =
⟨ψ|P |ψ⟩2/2N , also known as the characteristic
function [57]. The SREs have the following prop-
erties [22]: (i) faithfulness, i.e., Mn(|ψ⟩) = 0 iff
|ψ⟩ ∈ STAB; (ii) stability under Clifford unitaries
C ∈ CN , i.e., Mn(C|ψ⟩) = Mn(|ψ⟩); and (iii)
additivity, i.e., Mn(|ψ⟩A ⊗ |ψ⟩B) = Mn(|ψ⟩A) +
Mn(|ψ⟩B). The SREs are thus a good measure of
magic from the point of view of resource theory.

The SRE is related to another magic monotone
called the min-relative entropy of magic, defined
as

Dmin(|ψ⟩) = − logFSTAB(|ψ⟩) (4)

where FSTAB is the stabilizer fidelity defined as

FSTAB(|ψ⟩) = max
|ϕ⟩∈STAB

|⟨ϕ|ψ⟩|2 . (5)

The following inequality holds [29]

Mn(|ψ⟩) ≤ 2n
n− 1Dmin(|ψ⟩) , n ≥ 1 . (6)

In particular, setting n = 2, and defining
D(|ψ⟩, |ϕ⟩) = − log |⟨ϕ|ψ⟩|2, one finds that

M2(|ψ⟩) ≤ 4Dmin(|ψ⟩) ≤ 4D(|ψ⟩, |ϕ⟩) , (7)

for any |ϕ⟩ ∈ STAB.
Because the SRE is defined in terms of the

characteristic function ΞP (|ψ⟩), it is natural
to estimate it through statistical sampling of
ΞP (|ψ⟩). Indeed, this was the core of previous
numerical methods that have been introduced to
compute the SRE [29, 30, 31], which are so far
limited to tensor network techniques. To obtain
reliable statistics, a large number of samples is
required, often resulting in computations being
restricted to small bond dimension. This lim-
itation poses a challenge when studying highly
entangled systems, such as higher dimensional
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ones. Unfortunately, the existing methods are
not directly suitable for Quantum Monte Carlo
approaches due to the inherent difficulty in evalu-
ating the expectation values of high-weight Pauli
strings within.

4 Magic in SMF ground states

In this section we show how the special form of
the ground state wave functions of SMF systems
allows for analytical and numerical routes into
the calculation of their magic, that are not af-
forded to general quantum many body systems.
In doing so, we develop the machinery that will
later be used to study a broad range of model
systems, to gain insight in the behaviour of this
intriguing quantity.

4.1 Stabilizer Rényi entropy

Consider a N−qubit wave-function |ψ⟩ =∑
σ cσ|σ⟩, where cσ = ⟨σ|ψ⟩ and σ labels all ten-

sor product basis states (e.g., the σz
i basis for a

spin-1/2 system, i = 1, ..., N). We firstly show,
as detailed in Appendix A, that the SRE M2 can
be expressed as follows

exp(−M2) =
∑

σ(1),σ(2),σ(3),σ(4)

[
cσ(1)cσ(2)cσ(3)cσ(1)σ(2)σ(3)

c∗
σ(1)σ(2)σ(4)c

∗
σ(1)σ(3)σ(4)c

∗
σ(2)σ(3)σ(4)c

∗
σ(4)

]
,

(8)

where cσ(1)σ(2)σ(3) denotes the coefficient cσ̃ cor-
responding to the tensor product label σ̃ given
by the point product of σ(1), σ(2), and σ(3):

σ̃i = σ
(1)
i σ

(2)
i σ

(3)
i , ∀ i = 1, . . . , N . Similarly for

the other equivalent terms in Eq. (8). We can
imagine σ(a), a = 1, 2, 3, 4 as four copies of the N
qubits. Similar expressions can be obtained for
SREs of integer index n > 2.

For the SMF systems introduced in Sec. 2,
and in particular their ground state wavefunc-
tions, these known expressions for the magic can
be further manipulated upon substituting cσ =
e−βEσ/2/

√
Z in Eq. (8) to obtain:

M2 = − log ZM

Z4 (9)

where

ZM =
∑

e−βEM

=
∑

σ(1), σ(2),

σ(3), σ(4)

exp
[
−β

∑
a

Eσ(a) − β
∑

a

E∏
b ̸=a

σ(b)

]
.

(10)

One can interpret ZM as a classical partition
function constructed from four copies of the origi-
nal classical degrees of freedom. The second term
in the square bracket describes the energy of a
configuration obtained from the spin product of
three out of four copies. The expression in Eq. (9)
can thus be seen as (proportional to) the differ-
ence between the free energy of the classical sys-
tem described by ZM and four non-interacting
copies of the original classical system described
by Z.

This manipulation is not only interesting from
a conceptual point of view, but also from a prag-
matic one: it provides a new angle to compute
the magic of a quantum (SMF) state using clas-
sical statistical mechanics tools in the same num-
ber of dimensions. As we demonstrate later, it af-
fords us the ability to access significantly larger
system sizes and higher dimensional lattices than
previously possible [29, 30, 31].

