
Check-Agnosia based Post-Processor for Message-Passing
Decoding of Quantum LDPC Codes
Julien du Crest1, Francisco Garcia-Herrero2, Mehdi Mhalla3, Valentin Savin4, and Javier Valls5

1Université Grenoble Alpes, Grenoble INP, LIG, F-38000 Grenoble, France
2Department of Computer Architecture and Automatics, Complutense University of Madrid, Madrid, Spain
3Université Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
4Université Grenoble Alpes, CEA-Léti, F-38054 Grenoble, France
5Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politecnica de Valencia, Valencia, Spain

The inherent degeneracy of quantum low-
density parity-check codes poses a challenge
to their decoding, as it significantly degrades
the error-correction performance of classical
message-passing decoders. To improve their
performance, a post-processing algorithm is
usually employed. To narrow the gap be-
tween algorithmic solutions and hardware limi-
tations, we introduce a new post-processing al-
gorithm with a hardware-friendly orientation,
providing error correction performance com-
petitive to the state-of-the-art techniques. The
proposed post-processing, referred to as check-
agnosia, is inspired by stabilizer-inactivation,
while considerably reducing the required hard-
ware resources, and providing enough flexibil-
ity to allow different message-passing schedules
and hardware architectures. We carry out a
detailed analysis for a set of Pareto architec-
tures with different tradeoffs between latency
and power consumption, derived from the re-
sults of implemented designs on an FPGA
board. We show that latency values close to
one microsecond can be obtained on the FPGA
board, and provide evidence that much lower
latency values can be obtained for ASIC im-
plementations. In the process, we also demon-
strate the practical implications of the recently
introduced t-covering layers and random-order
layered scheduling.

1 Introduction
Quantum low-density parity-check (qLDPC) codes [1]
have become one of the main candidates to imple-
ment the error-correction layer of a large-scale quan-
tum computer architecture [2–4]. Compared to other
families of quantum error correction codes, qLDPC
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codes may reduce the physical qubit overhead, while
protecting a larger number of logical qubits, so higher
code rates can be obtained with similar or better
error-correction performance [5–9]. Yet, for qLDPC
codes to work on a real system, a larger number of
physical qubits than those available in today’s noisy
intermediate-scale quantum systems is required [3],
[10]. Nonetheless, before large-scale quantum tech-
nology becomes available, two important problems
need to be addressed from the qLDPC decoding per-
spective: i) devising new decoding algorithms that
overcome or mitigate the effect of degeneracy [11],
thus providing increased error correction capabilities,
and ii) developing hardware designs that meet la-
tency and power constraints imposed by the quantum
system (e.g., latency values within the decoherence
time of the qubits to be protected, or power limita-
tions for qubit technologies requiring cryogenic cool-
ing, when the decoder is implemented within the low-
temperature layers), a topic that only got attention
recently [12–14].

To achieve the first objective, several approaches
building upon classical message-passing (MP) decod-
ing algorithms have been recently proposed in the lit-
erature, where the degeneracy issue is dealt with by
either incorporating neural network techniques in the
MP decoder [15], or adding a post-processing step,
taking advantage of the soft information delivered by
the MP decoder [5, 16].

Neural-network-based decoders are bound to the
noise models used to train them and do not scale well
with the number of qubits [17]. Moreover, as shown
in [18], there are not only different sources and noise
models, but also the noise may be different depending
on the area of the layout of the quantum processor,
the environmental conditions, and the evolution of er-
rors with time since the last calibration (space and
time drift of the errors [19]). In that sense, more gen-
eralized solutions are required, at least at the moment
of writing these lines, when there is no standardized
or predominant technology or architecture for future
large-scale quantum devices. Hence, post-processing
techniques may become an interesting choice. A first
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post-processing technique based on ordered statistics
decoding (OSD) was proposed in [5, 20]. Although
the improvement in terms of coding gain is significant,
the complexity is too high, and hence, it becomes un-
practical for real-time hardware implementations [21].
Recently, some of us proposed a new post-processing
technique for Calderbank-Shor-Steane (CSS) qLDPC
codes, called stabilizer inactivation [16]. The post-
processing consists in inactivating a set of unreliable
qubits supporting a check in the dual code (a stabi-
lizer generator of the same type as the decoded error).
Then the MP decoding is run again, while taking out
of the decoding process the inactivated qubits and
their neighbor check nodes. The remaining qubits and
check nodes that participate in the MP decoding are
called active. Several stabilizer generators may be in-
activated, one at a time (which can be implemented
either sequentially or in parallel), until one MP de-
coding meets the syndrome constraints on the active
check nodes. Inactivated qubits are then determined
by solving a small linear system, defined by the inac-
tive check-nodes. Stabilizer inactivation shows a non-
negligible error correction improvement and increased
flexibility (with regard to the MP decoding schedule)
compared to OSD, with a considerable reduction of
complexity. However, as discussed later in this paper,
additional hardware-oriented analysis and optimiza-
tion are required to ensure the hardware design meets
the constraints required to provide real-time support
to a quantum processor.

The main contributions of the paper are as follows.
First, inspired by the stabilizer inactivation, we in-
troduce a new post-processing algorithm for MP de-
coders. The algorithm takes into account the archi-
tectural properties of MP decoders in order to reduce
the computational load and the required hardware re-
sources. It also limits the amount of information re-
quired from the code, eliminating the need to know
the stabilizer structure (dual code) and just treating
both parity-check matrices as independent. Similar to
the stabilizer inactivation, the algorithm identifies a
small set of unreliable qubits (which are however not
inactivated, in the sense described above). The in-
formation considered to identify such a set of qubits
is based on the check-node reliability. When the MP
decoder fails, the a priori information for the qubits
connected to the least reliable check nodes is erased,
and the post-processor will then try to learn again
the reliability of these qubits based on the informa-
tion from the rest. For this reason, we call the post-
processing technique check-agnosia. We also suggest
several approaches to perform the selection of unreli-
able check-nodes, to reduce power consumption and
latency, which are the constraints that limit the im-
plementation of decoders in real systems [22,23].

