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It was recently shown that a hidden variable model can be constructed for
universal quantum computation with magic states on qubits. Here we show
that this result can be extended, and a hidden variable model can be defined
for quantum computation with magic states on qudits with any Hilbert space
dimension. This model leads to a classical simulation algorithm for universal
quantum computation.

1 Introduction
The field of quantum computation has seen an explosion of interest in recent years. It
is widely believed that the era of quantum advantage is upon us and that we are enter-
ing the realm of so-called Noisy Intermediate-Scale Quantum (NISQ) computation. This
view is evidenced by the impressive performance of quantum devices in recent hardware
demonstrations [1–10].

But in spite of the age of the field and the recent surge in interest, a key question at
the heart of quantum computation remains without an entirely satisfying answer: what is
the essential quantum resource that provides the speedup of quantum computation over
classical computation? This is clearly an important question as its resolution could inform
the development of quantum hardware and the design of quantum computer architectures.

One inroad to approaching this question comes from quantum computation with magic
states (QCM) [11, 12]. QCM—a universal model of quantum computation closely related
to the circuit model—is one of the leading candidates for scalable fault-tolerant quantum
computation [13]. In QCM, the allowed operations are restricted to a subset of unitary
gates forming the Clifford group, as well as arbitrary Pauli measurements. These operations
by themselves are not universal for quantum computation. In fact, any quantum circuit
consisting of only these operations can be simulated efficiently on a classical computer [14,
15], and so with these operations alone no quantum computational speedup is possible.
Universality is restored in QCM through the inclusion of additional nonstabilizer quantum
states to the input of the circuit. Therefore, this model allows us to refine the question
posed above. Instead of asking broadly “which nonclassical resources are required for a
quantum computational speedup?”, we can focus on the quantum states and ask “which
states could provide a speedup in QCM?”
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A partial answer to this question is provided by the study of quasiprobability represen-
tations like the Wigner function [16]. The Wigner function is the closest quantum mechan-
ical counterpart to the classical notion of a probability distribution over a phase space, but
unlike a probability distribution it can take negative values making it a quasiprobability
function. Accordingly, negativity in the Wigner function has traditionally been considered
an indicator distinguishing classically behaving quantum states from those that exhibit
genuinely quantum features [17, 18]. When adapted to finite-dimensional quantum me-
chanics, the setting relevant for quantum computation, quantum states are represented
by a discrete Wigner function [19–25]—a quasiprobability function over a finite set (a
generalized phase space) usually satisfying certain constraints [26–28].

Veitch et al. [29] showed that a necessary condition for a quantum computational
speedup in QCM on odd-prime-dimensional qudits—quantum systems with odd prime
Hilbert space dimension—is that the discrete Wigner function of the input state of the
quantum circuit must take negative values (this result is easily extended to QCM on qu-
dits with any odd dimension [30]). In particular, the amount of negativity in the discrete
Wigner function quantifies the cost of classical simulation of a quantum computation [31]
with simulation being efficient if the Wigner function is nonnegative everywhere. Since
nonnegativity of the discrete Wigner function also implies the existence of a classical (non-
contextual) hidden variable model (HVM) describing the computation [32, 33], this proves
that two traditional notions of nonclassicality for quantum systems—Wigner negativity
and failure of a classical HVM description—herald a quantum computational advantage
over classical computation. This aligns with work that shows contextuality is required for
quantum advantage in other settings [34–36].

The usual discrete Wigner function cannot be used to extend this result to QCM on
even-dimensional qudits, including arguably the most important case—QCM on qubits [28,
37–39]. That said, similar necessary conditions for quantum advantage in QCM have been
proven based on other quasiprobability representations [40–45]. In all cases, negativity
is required in the representation of states or measurements in order to describe universal
quantum computation.

Recently, a hidden variable model was defined which bucks this trend by representing
all quantum states, operations, and measurements relevant for QCM on qubits using only
classical (nonnegative) probabilities [46]. This model is structurally similar to previous
quasiprobability representations (modulo absence of negativity) and leads to a classical
simulation method for universal quantum computation based on sampling from the defin-
ing probability distributions. In this paper we show that this result can be significantly
extended in that a nonnegative hidden variable model can be constructed for quantum
computation with magic states on qudits of any dimension. We also show that many of
the properties of the qubit HVM also apply in the qudit case, for example, this model leads
to a classical simulation algorithm for quantum computation, and it subsumes previously
defined quasiprobability representations. Note that, although this model can simulate any
quantum computation, the simulation is presumably inefficient in general.

The remainder of this paper is structured as follows. In Section 2 we review some back-
ground material on quantum computation with magic states and the stabilizer formalism
for qudits. In Section 3 we define the hidden variable model alluded to above. In Section 4
we present a classical simulation algorithm for quantum computation with magic states
based on sampling from the probability distributions that define the model. In Section 5
we characterize a subset of the hidden variables of the model. Finally, in Section 6 we con-
sider some properties of the qubit HVM [47] which extend to the qudit case. We conclude
with a discussion of the significance of these results in Section 7.
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2 Preliminaries
The setting of this paper is quantum computation with magic states (QCM) [11, 12] on
multiple qudits, i.e., on multiple d-level quantum systems. This is a universal model of
quantum computation in which computation proceeds through the application a sequence
of Clifford gates and Pauli measurements on an initially prepared “magic state”. Formally,
for a system of n d-dimensional qudits, the allowed measurements are associated with ele-
ments of the generalized Pauli group, P = ⟨ω,Xk, Zk | 1 ≤ k ≤ n⟩ where ω = exp(2πi/d)
is a primitive dth root of unity and the local Pauli operators are the d-dimensional gener-
alization of the standard qubit Pauli operators [48], given by

X =
∑

j∈Zd

|j + 1⟩ ⟨j| and Z =
∑

j∈Zd

ωj |j⟩ ⟨j| . (1)

Here Zd is the ring of integers modulo d. With overall phases modded out we have P :=
P/Z(P ) ∼= Z2n

d and we can parametrize the Pauli operators by a = (aZ , aX) ∈ Zn
d×Zn

d =: E
as

Ta = µϕ(a)Z(aZ)X(aX) (2)

with Z(aZ) =
⊗n

k=1 Z
aZ [k], X(aX) =

⊗n
k=1X

aX [k]. Here µ = ω when d is odd, and
µ =

√
ω when d is even. The phase function ϕ can be chosen freely subject to the

constraint (Ta)d = 1 for all a ∈ E. This constraint forces the eigenvalues of the operators
to be in {ωj | j ∈ Zd}. For concreteness we can choose the phase function to be

ϕ(a) =
{
−⟨aZ |aX⟩ · 2−1 if d is odd
−⟨aZ |aX⟩ if d is even

(3)

where the inner product ⟨aZ |aX⟩ :=
∑n

k=1 aZ [k]aX [k] is computed mod d if d is odd, and
mod 2d if d is even.

The gates of the model are the Clifford gates, which are drawn from the normalizer of
the Pauli group in the unitary group (up to overall phases):

Cℓ = N (P)/U(1). (4)

The Clifford gates are not required for quantum computational universality of this model
since they can always be propagated past the Pauli measurements, conjugating them into
other Pauli measurements [40, 49]. After they are propagated past the final Pauli measure-
ments they can be dropped since they no longer affect the statistics of the measurements.
In the following we include the Clifford gates anyway for completeness.

The last primitive required for QCM is the preparation of so-called “magic” input
states. It is these states which allow for the universality of QCM. If the set of input states
in QCM were restricted to only include n-qudit stabilizer states then the model would not
be universal, and in fact any circuit of this type could be efficiently simulated on a classical
computer. This is the result of the Gottesman-Knill theorem [14, 48]. Magic states are
any nonstabilizer states which allow for universality in the QCM model.

