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Between NISQ (noisy intermediate scale quan-
tum) approaches without any proof of ro-
bust quantum advantage and fully fault-tolerant
quantum computation, we propose a scheme to
achieve a provable superpolynomial quantum ad-
vantage (under some widely accepted complexity
conjectures) that is robust to noise with mini-
mal error correction requirements. We choose
a class of sampling problems with commuting
gates known as sparse IQP (Instantaneous Quan-
tum Polynomial-time) circuits and we ensure
its fault-tolerant implementation by introducing
the tetrahelix code. This new code is obtained
by merging several tetrahedral codes (3D color
codes) and has the following properties: each
sparse IQP gate admits a transversal implemen-
tation, and the depth of the logical circuit can
be traded for its width. Combining those, we
obtain a depth-1 implementation of any sparse
IQP circuit up to the preparation of encoded
states. This comes at the cost of a space over-
head which is only polylogarithmic in the width
of the original circuit. We furthermore show that
the state preparation can also be performed in
constant depth with a single step of feed-forward
from classical computation. Our construction
thus exhibits a robust superpolynomial quantum
advantage for a sampling problem implemented
on a constant depth circuit with a single round
of measurement and feed-forward.

1 Introduction

Recent progress on quantum hardware suggests that
quantum processors will soon be able to outperform
classical devices for some specific tasks. In the ab-
sence of fault-tolerant quantum computers, sampling
problems [1, 2] appear to be a promising avenue to

demonstrate such a quantum advantage since they
can be solved with reasonably small circuits. In sam-
pling problems, given some family C of quantum cir-
cuits on N quantum registers, the goal is to sam-
ple from the output distribution pC for any circuit
C ∈ C. Well-known examples of circuit families in-
clude linear optical circuits in the case of BosonSam-
pling [3], random quantum circuits [4] and Instanta-
neous Quantum Polynomial-time (IQP) circuits [5].
The original idea behind these proposals was that
quantum processors can in principle sample from the
corresponding distributions, while it is widely be-
lieved that classical computers cannot complete the
same task efficiently. The caveat, however, is that cur-
rent quantum processors are not equipped with fault-
tolerance, and will instead output noisy samples, thus
only solving a noisy version of the initial sampling
problem. Unfortunately, the evidence for the clas-
sical hardness of this problem is thinner, and recent
works have cast some serious doubts on the possibil-
ity of demonstrating a quantum advantage with this
approach [6, 7, 8, 9, 10].

A potential strategy to address the issue of noise
is to focus on problems for which it is possible to
add some level of fault-tolerance, in an intermediate
manner between Noisy Intermediate-Scale Quantum
(NISQ) processors available in the near term [11] and
universal fault-tolerant quantum computation. We list
potential approaches to such robust quantum advan-
tage in Table 1. The fact that IQP circuits are a non-
universal class of circuits make them a good candi-
date in this respect since they are easier to make fault-
tolerant. In particular, they can bypass the limitations
of the Eastin-Knill theorem which states that a uni-
versal gate set cannot be implemented with transver-
sal gates [12]. In this work, we show how to perform
a fault-tolerant version of (sparse) IQP sampling with
a constant-depth quantum circuit and with a space
overhead that is only polylogarithmic in the width
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Figure 1: IQP circuits on N qubits are defined by
an unitary D diagonal in the computational basis with
state preparation and measurements performed in the
Hadamard basis. For sparse IQP circuits, D is a
logarithmic-depth circuit consisting of T and CS-gates.

of the original circuit. We note that [13] addressed
a similar question for a different sampling problem,
but the constant depth was obtained at the price of
a polynomial overhead in terms of qubits because of
differences in the initial computational problem and
of the magic state distillation protocol necessary to its
fault-tolerant implementation. In addition, it neglects
some polynomial-time classical computation neces-
sary for the error correction but during which errors
can accumulate, while we bring down the complexity
of error correction to polylogarithmic-time, making it
less of an issue for future implementations. We note
that similar computation times, for correcting a sur-
face code of logarithmic size for instance, are often
neglected in the literature.

1.1 Sparse IQP

An IQP circuit on N qubits takes a very simple
form (see Figure 1): one applies an N -qubit gate
D, diagonal in the computational basis, to an ini-
tial state |+⟩⊗N and measures the resulting state in
the {|+⟩ , |−⟩} basis [16, 17, 5]. Here, we will fo-
cus on the sparse variant of IQP circuits introduced
in [18]. In this variant, the circuit D is generated ran-
domly from logarithmic-depth circuits with gate set
{T,CS}:

T =
[
1 0
0 eiπ/4

]
, CS =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 . (1)

More precisely, such a circuit on N qubits is gener-
ated in the following way:

• a single-qubit gate T k is applied to every qubit,
with k ∈ {0, . . . , 7} chosen uniformly and inde-
pendently for every qubit,

• for every pair of qubits, a gate CSk with
k ∈ {0, . . . , 3} chosen uniformly at random,
is applied with probability γ logN/N , for some
fixed parameter γ > 0.

Let us denote byDN the family of IQP circuits gener-
ated from the gate set {T,CS}. We associate to each
circuit ofDN its probability of being generated by the
previous random process to define a distribution over
DN . We call an IQP circuit picked from this distri-
bution sparse and in the following whenever we dis-
cuss about a fraction of sparse IQP circuits we mean
a fraction of circuit in the sense of the probability dis-
tribution defined above. We note that all the consid-
ered gates commute, and can therefore be applied in
any order. Given that each qubit will typically be in-
volved in a logarithmic number of 2-qubit gates, we
see that sparse IQP circuits can be implemented by
circuits of average depth Θ(logN) [18]. For each
sparse IQP circuit D, we denote by pD the probabil-
ity distribution on {0, 1}N corresponding to the out-
put distribution of the circuit. In particular, it holds
that

pD(0N ) =
∑

z∈{0,1}N

e
iπ/8

(∑
i<j

wi,jzizj+
∑N

k=1 vkzk

)
,

(2)

for some integer weights wi,j , vk. This quantity cor-
responds to an Ising model partition function, which
is proven to be hard to compute in the worst case
[19, 20] and conjectured to be hard to compute on
average. We formally recall the conjecture from [18]:

Conjecture 1 (Average Case Hardness of Ising
model [18]). Consider the partition function of
the general Ising model,

Z(ω) =
∑

z∈{±1}N

ω
∑

i<j
wi,jzizj+

∑N

k=1 vkzk , (3)

where the exponential sum is over the complete
graph on N vertices, wi,j ∈ R and vk ∈ R are
weights for edge ij and vertex k, and ω ∈ C.