Second, along the document, a non-agnostic hard-
ware perspective is described to help to meet the
constraints of future large-scale quantum devices.

Aligned with this, a functional description in terms
of performance and hardware results of the proposed
solution for the two main schedules employed for MP
decoders (flooded and layered [24], [25]) is introduced.
We carry out a detailed analysis of different corner
cases, which is then illustrated for a specific qLPDC
code, by providing latency and power consumption
values of the check-agnosia solution implemented on
an FPGA board.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the relevant notation and the algo-
rithmic background. Section 3 introduces the check-
agnosia post-processing, and discusses the check-node
reliability metric along with several hardware-oriented
optimizations. Section 4 analyzes the impact of the
post-processing algorithm on the hardware implemen-
tation, considering architectures with different sched-
ules and varying degrees of parallelism. Latency and
power consumption results are also provided here.
Section 5 evaluates the error-correction performance
of the proposed check-agnosia decoder for different
qLDPC codes, and compares it to other existing solu-
tions. Finally, Section 6 provides the main conclusions
of this work.

2 Algorithmic Background
We consider qLDPC codes of CSS type, defined by
two parity check matrices Hx and Hz, correspond-
ing respectively to X-type and Z-type generators. In
the following, we will consider decoding of one type of
error (since similar considerations apply to the other
type), and will denote by H the corresponding decod-
ing matrix (e.g., H = Hz for decoding X-type errors).
We also consider the Tanner graph associated with H,
and denote by Q the set of qubit-nodes1 and C is the
set of check-nodes (stabilizer generators). We denote
by N (q) ⊂ C the set of neighboring check-nodes of a
qubit-node q ∈ Q, and similarly, by N (c) ⊂ Q the set
of neighboring qubit-nodes of a check-node c ∈ C.

We denote by p the probability that an error of the
considered type occurs, and by e ∈ {0, 1}|Q| the error
indicator vector2. We assume errors happen indepen-
dently on the qubits, hence P (eq = 1) = p. Informa-
tion about the error e is revealed through the mea-
surement of stabilizer generators, in the form of an
error syndrome s := H · e. Throughout this work, we
assume ideal syndrome extraction, i.e., we only con-
sider errors occurring on qubits, not on the extracted
syndrome. The decoding problem is determining the

1Usually referred to as variable-nodes or bit-nodes, in clas-
sical LDPC coding.

2For a Pauli noise model in which Pauli errors X, Y , and Z
occur with probabilities px, py , and pz , respectively, and con-
sidering the decoding of the X-type error, we have p = px +py ,
and eq = 1 iff either an X or Y error occurred on the corre-
sponding qubit.
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most likely error ê, such that H · ê = s.
Although maximum likelihood decoding is optimal,

it is computationally prohibitive. Instead, classi-
cal LDPC codes are efficiently decoded by MP al-
gorithms. For a qubit q ∈ Q, we denote by γq

the a priori log-likelihood ratio (LLR) of an error
happening on qubit q, which is defined3 as γq =
log (P (eq = 0)/P (eq = 1)) = log((1 − p)/p). The set
of LLR values {γq | q ∈ Q} constitutes the input of
the MP decoder and is used to initialize an iterative
exchange of messages between qubit and check-nodes.
We denote these messages by either µq→c or µc→q, the
arrow in the notation indicating whether the message
is sent from a qubit-node q to a check-node c, or in
the opposite direction. At each iteration, exchanged
messages are used to compute a posteriori LLR values
γ̂q, for each qubit-node q, used to provide an estimate
êq of the corresponding qubit error. The iterative
message passing process stops when either the esti-
mated error satisfies the syndrome (i.e., H · ê = s), or
a maximum number of iterations is reached. In the
following, we shall also refer to (a priori/a posteriori)
LLR values as qubit reliabilities.

Throughout this work, we shall consider the Min-
Sum (MS) decoding, or its normalized variant (NMS),
which represent the option of choice for hardware im-
plementations for several reasons: reduced computa-
tional complexity, reduced memory requirements (by
adopting the first and second minimum compression
method for check-node messages [26]), and its insen-
sitivity to input LLR values up to a constant scaling
factor (see Section 5 for the input LLRs of the finite-
precision MS decoder). For details regarding the MS
and other MP decoding algorithms we refer to [27]
(see also the discussion in [16, Section 2]).

A key attribute of MP decoding algorithms is the
underlying scheduling, indicating the order in which
qubit - and check-node messages are updated [27].
Flooded, layered, or serial schedules4 are usually im-
plemented through fully-parallel, partially-parallel, or
serial hardware architectures, respectively, yielding
designs with different performances in terms of la-
tency, area, or power consumption.

Compared to the flooded schedule, serial and lay-
ered schedules are also known to propagate informa-
tion twice faster in the Tanner graph [28] for classical
(non-degenerate) LDPC codes. This directly trans-
lates into a faster convergence speed. However, the
flooded schedule provides decoding performance sim-
ilar to the serial and layered ones, at the cost of dou-

3For a Pauli noise model, correlations between X and Z er-
rors (due to the Y errors) can be taken into account by decoding
X and Z errors sequentially, say first X and then the Z error,
and computing the a priori LLRs for the Z error, conditional
on the decoded X error.

4Through this work, all schedules are considered to be hor-
izontal, i.e., defined with respect to check-node processing, as
opposed to vertical schedules, defined with respect to qubit-
node processing.

bling the number of decoding iterations. This is no
longer true for qLDPC codes, presumably due to the
code degeneracy. As observed in [16], not only the
flooded schedule may not be able to approach the de-
coding performance of the serial or layered schedules,
even at the cost of an increased number of iterations,
but in some cases it may also penalize the performance
of the post-processing algorithm. Layered MP decod-
ing of qLDPC codes has been recently investigated by
the authors in [29], where it has also been observed
that processing the layers in a random order (at each
decoding iteration) may significantly improve the per-
formance of the MP decoder. We will use these results
in Section 5 of this paper.

3 Check-Agnosia Decoder
We introduce in this section the Check-Agnosia (CA)
post-processing. We first describe the generic post-
processing technique (Algorithm 1) and then discuss
possible modifications.