See Appendix A for more background on Pauli measurements, Clifford gates, and the
stabilizer formalism for qudits.

Accepted in Quantum 2024-04-07, click title to verify. Published under CC-BY 4.0. 3



Before proceeding we need to introduce some additional notation. The symplectic inner
product [·, ·] : E × E −→ Zd defined by

[a, b] := ⟨aZ |bX⟩ − ⟨aX |bZ⟩ (5)

tracks the commutator of the generalized Pauli operators in the sense

[Ta, Tb] := TaTbT
−1
a T−1

b = ω[a,b]
1. (6)

Because of this correspondence we will say that elements a, b ∈ E commute when [a, b] = 0.
The Pauli group with phases modded out forms a normal subgroup of the Clifford group
such that Cℓ/P ∼= Sp(E) is the group of symplectic transformations on E. The Clifford
group acts on the Pauli group by conjugation as

gTag
† = ωΦ̃g(a)TSg(a) ∀g ∈ Cℓ ∀a ∈ E (7)

where Sg ∈ Sp(E) is a symplectic map, and the function Φ̃g : E → Zd tracks the extra
phases that get picked up.

A function β : E × E → Zd tracks how Pauli operators compose through the relation

TaTb = ω−β(a,b)Ta+b. (8)

The functions Φ̃ and β have a cohomological interpretation elucidated in Ref. [50] (also see
Refs. [28, 45]).

Recall from Ref. [45] a few definitions.

Definition 1 A set Ω ⊂ E is closed under inference if for every pair of elements a, b ∈ Ω
satisfying [a, b] = 0, it holds that a + b ∈ Ω. The closure under inference of a set Ω ⊂ E,
denoted Ω̄, is the smallest subset of E which contains Ω and is closed under inference.

Definition 2 A set Ω ⊂ E is called noncontextual if there exists a noncontextual value
assignment for the closure of that set, i.e., there exists a function γ : Ω̄→ Zd such that for
all a, b ∈ Ω with [a, b] = 0, γ satisfies

γ(a) + γ(b)− γ(a+ b) = −β(a, b). (9)

A set which is both closed under inference and noncontextual we call cnc for short.
For any isotropic subgroup I ⊂ E, i.e. any subgroup I of E on which the symplectic

product is identically zero, and any noncontextual value assignment r : I → Zd, the
operator

Πr
I = 1
|I|
∑
b∈I

ω−r(b)Tb (10)

is the projector onto the simultaneous +1-eigenspace of the operators {ω−r(b)Tb | b ∈ I}.
This represents a measurement of the Pauli observables labeled by I yielding measurement
outcomes ωr(b). In particular, for a single Pauli measurement I = ⟨a⟩ is generated by a
single element a ∈ E, and when |I| = dn, Πr

I is a projector onto a stabilizer state.
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3 Hidden variable model
In this section we define a hidden variable model that represents all components of quantum
computation with magic states by a family of probability distributions. This is in contrast
to previous quasiprobability representations which required negativity in the representation
of either the states or the operations of QCM in order to represent universal quantum
computation. The main result of this section is Theorem 1.

Let Herm(H) be the space of Hermitian operators on n-qudit Hilbert space H ∼= Cdn ,
Herm1(H) be the affine subspace of this space obtained by fixing the trace of the operators
to be 1, and let Herm⪰0

1 (H) be the subset of Herm1(H) consisting of positive semidefinite
operators. Let S denote the set of pure n-qudit stabilizer states. The state space of the
hidden variable model is based on the set

Λ = {X ∈ Herm1(H)|Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ S}. (11)

The elements of Λ are much like density operators in that they are Hermitian operators
with unit trace, but unlike density operators they are not necessarily positive semidefinite.
In order to define the hidden variable model we first need to establish some basic properties
of Λ.

Lemma 1 For any number of qudits n ∈ N of any dimension d ∈ N, (i) Λ is convex, and
(ii) Λ is compact.

The proof of Lemma 1 is in Appendix B.

Λ can be interpreted as a subset of a real affine space defined by the intersection of a
finite number of linear inequalities, i.e., it is a polyhedral set. Since Λ is compact, it is a
polytope, and so by the Minkowski-Weyl theorem [51] it can equivalently be described as
the convex hull of finitely many vertices. Let {Aα | α ∈ V} denote the (finite) set of vertices
of Λ. Then we have the following result, which is a generalization of [30, Theorem 1] to
qudits of arbitrary Hilbert space dimension d.

Theorem 1 For any number n ∈ N of qudits with any Hilbert space dimension d ∈ N,

1. For any quantum state ρ ∈ Herm⪰0
1 (H), there is a probability function pρ : V → R≥0

such that
ρ =

∑
α∈V

pρ(α)Aα. (12)

2. For any vertex Aα of Λ and any Clifford operation g ∈ Cℓ, gAαg
† =: Ag·α is a vertex

of Λ.

3. For update under Pauli measurements it holds that for any isotropic subgroup I ⊂ E,
any noncontextual value assignment r : I → Zd, and any vertex Aα,

Πr
IAαΠr

I =
∑

α′∈V
qα,I(α′, r)Aα′ , (13)

where qα,I(α′, r) ≥ 0 for all α′ ∈ V and
∑

α′,r qα,I(α′, r) = 1.

4. The Born rule takes the form

Tr(Πr
Iρ) =

∑
α∈V

pρ(α)QI(r | α) (14)

where Q is given by
QI(r | α) =

∑
α′∈V

qα,I(α′, r). (15)
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This theorem defines a hidden variable model which represents all of the primitives
of quantum computation with magic states using only probability distributions for states
and measurements, and probabilistic update rules for dynamics. It has a similar structure
to previous hidden variable models based on quasiprobability representations [23–25, 30,
31, 33, 40, 43, 45, 46, 52], with a key difference being that in this model every state can
be represented by a probability distribution, no negativity is required. Unlike the model
of Beltrametti and Bugajski [53] which requires a hidden variable for each pure quantum
state, this model has a finite number of hidden variables for any number of qudits.

The proof of Theorem 1 requires the following lemma.

Lemma 2 The polytope Λ has the following properties:

1. For any density operator ρ ∈ Herm⪰0
1 (H) representing a physical n-qudit quantum

state, ρ ∈ Λ.

2. For any X ∈ Λ and any Clifford operation g ∈ Cℓ, gXg† ∈ Λ,

3. For any X ∈ Λ, any isotropic subgroup I ⊂ E, and any noncontextual value assign-
ment r : I → Zd, if Tr(Πr

IX) > 0 then

Πr
IXΠr

I

Tr(Πr
IX) ∈ Λ. (16)

Proof of Lemma 2. We will prove the three properties of the lemma in order. For the
first property note that for any density operator ρ ∈ Herm⪰0

1 (H), ρ is positive semidefinite.
Therefore, for any pure quantum state |ψ⟩, Tr(|ψ⟩ ⟨ψ| ρ) ≥ 0. This holds in particular for
any pure stabilizer state. Therefore, ρ satisfies all of the defining inequalities of the polytope
in eq. (11) and so ρ ∈ Λ.

For the second property, let X ∈ Λ and g ∈ Cℓ. Then for any stabilizer state |σ⟩ ∈ S,

Tr
(
|σ⟩ ⟨σ| (gXg†)

)
= Tr

(
(g† |σ⟩ ⟨σ| g)X

)
(17)

= Tr
(∣∣σ′〉 〈σ′∣∣X) ≥ 0. (18)

Here the first equality follows from the cyclic property of the trace, the second equality from
the fact that Clifford operations map stabilizer states to stabilizer states (see Lemma 6 in
Appendix A), and the last inequality from the assumption X ∈ Λ.