In practice, rather than computing ratios of
partition functions or differences in free energies,
it is convenient to notice that the derivative of
M2 with respect to temperature reduces to:

dM2
dT

= 4⟨E⟩ − ⟨EM ⟩M

T 2 . (11)

Thus, M2 can be more efficiently obtained by
computing the energies ⟨E⟩ and ⟨EM ⟩M and then
proceding to integrate the r.h.s. of Eq. (11).

4.2 Upper bound of M2

As discussed in Sec. 3, M2 is bounded from
above by D(|ψ⟩, |ϕ⟩) = − log |⟨ϕ|ψ⟩|2 for any
|ϕ⟩ ∈ STAB. In the following sections, we com-
pute D(|ψ⟩, |ϕ⟩) for several ad hoc choices of
states |ϕ⟩, specific to the system being consid-
ered. Once again, in the case of SMF wavefunc-
tions, these overlaps can be reduced to classical
statistical mechanical objects, amenable to cor-
responding analytical or numerical estimates.

Here, we illustrate the procedure to compute
D(|ψ⟩, |ϕ⟩) in a couple of cases that will often be
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used in the following. Consider for example |ϕ⟩ =
| + + + ...⟩, where |+⟩ = |↑⟩+|↓⟩

2 (i.e., a spin-1/2
state polarized in the x direction). In the context
of SMF wavefunctions, this is the ground state
at β = 0. We denote Dx(|ψ⟩) = D(|ψ⟩, |ϕ⟩ =
| + + + ...⟩). From the overlap

⟨ψ(β)|ψ(β = 0)⟩ = 1√
Z(β)2N

∑
σ,σ′

e−βEσ/2⟨σ′|σ⟩

(12)

= 1√
Z(β)2N

∑
σ

e−βEσ/2 (13)

= Z(β/2)√
Z(β)2N

, (14)

we then obtain

Dx(|ψ(β)⟩) = − log Z(β/2)2

Z(β)2N
. (15)

Another useful example is |ϕ⟩ = (| ↑↑↑ ...⟩ +
| ↓↓↓ ...⟩)/

√
2. In the ferromagnetic Ising model,

this is the ground state at T = 0 (namely, the
exact ground state, ignoring spontaneous sym-
metry breaking effects). We denote Dzz(|ψ⟩) =
D(|ψ⟩, |ϕ⟩ = (| ↑↑↑ ...⟩ + | ↓↓↓ ...⟩)/

√
2). From

the overlap

⟨ψ(β)|ϕ⟩ =
√

2
Z(β)e

−βEzz/2 , (16)

where Ezz is the energy of the configuration σi =
1(−1), for all i, we obtain

Dzz(|ψ(β)⟩) = βEzz − log 2
Z(β) . (17)

In all cases, the overlaps D(|ψ⟩, |ϕ⟩) are related
to the partition function of the classical model.
Therefore, similarly to M2, we compute them us-
ing direct thermodynamics integration.

5 SMF models
Armed with the tools developed above, we pro-
ceed to investigate a broad range of models, in
the attempt to deepen our understanding of sta-
bilizerness and magic in many body systems –
albeit of the fine tuned SMF kind – and its rela-
tion to quantum phase transitions. For this pur-
pose, we consider in the first instance quantum

Ising ferromagnets in 1D, 2D, 3D, and infinite di-
mensions (mean field); we also consider the J1-J2
model tuned to exhibit a first order phase transi-
tion, for comparison. We then move on to more
exotic examples, such as the quantum triangular
Ising antiferromagnet (which is fully frustrated in
the SMF realisation) and the Edwards-Anderson
model (exemplifying a spin glass transition in the
droplet picture).

Since the SREs are generally an extensive
quantity, we focus on the SRE densities Mn/N ,
where N = Ld is the total number of sites in the
system with linear size L and dimensionality d.
For the numerical simulations at finite volume,
we impose periodic boundary conditions.

5.1 1D SMF Ising ferromagnet

The quantum SMF Hamiltonian for the 1D Ising
ferromagnet is related to the classical 1D Ising
model with energy

Eσ = −
∑

i

σiσi+1 , (18)

where the spins σi live on a chain, and it re-
flects its thermodynamic behaviour. In partic-
ular, there is no phase transition and the sys-
tem orders only in the limit β → ∞ (we stress
that β plays the role of inverse temperature for
the classical system whereas it is merely a tun-
able parameter in the SMF quantum Hamilto-
nian, which is considered to be at zero tempera-
ture in its ground state, for the purpose of this
work).

