Kerr-effect-based quantum logical gates in decoherence-free subspace

Fang-Fang Du, Gang Fan, and Xue-Mei Ren

Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The decoherence effect caused by the coupling between the system and the environment undoubtedly leads to the errors in efficient implementations of two (or three) qubit logical gates in quantum information processing. Fortunately, decoherence-free subspace (DFS) introduced can effectively decrease the influence of decoherence effect. In this paper, we propose some schemes for setting up a family of quantum control gates, including controlled-NOT (CNOT), Toffoli, and Fredkin gates for two or three logical qubits by means of cross-Kerr nonlinearities in DFS. These three logical gates require neither complicated quantum computational circuits nor auxiliary photons (or entangled states). The success probabilities of three logical gates are approximate 1 by performing the corresponding classical feed-forward operations based on the different measuring results of the X-homodyne detectors, and their fidelities are robust against the photon loss with the current technology. The proposed logical gates rely on only simple linear-optics elements, available single-qubit operations, and mature measurement methods, making our proposed gates be feasible and efficient in practical applications.

► BibTeX data

► References

[1] Lov K. Grover Michael A. Nielsen, Isaac Chuang. ``Quantum computation and quantum information''. Am. J. Phys. 70, 558–559 (2002).

[2] Mingxia Huo and Ying Li. ``Error-resilient Monte Carlo quantum simulation of imaginary time''. Quantum 7, 916 (2023).

[3] Masahito Hayashi and Yuxiang Yang. ``Efficient algorithms for quantum information bottleneck''. Quantum 7, 936 (2023).

[4] XiuZhe Luo, JinGuo Liu, Pan Zhang, and Lei Wang. ``Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design''. Quantum 4, 341 (2020).

[5] Xin Wang, Zhixin Song, and Youle Wang. ``Variational Quantum Singular Value Decomposition''. Quantum 5, 483 (2021).

[6] G. L. Long and X. S. Liu. ``Theoretically efficient high-capacity quantum-key-distribution scheme''. Phys. Rev. A 65, 032302 (2002).

[7] Wei Zhang, Dong Sheng Ding, Yu Bo Sheng, Lan Zhou, Bao Sen Shi, and Guang Can Guo. ``Quantum secure direct communication with quantum memory''. Phys. Rev. Lett. 118, 220501 (2017).

[8] Feng Zhu, Wei Zhang, Yu Bo Sheng, and Yi Dong Huang. ``Experimental long-distance quantum secure direct communication''. Sci. Bull. 62, 1519–1524 (2017).

[9] Fang-Fang Du, Yong-Ting Liu, Zhen-Rong Shi, Yu-Xi Liang, Jun Tang, and Jun Liu. ``Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link''. Opt. Express 27, 27046–27061 (2019).

[10] Tao Li and Gui Lu Long. ``Quantum secure direct communication based on single-photon bell-state measurement''. New J. Phys. 22, 063017 (2020).

[11] Zixin Huang, Peter P. Rohde, Dominic W. Berry, Pieter Kok, Jonathan P. Dowling, and Cosmo Lupo. ``Photonic quantum data locking''. Quantum 5, 447 (2021).

[12] Chuan Wang. ``Quantum secure direct communication: Intersection of communication and cryptography''. Fundam. Res. 1, 91–92 (2021).

[13] Zhantong Qi, Yuanhua Li, Yiwen Huang, Juan Feng, Yuanlin Zheng, and Xianfeng Chen. ``A 15-user quantum secure direct communication network''. Light Sci. Appl. 10, 183 (2021).

[14] G. L. Long and H. Zhang. ``Drastic increase of channel capacity in quantum secure direct communication using masking''. Sci. Bull. 66, 1267–1269 (2021).

[15] Yu Bo Sheng, Lan Zhou, and Gui Lu Long. ``One-step quantum secure direct communication''. Sci. Bull. 67, 367–374 (2022).

[16] Yue Ru Zhou, Qing Feng Zhang, Fei Fei Liu, Yu Hong Han, Yong Pan Gao, Ling Fan, Ru Zhang, and Cong Cao. ``Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing''. Opt. Express 32, 2786–2803 (2024).

[17] Peng Zhao, Meng Ying Yang, Sha Zhu, Lan Zhou, Wei Zhong, Ming Ming Du, and Yu Bo Sheng. ``Generation of hyperentangled state encoded in three degrees of freedom''. Sci. China Phys. Mech. 66, 100311 (2023).