Now we can prove the third property of Lemma 2. Let I, J ⊂ E be isotropic subgroups
with noncontextual value assignments r : I → Zd and s : J → Zd. By Lemma 7 in
Appendix A,

Πr
IΠs

JΠr
I = δr|I∩J ,s|I∩J

|J ∩ I⊥|
|J |

Πr⋆s
I+(J∩I⊥) (19)

where δr|I∩J ,s|I∩J
is equal to one if r and s agree on the intersection I ∩ J , and it is zero

otherwise. Here r ⋆ s is the unique noncontextual value assignment on the set I + (J ∩ I⊥)
such that r ⋆ s|I = r and r ⋆ s|J∩I⊥ = s|J∩I⊥ . For any X ∈ Λ and any Pauli projector Πr

I ,
if Tr(Πr

IX) > 0, then for any projector onto a stabilizer state Πs
J ,

Tr
(

Πs
J

Πr
IXΠr

I

Tr(Πr
IX)

)
= Tr((Πr

IΠs
JΠr

I)X)
Tr(Πr

IX) (20)

= δr|I∩J ,s|I∩J

|J ∩ I⊥|
|J |

Tr
(
Πr⋆s

I+(J∩I⊥)X
)

Tr(Πr
IX) ≥ 0. (21)
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Here the first line follows from linearity and the cyclic property of the trace. The last
inequality follows from the fact that by Lemma 5 in Appendix A, Πr⋆s

I+(J∩I⊥) can be written
as a conic combination of projectors onto stabilizer states, and from the assumption X ∈ Λ.
Therefore, for any X ∈ Λ, any Pauli projector Πr

I , and any stabilizer state |σ⟩ ∈ S, if
Tr(Πr

IX) > 0, then

Tr
(
|σ⟩ ⟨σ| Πr

IXΠr
I

Tr(Πr
IX)

)
≥ 0 (22)

and so Πr
IXΠr

I/Tr(Πr
IX) ∈ Λ. This proves the third statement of the lemma. □

We can now prove the main result of this section.
Proof of Theorem 1. We will prove the four statements of the theorem in order. First,

as shown in Lemma 2, Λ contains all density matrices corresponding to physical n-qudit
quantum states. Therefore, by the Krein-Milman theorem [51] any state can be written as
a convex combination of the vertices of Λ. This is the first statement of the theorem.

The second property from Lemma 2 shows that for any Clifford operation g ∈ Cℓ and
any vertex Aα of Λ, we have Ag·α := gAαg

† ∈ Λ. It remains to show that Ag·α is a vertex
of Λ.

Let Sα = {|σ⟩ ∈ S | Tr(|σ⟩ ⟨σ|Aα) = 0} be the set of stabilizer states with projectors
orthogonal to vertex Aα with respect to the Hilbert-Schmidt inner product. By Theo-
rem 18.1 of Ref. [54], since Aα is a vertex of Λ, Aα is the unique solution in Herm1(H) of
the system {

Tr(|σ⟩ ⟨σ|X) = 0 ∀ |σ⟩ ∈ Sα

Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ S \ Sα.
(23)

For any stabilizer state |σ⟩ ∈ Sα,

Tr(|σ⟩ ⟨σ|X) = Tr
(
g |σ⟩ ⟨σ| g†gXg†

)
. (24)

Therefore, under conjugation by g ∈ Cℓ, solutions to the system eq. (23) are mapped
bijectively to solutions of the system{

Tr(|σ⟩ ⟨σ|X) = 0 ∀ |σ⟩ ∈ Sg·α

Tr(|σ⟩ ⟨σ|X) ≥ 0 ∀ |σ⟩ ∈ S \ Sg·α
(25)

where Sg·α := {g |σ⟩ | |σ⟩ ∈ Sα}. In particular, Ag·α := gAαg
† is the unique solution to

this system, so by Theorem 18.1 of Ref. [54], it is a vertex of Λ.
For the third statement of Theorem 1, let Aα be a vertex of Λ and Πr

I be any Pauli
projector. We have two cases. (I) First, if Tr(Πr

IAα) = 0, then Πr
IAαΠr

I is zero as an
operator. To see this, consider the inner product Tr(TaΠr

IAαΠr
I) for any Pauli operator

Ta, a ∈ E. Here we have three subcases: (i) if a ∈ I, then

TaΠr
I = 1
|I|
∑
b∈I

ω−r(b)TaTb (26)

= 1
|I|
∑
b∈I

ω−r(b)−β(a,b)Ta+b (27)

= 1
|I|
∑
b∈I

ωr(a)−r(a+b)Ta+b (28)

=ωr(a)Πr
I . (29)
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Therefore,

Tr(TaΠr
IAαΠr

I) = ωr(a) Tr(Πr
IAα) = 0. (30)

(ii) If a ∈ I⊥ \ I, then by Lemma 5 in Appendix A we have

Πr
I =

∑
γ∈Γ⟨a,I⟩

I,r

Πγ
⟨a,I⟩ (31)

where Γ⟨a,I⟩
I,r is the set of noncontextual value assignments on ⟨a, I⟩ satisfying γ|I = r.

Multiplying this equation on the right by Aα and taking a trace we get

Tr(Πr
IAα) =

∑
γ∈Γ⟨a,I⟩

I,r

Tr
(
Πγ

⟨a,I⟩Aα

)
. (32)

With Lemma 5, each projector on the right hand side can be written as a sum of projec-
tors onto stabilizer states. Therefore, since Aα ∈ Λ each term on the right hand side is
nonnegative. But the left hand side is zero by assumption. Therefore, each term on the
right hand side is zero. I.e. Tr

(
Πγ

⟨a,I⟩Aα

)
= 0 for every γ ∈ Γ⟨a,I⟩

I,r .
We can write the spectral decomposition of the operator Ta as

Ta =
∑

γ∈Γ⟨a,I⟩
I,r

ωγ(a)Πγ|⟨a⟩
⟨a⟩ . (33)

Then

Tr(TaΠr
IAαΠr

I) =
∑

γ∈Γ⟨a,I⟩
I,r

ωγ(a) Tr
(

Πγ|⟨a⟩
⟨a⟩ Πr

IAαΠr
I

)
(34)

=
∑

γ∈Γ⟨a,I⟩
I,r

ωγ(a) Tr
(
Πγ

⟨a,I⟩Aα

)
= 0. (35)

(iii) If a ̸∈ I⊥, then

Πr
ITaΠr

I = 1
|I|2

∑
b,c∈I

ω−r(b)−r(c)TbTaTc (36)

= 1
|I|2

∑
b,c∈I

ω−r(b)−r(c)+[b,a]−β(b,c)TaTb+c (37)

= 1
|I|2

Ta

∑
b,c∈I

ω−r(b+c)+[b,a]Tb+c (38)

= 1
|I|
TaΠr

I

∑
b∈I

ω[b,a]. (39)

By character orthogonality, the sum in the final expression vanishes. Therefore,

Tr(TaΠr
IAαΠr

I) = Tr(Πr
ITaΠr

IAα) = 0. (40)

We have Tr(TaΠr
IAαΠr

I) = 0 for every Pauli operator Ta, a ∈ E. Therefore, Πr
IAαΠr

I

is zero as an operator.
(II) Second, if Tr(Πr

IAα) > 0, then by the third statement of Lemma 2 we have
Πr

IAαΠr
I/Tr(Πr

IAα) ∈ Λ, and so there exists a decomposition of Πr
IAαΠr

I/Tr(Πr
IAα) as
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a convex combination of the vertices of Λ. Therefore, there exist nonnegative coefficients
qα,I(α′, r) such that