Despite its simplicity, this model serves as
a useful warmup example and the magic can
be computed analytically using Eq. (9). In-
deed, we recall that the partition function of the
1D (nearest-neighbour) Ising model can be com-
puted with transfer matrix techniques:

Z =
∑

σ

eβ
∑

i
σiσi+1

=
∑

σ

eβσ1σ2eβσ2σ3 ...eβσLσ1

=
∑

σ

Vσ1,σ2Vσ2,σ3 ...VσL,σ1

= Tr(V L) ,

(19)

where Vη,η′ = eβηη′
is a 2 × 2 matrix. The eigen-

values of V are λ1 = 2 cosh β and λ2 = 2 sinh β.
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Figure 1: Behaviour of various measures of magic, in-
cluding two stabilizer bounds, for the SMF 1D Ising fer-
romagnet. For each n, we plot n−1

2n Mn/N , which are
upper bounded by Dx and Dzz by Eq. (6).

Thus,

Z = Tr(V L) = λL
1 + λL

2 = [2 cosh β]L + [2 sinh β]L .
(20)

We can similarly compute ZM by interpreting
the four layers of the 1D chain as a 1D chain with
16 states per site: ZM = Tr(V L

M ), where VM is a
16 × 16 matrix.

More generally, for an integer index n > 1, the
transfer matrix VM,n is a 22n × 22n matrix with
elements

VM

(
{η(1), ..., η(2n)}, {η′(1), ..., η′(2n)}

)
=

exp

β
2
∑

a

η(a)η′(a) + β

2
∑

a

∏
b̸=a

η(b)η′(b)

 .(21)

To compute ZM,n = Tr(V L
M,n) we work in the

thermodynamic limit L → ∞, where we only
need to find the largest eigenvalue of VM,n. One
can verify that the column vector with all ele-
ments equal to 1 is an eigenvector of VM,n. By
the Perron-Frobenius theorem, the corresponding
eigenvalue is the unique largest eigenvalue:

λn = 22n + [2 cosh(β)]2n + [2 sinh(β)]2n

2 . (22)

Finally, using Eq. (22) and (20), we find

Mn/N = 1
1 − n

log 1 + cosh(β)2n + sinh(β)2n

2 cosh(β)2n
,

(23)
for integer n > 1.

Furthermore, Dx and Dzz can be computed
directly by plugging in the partition function
Eq. (20) into Eq. (15) and (17), respectively.
In Fig. 1, we show the SREs, Dx, and Dzz of
the SMF 1D Ising model, observing the expected
asymptotic agreement in the limits T → 0 and
T → ∞.

To avoid confusion, we remark here that the
SMF Hamiltonian and corresponding GS wave-
function related to the classical 1D Ising ferro-
magnet are strikingly different from the conven-
tional 1D Ising ferromagnet in a transverse field.
Most notably, in the SMF case there is no phase
transition and ordering occurs only asymptoti-
cally in the limit T → 0.

5.2 2D SMF Ising ferromagnet
The quantum SMF Hamiltonian of the 2D Ising
ferromagnet is related to the 2D classical Ising
model with energy

Eσ = −
∑
⟨ij⟩

σiσj , (24)

where the spins σi are taken without loss of gen-
erality to live on the 2D square lattice. There is a
phase transition between the ferromagnetic and
the paramagnetic phase at Tc = 2/ log(1+

√
2) ≈

2.269815.
To study the thermodynamics properties of

ZM , we perform Monte Carlo simulations aug-
mented with Wolff cluster algorithm [58] and par-
allel tempering [59, 60]. We study the energy
⟨EM ⟩M as a function of temperature for a range
of system sizes as shown in Fig. 2 (top panel). We
observe a behaviour compatible with a first-order
transition from a high-temperature paramagnetic
phase to a low-temperature ordered phase, at
some value T ∗ ̸= Tc (whereas we know ⟨E⟩ from
the classical 2D Ising model to be smooth, with
a singularity in its first derivative at Tc). The
presence of a first order transition in the classi-
cal system described by ZM will be a common
feature in all examples considered in our work;
however, while T ∗ > Tc for the 2D Ising case,
we will find for example that T ∗ < Tc in higher-
dimensional systems.

Integrating the energy as in Eq. (11) from high
temperature, we obtain the SRE M2. In con-
trast to the results of previous studies [28, 31], we
see that M2 is continuous and does not exhibit a
maximum nor minimum at the transition point.
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Figure 2: Magic and stabilizer bounds for the SMF 2D
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Figure 3: Second derivative of M2 for the 2D SMF Ising
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tion of the quantum phase transition, whereas the verti-
cal dotted line indicates the location of the transition T ∗

in the coupled layered system ZM . The inset shows the
full extent of d2(M2/N)/dT 2 near T ∗, which is trun-
cated in the main plot for visualisation purposes.

In fact, we know that at Tc, M2 inherits a singu-
larity in its second derivative from the singularity
in the first derivative of the energy ⟨E⟩ of the as-
sociated classical system described by the parti-
tion function Z (which undergoes a second order
phase transition). The maximum of M2 occurs
instead away from the quantum critical point
(into the paramagnetic phase), at a cusp that
can be related to the first order transition point
of the classical system described by ZM . Fur-
thermore, we observe that the bounds 4Dx and
4Dzz lie very close above M2. By Eq. (7), this
also establishes strict upper and lower bounds for
Dmin. This is again a common feature that we
consistently observe in all examples considered in
this work.