If the weights are chosen uniformly at random
from the set {0, . . . , 7}, then it is #P-hard to ap-
proximate

∣∣∣Z(eiπ/8)
∣∣∣2 up to multiplicative error

1/4 + o(1) for a 1/24 fraction of instances, over
the random choice of weights.
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problem space overhead depth advantage assumptions
factoring [14] polylog poly, adapt. superpoly factoring hard
graph state [13] poly O(1), adapt. superpoly PH = ∞ & ACH
sparse IQP [this work] polylog O(1), adapt. superpoly PH = ∞ & ACH
magic square [15] polylog O(1) quasi-log unconditional

Table 1: Potential candidates for the demonstration of robust quantum advantage. The advantage is relative
between the quantum depth and its minimal classical counterpart. Factoring displays a superpolynomial advantage
provided that factoring is hard classically, but requires the full machinery of fault-tolerance. Graph state sampling
and sparse IQP sampling also give a large advantage, under stronger assumptions (that the Polynomial Hierarchy
does not collapse, and with an Average Case Hardness conjecture) and can be implemented with an adaptive circuit
of constant depth. Finally the magic square problem leads to an unconditional advantage with a non-adaptative
circuit of constant depth, but only offers a logarithmic advantage compared to classical computing.

The sparse IQP problem is as follows: pick a ran-
dom D ∈ DN according to the random process de-
scribed before, and output anN -bit string s according
to a distribution qD such that

∥pD − qD∥TV ≤ δ, (4)

where the total variation distance between two distri-
butions p and q is defined as

∥p− q∥TV := 1
2

∑
s∈{0,1}N

|p(s) − q(s)|.

Assuming Conjecture 1, and the non collapse of
the Polynomial Hierarchy, a generalisation of the
P , NP conjecture widely considered to be true,
Bremner et al proved that there is no efficient classi-
cal algorithm for the sparse IQP problem. More pre-
cisely,

Theorem 1 (Classical hardness of sparse IQP
sampling [18]). Assuming Conjecture 1, there ex-
ists δ > 0 independent of N such that a constant
fraction of sparse IQP circuits cannot be sim-
ulated by a polynomial-time classical algorithm
up to precision δ in total variation distance un-
less the polynomial hierarchy collapses to its third
level.

This theorem states that on average over the choice
of D from the probability distribution over DN de-
fined previously, it is hard to sample classically from
a distribution close to pD. While a fault-tolerant
quantum computer can sample efficiently from such
a distribution, we do not expect that this is the case
for near-term quantum processors. In fact, the initial
proposal [18] partially addressed this issue by consid-
ering a simple noise model where the quantum circuit
is assumed to be ideal, except for some independent

and identically distributed noise added to the classi-
cal value of the final outcomes. Unfortunately, this
model is too naive and a more realistic noise model
should assume that every gate suffers from some con-
stant level of noise. In that case, because the number
of gates is of order N logN in the circuit, it is im-
mediate that noise will accumulate through the cir-
cuit and that the level of noise per qubit cannot be
assumed to be constant, independent of N . Here we
choose to consider a more general error model – the
local stochastic noise model [21] – that includes well-
known error models such as the independent depolar-
izing noise channel but also allows for local corre-
lated errors. In this model described in Section 4, er-
rors are applied at each gate operation and the prob-
ability that faulty locations contain a specific set A
is upper bounded by p|A|. In this work we propose a
physical implementation of sparse IQP circuits that is
robust to this kind of noise, without requiring the full
machinery of fault-tolerant quantum computation.

In order to avoid multiple rounds of costly error
correction, our main strategy is to make the encoded
circuit of constant depth rather than logarithmic. This
is challenging since the target logical circuit has log-
arithmic depth, and we want in addition to make it
fault-tolerant. To this end, we design a family of
quantum error-correcting codes on which sparse IQP
circuits can be implemented in depth 1, meaning that
they are fully parallelized. This is possible thanks to
the commuting nature of sparse IQP gates [22]. In ad-
dition, we prove that the initial state can be encoded
in constant quantum depth by performing stabilizer
measurements. The only part of the process which
is not implemented in constant depth is the final step
of the state preparation: it consists of a single inter-
action with a classical computer that must compute
a correction to apply, which depends on the stabi-
lizer measurement results. In our scheme, this classi-

Accepted in Quantum 2024-03-29, click title to verify. Published under CC-BY 4.0. 3



cal computation requires a polylogarithmic time be-
cause one needs to compute a correction for quantum
patches of logarithmic size. We remark that similar
time complexities are often neglected in the literature
of quantum fault-tolerance [21, 23, 24], and it may in
fact not be a very problematic issue in practice.

Given a circuit D ∈ DN and precision δ > 0, we
construct the circuitCD(δ) that samples from a distri-
bution that is δ-close to pD in total variation distance
after classical post-processing. While the final classi-
cal post-processing is not performed in constant time,
this is not an issue since all the qubits have already
been measured. We discuss this point in Section 4.
The circuit CD(δ) is illustrated in Figure 2 and we
detail its construction in Section 2. For circuits D of
depth Θ(logN), the space overhead is polylogarith-
mic in the precision δ and in number N of logical
qubits. Given that the average depth of sparse IQP
circuits is Θ(logN), a simple Markov inequality fur-
ther implies that the fraction of circuits admiting a
depth larger than α logN decreases as O(1/α). Thus
an arbitrarily large fraction of such circuits benefits
from the above overhead scaling. A practical diffi-
culty that we do not address here is that our scheme
requires long-range interactions. We state our main
result:

Theorem 2 (Constant depth quantum advan-
tage). There exists a universal εth > 0 such that,
for all N ∈ N, D ∈ DN and δ > 0, running a
noisy version of the quantum circuit CD(δ) by in-
serting local stochastic noise of strength ε < εth
after each step, yields samples from pD up to pre-
cision δ (in total variation distance) after classi-
cal post-processing.

Combining this with Theorem 1, our scheme
demonstrates a super-polynomial quantum advantage
for the task of sparse IQP sampling, assuming Con-
jecture 1 and that the Polynomial Hierarchy does not
collapse.

To summarize our contribution, we reduce the
fault-tolerance space overhead required to demon-
strate a superpolynomial quantum advantage with a
constant depth quantum circuit, from a large degree
polynomial in [13] to a polylogarithmic overhead. A
similar reduction is achieved for the classical compu-
tation complexity during the quantum computation.
This comes at the cost of losing the local connectiv-
ity of the scheme.