Πr
IAαΠr

I =
∑

α′∈V
qα,I(α′, r)Aα′ . (41)

Taking a trace of this equation and adding the corresponding equations for all noncontex-
tual value assignments r of I we have on the left hand side

∑
r

Tr(Πr
IAαΠr

I) = Tr
[(∑

r

Πr
I

)
Aα

]
= Tr(Aα) = 1 (42)

and on the right hand side∑
α′,r

qα,I(α′, r) Tr(Aα′) =
∑
α′,r

qα,I(α′, r). (43)

Therefore,
∑

α′,r qα,I(α′, r) = 1. This proves the third statement of the Theorem.
Finally, we calculate

Tr(Πr
Iρ) =

∑
α∈V

pρ(α) Tr(Πr
IAα) (44)

=
∑
α∈V

pρ(α)
∑

α′∈V
qα,I(α′, r) (45)

=
∑
α∈V

pρ(α)QI(r | α) (46)

and we obtain the fourth statement of the theorem. □

4 Classical simulation algorithm
Theorem 1 shows that all of the components of quantum computation with magic states can
be described by a hidden variable model which represents all relevant states and dynamical
operations by probabilities. This leads to a classical simulation algorithm for quantum
computation with magic states, Algorithm 1, based on sampling from these probability
distributions.

In short, a vertex label α ∈ V is sampled according to the probability distribution of
eq. (12) representing the input state of the quantum circuit. This vertex is then propagated
through the circuit. When a Clifford gate g ∈ Cℓ is encountered, we have a deterministic
update rule: α → g · α, according to the second statement of Theorem 1. When a Pauli
measurement a ∈ E is encountered, the third and fourth statements of Theorem 1 give
a way of determining probabilities for measurement outcomes, as well as a probabilistic
update rule. That is, we sample a pair (α′, r) according to the probability distribution
qα,⟨a⟩ where α′ ∈ V and r : ⟨a⟩ → Zd is a noncontextual value assignment. Then r(a) is
returned as the measurement outcome and the vertex is updated as α→ α′. This process
continues until the end of the circuit is reached.
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Input: pρ0

1: sample a point α ∈ V according to the probability distribution pρ0

2: while end of circuit has not been reached do
3: if a Clifford gate g ∈ Cℓ is encountered then
4: update α← g · α
5: if a Pauli measurement Ta, a ∈ E is encountered then
6: sample (α′, r) according to the probability distribution qα,⟨a⟩
7: Output: r(a) as the outcome of the measurement
8: update α← α′

Algorithm 1: One run of the classical simulation algorithm for quantum computation with magic states
based on the hidden variable model of Theorem 1. The algorithm provides samples from the joint
probability distribution of the Pauli measurements in a quantum circuit consisting of Clifford unitaries
and Pauli measurements applied to an input state ρ0.

A proof of the correctness of this simulation algorithm is given below.

Theorem 2 The classical simulation algorithm, Algorithm 1, correctly reproduces the pre-
dictions of quantum theory.

Proof of Theorem 2. Without loss of generality, a QCM circuit can be represented
as a sequence g1, I1, g2, I2, . . . with g1, g2, · · · ∈ Cℓ specifying the Clifford unitaries to be
applied, and I1, I2, · · · ⊂ E isotropic subgroups specifying the Pauli measurements to be
performed. First, consider a single layer of this circuit consisting of a Clifford gate g ∈ Cℓ
followed by Pauli measurements corresponding to an isotropic subgroup I ⊂ E.

Using the classical simulation algorithm, Algorithm 1, the conditional probability of
obtaining measurement outcomes specified by the noncontextual value assignment r : I →
Zd for the measurements given the state α ∈ V is QI(r | g ·α). Therefore, the probability of
obtaining outcomes r given the gate g is applied to the state ρ followed by the measurements
of the Pauli observables in I is given by

P
(Sim)
ρ,g,I (r) =

∑
α∈V

pρ(α)QI(r | g · α). (47)

The corresponding outcome probability predicted by the Born rule, P (QM)
ρ,g,I (r), is

Tr
(
Πr

Igρg
†
)

=
∑
α∈V

pρ(α) Tr
(
Πr

IgAαg
†
)

(48)

=
∑
α∈V

pρ(α) Tr(Πr
IAg·α) (49)

=
∑
α∈V

pρ(α)QI(r | g · α). (50)

Here in the first line we use the expansion of ρ in the vertices of Λ, eq. (12), in the
second line we use the second statement of Theorem 1, and in the last line we use the
fourth statement of Theorem 1. This agrees with the outcome probability predicted by the
classical simulation algorithm.

Now consider the postmeasurement state ρ′. According to quantum mechanics, the
postmeasurement state is

ρ′(QM) = Πr
Igρg

†Πr
I

Tr(Πr
Igρg

†) . (51)
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Here the numerator is

Πr
Igρg

†Πr
I =

∑
α∈V

pρ(α)Πr
IgAαg

†Πr
I (52)

=
∑
α∈V

pρ(α)Πr
IAg·αΠr

I (53)

=
∑
α∈V

pρ(α)
∑

α′∈V
qg·α,I(α′, r)Aα′ (54)

and the denominator is

Tr
(
Πr

Igρg
†Πr

I

)
=
∑
α∈V

pρ(α)
∑

α′∈V
qg·α,I(α′, r) (55)

=
∑
α∈V

pρ(α)QI(r | g · α), (56)

so the postmeasurement state predicted by quantum theory is

ρ′(QM) =
∑

α pρ(α)
∑

α′ qg·α,I(α′, r)Aα′∑
α pρ(α)QI(r | g · α) . (57)

Using the classical simulation algorithm, the probability of obtaining outcomes r and
state Aα′ given a Clifford gate g followed by measurements of the Pauli observables I on
state ρ is Pρ,g,I(α′, r) = Pρ,g,I(α′|r)Pρ,g,I(r). But Pρ,g,I(α′, r) =

∑
α pρ(α)Pg,I(α′, r|α) =∑

α pρ(α)qg·α,I(α′, r), and Pρ,g,I(α′|r) = pρ′(α′). Therefore, the postmeasurement state
predicted by the classical simulation algorithm is

ρ′(Sim) =
∑

α′∈V
pρ′(α′)Aα′ (58)

=
∑

α′∈V

Pρ,g,I(α′, r)
Pρ,g,I(r) Aα′ (59)

=
∑

α′∈V

∑
α pρ(α)qg·α,I(α′, r)∑
α pρ(α)QI(r | g · α)Aα′ . (60)

This agrees with the postmeasurement state predicted by quantum mechanics. Therefore,
the classical simulation algorithm correctly reproduces the outcome probabilities and the
postmeasurement state predicted by quantum mechanics for a single layer of a QCM circuit.

Now let ρ(t) denote the state after t layers of the circuit. Then the argument above
shows that the classical simulation algorithm correctly reproduces the Born rule prob-
abilities Pρ0,gt+1,It+1(rt+1 | r1, r2, . . . , rt) as well as the postmeasurement state ρ(t + 1).
Therefore, by induction, the simulation algorithm correctly reproduces the outcome prob-
abilities predicted by the Born rule for any QCM circuit. □

5 Partial characterization of vertices of Λ
In Ref. [45] a classical simulation algorithm for quantum computation with magic states
is introduced based on a quasiprobability representation. Points in the generalized phase
space over which the quasiprobability function is defined are associated with pairs (Ω, γ)
where Ω ⊂ E is a cnc set and γ : Ω→ Zd is a noncontextual value assignment for Ω. For
each point in phase space there is a corresponding phase space point operator defined as

Aγ
Ω = 1

dn

∑
b∈Ω

ω−γ(b)Tb. (61)
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For qubits, if Ω is a maximal cnc set then phase point operators Aγ
Ω of the form eq. (61)

are vertices of Λ [46, 55]. Vertices of the type eq. (61) we call cnc vertices.
A similar result holds for odd-prime-dimensional qudits. Namely, phase point operators

of the form Aγ
E define facets of the stabilizer polytope [22, 29], or equivalently, by polar

duality, Aγ
E are vertices of Λ. Here we show that this holds for qudits with any odd Hilbert

space dimension. This is the result of the following theorem.