Although the SRE M2 appears relatively fea-
tureless across Tc, we know from Eq. (11) that it
must inherit any singularity present in ⟨E⟩ and in
⟨EM ⟩M . The well-known critical behaviour of the
2D Ising model gives a singularity in the second
derivative of M2, which is related to the specific
heat of the classical 2D Ising model: d2M2/dT

2

exhibits a peak at Tc which diverges logarithmi-
cally, as shown in Fig. 3. A (negative) peak is
observed at T ∗, due to the the specific heat of
ZM ; here the transition is first order and the peak
diverges as N , much faster than the known loga-
rithmic divergence at Tc.

We note that, by Wegner duality [61], the
SMF groundstates corresponding to the 2D Ising
model are dual to a wavefunction deformation of
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⟨EM ⟩M , and the bottom panel shows the SRE density
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indicate the location of the quantum phase transition,
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the transition in the coupled layered system ZM (result-
ing in a cusp in the magic M2).

the toric code studied in Ref. [62]. Therefore, the
SREs of the two wavefunctions are identical (up
to a constant shift), since the SREs are preserved
by Wegner duality [31].

5.3 3D SMF Ising ferromagnet

The discussion of the 3D Ising ferromagnet goes
along the same line as in 2D, with the spins σi

living without loss of generality on the 3D cu-
bic lattice. The model is known to exhibit a
second-order phase transition between the ferro-
magnetic and the paramagnetic phase. Through
large-scale Monte Carlo simulations, the critical
point was found to be at Tc ≈ 4.5115 [63].

The results are shown in Fig. 4. The energy
⟨EM ⟩M once again exhibits a first-order tran-
sition that induces a cusp in the behaviour of
M2 at T ∗, where it reaches its maximum value.
At the quantum phase transition, M2 is once

again continuous, with a singularity in its sec-
ond derivative. Differently from the 2D case, the
cusp (and maximum) of M2 occurs in the ferro-
magnetic phase instead of the paramagnetic one.
Once again, the upper bounds 4Dx and 4Dzz lie
very close to M2.

5.4 Infinite-range Ising model
For completeness, we consider the case of an
infinite-range Ising ferromagnet, with classical
energy

Eσ = − 1
2N

∑
i ̸=j

σiσj (25)

= − 1
2N

(∑
i

σi

)2

+ 1/2 , (26)

which becomes again analytically tractable.
Hereafter, we shall neglect the trivial constant
energy shift in the last line.

The partition function of the infinite-range
model can be evaluated by first recasting it to a
Gaussian integral and then performing a saddle-
point approximation, which is exact in the ther-
modynamic limit L → ∞ (see e.g., Ref. [64]).
Explicitly, the free energy is given by

βF/N = β

2m
2 − log [2 cosh(βm)] , (27)

where the saddle point magnetisation is found by
solving the self-consistency equation

m = tanh(βm) . (28)

The system exhibits a second-order phase tran-
sition at Tc = 1 between the ferromagnetic and
the paramagnetic phase.

The evaluation of βFM = − logZM follows
along the same lines. First, we write the par-
tition function as

ZM =
∑

σ

exp

 β

4N

4∑
a=1

(∑
i

σ
(a)
i

)2

+ β

4N

4∑
a=1

∑
i

∏
b̸=a

σ
(b)
i

2
 .(29)

Then, we make use of the identity

eαx2/2 =

√
αN

2π

∫ ∞

−∞
dm e−Nαm2/2+

√
Namx (30)
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to obtain

ZM =
(
βN

4π

)4 ∫ ∞

−∞

4∏
a=1

dma

4∏
b=1

dqb (31)

× exp
[
−Nβm2

a

4 − Nβq2
b

4 +NβF̃

]
, (32)

where

eβF̃ =
∑

η(1,...,4)=±1

exp

∑
a

βma

2 η(a) +
∑

b

βqb

2
∏
c ̸=b

η(c)

 .
In the limit L → ∞, we can evaluate the above

integral using the saddle-point approximation,
such that the free energy is given by

βFM = Nβ

4
∑

a

m2
a + Nβ

4
∑

b

q2
b −NβF̃ . (33)

Taking partial derivative with respect to all ma

and qb, we obtain the self-consistent equations

ma =
∑
η(a) exp

[∑
c

βmc

2 η(c) +
∑

d
βqd

2
∏

c̸=d η
(c)
]

∑
exp

[∑
c

βmc

2 η(c) +
∑

d
βqd

2
∏

c ̸=d η
(c)
] ,

(34)
and

qb =
∑∏

c ̸=b η
(c) exp

[∑
c

βmc

2 η(c) +
∑

d
βqd

2
∏

c ̸=d η
(c)
]