3.1 Generic Check-Agnosia Decoder
The error vector ê is estimated first using a soft-
output MP decoding algorithm. If the error estimate
ê satisfies the syndrome, i.e., H · ê = s, then no post-
processing is applied.

If the initial MP decoding fails, a metric on the
exchanged soft information is used to find the λ checks
{ck}k∈[λ] whose supports are the most likely to be
involved in the decoding failure (this metric will be
discussed later). The post-processing will consist of
rerunning the MP decoder at most λ times with new a
priori qubit reliabilities5 {γ′

q} and a modified stopping
criterion.

For the k-th decoder, the input reliability will be set
to γ′

q = 0 for qubits q ∈ N (ck), considered unreliable,
and γ′

q = γq for the rest of the qubits. Putting the
input reliability to 0 can be considered as an erasure
in the MP decoder [30], ensuring that these qubits
are deprived of any a priori information that may in-
terfere in the decoding attempt of the more reliable
qubits. We further define Nk = ∪q∈N (ck)N (q), the
set of checks that share a neighbor qubit-node with
ck (note that ck ∈ Nk). This allows us to define s|Nk

the partial syndrome vector containing only the checks
that have no neighbor qubit-node in N (ck), and s|Nk

the residual syndrome. We then run a MP decoder
with a modified stopping criterion that only tries to
match the partial syndrome s|Nk

. In Algorithm 1, we
denote this decoder by MP⋆(H, s, {γ′

q},Nk). We em-
phasize that MP∗ applies exactly the same decoding
rules on the same Tanner graph as MP, except that
MP∗ is initialized with qubit reliabilities {γ′

q}, and it

5Here, we prefer the terminology “qubit reliabilities” rather
than “input LLRs” since we modify the actual LLR values.
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stops when the partial syndrome s|Nk
is satisfied (no

matter whether the residual syndrome s|Nk
is satisfied

or not). If the MP∗ succeeds in matching the partial
syndrome, the decoder then attempts to match the
residual syndrome by brute-forcing the error pattern
on N (ck). Note that sometimes the MP∗ can actu-
ally match the full syndrome, in which case no brute-
forcing is needed (will be discussed in more detail
later). In Algorithm 1, H|Nk

denotes the submatrix
of H whose rows correspond to check-nodes c ̸∈ Nk.
Consequently, H|Nk

(c, q) = 0 for any q ∈ N (ck), and
thus H|Nk

· ê only depends on ê|N (ck) (which explains
the slight abuse of notation H|Nk

· ê|N (ck)). Likewise,
H|Nk

denotes the submatrix of H whose rows corre-
spond to check-nodes c ∈ Nk. If ê|N (ck) matches the
partial syndrome, we keep its value and bruteforce
ê|N (ck) to match also the residual syndrome.

The intuition behind the post-processing is that the
presence of quantum trapping sets [11] in the Tan-
ner graph causes the a posteriori reliability values of
trapped qubit-nodes to oscillate. This prevents the
decoder from converging, regardless of the number
of decoding iterations (for oscillating trapping sets
see also [31]). Taking into account the oscillation ef-
fect, it is reasonable to think that the messages as-
sociated with the untrapped qubits will grow with
each iteration while the trapped ones will keep rel-
atively low reliability. This effect will help to iden-
tify possible trapped qubits. To this end, we define
a reliability metric on checks to decide (the support
of) which checks should be erased. A natural ap-
proach to define such a reliability metric is to con-
sider the reliability (i.e., absolute value) of either in-
coming messages {µq→c | q ∈ N (c)} or outgoing mes-
sages {µc→q | q ∈ N (c)}. However, for MS-based
decoders, the absolute value of outgoing messages is
equal to either the first or the second minimum of
the absolute values of incoming messages, denoted by
minq∈N (c) |µq→c| and min2 q∈N (c) |µq→c|, respectively.
This motivates the reliability metric6 δc considered in
Algorithm 1. The cost of computing this metric is
nearly none, as the two minima are already computed
by the MS decoder. Also, this metric is computed for
all the check-nodes, based on the {µq→c} messages at
some specific (predetermined) iteration of the MS de-
coder (as discussed below). This allows the sorting of
all the checks according to the proposed metric, af-
ter which the post-processing can be applied to the λ
most unreliable checks.

To reduce the overall latency (initial MP decoding
and post-processing), one may compute the check re-
liability values δc at an early iteration, i.e., before

6While different variations of this metric are possible (e.g.,
the sum of the absolute values of all incoming messages) we
have not observed any significant difference in terms of error
correction performance. Also, similar reliability metrics can be
obtained for other MP decoding algorithms, e.g., sum-product.

Algorithm 1: Generic Check-Agnosia Decoder

ê← MP(H, s, {γq})
if (H · ê = s) then

return ê
else

Compute the check reliability values:
δc = min

q∈N (c)
|µq→c|+ min2

q∈N (c)
|µq→c|, ∀c ∈ C

Sort checks in increasing order of reliability,
Extract {ck}k∈[λ] the least reliable checks.
for k in 1, . . . , λ do

∀q ∈ Q, set γ′
q =

{
0, if q ∈ N (ck),
γq, otherwise.

Determine Nk = ∪q∈N (ck)N (q)

ê← MP⋆(H, s, {γ′
q},Nk)

if (H|Nk
· ê|N (ck) ̸= s|Nk

) then
continue

else
Try to solve H|Nk

· ê = s|Nk
, while

keeping ê|N (ck) unchanged, and
bruteforcing ê|N (ck)

if successful then
return ê

return decoding failure

the initial MP reaches the maximum number of de-
coding iterations. This allows the post-processing to
start running in parallel before the initial MP has
ended. If the initial MP succeeds later on, the post-
processing will stop and the decoder will output the
error found by the initial decoder. However, if the
initial MP decoder fails, the post-processing will have
already started, reducing the total latency. As it will
be shown in Section 5, the error correction perfor-
mance obtained by determining the list of least re-
liable checks using the soft information from either
the last or an early iteration is almost the same, but
the speedup is considerably higher in the latter case.
Moreover, the reliability metric computed after a few
iterations may be more accurate than the one com-
puted at the last iteration, as the oscillation effects
(also combined with saturation effects of the finite
precision arithmetic) might alter quite considerably
the accuracy of the reliability metric computed after
a large number of iterations.