Theorem 3 For any number n of qudits with any odd Hilbert space dimension d, phase
space point operators of the form

Aγ
E = 1

dn

∑
b∈E

ω−γ(b)Tb (62)

where γ : E −→ Zd is a noncontextual value assignment for E are vertices of Λ.

This theorem provides a partial characterization of the vertices of Λ which define the
hidden variable model of Theorem 1. When n ≥ 2, the operators Aγ

E are exactly the
phase space point operators of Gross’ Wigner function for odd-dimensional qudits [23, 25,
33], therefore, the standard multi-qudit phase point operators are a subset of the hidden
variables of our model (when n = 1, Gross’ phase space point operators still have this
form, but there are also other operators with this form [33]). Note that the phase point
operators of the form eq. (62) only exist when the qudit Hilbert space dimension d is odd
since noncontextual value assignments on E exist only when d is odd [50]. In the case of
qubits, some additional classes of vertices have been characterized [50], but the vertices
with the simplest description are the cnc type vertices of eq. (61).

The proof of Theorem 3 requires the following lemma.

Lemma 3 For any vertex Aα of Λ and any Pauli operator Ta, |Tr(TaAα)| ≤ 1.

Proof of Lemma 3. For any α ∈ V and any a ∈ E,

Tr(TaAα) =
∑

s∈Γ⟨a⟩

Tr
(
Πs

⟨a⟩Aα

)
ωs(a) (63)

where Γ⟨a⟩ is the set of noncontextual value assignments on ⟨a⟩ and Πs
⟨a⟩ is the projector

onto the eigenspace of the Pauli observable Ta with eigenvalue ωs(a). {Πs
⟨a⟩|s ∈ Γ⟨a⟩} is a

projection-valued measure, i.e.
∑

s Πs
⟨a⟩ = 1. Therefore,

∑
s∈Γ⟨a⟩

Tr
(
Πs

⟨a⟩Aα

)
= Tr

 ∑
s∈Γ⟨a⟩

Πs
⟨a⟩

Aα

 = 1 (64)

and so

|Tr(TaAα)| ≤
∑

s∈Γ⟨a⟩

∣∣∣Tr
(
Πs

⟨a⟩Aα

)
ωs(a)

∣∣∣ (65)

≤
∑

s∈Γ⟨a⟩

∣∣∣Tr
(
Πs

⟨a⟩Aα

)∣∣∣ (66)

=
∑

s∈Γ⟨a⟩

Tr
(
Πs

⟨a⟩Aα

)
= 1 (67)

which proves the claimed bound. □
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We can now prove Theorem 3.
Proof of Theorem 3. First we need to show that the phase point operators of eq. (62)

are in Λ. This requires checking that the Hilbert-Schmidt inner product of Aγ
E with the

projector onto any stabilizer state is nonnegative. For any maximal isotropic subgroup I
with any noncontextual value assignment r : I → Zd,

Tr(Πr
IA

γ
E) = 1

d2n

∑
a∈I

∑
b∈E

ω−r(a)−γ(b) Tr(TaTb) (68)

= 1
dn

∑
a∈I

ω−r(a)−γ(−a) (69)

= 1
dn

∑
a∈I

ω−r(a)+γ(a). (70)

To obtain the last equality, note that with the phase convention chosen in eq. (3) we
have T−a = T †

a = T−1
a and T0 = 1. Therefore, TaT−a = TaT

−1
a = 1 = Ta+(−a) and

so by definition β(a,−a) = 0. Further, eq. (9) applied to the case a = b = 0 implies
γ(0) = −β(0, 0) = 0. Thus, with eq. (9), we have γ(a) + γ(−a) − γ(0) = −β(a,−a), and
so γ(−a) = −γ(a).

Here we have two cases.
(I) If r|I = γ|I then we have

Tr(Πr
IA

γ
Ω) = 1

dn

∑
a∈I

ω−r(a)+γ(a) = |I|
dn

= 1. (71)

since |I| = dn by [56, Theorem 1].
(II) If r|I ̸= γ|I then by orthogonality of twisted characters [57], we have

Tr(Πr
IA

γ
E) = 1

dn

∑
a∈I

ω−r(a)+γ(a) = 0. (72)

Therefore, in both cases Tr(Πr
IA

γ
E) ≥ 0. This proves that the phase point operators of

eq. (62) are in Λ.
Since Aγ

E ∈ Λ, there exists an expansion of Aγ
E as a convex combination of the vertices

of Λ:
Aγ

E =
∑
α∈V

p(α)Aα. (73)

Consider a Pauli operator Ta, a ∈ E. We have Tr(TaA
γ
E) = ωγ(a) so multiplying eq. (73)

by Ta and taking a trace we get

ωγ(a) =
∑
α∈V

p(α) Tr(TaAα) (74)

Taking the absolute value of this equation we get on the left hand side
∣∣∣ωγ(a)

∣∣∣ = 1 and on
the right hand side ∣∣∣∣∣∑

α∈V
p(α) Tr(TaAα)

∣∣∣∣∣ ≤∑
α∈V

p(α)|Tr(TaAα)| (75)

≤
∑
α∈V

p(α) = 1. (76)
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Here the first inequality is the triangle inequality and the second inequality follows from
Lemma 3. The second inequality is strict if |Tr(TaAα)| < 1 for any Aα with p(α) > 0. If
this were the case then this would lead to a contradiction: 1 < 1. Therefore, |Tr(TaAα)| =
1 for all Aα with p(α) > 0.

Now consider the real part of the equation above:

Re
[
ωγ(a)

]
=
∑
α∈V

p(α)Re [Tr(TaAα)] . (77)

Since the coefficients are nonnegative and sum to one, this implies that Re [Tr(TaAα)] =
Re
[
ωγ(a)

]
for every α with p(α) > 0. The same argument holds for the imaginary part.

Thus, Tr(TaAα) = ωγ(a) for all α with p(α) > 0. I.e. each Aα that appears with nonzero
weight in the expansion of Aγ

E in eq. (73) must agree with Aγ
E on the expectation of Ta for

all a ∈ E. There is exactly one such operator in Herm1(H), namely Aγ
E . Therefore, Aγ

E is
a vertex of Λ. □

6 Mapping vertices of Λm to Λn

In this section we introduce a version of the Φ-map [47], that embeds the m-qudit polytope
Λm as a subpolytope of the n-qudit polytope Λn where n ≥ m, that works over qudits for
an arbitrary d ≥ 2. However, for d ̸= 2 this map fails to map vertices of Λm to vertices of
Λn.

We will regard Em as a subgroup of En by identifying it with ⟨x1, · · · , xm, z1, · · · , zm⟩.
We will write E(n)

n−m for the subgroup ⟨xm+1, · · · , xn, zm+1, · · · , zn⟩. These two subgroups
intersect at the zero element and they generate the whole group. In this decomposition
En−m is identified with E

(n)
n−m via the map xi 7→ xm+i and zi 7→ zm+i. Any isotropic

subgroup J ⊂ En−m will be identified with its image in E(n)
n−m.