∑
exp

[∑
c

βmc

2 η(c) +
∑

d
βqd

2
∏

c ̸=d η
(c)
] ,

(35)
respectively, for a, b = 1, 2, 3, 4. The outer sum-
mations above are over η(1), η(2), η(3), η(4) = ±1.
The quantity ma corresponds to the magnetiza-
tion of the a-th layer,

ma = 1
N

〈∑
i

σ
(a)
i

〉
. (36)

while qb corresponds to

qb = 1
N

〈∑
i

∏
c ̸=b

σ
(c)
i

〉
. (37)

The procedure outlined above can be straight-
forwardly generalized to higher (integer) index
n > 2. If we assume, by symmetry, that the so-
lution satisfies m1 = m2 = ... = m2n = q1 = ... =
q2n = m 2, then the self-consistent equations sim-

2The symmetry between ma and qb may not be imme-
diately obvious, but it can be seen as follows: for each
site i in the layer a, define spin s

(a)
i =

∏
c ̸=a

σ
(c)
i . After

this change of variable, we obtain qa = 1
N

〈∑
i
s

(a)
i

〉
and

mb = 1
N

〈∑
i

∏
c̸=b

s
(c)
i

〉
. Namely, the role of ma and qb

is interchanged after the change of variable.
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Figure 5: Magic and stabilizer bounds for the SMF
infinite-range Ising ferromagnet. For each n, we plot
n−1
2n Mn/N , which are upper bounded by Dx and Dzz

by Eq. (6). The system undergoes a quantum phase
transition at Tc = 1.

plify to

m = cosh(βm)2n−1 sinh(βm) + sinh(βm)2n−1 cosh(βm)
1 + cosh(βm)2n + sinh(βm)2n

(38)
One can verify that Eq. (38) always admitsm = 0
as a solution, which minimizes FM at high tem-
perature; it also admits the solution m = 1,
which minimizes FM at T = 0, and the transi-
tion between the two is first-order.

We solve Eq. (38) numerically and compute
Mn for n ∈ {2, 3, 4, 5, 6, 7, 8} (see Fig. 5). In
the limit n → ∞, Eq. (38) reduces to m =
tanh(βm), which is exactly the self-consistent
equation for the infinite-range model. This im-
plies that Mn → 0 as n → ∞, as expected.

Furthermore, Dx and Dzz can be computed di-
rectly from Eq. (15) and (17), respectively, using
the free energy in Eq. (27). We plot them along
the SREs in Fig. 5.

Similarly to the 3D Ising ferromagnet, and con-
trary to the 2D case, the cusp (and maximum) of
M2 occurs well within the ferromagnetically or-
dered phase. In fact, the behavior of M2 along
with Dx and Dzz are very similar to the 3D
case. Interestingly, the stabilizer bound to the
magic is exactly met by Dx for any T larger than
the cusp value. This is because in this regime
logZM,n = 2n log 2, while logZ(β/2) = log 2
in Eq. (15), which implies Mn = 2n

n−1Dx. By

Eq. (6), it follows that Dmin = n−1
2n Mn for any

T larger than the cusp value of an index n. For
T ≥ 1, all Mn and Dx vanish, i.e., the states
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are asymptotically close to the stabilizer state
| + + + ...⟩.

5.5 J1-J2 model and first order behaviour

Up to now we considered quantum SMF Hamilto-
nians that exhibit continuous phase transitions.
Here we investigate what happens at a first order
quantum phase transition by looking at the SMF
J1-J2 Ising model on the square lattice, related
to a classical model with energy

Eσ = −J1
∑
⟨ij⟩

σiσj + J2
∑

⟨⟨ij⟩⟩
σiσj , (39)

where J1, J2 > 0. The first term corresponds
to a ferromagnetic Ising nearest-neighbour inter-
action, while the second term is an antiferro-
magnetic interaction across the diagonals of the
square plaquettes. For an appropriate choice of
the system parameters, e.g., when the ratio g =
J1/J2 = 0.55, the system exhibits a first-order
transition between a high-temperature paramag-
netic phase and a low-temperature stripe phase
at Tc ≈ 0.772 (setting J1 = 1 as the reference en-
ergy scale) [65]. In the stripe phase, the ground
states are fourfold degenerate, and can be under-
stood as two decoupled antiferromagnetic ground
states.

We also observe a first order phase transition
in the associated coupled layered system ZM , but
at a higher temperature T ∗, well into the para-
magnetic phase (as in the 2D Ising ferromagnet,
and contrary to 3D and infinite-range). There-
fore, in this system we expect two discontinuities
in the first derivative of M2 with respect to T :
One at the quantum phase transition (Tc), where
the slope is positive on both sides and approxi-
mately doubles across it; the other at T ∗, where
the slope changes sign abruptly, giving rise once
again to a maximum in M2, where a cusp occurs.