We discuss now the brute-forcing of ê|N (ck) in Al-
gorithm 1. To solve the system H|Nk

· ê = s|Nk
there

are several possible methods, including Gaussian elim-
ination. However, since the system to solve is small,
brute-forcing, i.e., trying all the possible combina-
tions, hopefully finding one that satisfies the system7,
is a more efficient solution for hardware implemen-

7Note that there is not guaranteed that the system has a
solution, as such, the algorithm can fail at this step.
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tation. Moreover, it is not too difficult to see that
the brute force approach can be simplified by taking
into account the local structure of the code, eliminat-
ing a lot of computation. For instance, a check-node
c ∈ Nk \{ck} that has exactly one qubit-node in com-
mon with ck, uniquely determines the value of that
qubit.

3.2 Check-Agnosia Decoder Without System
Solver
One alternative to determine ê|N (ck), described in Al-
gorithm 2, is to use a regular MP decoder that stops
only if the full syndrome is matched. Precisely, the
MP⋆(H, s, {γ′

q}) in Algorithm 2 is a regular MP de-
coder, initialized with qubit reliabilities {γ′

q}, and
which stops when the full syndrome is satisfied. We
keep the MP⋆ notation in the post-processing step
only to distinguish it from the initial MP decoder (will
be needed later on Section 4). To justify Algorithm 2,
let us consider the case when the graph induced by
any subset S ⊆ N (ck) contains at least a check-node
of degree one. Then, assuming the MP decoder has
converged on ê|N (ck), it will converge on the remain-
ing ê|N (ck) at the cost of a few more iterations. The
above condition is the same as requiring N (ck) con-
tains no stopping subset8, and running the MP for a
few more iterations amounts to running a peeling de-
coding [32] on the erased qubits. For instance, if the
Tanner graph contains no cycles of length four, then
N (ck) satisfies the no-stopping subset condition, and
one extra iteration is enough to determine ê|N (ck).
The no-stopping subset condition may also be satis-
fied for graphs containing cycles of length four, but
in such a case more than one extra iteration may be
needed.

For a given Tanner graph the above no-stopping
subset condition can easily be verified, and then we
may use Algorithm 2 instead of Algorithm 1 (numer-
ical simulations also confirmed that those two ap-
proaches give similar performance). For the simula-
tion results shown later in this paper (Section 5), we
always use Algorithm 2.

The presumably only meaningful case in which the
no-stopping subset condition is not verified is when
the code is auto-dual (i.e., Hx = Hz), since in such
a case ê|N (ck) is the support of a codeword, hence a
stopping set. It is worth noticing that for auto-dual
codes, the check-agnosia (Algorithm 1) and stabilizer-
inactivation [16] decoders are the same, up to the
reliability metric used to select the λ least reliable
check-nodes. However, for codes that are not auto-

8A set of qubit-nodes is said to be a stopping set, if the
induced subgraph contains no check-nodes of degree 1. If the
qubit-nodes in a stopping set are erased, they can get no infor-
mation during the MP decoding, that is, incoming and outgoing
messages to and from these qubit-nodes remain equal to zero
during the entire iterative decoding process.

Algorithm 2: Check-Agnosia Decoder Without
System Solver

ê← MP(H, s, {γq})
if (H · ê = s) then

return ê
else

Compute the check reliability values:
δc = min

q∈N (c)
|µq→c|+ min2

q∈N (c)
|µq→c|, ∀c ∈ C

Sort checks in increasing order of reliability,
Extract {ck}k∈[λ] the least reliable checks.
for k in 1, . . . , λ do

∀q ∈ Q, set γ′
q =

{
0, if q ∈ N (ck),
γq, otherwise.

ê← MP⋆(H, s, {γ′
q})

if (H · ê = s) then
return ê

return decoding failure

dual, the check-agnosia decoder, implemented as in
Algorithm 2, presents several advantages, including
the use of a simpler, hardware-friendly check-node re-
liability metric (and not requiring the use of the dual
matrix), as well as the fact that it relies solely on
MP decoding, eliminating the need of brute-forcing
or other system solving methods.

A final remark is that all MP and MP⋆ decoders
can implement a flooded or a layered schedule, as dis-
cussed in Section 2, to cope with the hardware con-
straints.

4 Hardware Architectures
This section aims to analyze the impact of the post-
processing algorithm on the hardware implementa-
tion, considering architectures with different sched-
ules and varying degrees of parallelism. We carry out
a detailed analysis of different corner cases, providing
latency and power bounds to assist future hardware
decoder designers.

4.1 MP Decoder Architecture
We consider first a single MP decoder, without any
post-processing. To implement the MP decoder in
hardware 9, one can use a fully parallel architec-
ture, implementing a flooded schedule, referred to as
flooded decoder, or a partly parallel architecture, im-
plementing a layered schedule, referred to as layered
decoder.

We will make standard assumptions10 regarding

9Serial schedule is not considered due to its extremely large
latency, not suitable for real-time implementations.

10The hardware implementation reported later on Section 4.4
is consistent with the assumptions made here.
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the two above architectures [26]. For the flooded
decoder, the Tanner graph is instantiated in hard-
ware, where messages are exchanged through wires
between processing units, corresponding to qubit- and
check nodes. Each decoding iteration is performed
in two clock cycles, with one clock cycle for qubit-
node messages and a posteriori LLRs, and a second
one for check-node messages. Thus, the worst case
(maximum) latency of the flooded decoder is equal to
(1 + 2IF )/fF (s), where we count one clock-cycle for
data loading, IF is the maximum number of decoding
iterations of the flooded decoder, and fF is the clock
frequency.