⋮ ⋮ ⋮

⋮ ⋮
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Figure 2: Our fault-tolerant implementation of a logical
sparse IQP circuit D. The first layers E (stabilizer mea-
surements) and CX (adaptative error correction) pre-
pare a logical state that is fed to a parallel version D∥ of
the sparse IQP circuit D, followed by single-qubit mea-
surements. The overall circuit has constant (quantum)
depth and acts on N × polylog(N) qubits. A single in-
teraction with a classical computer is necessary to com-
pute the correction CX for the initial preparation. A
final classical post-processing (not depicted) then com-
putes a sample from the target distribution pD.

1.2 Main concepts and ideas

1.2.1 The Tetrahelix code for fault-tolerant paral-
lel computation

We recall that we aim to address two issues in order
to get a final circuit of constant depth: we need to
reduce the depth of the logical circuit for sparse IQP
from logarithmic to constant, and we need to find a
fault-tolerant version that remains of constant depth.
We achieve this by combining two ideas.

First we rely on 3D color codes [25, 26] which ad-
mit transversal diagonal gates. More specifically, we
will focus on the tetrahedral code subfamily that ad-
mits a transversal T -gate. Moreover, because these
codes are CSS codes [27, 28], they also admit a
transversal CNOT gate. Combining both, we see that
tetrahedral codes also have transversal CS-gates, as
shown on Figure 3. The second idea is that it is possi-
ble to fully parallelize an IQP circuit by using a GHZ
encoding of each of the input qubits, in order to trade
depth for width of the circuit. This means encoding
a |+⟩ as 1√

2(|0⟩⊗k + |1⟩⊗k) for some k correspond-
ing to the number of gates supposed to be applied
to the qubit, so that k is logarithmic in N . Then
all k gates can be performed simultaneously by act-
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=

Figure 3: Implementation of the controlled-phase from
controlled-not, T and T † gates, all of those have
transversal implementation on a tetrahedral color code.
Switching T and T † gives CS†

ing on a different qubit within the GHZ state. This
is described in Figure 4. This new circuit has two
shortcomings. First, despite being of constant depth,
the logical phase-flip rate increases linearly with the
size of the state since the measurement results of the
k qubits within a GHZ state need to be aggregated.
Second the preparation of bare GHZ states cannot be
done fault-tolerantly in constant depth.

To solve these issues, we define a new stabilizer
code – the tetrahelix code – combining the two ideas
(3D color code for transversal gates and GHZ states
for parallel implementation). We will detail the con-
struction in Section 2, and only briefly explain its
main properties here. The encoding is parameterized
by two integers, k and L, accounting respectively for
the parallelization capacity and the distance of the
code. A k-tetrahelix code of distance L is defined
by merging (in lattice surgery terms [29, 30, 31]) k
tetrahedral codes of distance L along a 1-dimensional
chain. Remarkably, the resulting [[Θ(kL3), 1,Θ(L)]]
tetrahelix code admits a depth-1 implementation of
a logical sparse IQP circuit of depth k. This cor-
responds to a linear trade-off between the depth of
the initial logical circuit and the number of physical
qubits:

Lemma 1. Any sparse IQP circuit of depth k on
N qubits can be implemented in depth 1 on N
logical qubits encoded in k-tetrahelix codes.

The constant depth of the circuit, together with
the arbitrarily large distance L, ensures the fault-
tolerance of the circuit up to a final classical post-
processing to decode the results of the qubit measure-
ments. We discuss in Section 4 how to achieve this
by exploiting efficient decoders of color codes. The
complexity of this step remains negligible compared
to the super-polynomial quantum advantage of the
overall circuit. The remaining challenge concerns the
initial preparation of the encoded states of the tetra-
helix code. One needs to ensure that such a prepa-
ration can also be done in constant depth and in a
fault-tolerant manner.

|0000⟩+|1111⟩√
2

|0000⟩+|1111⟩√
2

|0000⟩+|1111⟩√
2

X

X

X

X

X

X

X

X

X

X

X

X

|+⟩

|+⟩

|+⟩

X

X

X

(a)

(b)

Figure 4: Each step i ∈ {1, ..., k} of a circuit of depth
k is simultaneously applied on the ith physical qubit of
all the GHZ states. The logical circuit (a) of depth 4
can be compiled in depth 1 up to classical decoding and
state preparation by starting from GHZ state of size 4
and implementing circuit (b). The × blocks correspond
to the classical decoding circuits.
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1.2.2 Single-shot state preparation

A logical state of a quantum stabilizer code can al-
ways be prepared starting from a simple product state
by measuring stabilizers and applying the appropriate
correction to set the state in the code space. Such a
scheme is however sensitive to measurement errors
and fault-tolerance is usually achieved by repeating
measurements. We circumvent this shortcoming by
establishing the single-shot preparation of logical |+⟩
states for the tetrahelix code.

In general, error correction based on erroneous
measurements can induce large-weight physical er-
rors whose accumulation could later translate into
logical errors. In order to ensure fault-tolerance,
one can prove that building on the particular struc-
ture of syndromes, the induced residual errors can
be kept local with high probability. Such errors are
then dealt with by the final classical decoding step.
This property corresponds to single-shot decoding in-
troduced by Bombín in [32]. Throughout this pa-
per, |x⟩ denotes the logical encoded state |x⟩ for
x ∈ {0, 1,+,−}.

Lemma 2. The tetrahelix code admits a single-
shot preparation of |+⟩ / |−⟩ logical states, up to
X stabilizers of the tetrahedral code.

Note that, as argued in subsection 3.2, the X sta-
bilizers need not be applied since they commute with
sparse IQP encoded gates and hence can be propa-
gated to the end of the circuit where they leave the
final measurement unchanged.

The proof of the single-shot property of the k-
tetrahelix code is detailed in Section 3 and relies
on (i) the single-shot preparation of Hadamard ba-
sis states for 3D gauge color codes [32, 33], and (ii)
the fact that the measurement errors occurring during
code merging are detectable with the global stabilizer
measurement outcomes.

We furthermore argue that the associated decod-
ing can be performed on a classical computer in
polylogarithmic-time with respect to N in Section 3.
We consider it to be instantaneous to derive Theo-
rem 2.

1.3 Sketch of proof of Theorem 2

The rest of the paper is devoted to establish Theo-
rem 2. In Section 2, we first briefly review tetrahe-
dral codes, from the 3D color code family. Next, we
define the tetrahelix code family obtained by merg-
ing tetrahedral codes. We prove that the k-tetrahelix

code reduces the depth k of a sparse IQP circuit to
depth 1 (Lemma 1). In Section 3, we prove that the
merging failure probability between two tetrahedral
codes of distance L is exponentially suppressed in
L and hence that k-tetrahelix encoded states in the
Hadamard basis can be faithfully prepared in constant
quantum depth (Lemma 2). In Section 4, we prove
the fault-tolerance of the scheme. More precisely, we
prove the existence of a non-zero error threshold in-
dependent of k, below which we arbitrarily suppress
logical errors by increasing L for any encoded sparse
IQP circuit.