[18] Yun Feng Guo, Wei Zhong, Lan Zhou, and Yu Bo Sheng. ``Supersensitivity of kerr phase estimation with two-mode squeezed vacuum states''. Phys. Rev. A 105, 032609 (2022).

[19] Cong Cao, Yu-Hong Han, Li Zhang, Ling Fan, Yu-Wen Duan, and Ru Zhang. ``High-fidelity universal quantum controlled gates on electron-spin qubits in quantum dots inside single-sided optical microcavities''. Adv. Quantum Technol. 2, 1900081 (2019).

[20] Cong Cao, Li Zhang, Yu Hong Han, Pan Pan Yin, Ling Fan, Yu Wen Duan, and Ru Zhang. ``Complete and faithful hyperentangled-bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate''. Opt. Express 28, 2857–2872 (2020).

[21] Yi Ming Wu, Gang Fan, and Fang Fang Du. ``Error-detected three-photon hyperparallel toffoli gate with state-selective reflection''. Front. Phys. 17, 51502 (2022).

[22] Xiu Yu Zhang, Cong Cao, Yong Pan Gao, Ling Fan, Ru Zhang, and Chuan Wang. ``Generation and manipulation of phonon lasering in a two-drive cavity magnomechanical system''. New J. Phys. 25, 053039 (2023).

[23] Wen Qiang Liu and Hai Rui Wei. ``Optimal synthesis of the fredkin gate in a multilevel system''. New J. Phys. 22, 063026 (2020).

[24] Wen Qiang Liu, Hai Rui Wei, and Leong Chuan Kwek. ``Low-cost fredkin gate with auxiliary space''. Phys. Rev. Appl. 14, 054057 (2020).

[25] Jaromír Fiurášek. ``Linear optical fredkin gate based on partial-swap gate''. Phys. Rev. A 78, 032317 (2008).

[26] Fabio Dell’Anno, Silvio De Siena, and Fabrizio Illuminati. ``Multiphoton quantum optics and quantum state engineering''. Phys. Rep. 428, 53–168 (2006).

[27] Gui-Long Jiang, Jun-Bin Yuan, Wen-Qiang Liu, and Hai-Rui Wei. ``Efficient and deterministic high-dimensional controlled-swap gates on hybrid linear optical systems with high fidelity''. Phys. Rev. Appl. 21, 014001 (2024).

[28] Kae Nemoto and W. J. Munro. ``Nearly deterministic linear optical controlled-not gate''. Phys. Rev. Lett. 93, 250502 (2004).

[29] Qing Lin and Jian Li. ``Quantum control gates with weak cross-kerr nonlinearity''. Phys. Rev. A 79, 022301 (2009).

[30] Qing Lin and Bing He. ``Single-photon logic gates using minimal resources''. Phys. Rev. A 80, 042310 (2009).

[31] Li Dong, Sen Lin Wang, Cen Cui, Xue Geng, Qing Yang Li, Hai Kuan Dong, Xiao Ming Xiu, and Ya Jun Gao. ``Polarization toffoli gate assisted by multiple degrees of freedom''. Opt. Lett. 43, 4635–4638 (2018).

[32] Fang Fang Du, Gang Fan, Xue Mei Ren, and Ming Ma. ``Deterministic hyperparallel control gates with weak kerr effects''. Adv. Quantum Technol. 6, 2300201 (2023).

[33] Hai Rui Wei and Fu Guo Deng. ``Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities''. Phys. Rev. A 88, 042323 (2013).

[34] Qing Ai, Peng-Bo Li, Wei Qin, Jie-Xing Zhao, C. P. Sun, and Franco Nori. ``The nv metamaterial: Tunable quantum hyperbolic metamaterial using nitrogen vacancy centers in diamond''. Phys. Rev. B 104, 014109 (2021).

[35] Fang Fang Du, Xue Mei Ren, Ming Ma, and Gang Fan. ``Qudit-based high-dimensional controlled-not gate''. Opt. Lett. 49, 1229 (2024).

[36] Hai Rui Wei and Fu Guo Deng. ``Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities''. Opt. Express 22, 593–607 (2014).

[37] Hai Rui Wei, Yan Bei Zheng, Ming Hua, and Guo Fu Xu. ``Robust-fidelity hyperparallel controlled-phase-flip gate through microcavities''. Appl. Phys. Express 13, 082007 (2020).

[38] Yu Hong Han, Cong Cao, Ling Fan, and Ru Zhang. ``Heralded high-fidelity quantum hyper-cnot gates assisted by charged quantum dots inside single-sided optical microcavities''. Opt. Express 29, 20045–20062 (2021).