In Fig. 6 we also compare M2 with the bounds
provided by the paramagnetic (Dx, asymptoti-
cally accurate for T → ∞) and stripe (Dstripe,
asymptotically accurate for T → 0) phases. The
latter appears to be remarkably close for all
T < T ∗.

5.6 Antiferromagnetic triangular Ising model

We now proceed to a more exotic model where
the quantum SMF Hamiltonian is related to
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Figure 6: Magic and stabilizer bounds for the SMF 2D
J1-J2 Ising model. The top panels show the behaviour
of ⟨E⟩ and ⟨EM ⟩M , and the bottom panel shows the
SRE density M2/N (same system sizes). The vertical
dashed lines indicate the location of the quantum phase
transition, whereas the vertical dotted lines indicate the
location of the transition in the coupled layered system
ZM (resulting in a cusp in the magic M2).

the classical antiferromagnetic triangular Ising
model [66, 67], with energy

Eσ =
∑
⟨ij⟩

σiσj , (40)

where the spins σi live on the sites of a trian-
gular lattice, i = 1, . . . , N . The model features
an extensive ground state degeneracy with alge-
braically decaying correlations at T = 0, while it
is disordered at all temperatures T ̸= 0 [66].

We first show that the classical system de-
scribed by ZM also features an extensive ground
state degeneracy. To this end, we provide a lower
bound on the zero-point entropy by explicitly
constructing an extensive set of states with low-
est energy. To do so, let us divide the triangular
lattice on each layer into three sublattices. Let
us then fix the spins on two of the sublattices to
1 and −1, respectively, with the same choice for
all four layers. One can then straightforwardly
verify that the spins on the remaining sublattice
on each layer can be chosen arbitrarily without
affecting the energy EM of the system, and that
the latter is indeed minimised. The number of
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such states is 24N/3, which implies

SM (0) ≥ 4N
3 ln 2 . (41)

As one can straightforwardly think of other con-
figurations that minimize the energy, this bound
is not tight.

We find that the corresponding ZM features a
phase transition that appears to be first-order,
as displayed in Fig. 7, albeit of a less strong na-
ture than in the cases discussed previously. Once
again, M2 exhibits a cusp at the transition point
T ∗ of the classical system described by ZM .

Unlike in the other models considered so far,
in this case the ground state at T = 0 is not a
stabilizer state. We note that the configurations
with the three sublattice structure given above is
also known as the clock state, which arises as the
quantum ground state of the quantum triangular
Ising antiferromagnet at small magnetic field [68,
69, 70, 71]. While it is not the exact ground
state for T = 0, it constitutes a significant part
of the ground state. Thus, we compare M2 with
Dclock(|ψ⟩) = D(|ψ⟩, |ϕ⟩) where |ϕ⟩ is the clock
state defined above, which is a stabilizer state.
Dclock is obtained in a similar way as Dzz (see
Sec. 4.2). At T = 0, Dclock is given by

Dclock(T = 0) = S(0) − N

3 ln 2 , (42)

where S(0) ≃ 0.3383N is the zero-point en-
tropy of the antiferromagnetic triangular Ising
model [66]. On the other hand, M2 is given by

M2(T = 0) = 4S(0) − SM (0) . (43)

This is obtained by setting T = 0 in Eq. (9). In
this case, the observation that 4Dclock is strictly
larger than M2 can be attributed to the fact that
the zero-point entropy SM (0) is strictly larger
than 4N

3 ln 2. In turn, this is also a manifestation
of the fact that the ground state of the classical
system described by Z(T ) is not a stabilizer state
for T = 0.

5.7 Edwards-Anderson model
Finally, we consider an example of a disordered
system, where the quantum SMF Hamiltonian
is related to the Edwards-Anderson (EA) model,
with energy

Eσ = −
∑
⟨ij⟩

Jijσiσj , (44)
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Figure 7: Magic and stabilizer bounds for the SMF tri-
angular antiferromagnetic Ising model. The top panel
shows the behaviour of ⟨EM ⟩M , and the bottom panel
shows the SRE density M2/N (same system sizes). The
vertical dotted lines indicate the location of the transi-
tion in the coupled layered system ZM (resulting in a
cusp in the magic M2).
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the bottom panel shows the SRE density M2/N (all for
the same set of system sizes). The vertical dashed lines
indicate the location of the quantum phase transition,
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the transition at T ∗ in the coupled layered system ZM

(resulting in a maximum in the magic M2). The results
are averaged over 100, 50, and 30 realizations for linear
sizes L = 6, 8, 10, respectively.

where the spins σi live on the 3D cubic lattice.
Here, the couplings Jij are independently drawn
from a Gaussian distribution with zero mean and
unit variance. The system is known to undergo a
continuous transition from the high-temperature
phase to the low-temperature spin glass phase at
Tc ≈ 0.95 [72].

This model has a unique ground state for any
realization of Jij (up to global spin flip). For sys-
tem sizes up to L = 10, the exact ground states
and their energy can be readily obtained using
the McGroundstate server [73].