Theorem 4 Let Πr
J denote an (n −m)-qudit stabilizer projector and g denote an n-qudit

Clifford unitary. The linear map

Φr
g,J : Herm

(
Cdm

)
→ Herm

(
Cdn

)
, X 7→ g(X ⊗Πr

J)g† (78)

is injective and sends Λm to the subpolytope given by

{(Πr′
J ′YΠr′

J ′)/Tr(YΠr′
J ′)| Y ∈ Λn and Tr

(
YΠr′

J ′

)
̸= 0} (79)

where Πr′
J ′ = g(1⊗Πr

J)g†.

This partially generalizes to qudits of arbitrary dimension a stronger result which ap-
plies only to the case d = 2 [50].

Proof of Theorem 4. To be able to distinguish Pauli operators we will write T (n)
a to

indicate an n-qudit Pauli operator. With the choice of phase function ϕ in eq. (2) we have
(1) T0 = 1, (2) β(a, ka) = 0 for all a ∈ En and k ∈ Zd and (3) β(a, b) = 0 for all a ∈ Em

and b ∈ E
(n)
n−m. It suffices to prove the theorem for the case where (g, J, r) is given by

(1, J0, r0). Here 1 is the identity operator, J0 = ⟨xm+1, xm+2, · · · , xn⟩, and r0 is the value
assignment defined by r0(xi) = 0 for all 1 ≤ i ≤ n−m. This is because we can write

Φr
g,J(X) = gΦr

1,J(X)g† (80)
= g(1⊗W )Φr0

1,J0
(X)(1⊗W †)g† (81)

= V Φr0
1,J0

(X)V † (82)
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where W is the Clifford unitary such that WΠr0
J0
W † = Πr

J and V = g(1 ⊗W ). For the
rest we will take (g, J, r) = (1, J0, r0). Let us write Φ = Φr0

1,J0
for simplicity of notation.

The map Φ sends X to the tensor product X ⊗Πr0
J0

, and therefore it is linear because
of the properties of the tensor product operation. For X ∈ Herm(Cdm) we can write

X = 1
dm

∑
a∈Em

αaT
(m)
a (83)

which gives

Φ(X) = X ⊗Πr
J = 1

dn

∑
a+b∈Em+J

αaT
(n)
a+b. (84)

In particular, Φ(X) = 0 implies that X = 0, hence Φ is injective. Next we show that Φ
maps Λm into Λn. First note that Tr(Φ(X)) = α0 = 1 since Tr(X) = 1. For a maximal
isotropic subgroup I ⊂ En we compute

Tr(Πs
IΦ(X)) = 1

d2n

∑
c∈I

∑
a+b∈Em+J

αaω
s(c) Tr

(
T †

c Ta+b

)
︸ ︷︷ ︸

dnδc,a+b

(85)

= 1
dn

∑
a+b∈(Em+J)∩I

αaω
s(a+b) (86)

= |K ∩ J |
dn

∑
a∈K∩Em

αaω
s(a)

 1
|K ∩ J |

∑
b∈K∩J

ωs(b)

 (87)

= δr|K∩J ,s|K∩J

|K ∩ J |
dn

∑
a∈K∩Em

αaω
s(a) (88)

= δr|K∩J ,s|K∩J

|K|
dn

Tr
(
ΠK∩Em,s|K∩Em

X
)
≥ 0 (89)

where K = (Em + J) ∩ I. Therefore Φ(X) ∈ Λn. This image is a convex polytope since
the image of a convex polytope under a linear map is also a convex polytope. We want to
show that the image of Φ is given by

{Πr
JYΠr

J/Tr(YΠr
J) |Y ∈ Λn and Tr(YΠr

J) ̸= 0}. (90)

First observe that this set is contained in Λn by Theorem 1. Writing Y in the Pauli basis
Y = (

∑
c∈En

βcT
(n)
c )/dn we obtain

Πr
JYΠr

J = 1
dn

∑
c∈En

βcΠr
JT

(n)
c Πr

J (91)

= 1
dn

∑
a+b∈Em+J

βa+bΠr
JT

(n)
a+b (92)

= 1
dn

∑
a+b∈Em+J

βa+bΠr
J(T (m)

a ⊗ T (n−m)
b ) (93)

= 1
dn

∑
a+b∈Em+J

βa+bT
(m)
a ⊗Πr

J (94)

= 1
dm

∑
a∈Em

 1
dn−m

∑
b∈J

βa+b

T (m)
a ⊗Πr

J . (95)
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Defining X by setting αa = Tr(YΠr
J)(
∑

b∈J βa+b)/dn−m in eq. (83) this computation shows
that Φ(X) = (Πr

JYΠr
J)/Tr(YΠr

J). Moreover, X belongs to Λm since for any isotropic
subgroup I ′ ⊂ Em and a value assignment s′ defined on it we have that Tr

(
XΠs′

I′

)
=

Tr
(
(XΠs′

I′)⊗Πr
J

)
= Tr

(
Φ(X)(Πs′

I′ ⊗Πr
J)
)
≥ 0 since Πs′

I′ ⊗Πr
J is a stabilizer projector and

Φ(X) ∈ Λn. This shows that the set in eq. (90) is contained in the image of Φ. For the
converse, we define Y by setting βa+b = αa for all b ∈ J . Then by the computation above
we find that Πr

JYΠr
J = Φ(X) with Tr(YΠr

J) = Tr(Φ(X)) = 1. □
In contrast to the qubit case [47], the map Φ does not necessarily map a vertex of Λm

to a vertex of Λn. For example, this is the case for odd qudit dimension d vertices of the
form Aγ

Em
, as in (62).

To see this, consider Φr
g,J with g = 1. Analogously to Lemma 5 in Appendix A, the

operator
Φr
1,J(Aγ

Em
) = Aγ

Em
⊗Πr

J (96)

can be written as a proper convex combination of vertices of Λn:

Aγ
Em
⊗Πr

J =Aγ
Em
⊗

 1∣∣∣ΓEn−m

J,r

∣∣∣
∑

γ′∈ΓEn−m
J,r

Aγ′

En−m

 (97)

= 1∣∣∣ΓEn−m

J,r

∣∣∣
∑

γ′∈ΓEn−m
J,r

Aγ
Em
⊗Aγ′

En−m
(98)

= 1∣∣∣ΓEn−m

J,r

∣∣∣
∑

γ′∈ΓEn−m
J,r

Aγ⋆γ′

En
, (99)

where ΓEn−m

J,r is the set of noncontextual value assignments r on En−m such that r|J = r and
γ⋆γ0 is the unique value assignment on En satisfying (γ⋆γ0)|Em

= γ and (γ⋆γ0)|En−m
= γ0.

7 Discussion
In this paper, we have presented a hidden variable model which represents all components
of quantum computation with magic states using only classical (nonnegative) probabilities.
In this model, magic states are represented by a probability distribution over a finite set
according to eq. (12). Clifford gates are represented by a deterministic update rule—a
map from the set of hidden variables to itself. Pauli measurements are represented by a
probabilistic update rule—a map from hidden variables to probability distributions over
the set of hidden variables according to eq. (13). This model is similar in form to many
previously defined quasiprobability representations of quantum computation with magic
states [23–25, 29, 40, 43, 45], but with the distinguishing feature that in our model all
states can be represented by a probability distribution. No “negative probabilities” are
required. This is the generalization of the hidden variable model of Ref. [46] to qudits of
arbitrary local Hilbert space dimension.

Since everything is represented probabilistically, the model leads to a classical simula-
tion algorithm for quantum computation with magic states based on sampling from the
defining probability distributions. This is Algorithm 1 presented in Section 4. This algo-
rithm is similar in structure to simulation algorithms based on sampling from quasiproba-
bility distributions like the discrete Wigner function [29, 30, 40, 43, 45], except that those
algorithms are limited in their scope. They can only simulate quantum circuits for which
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the input state of the circuit is represented by a probability distribution. Since in our
model any state can be represented by a probability distribution, we have no such limita-
tion. Note that although Algorithm 1 can simulate any quantum computation, we make
no claims that the simulation is efficient in general. In fact, if a quantum computational
speedup over classical computation is possible at all, as many believe, then efficient classical
simulation must fail.