[39] Guo Zhu Song, Jin Liang Guo, Qian Liu, Hai Rui Wei, and Gui Lu Long. ``Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering''. Phys. Rev. A 104, 012608 (2021).

[40] Tao Li, Adam Miranowicz, Ke Yu Xia, and Franco Nori. ``Resource-efficient analyzer of bell and greenberger-horne-zeilinger states of multiphoton systems''. Phys. Rev. A 100, 052302 (2019).

[41] Guo Zhu Song, Ming Jie Tao, Jing Qiu, and Hai Rui Wei. ``Quantum entanglement creation based on quantum scattering in one-dimensional waveguides''. Phys. Rev. A 106, 032416 (2022).

[42] Fang Fang Du and Zhen Rong Shi. ``Robust hybrid hyper-controlled-not gates assisted by an input-output process of low-q cavities''. Opt. Express 27, 17493–17506 (2019).

[43] Fang Fang Du, Yi Ming Wu, and Gang Fan. ``Refined quantum gates for $\lambda$-type atom-photon hybrid systems''. Adv. Quantum Technol. 6, 2300090 (2023).

[44] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. ``Quantum supremacy using a programmable superconducting processor''. Nature 574, 505–510 (2019).

[45] Lu Ming Duan and Guang Can Guo. ``Preserving coherence in quantum computation by pairing quantum bits''. Phys. Rev. Lett. 79, 1953–1956 (1997).

[46] Hua Wei, Wan Li Yang, Zhi Jiao Deng, and Mang Feng. ``Many-qubit network employing cavity qed in a decoherence-free subspace''. Phys. Rev. A 78, 014304 (2008).

[47] Z. J. Deng, M. Feng, and K. L. Gao. ``Preparation of entangled states of four remote atomic qubits in decoherence-free subspace''. Phys. Rev. A 75, 024302 (2007).

[48] Lei Chen, Xiao Ming Xiu, Li Dong, Shou Zhang, Shi Lei Su, Shu Chen, and Er Jun Liang. ``Conversion of knill–laflamme–milburn entanglement to greenberger–horne–zeilinger entanglement in decoherence-free subspace''. Ann. Phys. 534, 2100365 (2022).

[49] Lei Chen, Xiao Ming Xiu, Li Dong, Nan Nan Liu, Cai Peng Shen, Shou Zhang, Shu Chen, and Shi Lei Su. ``Direct conversion of greenberger–horne–zeilinger state to knill–laflamme–milburn state in decoherence-free subspace''. Opt. Lett. 47, 2262–2265 (2022).

[50] Fang Fang Du, Xue Mei Ren, Zhi Guo Fan, Ling Hui Li, Xin Shan Du, Ming Ma, Gang Fan, and Jing Guo. ``Decoherence-free-subspace-based deterministic conversions for entangled states with heralded robust-fidelity quantum gates''. Opt. Express 32, 1686 (2024).

[51] Yi Fan Qiao, Jia Qiang Chen, Xing Liang Dong, Bo Long Wang, Xin Lei Hei, Cai Peng Shen, Yuan Zhou, and Peng Bo Li. ``Generation of greenberger-horne-zeilinger states for silicon-vacancy centers using a decoherence-free subspace''. Phys. Rev. A 105, 032415 (2022).

[52] Hua Wei, ZhiJiao Deng, XiaoLong Zhang, and Mang Feng. ``Transfer and teleportation of quantum states encoded in decoherence-free subspace''. Phys. Rev. A 76, 054304 (2007).

[53] Alejandro Fonseca. ``High-dimensional quantum teleportation under noisy environments''. Phys. Rev. A 100, 062311 (2019).

[54] Xiao Xiao Hu, Fei Hao Zhang, Yan Song Li, and Gui Lu Long. ``Optimizing quantum gates within decoherence-free subspaces''. Phys. Rev. A 104, 062612 (2021).

[55] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley. ``Universal fault-tolerant quantum computation on decoherence-free subspaces''. Phys. Rev. Lett. 85, 1758–1761 (2000).

[56] Qiong Chen and Mang Feng. ``Quantum-information processing in decoherence-free subspace with low-q cavities''. Phys. Rev. A 82, 052329 (2010).

[57] J. S. Pedernales, F. Cosco, and M. B. Plenio. ``Decoherence-free rotational degrees of freedom for quantum applications''. Phys. Rev. Lett. 125, 090501 (2020).