2 Tetrahelix code

2.1 Overview of tetrahedral codes

Color codes are a family of topological codes intro-
duced by Bombín and Martin-Delgado [34, 25, 26].
Their main feature is that they admit a transversal
implementation of single-qubit phase gates, includ-
ing the T -gate when the codes are 3-dimensional. In
the following we focus on the subfamily of tetrahe-
dral codes that encode a single qubit. Tetrahedral
codes are defined on 3-dimensional color complexes,
that we will call 3-colexes as in [35], of a tetrahedral
shape as described in Figure 5 with the vertices corre-
sponding to the data qubits. 3-Colexes are 3D lattices
with the properties that (i) each cell is assigned one of
four colors such that no two adjacent cells are of the
same color; (ii) three colors appear on each external
facet of the complex, and such a facet is associated
with the missing color (in Figure 5 these facets cor-
respond to the four triangular external boundaries of
the tetrahedron); (iii) each vertex is incident to a cell
or facet of all possible colors.

In the following we denote by L ∈ N the number
of vertices on the edges of the lattice, and will corre-
spond to the code distance, as explained below. The
construction of a tetrahedral 3-colex is not unique for
a given L but if one relies on tessellations of uniform
density, then the resulting codes each encode a single
logical qubit in m = Θ(L3) physical qubits, and all
display the properties that we will require.

Let us recall the formal definition of a tetrahedral
code on m qubits, which will serve as a building
block for the tetrahelix code. We start from a tetra-
hedral 3-colex with set of vertices V , faces F and
cells C. Physical qubits are associates with vertices,
so m = |V|. The tetrahedral code associated to this
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Figure 5: (a) The [15,1,3] Reed-Muller code is the small-
est example of tetrahedral codes. Here qubits are on
vertices and X and Z logical operators can be chosen
respectively on a face and an edge of the tetrahedron.
(b) X stabilizers are supported on cells (elements of C)
and Z stabilizers on faces (elements of F).

colex is a CSS code with stabilizers given by:

S1
X = ⟨X(c), c ∈ C⟩, (5)

S1
Z = ⟨Z(f), f ∈ F⟩. (6)

Here, each cell c or face f is identified as a binary
vector of length m with ones at the locations cor-
responding to the associated vertices, and we define
X(a) := ⊗m

i=1X
ai
i for a ∈ {0, 1}m. (and similarly

for Z(a)). In words, the X stabilizer associated to a
3-cell c is the product of Pauli X operators on all the
vertices in the boundary of c. In particular, X stabi-
lizers are associated by the 3-cells of the colex and Z
stabilizers are associated with the faces.

The fundamental property of tetrahedral color
codes is that for each code of the family there exists
a partition of vertices V = V+ ∪ V− such that apply-
ing the gate T on V+ and T † on V− implements an
encoded logical T -gate [33]:

T (V+)T †(V−) |x⟩ = T |x⟩ . (7)

Similarly to encoded states |x⟩ denoted by |x⟩, we
denote by U the encoded logical unitary U . To-
gether with the existence of transversal controlled-not
gates, this implies the transversal implementation of
the CS-gate (see Figure 3):

CS(V+)CS†(V−) |x⟩ |y⟩ = CS |x⟩ |y⟩ , (8)

where CS(V+) denotes the transversal application
of CS between the analogous sets V+ of two code
blocks. X and Z logical operators are respectively
surface-like and string-like and the X distance and Z
distance scale as Θ(L2) and Θ(L), respectively.

2.2 Construction of the tetrahelix code

The transversality of the sparse IQP gate set paves
the way towards the fault-tolerant implementation of
such circuits. This would however require repeated
error correction cycles at each circuit step, that is a
logarithmic number of times. Concatenating a tetra-
hedral code with a repetition code gives a family of
codes that present the desired parallelization prop-
erty. Unfortunately, it does not meet the criteria
of constant depth preparation for the initial encoded
states. We now define a new code, the tetrahelix code,
that displays both properties: (i) depth-1 implemen-
tation of a sparse IQP circuit, (ii) constant-depth en-
coded state preparation in the Hadamard basis.

As briefly mentioned in subsection 1.2.1, a tetrahe-
lix code is obtained by merging tetrahedral codes in
lattice surgery terms [29, 30, 36]. Here we detail the
construction starting by merging two such codes of
distance L, with respective sets of vertices V1 and V2
as described in Figure 6(a). We consider two codes
which are exact mirror images of one another and we
denote by φ : V1 → V2 the bijection between the two
sets of vertices. An external triangular facet, B1 ⊂
V1, together with its mirror image, B2 = φ(B1),
are chosen and every vertex is paired with the corre-
sponding one on the other code. This pairing defines
a set of pairs P1,2 := {(v, φ(v))|∀v ∈ B1}.

The merge operation consists in fusing the X sta-
bilizers on the boundaries and adding new Z stabi-
lizers of weight 2 associated to the paired qubits in
P1,2. More precisely, the Z stabilizers are defined as
⟨Z(f), f ∈ F2⟩ with

F2 := F1 ∪ F2 ∪ P1,2. (9)

Similarly, we define C2 the union of merged stabiliz-
ers and unmerged ones:

C2 := C∗
1 ∪ C∗

2 ∪ M1,2 (10)

with
C∗

i := {C ∈ Ci|C ∩Bi = ∅}, (11)

and

M1,2 := {C1 ∪ C2|C1 ∈ C1, C2 ∈ C2,

φ(C1 ∩B1) = C2 ∩B2 , ∅}.
(12)

X stabilizers are then defined as ⟨X(c), c ∈ C2⟩ cor-
responding to non-adjacent cells of each code and
fused adjacent ones (paired according to their color
as in Figure 6(a)). This construction ensures that X
stabilizers commute with every Z stabilizer including
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the newly defined Z stabilizers with support on P1,2.
We denote by Xi and Zi the logical operators of the
initial tetrahedral codes from which we define the
logical operators of the new code. The 2-tetrahelix
code encodes a single logical qubit for which the log-
ical operators can be taken of the form Z = Z1 (or
Z2) and X = X1X2 with X2 chosen so that its sup-
port intersects on the same subset of P1,2 than X1 (to
commute with the associated Z stabilizers).