There are, however, some important cases where the simulation is efficient. For ex-
ample, in the qubit case, it is known that the (efficient) classical simulation algorithm of
Ref. [45] is a special case of this more general model/simulation algorithm. This is a result
of the fact that the phase point operators of eq. (61) are vertices of Λ [46, 55], these are the
cnc-type vertices. In Section 5 we show that for higher-dimensional qudits as well there are
vertices of Λ of cnc-type. We conjecture that the update of these vertices under Clifford
gates and Pauli measurements will be efficiently computable classically. This would result
in the simulation algorithm being efficient whenever the following two conditions are met:
(i) the support of the probability distribution representing the input state of the circuit is
restricted to vertices of this type and (ii) samples from the distribution representing the
input state can be obtained efficiently.

Of course not all vertices of Λ are cnc-type. For example, Ref. [58] characterizes all
vertices of the two-qubit Λ polytope. Under the action of the Clifford group there are eight
orbits of vertices, only two of which are cnc-type vertices. Characterizing the remaining
non-cnc-type vertices of Λ for arbitrary n and d is an open problem which could expand
the scope of efficiency of Algorithm 1. This has already been partially achieved in the
qubits case: Ref. [47] provides an efficient description, along with update rules under Pauli
measurements, for one of the non-cnc-type orbits of the two qubit Λ polytope. As a result
of the Φ-map, which maps vertices of the m-qubit polytope to vertices of the n-qubit
polytope with m < n, this also provides a description of a non-cnc-type orbit of vertices
for the Λ polytope on any number of qubits. Ref. [47] also provides a reduction of the
simulation algorithm that shows that the Φ-map does not significantly increase the cost
of classical simulation. Therefore, the scope of efficiency of Algorithm 1 in the qubit case
goes beyond states supported on cnc-type vertices. In section 6 we show that a version
of the Φ-map also holds for qudits of arbitrary dimension. We conjecture that a version
of the corresponding reduction of the simulation algorithm also holds in this more general
setting. This would align the model and simulation algorithm with the resource theory
perspective in which preparation of stabilizer states is considered a “free” operation, along
with Clifford gates and Pauli measurements [59].

We have seen evidence that the Λ polytopes could prove to be of independent inter-
est. A subset of vertices, namely the cnc-type vertices, have already found a handful of
applications [45, 55, 60]. The remaining vertices are less well studied but have proven
useful in certain areas as well [47, 58]. Therefore, we conclude by proposing the family of
Λ polytopes for arbitrary n and d as a subject of further study.

The main open questions regarding the Λ polytopes are “where does the efficiency of
classically simulating quantum computation end?” (assuming it does), and now that we
have found it’s not always negativity in a quasiprobability representation, which physical
property is responsible for the breakdown of efficient classical simulation?”. In this paper
we have shown that those questions do not only arise in the multi-qubit case, but rather
in quantum computation on qudits of any dimension.
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A The qudit stabilizer formalism
The stabilizer formalism [61] describes a large family of quantum error correcting codes,
as well as a broader framework for describing quantum error correction and fault-tolerant
quantum computation. In this appendix we review some features of the stabilizer formalism
for systems of qudits [48] which are useful for some of the proofs in the main text.

A stabilizer code is specified by a pair (I, r) where I is an isotropic subgroup of E,
and r : I → Zd is a noncontextual value assignment for I. The codespace of the code
is the simultaneous +1-eigenspace of the Pauli operators Sr

I = {ω−r(a)Ta | a ∈ I}. Sr
I is

called the stabilizer group of the code. The projector onto this eigenspace, or equivalently,
the projector onto the eigenspace of the Pauli observables labeled by I corresponding to
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eigenvalues {ωr(a) | a ∈ I} is

Πr
I = 1
|I|
∑
b∈I

ω−r(b)Tb. (100)

The dimension of this eigenspace is dn/|I| [56]. In particular, we have the following lemma.

Lemma 4 The order of a maximal isotropic subgroup of E is dn.

For the proof of Lemma 4 see Theorem 1 in Ref. [56]. If I is a maximal isotropic subgroup
of E, |I| = dn, and there is a unique quantum state fixed by a stabilizer group Sr

I . Such
states are called stabilizer states.

Stabilizer code projectors can be constructed from products of stabilizer code projectors
of higher rank. If {Ik | Ik ⊂ I} are such that I =

⋃
k Ik, and the value assignments

rk : Ik → Zd satisfy rk = r|Ik
, then

Πr
I =

∏
k

Πrk
Ik
. (101)

Stabilizer measurements can also be coarse-grained to give stabilizer projectors of higher
rank. This is the result of the following lemma.

Lemma 5 If I is a non-maximal isotropic subgroup of E and Πr
I is a stabilizer code projector

for some noncontextual value assignment r : I → Zd, then for any isotropic subgroup I ′

containing I ∑
r′∈ΓI′

I,r

Πr′
I′ = Πr

I , (102)

where ΓI′
I,r is the set of all noncontextual value assignments on I ′ such that r′|I = r.

Proof of Lemma 5. The proof is obtained by adapting the proof of Ref. [45, Lemma 1].
Let I, I ′ be isotropic subgroups of E such that I ⊊ I ′. Let r : I → Zd be a noncontextual
value assignment for I and ΓI′

I,r be the set of all noncontextual value assignments on I ′

satisfying
r′|I = r ∀r′ ∈ ΓI′

I,r. (103)

Then ∑
r′∈ΓI′

I,r

Πr′
I′ =

∑
r′∈ΓI′

I,r

1
|I ′|

∑
a∈I′

ω−r′(a)Ta (104)

= 1
|I ′|

∑
a∈I′

 ∑
r′∈ΓI′

I,r

ω−r′(a)

Ta. (105)

We have two cases for the inner sum in the last expression. If a ∈ I then r′(a) = r(a) for
all r′ ∈ ΓI′

I,r. Therefore, ∑
r′∈ΓI′

I,r

ω−r′(a) =
∣∣∣ΓI′

I,r

∣∣∣ω−r(a). (106)

In the second case, a /∈ I. ΓI′
I,r is the coset of a vector space, the proof of this is analogous

to the proof of Ref. [45, Lemma 2] which applies only to qubits. Therefore, by character
orthogonality, ∑

r′∈ΓI′
I,r

ω−r′(a) = 0. (107)
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Thus, ∑
r′∈ΓI′

I,r

Πr′
I′ = 1
|I ′|

∑
a∈I′

∣∣∣ΓI′
I,r

∣∣∣ δa∈Iω
−r(a)Ta (108)

=

∣∣∣ΓI′
I,r

∣∣∣
|I ′|

∑
a∈I

ω−r(a)Ta. (109)

We have |ΓI′
I,r| = |I ′|/|I|. Therefore,

∑
r′∈ΓI′

I,r

Πr′
I′ = 1

|I|
∑
a∈I

ω−r(a)Ta = Πr
I (110)

which proves the lemma. □

Corollary 1 The stabilizer polytope (the convex hull of stabilizer states) is

SP = conv
{ |I|
dn

Πr
I | Πr

I stabilizer code projector
}
. (111)

The above lemmas describe structural properties of stabilizer code projectors. It will
also be useful for us to describe how stabilizer projectors behave under the dynamical oper-
ations of quantum computation with magic states—Clifford gates and Pauli measurements.
First, we have the following result regarding Clifford gates.