For the layered decoder, the number of process-
ing units instantiated in hardware is given the size of
the largest layer11, messages are exchanged through
shared memory, and each processing unit is reused ηL

times for each decoding iteration, where ηL denotes
the number of layers per iteration. The worst case la-
tency of the layered decoder is equal to (1+ηLIL)/fL

(s), where we count again one clock-cycle for data
loading, IL is the maximum number of decoding it-
erations of the layered decoder, and fL is the clock
frequency.

Two observations are in place here. First, the
flooded architecture may lead to a large number of
connections among processing units, causing routing
congestion in case of large codes. Due to the large in-
terconnect network, the operating clock frequency of
the flooded architecture (fF ) is usually smaller than
twice12 that of the layered architecture (fL). Second,
as discussed in Section 2, the layered schedule propa-
gates information about twice faster than the flooded
one, thus the maximum number of iterations of the
layered architecture (IL) is usually smaller than that
of the flooded architecture (IF ). Overall, this can
make the layered architecture comparably fast to the
flooded one, despite the fact that it employs a reduced
degree of parallelism (of course, the number of layers
per iteration has to be sufficiently small).

Finally, one possible approach to further increase
the clock frequency of the layered decoder is to
pipeline the design (i.e., perform each layer in a num-
ber of pipelined clock cycles). However, this may lead
to delayed message write-backs in memories, and thus,
to pipeline related hazards [33]. Solving such hazards
(without relying on pipeline stalls, introducing extra
latency) can be done for classical LDPC codes at the
code construction stage [34]. However such solutions
are not generic (need a specific code construction) and
may not apply to qLDPC codes. Therefore, to keep

11Usually all layers have the same size, although this condi-
tion is more difficult to satisfy for qLDPC codes [29].

12Note that in the flooded architecture, qubit and check-node
messages are computed in two different clock cycles, by differ-
ent processing units, while in the layered architecture they are
computed in the same clock cycle, by a processing unit that
merges the qubit and check node processing.

the analysis as generic as possible, we do not consider
pipelined designs in this work.

4.2 Post-Processing Elements
For the check-agnosia scheme, the first step after the
MP decoder is the computation of the check reliabil-
ity values, as outlined in Algorithms 1 and 2. The
metric used to calculate the check reliability, denoted
as δc, involves adding the two least reliable messages.
These values are computed during the tree finder pro-
cess employed to calculate check-node messages in the
min-sum decoder. Thus, the only additional hardware
required is an adder per check-node to compute δc.
These values are updated on-the-fly during each iter-
ation, eliminating the need for extra clock cycles after
the MP decoder. As described earlier in Section 3, one
does not have to wait until the end of the initial MP
decoder to start the post-processing (the impact of
utilizing the δc information from early iterations will
be evaluated in Section 5). In the proposed architec-
ture, the δc values can be stored in the registers of the
sorting unit (see below) before the first MP decoder
completes, without any additional hardware. This al-
lows absorbing some additional latency and initiating
the post-processing MP⋆ decoders before the initial
MP decoder completes.

After the δc values are available, a sort of the checks
in order of reliability is computed. To sort the checks
in order of increasing reliability |C|-1 comparators are
required to implement a tree structure, which should
be pipelined to avoid increasing the critical path of
the decoder. The number of clock cycles needed to
obtain the complete sorted list is ⌈λ/2⌉ × ⌈log2|C|⌉.

4.3 Overall Check-Agnosia Architecture
In this section, we detail the check-agnosia architec-
ture corresponding to Algorithm 2 (that relies on MP
decoding only, without brute-forcing). After the list
of λ least reliable checks is obtained, the λ MP⋆ de-
coders are performed. Depending on the time con-
straints and/or power budget, we may consider two
different approaches, illustrated in Figure 1.

The first approach consists of performing the λ MP⋆

decoders sequentially, reusing the same hardware as
the one used for MP. Only |Q| extra multiplexors are
required to choose between γ′

q = γq or γ′
q = 0, and

|C| extra multiplexors are required to decide which
syndromes belong to s|Nk

, depending on the check
ck. This approach of reusing hardware yields higher
latency, but maybe interesting for a quantum com-
puter with time constraints close to microseconds,
e.g., based on trapped ion technology [3].

For the second approach, the λ MP⋆ decoders are
performed in parallel, by using dedicated hardware.
Moreover, the λ MP⋆ decoders may start before the
initial MP completes, using check-reliability values
computed at an early iteration, that we will denote
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in the sequel by Iδc . This approach may be interest-
ing for quantum technologies with more restrictive la-
tency constraints, but having in mind that power can
be also a limitation, as happens with superconducting
qubits in which the decoder needs to reduce its power
budget when it operates close to the quantum chip at
cryogenic temperatures.

To illustrate the degree of complexity in hardware
implementations and measure the gap between the
proposed solutions to latency/power constraints, we
analyze below the Pareto designs for the two ap-
proaches above, where the MP decoder uses either a
flooded or a layered schedule. We provide the worst-
case latency (simply referred to as latency), as well
as the power consumption as a function of the nom-
inal power consumption of the MP decoder, denoted
by PF or PL, with a subscript indicating the flooded
or layered architecture (we may reasonably assume
that MP and MP∗ yield the same power consump-
tion). For the latency value, we take into account the
latency induced by sorting the check nodes according
to their reliability (Section 4.2). The corresponding
power consumption is not accounted for, we will as-
sume it is negligible with respect to the power con-
sumption of the MP decoder.

Flooded MP/MP∗ decoders:

1. Hardware reuse (sequential post-processing)

MP flooded decoder + check reliability unit +
one MP⋆ flooded decoder running λ rounds:

• Latency:
[
(1 + 2IF ) + ⌈λ/2⌉ ⌈log2|C|⌉ +

λ(1 + 2IF )
]
/fF

• Power: PF

2. Dedicated hardware (parallel post-processing)

MP flooded decoder + check reliability unit start-
ing after iteration Iδc

+ λ MP⋆ flooded decoders
running in parallel

• Latency:
[
(1 + 2Iδc) + ⌈λ/2⌉ ⌈log2|C|⌉ +

(1 + 2IF )
]
/fF

• Power: (λ + 1)PF

Layered MP/MP∗ decoders:

1. Hardware reuse (sequential post-processing)

MP layered decoder + check reliability unit +
one MP⋆ layered decoder running λ rounds:

• Latency:
[
(1 + ηLIL) + ⌈λ/2⌉ ⌈log2|C|⌉ +

λ(1 + ηLIL)
]
/fL

• Power: PL

2. Dedicated hardware (parallel post-processing)

MP layered decoder + check reliability unit start-
ing after iteration Iδc + λ MP⋆ layered decoders
running in parallel

Figure 1: Comparison of different architectures for the check-
agnosia decoder. The clock cycle diagram is included for the
different proposals (Warning: drawing is not to scale). In
case 1), MP and MP⋆ use the same hardware.