Merging additional tetrahedra does not fundamen-
tally change the analysis. Tetrahedra can be aligned
in the shape of Figure 6(c) to form a chain of length
k ∈ N so that each extremal vertex is shared between
at most four tetrahedra. This ensures that at most four
X stabilizers are fused together. This linear packing
of regular tetrahedra is known as a Boerdijk-Coxeter
helix or tetrahelix [37, 38] which motivates the name
of the code.

Denoting by Vi the set of vertices of the ith tetra-
hedral color code, we get a partition of the set of all
vertices V = ∪k

i=1Vi. With Pi,i+1 denoting new Z
stabilizers between adjacent tetrahedra i and i + 1,
Fk and Ck are defined analogously as F2, and C2 to
ensure stabilizer commutation:

Fk :=
k−1⋃
i=1

(Fi ∪ Pi,i+1) ∪ Fk, (13)

Ck :=
k−1⋃
i=1

(C∗
i ∪ Mi,i+1) ∪ C∗

k , (14)

where here C∗
i and Mi,i+1 are defined recursively so

that stabilizers can be merged across several tetrahe-
dra (up to three on edges and up to four on summits).
We define the k-tetrahelix code that encodes a single
logical qubit in Θ(kL3) physical qubits from its set
of stabilizers:

Sk
X := ⟨X(c), c ∈ Ck⟩, (15)

Sk
Z := ⟨X(f), f ∈ Fk⟩. (16)

The logical Z operator can be chosen as any of
the logical Zi operators of the composing tetrahedral
codes, while the X logical operator is a product of
Xi operators recursively chosen so thatXi andXi+1
intersect with the same subset of Pi,i+1.

2.3 Code distance

The X and Z distances of a code correspond to the
minimal weights of X and Z logical operators. We

denote by dk
X and dk

Z the X and Z distances of the
k-tetrahelix code and prove that:

dk
Z = Θ(L) and dk

X = Θ(kL2). (17)

We prove the result for the 2-tetrahelix code by relat-
ing logical operators of the tetrahelix code to those of
the initial tetrahedral codes, the result generalizes to
arbitrary k-tetrahelix code by recursion. In this sub-
section we denote by d1

X = Θ(L2) and d1
Z = Θ(L)

the X and Z distances of a tetrahedral code of edge
length L and number of qubits m = Θ(L3).

Let us consider a logical operator Z of the 2-
tetrahelix code. We index the vertices of the two
composing tetrahedra in a symmetric manner with re-
spect to the paired facets. The logical operator Z is
of the form of the tensor product of Pauli Z oper-
ators on each tetrahedron Z = Z(µ) ⊗ Z(ν), with
µ, ν ∈ {0, 1}m. We will show that up to multiplica-
tion by Z stabilizers we can transfer Z(µ) ⊗ Z(ν) to
Z(µ+ ν) ⊗ 1. This means that we transfer the phys-
ical Pauli Z operators from the second tetrahedron to
the symmetric ones in the first one. We can then con-
clude by noticing that Z(µ + ν) is a logical operator
of the first tetrahedron and hence of weight larger or
equal to d1

Z . We thus have

|Z| = |Z(µ)⊗Z(ν)| ≥ |Z(µ+ν)⊗1| ≥ d1
Z , (18)

which concludes the argument.
Indeed, since an arbitrary logical Z1 operator of

the first tetrahedron is also a logical operator of the
tetrahelix code, there exists a Z stabilizer RZ such
that Z = Z1 ×RZ . Such a stabilizer is necessarily of
the form:

RZ = R1
Z ×R2

Z ×R1,2
Z , (19)

where R1
Z is a Z stabilizer of tetrahedron 1, R2

Z of
tetrahedron 2, and R1,2

Z is a product of Z-stabilizers
defined at the boundary (paired qubits in P1,2). It
is clear that, multiplying Z by R2

Z , maps the sup-
port from the bulk of the second tetrahedron to the
paired facet of this tetrahedron. Next, we completely
transfer this support to the facet of first tetrahedron
by multiplying by R1,2

Z . At this point, the support of
the logical operator is entirely contained in the first
tetrahedron. Now we apply the symmetric version of
R2

Z defined on the first tetrahedron. This maps the
original logical operator to Z(µ+ ν) ⊗ 1.

The case of the X distance is straightforward as
the product of X1 and X2 logical operators whose
supports intersect with the same pairs of P1,2 yields
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. . .

+1
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Figure 6: (a) Adjacent tetrahedra (here for L = 3) are merged by measuring pairs of qubits from P1,2 that become
Z stabilizers of the new code. The colors of the second tetrahedron are chosen by convention so that merged X
stabilizers are of the same color. (b) Every new Z stabilizer generator must be set to 1 to project the state in the
code space. The new pair stabilizers value are not independent since they are all related to Z stabilizers of the two
tetrahedral codes on the face on which the merge is performed. In particular the product of four pairs overlapping
the same Z stabilizer (of support in F1) is equal to 1. (c) Merging additional tetrahedra with each other enables to
form a chain of tetrahedra of length k. The optimal chain has the shape of an helix and corresponds to minimizing
the number of merged X stabilizers (of support in Ck) that is equal to four in this packing.

a logical operator of the 2-tetrahelix code, and this
product form is stable upon multiplication by X sta-
bilizers. This stability is a direct consequence of the
fact that the restriction of a tetrahelix X stabilizer to
a single tetrahedron is a stabilizer of the tetrahedral
code. Merging an additional tetrahedral code hence
increases the X distance by d1

X :

|X| = |X1X2| ≥ 2d1
X . (20)

The same discussion between a (k − 1)-tetrahelix
code and a tetrahedral code generalises the proof by
recursion to k-tetrahelix code for arbitrary k. Recall-
ing that d1

Z = Θ(L) and d1
X = Θ(L2), we obtain the

bounds of (17).

2.4 Parallel computation

We turn to the properties of the code concerning par-
allel computation. We establish Lemma 1 by showing
that the encoded T -gate can be implemented in depth
1 on a single tetrahedron of the chain. A tetrahedral

code on m physical qubits is a CSS code and logical
states can therefore be written in the form

|x1⟩ = 1√
|S1|

∑
s1∈S1

|s1 + x1L1⟩ , (21)

with the addition taken modulo 2 and x1 ∈ {0, 1}
and S1 ⊂ {0, 1}m such that for s1 ∈ S1 we have
X(s1) ∈ S1

X . Similarly, L1 ∈ {0, 1}m represents an
arbitrary X1 logical operator. The transversal imple-
mentation of the T -gate T (V+)T †(V−) = T on the
tetrahedral code implies that each codeword gains the
same phase from the application of T (V+)T †(V−):

T (V+)T †(V−) |s1 + x1L1⟩ = e
iπ
4 |x1| |s1 + x1L1⟩ .