We show the energy ⟨EM ⟩M , the specific heat
Cv,M and the magic M2 in Fig. 8. Again,
the maximum occurs well into the paramagnetic
phase, at the transition point of the coupled lay-
ered system ZM . Unlike in the previous cases,
where the first order behaviour of the ZM tran-
sition was self-evident because of the noticeable
discontinuity in ⟨EM ⟩M , the situation is less

clear-cut here. While the maximum of the spe-
cific heat appears to grow slower thanN , suggest-
ing a second order transition, we are unable to
identify a clear scaling of the specific heat within
the accessible system sizes. We further com-
pute equilibrium energy histograms at different
temperatures around T ∗, shown in Fig. 9. The
behaviour closely resembles a trade off between
two different peaks, whose positions are approx-
imately temperature-independent (although we
are unable to see the minimum in between them
scale to zero as a function of system size, within
the systems accessed in this work). Overall, we
suggest that the transition in this model is weakly
first-order.

In Fig. 8 we also compare M2 with bounds
from Dx and DGS, where DGS is obtained from
the overlaps with the exact ground state for
each realization, computed by thermodynamic
integration as discussed in Sec. 4.2, using the
McGroundstate server [73] to obtain the exact
ground state energy. In this case, the bounds
are somewhat higher than encountered in previ-
ous cases. Nevertheless, the crossing between Dx

and DGS still occurs close to the maximum of
M2.

Finally, we investigate the nature of the low-
temperature phase of ZM . A natural candidate
is a spin glass phase, accompanied by replica
symmetry breaking (RSB), akin to the low-
temperature phase of the 3D EA model. To de-
tect RSB, we compute the spin overlap

q = 1
N

N∑
i=1

⟨σα
i σ

β
i ⟩ , (45)

where α and β represents two copies of the system
with the same disorder. We show the spin over-
lap in the coupled system ZM in Fig. 10. It can
be seen that the spin overlap is vanishing in the
high-temperature paramagnetic phase, while it
becomes non-zero in the low-temperature phase,
signifying RSB.

6 Conclusions
We introduced a way to compute the SRE [22]
with integer Renyi index n > 1 in terms of wave-
function coefficients in many body systems, that
make it amenable to efficient computation using
Monte Carlo sampling. We applied this approach
to generalized Rokhsar-Kivelson systems whose
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tem sizes L ∈ {4, 6, 8}.

Hamiltonians allow a stochastic matrix form de-
composition [46]. Thanks to the known corre-
spondence between ground states of these sys-
tems and associated classical statistical mechan-
ics problems, we have been able to express the
SRE in terms of classical free energy differences,
which can be efficiently computed by thermody-
namic integration. Crucially, temperature plays
the role of a tunable parameter in the quan-
tum Hamiltonians, allowing us to drive these sys-
tems across quantum phase transitions and study
the behaviour of their SRE. With this approach
we were able to study the SRE of large high-
dimensional systems, unattainable using exist-
ing tensor network-based techniques, and in some
cases obtaining explicit analytical results.

We applied this insight to a range of quan-
tum many body SMF Hamiltonians, encompass-
ing the Ising ferromagnet in 1D, 2D, 3D, and
infinite dimensions; the J1 − J2 model on the
square lattice (exhibiting a first order transition);
the triangular Ising antiferromagnet (fully frus-
trated, devoid of ordering); and the Edwards-
Anderson model on the cubic lattice (which un-
dergoes a glass transition). Generally, we ob-
served that the behaviour of the SRE is relatively
featureless across quantum phase transitions in
these systems, although it is indeed singular in its
first or higher order derivative, depending on the
first or higher order nature of the transition. We
found that the maximum of the SRE generically
occurs at a cusp away from the quantum criti-
cal point, where the derivative suddenly changes
sign. Curiously, the cusp appears to occur in the
disordered phase in two dimensions, and in the
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ordered phase in higher dimensions, suggesting
that it may be altogether unrelated to the order-
ing behaviour of the quantum system.

We further compared the SRE to the logarithm
of overlaps with specific stabilizer states, that are
asymptotically realised in the ground state phase
diagrams of these systems. We find that they dis-
play strikingly similar behaviors, which in turn
establish rigorous bounds on the min-relative en-
tropy of magic.

In our work we were able to make some
progress in understanding the behaviour of the
magic and its maximum in many body quan-
tum (SMF) systems, throughout their phase
diagrams, in terms of partition functions and
thermodynamic properties of associated classi-
cal problems, and by comparing it with over-
laps of asymptotic stabilizer states. One won-
ders whether further progress could be made us-
ing field theoretic approaches for the associated
classical problems, in particular ε-expansions just
above 2D or just below 3D to shed light on the lo-
cation of the SRE maximum with respect to the
quantum phase transitions. We shall leave these
and other interesting open questions for future
work.