[58] Arne Hamann, Pavel Sekatski, and Wolfgang Dür. ``Approximate decoherence free subspaces for distributed sensing''. Quantum Sci. Technol. 7, 025003 (2022).

[59] Xin Wen Wang, Deng Yu Zhang, Shi Qing Tang, Li Jun Xie, Zhi Yong Wang, and Le Man Kuang. ``Photonic two-qubit parity gate with tiny cross–kerr nonlinearity''. Phys. Rev. A 85, 052326 (2012).

[60] Io Chun Hoi, Anton F. Kockum, Tauno Palomaki, Thomas M. Stace, Bixuan Fan, Lars Tornberg, Sankar R. Sathyamoorthy, Göran Johansson, Per Delsing, and C. M. Wilson. ``Giant cross–kerr effect for propagating microwaves induced by an artificial atom''. Phys. Rev. Lett. 111, 053601 (2013).

[61] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. ``Linear optical quantum computing with photonic qubits''. Rev. Mod. Phys. 79, 135–174 (2007).

[62] Michael Siomau, Ali A. Kamli, Sergey A. Moiseev, and Barry C. Sanders. ``Entanglement creation with negative index metamaterials''. Phys. Rev. A 85, 050303 (2012).

[63] Hanhee Paik, D. I. Schuster, Lev S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. ``Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture''. Phys. Rev. Lett. 107, 240501 (2011).

[64] Gerhard Kirchmair, Brian Vlastakis, Zaki Leghtas, Simon E. Nigg, Hanhee Paik, Eran Ginossar, Mazyar Mirrahimi, Luigi Frunzio, S. M. Girvin, and R. J. Schoelkopf. ``Observation of quantum state collapse and revival due to the single-photon kerr effect''. Nature 495, 205–209 (2013).

[65] M. D. Lukin and A. Imamoğlu. ``Nonlinear optics and quantum entanglement of ultraslow single photons''. Phys. Rev. Lett. 84, 1419–1422 (2000).

[66] M. Bajcsy, A. S. Zibrov, and M. D. Lukin. ``Stationary pulses of light in an atomic medium''. Nature 426, 638–641 (2003).

[67] Zeng Bin Wang, Karl Peter Marzlin, and Barry C. Sanders. ``Large cross-phase modulation between slow copropagating weak pulses in $^{87}\mathrm{Rb}$''. Phys. Rev. Lett. 97, 063901 (2006).

[68] Yi Hsin Chen, Meng Jung Lee, Weilun Hung, Ying Cheng Chen, Yong Fan Chen, and Ite A. Yu. ``Demonstration of the interaction between two stopped light pulses''. Phys. Rev. Lett. 108, 173603 (2012).

[69] Hyunseok Jeong. ``Quantum computation using weak nonlinearities: Robustness against decoherence''. Phys. Rev. A 73, 052320 (2006).

[70] Amir Feizpour, Xingxing Xing, and Aephraim M. Steinberg. ``Amplifying single-photon nonlinearity using weak measurements''. Phys. Rev. Lett. 107, 133603 (2011).

[71] Seckin Sefi, Vishal Vaibhav, and Peter van Loock. ``Measurement induced optical kerr interaction''. Phys. Rev. A 88, 012303 (2013).

[72] Monika Bartkowiak, Lian Ao Wu, and Adam Miranowicz. ``Quantum circuits for amplification of kerr nonlinearity via quadrature squeezing''. J. Phys. B: At. Mol. Opt. Phys. 47, 145501 (2014).

[73] Holger F Hofmann, Kunihiro Kojima, Shigeki Takeuchi, and Keiji Sasaki. ``Optimized phase switching using a single-atom nonlinearity''. J. Opt. B: Quantum Semiclass. Opt. 5, 218 (2003).

[74] Christoffer Wittmann, Ulrik L. Andersen, Masahiro Takeoka, Denis Sych, and Gerd Leuchs. ``Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector''. Phys. Rev. A 81, 062338 (2010).

[75] Li Dong, Jun Xi Wang, Qing Yang Li, Hong Zhi Shen, Hai Kuan Dong, Xiao Ming Xiu, Ya Jun Gao, and Choo Hiap Oh. ``Nearly deterministic preparation of the perfect $w$ state with weak cross-kerr nonlinearities''. Phys. Rev. A 93, 012308 (2016).

[76] Michael A. Nielsen and Isaac L. Chuang. ``Quantum computation and quantum information''. Cambridge University Press. (2010).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-05-26 02:34:18). On SAO/NASA ADS no data on citing works was found (last attempt 2024-05-26 02:34:19).