(22)
The logical computational states of the k-tetrahelix
code are given by

|x⟩ = 1√
|Sk|

∑
s∈Sk

|s+ xL⟩ , (23)
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for x ∈ {0, 1}. Here Sk ⊂ {0, 1}k×m is such that for
s ∈ Sk, we have X(s) ∈ Sk

X and L is the vector as-
sociated to an arbitrary logical X operator. For each
X stabilizer, s ∈ Sk is a concatenation of k vectors
si ∈ S1, i ∈ {1, . . . , k}: s = [s1, ..., sk]. Similarly,
for the logical operator, the binary vector L is a con-
catenation of vectors Li each representing a logical
Xi operator of the ith tetrahedral code. Focusing on
tetrahedron i0, and up to qubit re-ordering, we can
thus write

|x⟩ = 1√
|Sk|

∑
si0 ∈S1

|si0 + xLi0⟩ ⊗ |ψ(si0 , x)⟩ .

(24)
The terms |ψ(si0 , x)⟩ depend on si0 because of cor-
relations between codewords restricted to different
tetrahedra induced by overlapping X stabilizers, but
this does not impact our argument. Taking V+

i0
and

V−
i0

as in (7), we have

T (V+
i0

)T †(V−
i0

) |si0 + xLi0⟩ = e
iπ
4 |x| |si0 + xLi0⟩ .

(25)
Combining (24) and (25) directly implies:

T (V+
i0

)T †(V−
i0

) |x⟩ = T |x⟩ . (26)

To extend the arguments to the CS-gate, we would
need to use the gadget of Figure 3. Notice that while
the T and T †-gates are applied on a single tetra-
hedron, the CNOT gates would need to be applied
on all physical qubits (CSS property). However, as
these CNOT gates come in pairs, they cancel each
other outside the tetrahedron where the T -gates are
applied. Thus, the CS-gate can also be applied be-
tween two arbitrary tetrahedral blocks of two tetrahe-
lix codes:

CS(V+
i0

)CS†(V−
i0

) |x⟩ |y⟩ = CS |x⟩ |y⟩ . (27)

This implies that the k-tetrahelix code can implement
in a single step an encoded T or a CS-gate on each
tetrahedral block of the code. Therefore, we obtain a
depth-1 parallel implementation of a depth-k sparse
IQP circuit up to state preparation. This finishes the
proof of Lemma 1. In the next section we prove that
encoded states in the Hadamard basis can be prepared
fault-tolerantly in constant quantum depth.

3 Constant-depth preparation of en-
coded states
The encoded states of the k-tetrahelix code in the
Hadamard basis can be prepared by merging k as-
sociated encoded states of the composing tetrahedral

blocks. In this section, we show that both the steps of
preparing encoded tetrahedral states and their merg-
ing can be done in constant quantum depth.

3.1 Single-shot decoding of tetrahedral code

Since the state |+⟩⊗m is stabilized by all X stabiliz-
ers and by the X logical operator of a CSS quantum
code, the projection over the logical |+⟩ can ideally
be done by measuring the Z stabilizers and a sin-
gle step of Pauli X corrections. Measurement errors
however usually prevent such reliable encoded state
preparation in constant depth. Indeed, measurement
errors induce residual data errors after Pauli correc-
tions, which usually calls for many repeated measure-
ments before such a correction is applied. Repeating
measurements gives an extra dimension to the error
syndrome where ancilla and data errors can be sepa-
rated by the decoding algorithm which infers an error
pattern close to the most likely one and hence an ap-
propriate correction.

An alternative approach is to build on the structure
of the error syndrome of some codes to ensure that a
single round of local measurements is sufficient to en-
sure the locality of the residual errors with high prob-
ability. This strategy was first proposed by Bombín in
[32] for 3D gauge color codes and is known as single-
shot decoding which is a property of a quantum error-
correcting code in conjunction with its decoder. In
the case of 3D color codes, Z stabilizers on faces
correspond to Z gauge operators of 3D gauge color
codes. This ensures the single-shot decoding prop-
erty up to a classical computation of polynomial com-
plexity in the code size. Furthermore, the topological
nature of the code implies that the measurements can
be parallelized to a constant quantum depth. In con-
clusion, we have a constant depth preparation of en-
coded states in the Hadamard basis for the tetrahedral
code up to local residual errors.

3.2 Single-shot merging of tetrahedral states

Merging two tetrahedral codes of distance L into a
2-tetrahelix code is described in Figure 6(a-b). Pairs
of qubits from P1,2 are measured over the faces on
which tetrahedral codes are merged and a correction
is applied depending on the measurement outcomes.
Since facets of a tetrahedral code have the structure
of a triangular code (2D color code) of size L, in the
absence of errors, measurements yield a binary code-
word w of the corresponding classical code. This
codeword can be written as the sum of an X stabi-
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lizer and an X logical operator of the 2D code with
the same formalism used in Section 2.4 for the 3D
code.

The appropriate correction then can be seen to be
a 3D color code codeword whose restriction to the
triangular code vertices gives w. This can be ob-
tained by determining first the decomposition of w
into facets of the triangular code (X stabilizer gener-
ators) and the logical operator X over the entire tri-
angle (so that it is a logical operator of both the 2D
and the 3D codes) before mapping the facets to cells
to get a 3D code codeword

w = s2D + xL2D

→ s3D + xL3D = corr(w)
(28)

for x ∈ {0, 1}. Importantly, an X stabilizer of the
tetrahedral code commutes with encoded T and CS-
gates on the tetrahelix code since it does not change
the structure of the codewords described in subsec-
tion 2.4. Since the circuit ends withX measurements
this means that it is sufficient for our purpose to com-
pute x and only apply the logical part of the correc-
tion. In other words, we only need to prepare tetrahe-
lix encoded states up to tetrahedral codes X stabiliz-
ers.

If the two tetrahedral codes are not perfectly in
their code space, or in the case of measurement er-
rors, the measurement results deviate from w:

we = w + er + em. (29)

Here, er accounts for the residual errors of the
tetrahedral states preparation, and em stands for mea-
surement errors. Because the preparation of en-
coded states in the Hadamard basis for the tetrahe-
dral code is single-shot, the resulting errors follow a
local stochastic noise model. This is also the case for
measurement errors and hence decoding the triangu-
lar code yields the correct value of Z1Z2 with proba-
bility exponentially close to 1 in L. Z1Z2 is then set
to +1 by applying or not X1.

A k-tetrahelix code encoded state can then be pre-
pared in a similar manner simply by repeating the
merging operation with additional tetrahedral codes,
while always applying the logical correction on the
tetrahedron for example on the left of the merge. This
scheme can be seen as similar to preparing a GHZ
state of size k from parity measurements and logi-
cal correction, with the difference that here, measure-
ment errors are exponentially suppressed, thus giving
Lemma 2.