• Latency:
[
(1 + ηLIδc

) + ⌈λ/2⌉ ⌈log2|C|⌉ +
(1 + ηLIL)

]
/fL

• Power: (λ + 1)PL

4.4 Implementation Results
To illustrate the analysis from the previous section,
we have implemented both flooded and layered NMS
decoders on a Xilinx FPGA xcv095 board, for the
B1[[882, 24]] code from [5]. The implemented de-
coders use finite precision arithmetic, with exchanged
messages quantized on 6 bits, and a posteriori LLR
values quantized on 8 bits. The parity-check matrix
(for both X and Z errors) is of size 441 × 882 (check-
nodes × qubit-nodes) and has no four-cycles (thus,
it satisfies the no-stopping subset condition, and we
may safely apply Algorithm 2).

The flooded NMS / NMS∗ decoders achieve a maxi-
mum operating frequency fF = 100 MHz (correspond-
ing to a critical path of 10 ns), with 62% of the hard-
ware resources of the device utilized, and a total power
consumption PF = 5.5 W.

To implement the layered decoders, we use the 2-
covering approach from [29], where 7 overlapping lay-
ers are used to cover 2 iterations, yielding a fractional
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Table 1: Latency (L) and power consumption (P ) values for
the Pareto designs in Section 4.3 (Imax is the table stands for
IF for flooded architectures, or for IL for layered ones).

Flooded Layered
HW reuse L = 7.2 µs L = 7.9 µs

P = 5.5 W P = 2.03 W
Dedicated HW L = 1.7 µs L = 1.9 µs

Iδc = Imax P = 60.5 W P = 22.3 W
Dedicated HW L = 1.1 µs L = 1.4 µs

Iδc = 3 P = 60.5 W P = 22.3 W

number of layers per iteration ηL = 3.5. The layered
NMS / NMS∗ decoders achieve a maximum operating
frequency FL = 80 MHz (corresponding to a critical
path of 12.5 ns), where about 25% is due to the logic
depth of the operations and 75% is due to the routing
limitations of the FPGA device. The decoder uses
only 13% of the hardware resources of the device, and
the total power consumption is around PL = 2.03 W.

We consider a maximum number of decoding iter-
ations IF = 30 for the flooded decoders, and IL = 15
for the layered decoders (due to faster convergence).
For the post-processing step, we consider a list of
λ = 10 least reliable checks (these parameters will
be evaluated from the error correction perspective in
Section 5). Latency and power consumption values
are summarized in Table 1, for the Pareto designs
considered in the previous section. Note that we con-
sider two cases for the dedicated hardware scenario,
in which the iteration Iδc

(used to compute the check-
node reliability values) is chosen to be either the last
or the third iteration of the NMS decoder.

It can be observed that the layered architecture
achieves latency values close to the flooded one, de-
spite the fact it employs a degree of parallelism 3.5
times lower, while considerably reducing the power
consumption. It is also worth noticing that the part
of the latency due to the sorting unit is 0.45 µs for the
flooded architectures, and 0.56 µs for the layered ones.
To reduce the latency of the sorting unit further op-
timizations are possible (i.e., carefully balancing the
pipeline stages of the sorting unit by taking into ac-
count the maximum critical path latency of the MP
decoder, splitting the sorting unit into layers in case
of a layered schedule, or using a different clock do-
main for the sorting unit), which are however behind
the scope of this work. We mention that the max-
imum frequency that can be reached for the sorting
unit (implemented alone) is 230 MHz, which gives a
lower bound on the achievable latency of 0.2 µs13.

Moreover, as will be shown in Section 5, because
of the highly degenerate structure of the codes, the
layered schedule provides better error correction per-
formance than the flooded one, even if the number of

13At an operating frequency of 230 MHz, the power consump-
tion for the sorting unit is 0.66 W, versus 0.26 W at at 100 MHz.

decoding iterations of the latter exceeds significantly
the number of decoding iterations of the former (in
fact, to get a flooded decoder that approaches the
layered decoder, albeit not closely, one would have
to go for at least 60 iterations, see Section 5). One
last advantage of the layered architecture, reported
in [29], is that the logical error rate can be consider-
ably improved by processing layers in random order
at each iteration. Such a random layer order can be
implemented at a very low cost, as it only requires
modifying the ROM memory that stores the layers’
control sequence and including a deeper memory with
a pseudo-random sequence of layers.

From the results presented before, it can be con-
cluded that timing constraints can be in the range of
the requirements reported in [12] for transmons and
ion trap technology, between microseconds and mil-
liseconds. However, these implementations do not
meet the highly restrictive conditions of supercon-
ducting qubits in both time and power which are
around 400 ns and 1W, see [22]. The difference com-
pared to the fastest solution in Table 1 exceeds 3 times
the time budget and it is more than one order of mag-
nitude far in terms of power consumption. For these
scenarios, it is important to remark that other ap-
proaches to implementation like ASICs or more ad-
vanced FPGA devices based on 16nm CMOS process
or below (note that the xcvu095 belongs to the previ-
ous generation of 20nm) need to be explored in future
work. Moreover, exploiting a ping-pong architecture
that takes benefit of the pipeline registers to reduce
the number of MP⋆ decoders to half for the paral-
lel implementation of flooded schedule can be a good
proposal to reduce power consumption to almost half.