As we discussed at the end of Sec. 5.2, our re-
sults for the 2D SMF Ising ferromagnet straight-
forwardly extend to the toric code [74] and SMF
variations thereof [62], which are some of the sim-
plest examples of Z2 lattice gauge theories. It will
be interesting to consider other quantum SMF
Hamiltonians constructed from classical systems
that exhibit an emergent gauge symmetry, such
as dimer [75, 76], (spin) ice [77, 78, 79] and vertex
models in general. Simulating these systems in
their low temperature phases typically requires
the use of loop updates, which pose a nontriv-
ial challenge for the partition function ZM intro-
duced in Sec. 4.1, and is beyond the scope of the
present work.
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A Derivation of the expression for M2
in Sec. 4.1
Consider the single-qubit Pauli operators (in-
cluding the identity) P ∈ {I,X, Y, Z}. It is
convenient to label them using a pair of in-
dices a, a′ ∈ {0, 1}, such that Pa,a′ = iaa′

XaZa′

whereby P0,0 = I, P1,0 = X, P0,1 = Z, and
P1,1 = Y . For a system of N qubits, the Pauli
strings can then be written as

Pa,a′ = Pa1,a′
1
Pa2,a′

2
...PaN ,a′

N
, (46)

where a,a′ are n-bit strings. We also denote s =
(−1)a, for later convenience.

Let the group of all N−qubit Pauli strings be
PN . The SRE M2 is defined as:

exp(−M2) = 1
d

∑
P ∈Pn

⟨ψ|P |ψ⟩4 = 1
d

∑
a,a′

⟨ψ|Pa,a′ |ψ⟩4,

(47)

where d = 2N is the Hilbert space dimension.
Substituting |ψ⟩ =

∑
σ cσ|σ⟩, and using the rep-

resentation of Pa,a′ above, we obtain
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exp(−M2) = 1
d

∑
a,a′

∑
σ,σ′

cσc
∗
σ′⟨σ′|Pa,a′ |σ⟩

4

= 1
d

∑
a,a′

∑
σ,σ′

cσc
∗
σ′

N∏
j=1

iaja′
j ⟨σ′

j |XajZa′
j |σj⟩

4

= 1
d

∑
a,a′

∑
σ,σ′
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∗
σ′

N∏
j=1

σ
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j

j ⟨σ′
j |Xaj |σj⟩

4

= 1
d

∑
a,a′

∑
σ,σ′

cσc
∗
σ′

N∏
j=1

σ
a′

j

j ⟨σ′
j |sjσj⟩

4

= 1
d

∑
a,a′

∑
σ

cσc
∗
sσ

N∏
j=1

σ
a′

j

j

4

,

(48)

where sσ represents the tensor product state label where σ′
j = sjσj , ∀ j. Note that the factor

∏
j i

aja′
j

in the second line is independent of σ, σ′, and therefore factors out of the summation and disappears
due to the fourth power (i4 = 1). Expanding the fourth power explicitly, we can further simplify the
expression

exp(−M2) = 1
d

∑
a,a′

∑
σ(1),σ(2),σ(3),σ(4)

 4∏
i=1

cσ(i)c∗
sσ(i)

N∏
j=1

(
σ

(i)
j

)a′
j


= 1
d

∑
a

∑
σ(1),σ(2),σ(3),σ(4)

[ 4∏
i=1

cσ(i)c∗
sσ(i)

] N∏
j=1

∑
a′

j=0,1

( 4∏
i=1

σ
(i)
j

)a′
j


= 1
d

∑
a

∑
σ(1),σ(2),σ(3),σ(4)

cσ(1)cσ(2)cσ(3)cσ(4)c∗
sσ(1)c

∗
sσ(2)c

∗
sσ(3)c

∗
sσ(4)

N∏
j=1

(
1 + σ

(1)
j σ

(2)
j σ

(3)
j σ

(4)
j

) .
(49)

Since the product σ
(1)
j σ

(2)
j σ

(3)
j σ

(4)
j ∈ {−1, 1},

the term in square brackets in the last line above

is nonzero only if σ
(1)
j σ

(2)
j σ

(3)
j σ

(4)
j = 1 for all sites

j. This effectively constraints the fourth layer
σ(4) = σ(1)σ(2)σ(3):

exp(−M2) =
∑

a,σ(1),σ(2),σ(3)

[
cσ(1)cσ(2)cσ(3)cσ(1)σ(2)σ(3)

c∗
sσ(1)c

∗
sσ(2)c

∗
sσ(3)c

∗
sσ(1)σ(2)σ(3)

]
.

(50)

Finally, we can replace the summation over a
for a summation over σ(4) = sσ(1)σ(2)σ(3), to
bring the expression into a more symmetric form,

exp(−M2) =
∑

σ(1),σ(2),σ(3),σ(4)

[
cσ(1)cσ(2)cσ(3)cσ(1)σ(2)σ(3)

c∗
σ(1)σ(2)σ(4)c

∗
σ(1)σ(3)σ(4)c

∗
σ(2)σ(3)σ(4)c

∗
σ(4)

]
.

(51)
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