Efficient decoding algorithms exist for 2D color
codes [39, 40] and 3D color codes [32, 41] and are
single-shot for the 3D case. These algorithms have
a complexity polynomial in the code size. The dif-
ferent tetrahedral encoded states can be prepared in
parallel. Parallel merge measurements followed by it-
erative computation of the associated correction then
give a preparation of tetrahelix encoded states with
polynomial in L and proportional to k classical com-
putation. We prove in Section 4 that we need a poly-
logarithmic number of qubits per code block which
hence gives a polylogarithmic-time classical compu-
tation.

4 Application to sparse IQP circuits

In this section, we apply the results of the two pre-
vious sections to demonstrate the main result of this
paper stated in Theorem 2. We start by presenting the
error model. Next, we show that the encoding of the
circuit of Figure 2 is fault-tolerant by proving the ex-
istence of an error threshold. Finally, we provide an
estimation of the space overhead of the scheme.

4.1 Error model

The coupling of the quantum system with the envi-
ronment generates noise that can later induce errors
in the computation. We use the local stochastic quan-
tum noise model from [21] where the set of faulty lo-
cations is a random variable of a discrete space-time
and local correlations are allowed. No assumption
is made on a particular type of error operator. This
makes the model general enough to cover a wide class
of applications. In particular this captures commonly
studied noise channels such as depolarizing and de-
phasing noise, or amplitude damping.

A noise model of parameter ε that satisfies the fol-
lowing two properties is said to be locally stochastic:
(i) the faults are confined to a random set of space-
time locations A ⊂ V with probability p(A) and (ii)
the probability that a set of faulty locations contains a
specific set of A locations is upper bounded by ε|A|.∑

A′⊇A
p(A′) ≤ ε|A|. (30)

Final measurements are performed in the Hadamard
basis and hence at the end of the circuit only Z-type
errors induce errors on the classical output. Z er-
rors can either be environmentally induced or gen-
erated during the propagation of X-type errors in the
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circuit. X errors can also arise due to the coupling
with the environment but also from incorrect prepa-
ration of encoded states (recall that the preparation
only includes X correction). Local stochastic errors
propagate as such through the constant depth circuit
but residual errors after encoded states preparation
are not necessarily local. We showed in Section 3
that their non-local representatives admit exponen-
tially low probabilities which implies that the correc-
tion of local stochastic errors by the final decoding is
sufficient to exponentially suppress the logical error
rate.

More formally, residual errors after preparation of
tetrahedral encoded states are characterised in [32]
such that (i) correctable physical errors follow a lo-
cal stochastic noise model N ε

T,loc, (ii) non-correctable
physical errors (that is to say errors whose correc-
tion attempt induces a logical error) are exponentially
suppressed, we denote by N ε̃1

T,nc the corresponding er-
ror channel. Using a similar notation we call N ε̃2

M,nc
the channel associated to logical errors due to unsuc-
cessful merging, with probability exponentially sup-
pressed in the code distance.

The encoded states preparation error channel then
writes with ε̃1 and ε̃2 exponentially suppressed in ε:

N ε
prep = N ε

T,loc ◦ N ε̃1
T,nc ◦ N ε̃2

M,nc. (31)

The two non-correctable terms contribute to the final
logical error rate but are exponentially rare. In the
following subsections we prove that low enough local
stochastic noise is corrected by the tetrahelix code.
Post-processing of final single qubit measurements in
the form of the tetrahelix code decoding then yields
the value of the logical measurement. In the fol-
lowing we analyze error configurations and describe
an efficient decoder from 2D and 3D color code de-
coders.

4.2 Existence of a good decoder

In the 3D color code, the logical Z operator cor-
responds to strings of Pauli Z connecting the four
boundaries of different colors. An extremal vertex
of the tetrahedron belongs to three boundaries and
a string connecting this vertex to the opposite face
of the remaining color hence yields an example of a
Z logical operator. Logical errors arise when more
than half of the respective phases of any such path
are flipped. Errors on the tetrahelix code have a sim-
ilar origin except that error strings can jump between
tetrahedra to connect boundaries of different colors as

described in Figure 7. This means that we cannot in-
dividually decode tetrahedra and that we first need to
split (in lattice surgery language) the chain to retrieve
tetrahedral codes.

This can be performed in software after final
single-qubit X measurements by reconstructing the
value of X stabilizers of the tetrahedral codes. Con-
sidering the example of the 2-tetrahelix code for sim-
plicity, X stabilizers at the interface between the two
tetrahedra were merged and hence, taken individu-
ally, do not stabilize the tetrahelix code. This means
that they will initially not necessarily be in their +1
eigenspace even without errors. This can be fixed by
applying Z stabilizers from P1,2 to set them to +1
while acting trivially on the code space of the tetra-
helix code. This can be seen as preparing two trian-
gular codes (2D color codes) logical states on the two
facets by applying a Pauli operator of the form

Z(σ) ⊗ Z(φ(σ)), (32)

with σ ⊂ B1 a set of vertices from the triangular
facet on which the merge was performed, and φ the
bijection between the two tetrahedra sets of vertices
defined in Section 2. Note here that any potential log-
ical error applied to one tetrahedron would also be
applied to the second one.

In reality, errors arising on the support of tetrahe-
dral codesX stabilizers prevents all such stabilizer to
be set back to +1 by applying Z stabilizers from P1,2.
Since in this scheme we aim at correcting errors at
the next step during individual tetrahedral codes de-
coding we only need here to approach the tetrahedral
code spaces. This can be done by minimizing the
number of tetrahedral code X stabilizers with value
-1 in the chain. For the k-tetrahelix code we start by
X stabilizers merged between more than two tetra-
hedra, that is to say on tetrahedra vertices and edges,
followed by those on the bulk of the facet on which
tetrahedral codes are merged.

Once each tetrahedron is back to the tetrahedral
code space (up to physical errors) it suffices to in-
dividually decode each code and multiply the logical
values of theXi’s to recover the desired logical infor-
mation (and hence pairs of tetrahedral codes logical
errors possibly introduced at the splitting step cancel
each other). For a low enough error rate we thus ex-
pect the logical error rate ε after such decoding to be
proportional to the number of tetrahedra in the chain
and to the logical error rate of a single tetrahedral
code:

ε = O
(
kL3

)
(ε/εth)O(L). (33)
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Figure 7: Representation of Z logical error configura-
tions. Error strings are no longer restricted to a single
tetrahedron (blue) but can also connect neighbouring
tetrahedra (red). In the tetrahelix stacking, error strings
can jump up to two tetrahedra at once.