Extrapolating from state-of-the-art ASIC imple-
mentations of classical LDPC decoders, a clock fre-
quency of 151 MHz is reported in [35] for a 65-nm
CMOS ASIC implementation of a min-sum decoder
using the layered architecture described in Section 4.1,
for a regular LDPC code with characteristics similar
to those of the B1 code investigated here14. The op-
erating frequency is expected to further increase for
the B1 code, given that both the parity check ma-
trix and the layer size are smaller than that of the
LDPC code in [35]. For fL = 151 MHz, the latency of
the layered architecture with parallel post-processing
(dedicated hardware) is equal to 1 µs if Iδc

= IL (last
iteration), and 0.73 µs if Iδc = 3. Since the oper-
ating frequency increases with decreasing technology
node, and assuming an inverse-linear frequency scal-
ing [36], we may conclude that a latency constraint
around 400 ns or below can be easily achieved for more
advanced technology nodes, e.g., below 22 nm (today

14In [35], the parity check matrix is of size 648 × 1296, with
column weight 3 and rows weight 6. Each layer consists of
216 checks (referred to as full-layer therein). The parity check
matrix of the B1 code is of size 441 × 882, with column weight
3 and rows weight 6, and each layer consists of 126 checks.
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technology scaling is actually much lower).
Finally, we note that all the previous results as-

sume that the check-agnosia decoder is implemented
as in Algorithm 2. For the codes where Algorithm
2 cannot be applied, the latency will be a little bit
worse than what was computed here, due to the brute-
forcing step in Algorithm 1. We also provide in Ap-
pendix B arguments for why OSD post-processing
(widely used today in the community for decoding
of small to medium LDPC codes) is not a viable solu-
tion going forward, if trying to cope with the hardware
implementation constraints.

5 Error Correction Performance
In this section, we evaluate the error correction perfor-
mance of the proposed check-agnosia post-processing.
The codes used are B1[[882, 24]] and C2[[1922, 50]]
from [5]. For both codes, the no-stopping subset con-
dition from Section 3.2 is satisfied, hence in the follow-
ing all simulations are performed using Algorithm 2
(without brute-forcing the system).

As our post-processing is targeted at decoding X
and Z errors separately, we use an X noise model,
and thus “physical error rate” does actually refer to
the physical X error rate.

Our numerical simulations are consistent with the
parameters used in Section 4.4. Precisely, we con-
sider a finite-precision NMS decoder, using 6 bits for
the exchanged messages, and 8 bits for the a poste-
riori LLRs. Although in floating point precision the
initial (a priori) LLRs of the NMS decoder can be
scaled to 1, in finite precision the initial LLR values
have a non-negligible impact on convergence. In the
simulations, we use the following parameters, opti-
mized by extensive search. For the flooded decoder
we set the initial LLR values to LLRinit = 12 and the
NMS scaling factor is set to snms = 0.875. For the
layered decoder we use LLRinit = 8 and NMS scaling
factor snms = 0.9375. Note that scaling factors are
a sum of powers of 2 and as such the scaling opera-
tion can be implemented efficiently in hardware, using
only SHIFT and ADD operations.

For the maximum number of decoding iterations,
we use IF = 60 for the flooded decoder, and IL = 15
for the layered decoder. The maximum number of de-
coding iterations for the flooded decoder is the only
deviation with respect to the parameters used in Sec-
tion 4.4 (where IF = 30 was used). In fact, our goal
here is to demonstrate the advantage in terms of er-
ror correction performance of the layered architecture
as compared to the flooded one, even when the latter
employs a significantly higher number of decoding it-
erations. For the post-processing part, we use λ = 10.

Whenever the layered decoding is used, we add the
random ordering perturbation introduced in [29] that
was shown to significantly improve the decoding con-
vergence.

Figure 2 shows the impact of the iteration Iδc
used

to select the checks in the post-processing, all simu-
lations are done on the B1 code. For flooded simula-
tions (Figure 2(a)), it is actually beneficial to use the
3rd iteration for the metric instead of the last (60th
iteration). The most probable explanation is that the
relatively high number of iterations combined with
the finite precision algorithm makes the metric less
reliable after a larger number of iterations. For com-
parison purposes, we also consider a random metric,
corresponding to a random choice of the λ checks in
the post-processing. As it can be seen, the random
metric exhibits a bad error floor, validating the met-
ric used in that case.

For layered simulation (Figure 2(b)), all three
curves are close by, since the layered NMS decoder
with random layer ordering performs already very
well.

In fact, the three metrics yield virtually the same
performance of the check-agnosia decoder, but which
is better than the layered NMS with 30 iterations and
without post-processing in Figure 3(a). Although the
metric is less important in this case, this shows that
the perturbation introduced by the post-processing
step in the input reliabilities has an impact on the
decoding, and that it is better to run multiple de-
coders in parallel with perturbed inputs and fewer
iterations rather than running a single decoder for a
long time. As a whole, this validates the fact that
the post-processing can be done efficiently using the
dedicated hardware approach, increasing the post-
processing parallelism and improving the latency.

We would also like to make a case for the choice
Iδc

= 3. This hyperparameter can be optimized to
get the best numerical results for a given code. How-
ever, the value 3 here was chosen for a different rea-
son. Since both codes have girth 6, choosing Iδc

to
be equal to 3 guarantees that when the aposterior-
ies are extracted, the decoder got access to the infor-
mation of the biggest neighbourhood of each variable
nodes without loopy information. This ensures that
although it is very local, this information is also less
noisy than information coming from later rounds.

In Figure 3, the post-processing is applied to the
codes B1 and C2, with both flooded and layered
schedules. For a comparison with the state of the
art, in both figures, we added a dashed black curve of
an optimized NMS-OSD decoder using 100 iterations,
floating point NMS with a scaling factor of 0.625 [5].
Keep in mind that this decoder is not at all hardware-
friendly, in terms of complexity, latency and power
consumption, and it only serves as a reference. As
it can be seen from both simulations, our results are
matching closely the performance of the OSD post-
processing, concretely showing the effectiveness of our
hardware-friendly approach. In both figures, the re-
sults in red are the curves for flooded and in blue for
layered. Each time, the dotted curves show the per-
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(b) B1[[882, 24]] layered

Figure 2: Performance of the check-agnosia decoder with different reliability metrics (B1 code)
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Figure 3: Analysis of the check-agnosia post-processing on codes B1 and C2 (δc metric, with Iδc = 3).
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formance of the decoder without post-processing.
On the B1-code for the flooded schedule, the im-

pact of the post-processing is clear, and the check-
agnosia flooded decoder exhibits good performance
while keeping a latency around 1.7 µs (taking into ac-
count IF = 60). For the layered schedule, the use
of the post-processing increases the steepness of the
waterfall. The check-agnosia layered decoder keeps
the latency at around 1.4 µs. (Latency values above
correspond to our FPGA implementation from Sec-
tion 4.4.)