Here we have only used 2D and 3D color codes de-
coders and therefore the existence of efficient 2D and
3D color code decoders [39, 42, 40, 41] implies the
existence of an efficient decoder for the tetrahelix
code. The formal definition and analysis of such a de-
coder under the general noise model considered here
is beyond the scope of this paper and in the following
we will prove Theorem 2 by relying on existing re-
sults on quantum LDPC codes. To do so we show that
the code admits a non-zero threshold independent of
k so that for low enough noise the logical error can
be made arbitrarily low by increasing L.

4.3 Existence of a threshold for minimum
weight decoder and local stochastic noise

The tetrahelix code is a quantum LDPC code since
its generators have a bounded weight and each qubit
is involved in a bounded number of generators. It
is known that a family of [[ñ, k̃, d̃]] quantum LDPC
codes, with ñ and d̃ scaling to infinity, and experi-
encing local stochastic noise of parameter ε, admits
a non-zero error threshold εth [21]. More precisely,
below this threshold the logical error rate is exponen-
tially suppressed as

ε = O
(
ñ(ε/εth)d̃/2

)
, (34)

using the minimum weight decoder.
In the case of tetrahelix code, k is in general an in-

dependent parameter from L the distance of the code.
Applying directly the results of [21] would lead to
a threshold dependent on the value of k. We take
care of this issue by imposing k = O(L). Thus,
the associated family of k-tetrahelix codes admits a
number of physical qubits ñ = O

(
L4)

, and such
a [[ñ = Θ(kL3), k̃ = 1, d̃ = Θ(L)]] code admits
a non-zero threshold εth with L scaling to infinity.
Note that, while the minimum weight decoder is not

efficient in general, we expect the efficient decoder of
the previous subsection to present similar error sup-
pression property.

In the following subsection, we show that impos-
ing k = O(L) is compatible with the desired paral-
lelization and fault-tolerance properties.

4.4 Proof of Theorem 2

When implementing sparse IQP circuits on N qubits
on k-tetrahelix codes, k, L and N are related through
three relations. First, as discussed in the previous
subsection, to ensure the existence of threshold in-
dependent of k, we need to have

k = O(L). (35)

Second, an arbitrarily large fraction of sparse IQP
circuits on N qubits are of depth Θ(logN) and can
hence be implemented on k-tetrahelix codes with:

k = Θ(logN), (36)

Third, another relation between L andN results from
the required code size to reach the target precision δ
of the sparse IQP problem. A logical sparse IQP cir-
cuitD is implemented with a k-tetrahelix code by the
circuitCD. After the final decoding, one obtains sam-
ples from a distribution pD,ε. For a constant logical
error rate ε per logical qubit, the union bound gives
an upper bound to the distance between the noisy and
the ideal probability distributions with respect to N :

∥pD − pD,ε∥TV ≤ O(Nε). (37)

Keeping the noisy probability distribution δ-close to
the ideal distribution thus imposes a logical error rate
ε at most O(δ/N). Logical errors can arise both from
local stochastic errors and remaining non-local resid-
ual errors induced by merging errors or tetrahedral
encoded states preparation errors, all of which are ex-
ponentially suppressed in L below some threshold:

ε =
(
ε

εth

)Θ(L)
, (38)

where the polynomial dependency on L in equa-
tion (34) is absorbed by the exponential. From (37)
and (38), we derive the third equation relating L and
N ,

L = Ω
( log(N/δ)

log(εth/ε)

)
. (39)

For a given N , it is enough to take

L = Θ
( log(N/δ)

log(εth/ε)

)
and k = Θ(logN),

(40)
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which automatically also satisfy (36). The total num-
ber of qubits n of each code block for a sparse IQP
circuit of width N then reduces to:

n = Θ(kL3) = Θ
( polylog(N/δ)

polylog(εth/ε)

)
. (41)

This completes the proof of Theorem 2. We note that
for the (arbitrarily small) fraction of sparse IQP cir-
cuits of super-logarithmic depth the overhead is at
most polynomial since the depth of sparse IQP cir-
cuits is at most linear.

5 Discussion

We have proposed a fault-tolerant implementation of
sparse IQP circuits, paving the way for demonstra-
tions of super-polynomial quantum advantage in near
or mid-term experiments. It consists in a constant-
depth quantum circuit and involves a single step
of feed-forward from classical computation. To do
this we have introduced the tetrahelix code admit-
ting single-shot preparation of logical |+⟩ states and
transversal implementation of IQP circuits. The
qubit overhead and classical computation time of our
scheme are only polylogarithmic in the width of the
original sparse IQP circuit. The requirements of our
protocol are almost met by current NISQ experi-
ments. We hope it can bring within reach demonstra-
tion of super-polynomial advantage of quantum over
classical computation.

Depending on the physical platform the main com-
plexity of the protocol may be coming from the re-
quired connectivity. A single tetrahelix code requires
3D connectivity. On top of this, each physical qubit
has to interact with a single other qubit from another
tetrahelix code during the implementation of the IQP
circuit. These additional interactions are potentially
long range. In the same spirit as in [30], the interac-
tion range can be reduced using longer and branching
tetrahelix codes while staying 3D. Logical CZ-gates
can be realized facet to facet [43], but CS-gates will
still require transversal connectivity between tetrahe-
dra. Finding other codes with similar properties but
simpler connectivity could ease the implementation
even more.

The tetrahelix code that we propose in our imple-
mentation has interesting properties in itself. The
ability to implement many different non-Clifford uni-
taries in a transversal manner could potentially be
leveraged in other settings. One can take inspira-
tion from this construction to design other codes with

large sets of transversal non-Clifford unitaries to lo-
cally trade depth for width in larger scale algorithms.
The key ingredient of our approach is the commuting
nature of sparse IQP gates that enables their paral-
lelization, in the spirit of [44] for MBQC, but in a
fault-tolerant manner. Note that a generalization of
the construction to any set of commuting gate would
have powerful applications [22].

Concerning the encoding of sparse IQP circuits
on tetrahelix codes, it is not clear whether or not
the trade-off between depth and width is optimal
but the noticeable asymmetry between the X and
Z distances of the tetrahelix code seems to indicate
the overhead could be reduced by balancing them
out. Another direction would be to improve the error
threshold of the scheme, possibly with post-selection
in the spirit of [45]. This would participate bring-
ing the scheme further within reach of current exper-
iments [46].

During the preparation of this work, we became
aware of a similar work on reducing error correc-
tion requirements for fault-tolerant quantum advan-
tage [47].
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