On the C2 Code, the performance gains for flooded
are clear even if the post-processing suffers from a rel-
atively high error floor. For layered scheduling, once
again check-agnosia achieves better results in the error
floor compared to no post-processing, closely match-
ing the NMS-OSD curve.

Further numerical results are provided in Ap-
pendix A, where we evaluate the error correction per-
formance of the check-agnosia decoder on the fam-
ily of T-codes from [20], showing a threshold phe-
nomenon with hyperparameter λ = 0.02 × |C|.

6 Conclusions
This work introduced the check-agnosia algorithm,
a new post-processing method improving on the
syndrome-inactivation algorithm from a hardware-
oriented viewpoint. Interestingly, although in the
general case brute-forcing a small linear system may
still be needed, for a large class of qLDPC codes the
check-agnosia post-processing relies only on MP de-
coding, eliminating the need for any system solver.
The proposed solution is flexible and it allows devis-
ing different hardware architectures, in order to meet
the latency or the power constraints of the quan-
tum system. The analysis carried out in the docu-
ment, along with the hardware implementation re-
sults for MP decoders (our own implementation on
an FPGA board, or results extrapolated from state-
of-the-art ASIC implementations), showed that our
solution can meet latency constraints of a wide range
of quantum technologies, while providing state of
the art error-correction performance, with hardware-
accurate, finite-precision arithmetic. To the best of
our knowledge, there is no prior work on the hardware
architecture and implementation of a post-processing
enhanced MP decoder for qLDPC codes. An interest-
ing open question going forward would be to look at
space-time decoding and see if the underlying graph
structure lends itself well to the use of the check-
Agnosia post-processing without system-solving.
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A Hyperparameter λ and decoding
threshold
In Figure 4, we include additional numerical results
giving a threshold for a constant rate family of LDPC
codes, namely the T codes family from [20]. Since
we are not aware of a simple way to build layers
for this family of codes, we ran the simulations us-
ing a serial decoder, which is a fair approximation of
the numerical results one would get with layered de-
coding. We use check-agnosia with hyperparameter
λ = 0.02×|C| = 0.01×|Q|, since for all the codes of the
T family, |C| = |Q|/2. The computational complex-
ity of the algorithm hence is (0.01×)n2 × log n, where
n = |Q| is the number of qubits, and this complexity
can be spread between time and energy consumption
depending on the architecture needs (see Fig 1). Fur-
thermore, we make a case that the average complexity
of the decoder is actually much better than that. On
the figure, we also included the average number of in-
activations (denoted λavg) for physical error rates 0.6
and 0.5, where the average values get very close to
one (meaning only one inactivation might usually be
necessary). Since this number goes close to one for
low error-rates, it means that in practice the cost of
the post-processing could only add a constant mul-
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Figure 4: Check-agnosia threshold for the T codes family
from [20]. Serial scheduling with random ordering and 15
iterations. Normalized min-sum with scaling factor 0.9375
and finite precision arithmetic, with 6-bit quantization for the
input LLRs and exchanged messages, and 8-bit quantization
for the a posteriori LLRs. For the post-processing, check-
agnosia is used with Iδc = 3 and λ = 0.02× |C|.
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tiplicative overhead. This lambda average is partic-
ularly meaningful in a sequential architecture where
we stop the post-processing as soon as the first post-
processing converges. In the parallel architecture, it
should still be possible to optimize the actual number
of parallel runs if we have access to some prior infor-
mation on the noise level, e.g., by considering a pool
of MP⋆ decoders that serve for the post-processing of
several logical qubits and are dynamically allocated
between them.

B Latency comparison of CA and OSD

We provide below a comparison, in terms of latency,
between the check agnosia proposal and the OSD
post-processing solution. This comparison is similar
to the method presented in [21], and is intended to
clarify the differences between the two solutions with
respect to hardware VLSI implementations.

We consider a layered MP decoder, with check-
agnosia implemented through “Dedicated hardware”
(that is, the λ MP⋆ decoders are executed in parallel).
Since the layered MP⋆ decoders achieve a maximum
operating frequency FL = 80 MHz (corresponding to a
critical path of 12.5 ns), the total latency of the check-
agnosia post-processing is (12.5×3.5×15) = 656.25 ns.
We have omitted here the latency of the sorting unit,
required to sort the check-nodes according to their
reliability.

Considering now the OSD post-processing, we will
omit again the latency of the sorting unit, required
this time to sort the qubit-nodes according to their
reliability. We will actually consider only the la-
tency of the Gaussian elimination step required by
OSD post-processing (and omit the latency of any
other steps). Refs. [37, 38] below provide the two
main highly parallel architectures known in the lit-
erature to perform Gaussian elimination over finite
fields. However, in both cases, the number of clock
cycles required to perform Gaussian elimination is
equal to (M2 + M)/2, where M is the number of
rows of the parity-check matrix. Thus, the latency
of the Gaussian elimination implementation is deter-
mined by TOSD = (M2 + M)/2/fOSD, where fOSD is
the operating frequency. So the frequency required
to achieve the same time budget as our proposal is
fOSD = (4412 + 441)/2/656.25 ns = 148.5 GHz. Such
a frequency is completely unrealistic, and would cer-
tainly lead to timing violations in the design (note
that it is 148.5/0.08 = 1856 times larger than the one
of the layered MP decoder). Besides, it would also
translate into an extremely large power consumption,
which typically increases linearly with the operating
frequency.
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