Lemma 6 For any Clifford group element g ∈ Cℓ, and any stabilizer state |σ⟩ ∈ S,

g |σ⟩ ⟨σ| g† =
∣∣σ′〉 〈σ′∣∣ (112)

where |σ′⟩ ∈ S is a stabilizer state. I.e. Clifford group operations map stabilizer states to
stabilizer states.

Proof of Lemma 6. The action of the Clifford group on the Pauli operators is defined
in eq. (7). With this equation, for a projector onto a stabilizer state |σ⟩ corresponding to
maximal isotropic subgroup I ⊂ E and noncontextual value assignment r : I → Zd we
have

g |σ⟩ ⟨σ| g† =gΠr
Ig

† = 1
|I|
∑
a∈I

ω−r(a)gTag
† (113)

= 1
|I|
∑
a∈I

ω−r(a)+Φg(a)TSg(a) (114)

= 1
|I|

∑
a∈g·I

ω−g·r(a)Ta = Πg·r
g·I (115)

where g · I = {Sg(a) | a ∈ I} and g · r is defined by the relation

g · r(Sg(a)) = r(a)− Φg(a) ∀a ∈ I. (116)

In order to show that g |σ⟩ ⟨σ| g† is a projector onto a stabilizer state it suffices to show
that g · I is a maximal isotropic subgroup of E and that g · r : g · I → Zd is a noncontextual
value assignment for g · I.
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g · I is isotropic since I is isotropic and Sg is a symplectic operation. Also, |g · I| =
|I| = dn so by Lemma 4, g · I is a maximal isotropic subgroup.

Since T0 ∝ 1

gT0g
† = T0 (117)

so Φg(0) = 0 for any g ∈ Cℓ. Therefore,

ω−g·r(0)T0 = ω−r(0)+Φg(0)T0 = ω−r(0)T0 = 1. (118)

For any a, b ∈ g · I, there exist c, d ∈ I such that Sg(c) = a and Sg(d) = b. Computing the
product gTcTdg

† in two different ways we have

gTcTdg
† =gTcg

†gTdg
† (119)

=ωΦg(c)+Φg(d)TSg(c)TSg(d) (120)

=ωΦg(c)+Φg(d)−β(a,b)Ta+b (121)

and

gTcTdg
† =ω−β(c,d)gTc+dg

† (122)
=ω−β(c,d)+Φg(c+d)Ta+b. (123)

Therefore, −Φg(c)− Φg(d) + Φg(c+ d) = β(c, d)− β(a, b) and so

g · r(a) + g · r(b)− g · r(a+ b) (124)
= r(c) + r(d)− r(c+ d)− Φg(c)− Φg(d) + Φg(c+ d) (125)
= −β(a, b). (126)

Thus, g · r satisfies eq. (9) and Πg·r
g·I is a projector onto a stabilizer state. □

The update of stabilizer states under Pauli measurements is probabilistic in general. It
is described in the following lemma.

Lemma 7 For any isotropic subgroups I, J ⊂ E and any noncontextual value assignments
r : I → Zd and s : J → Zd,

1. if r|I∩J = s|I∩J then

Tr(Πs
JΠr

I) = |I ∩ J |
|I||J |

dn > 0 (127)

and
Πr

IΠs
JΠr

I

Tr(Πs
JΠr

I) = |J ∩ I
⊥|

|J |
Πr⋆s

I+J∩I⊥ (128)

where r ⋆ s is the unique noncontextual value assignment on the set I + J ∩ I⊥ such
that r ⋆ s|I = r and r ⋆ s|J∩I⊥ = s|J∩I⊥ .

2. If r|I∩J ̸= s|I∩J then

Tr(Πs
JΠr

I) = 0 and Πr
IΠs

JΠr
I = 0. (129)

Proof of Lemma 7. Let I, J ⊂ E be isotropic subgroups with noncontextual value
assignments r : I → Zd and s : J → Zd.
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Case 1: r|I∩J = s|I∩J . Let r ⋆ s denote the unique noncontextual value assignment on
the set I + J ∩ I⊥ such that r ⋆ s|I = r and r ⋆ s|J∩I⊥ = s|J∩I⊥ . We calculate

Πr
IΠs

JΠr
I = 1
|I|2|J |

∑
a,c∈I

∑
b∈J

ω−r(a)−r(c)−s(b)TaTbTc (130)

= 1
|I|2|J |

∑
a,c∈I

∑
b∈J

ω−r(a)−r(c)−s(b)−β(a,c)+[b,c]Ta+cTb (131)

= 1
|I|2|J |

∑
a,c∈I

∑
b∈J

ω−r(a+c)−s(b)+[b,c]Ta+cTb (132)

= 1
|I||J |

Πr
I

∑
b∈J

ω−s(b)
[∑

c∈I

ω[b,c]
]
Tb (133)

= 1
|J |

Πr
I

∑
b∈J∩I⊥

ω−s(b)Tb (134)

= 1
|I||J |

∑
a∈I

∑
b∈J∩I⊥

ω−r(a)−s(b)−β(a,b)Ta+b (135)

= 1
|I||J |

∑
a∈I

∑
b∈J∩I⊥

ω−r⋆s(a+b)Ta+b. (136)

Each Pauli operator in the above sum appears with the same multiplicty. For an element
a ∈ I + J ∩ I⊥, let µ(a) denote the number of distinct pairs (b, c) ∈ I × J ∩ I⊥ such
that b + c = a. We have µ(a) = µ(0) for any a ∈ I + J ∩ I⊥. To see this, suppose
a ∈ I + J ∩ I⊥ and let (c1, d1), (c2, d2), . . . , (cµ(a), dµ(a)) be the distinct pairs in I × J ∩ I⊥

such that cj + dj = a. Then the pairs (cj − c1, dj − d1) ∈ I × J ∩ I⊥ for j = 2, . . . , µ(a)
together with the pair (0, 0) ∈ I × J ∩ I⊥ show that µ(0) ≥ µ(a).

Now let (c1, d1), (c2, d2), . . . , (cµ(0), dµ(0)) denote the µ(0) distinct pairs in I × J ∩ I⊥

such that cj + dj = 0, and (c, d) ∈ I × J ∩ I⊥ be such that c + d = a. Then the pairs
(cj + c, dj + d), j = 1, 2, . . . , µ(0) show that µ(a) ≥ µ(0). Therefore, µ(a) = µ(0) for any
a ∈ I + J ∩ I⊥. Here we can see µ(0) = |I ∩ J |

Then we have

Πr
IΠs

JΠr
I = 1
|I||J |

∑
a∈I

∑
b∈J∩I⊥

ω−r⋆s(a+b)Ta+b (137)

= µ(0)
|I||J |

∑
a∈I+J∩I⊥

ω−r⋆s(a)Ta (138)

= |I ∩ J ||I + J ∩ I⊥|
|I||J |

Πr⋆s
I+J∩I⊥ . (139)

Since |I + J ∩ I⊥| = |I| · |J ∩ I⊥|/|I ∩ J |,

Πr
IΠs

JΠr
I = |J ∩ I

⊥|
|J |

Πr⋆s
I+J∩I⊥ . (140)

Accepted in Quantum 2024-04-07, click title to verify. Published under CC-BY 4.0. 26



Taking a trace of this equation we get

Tr(Πr
IΠs

J) = Tr(Πr
IΠs

JΠr
I) (141)

= |J ∩ I
⊥|

|J |
Tr
(
Πr⋆s

I+J∩I⊥

)
(142)

= |J ∩ I
⊥|

|J |
· dn

|I + J ∩ I⊥|
(143)

= |I ∩ J |
|I||J |

dn > 0. (144)

Case 2: r|I∩J ̸= s|I∩J . Denote by Ss
J the stabilizer group {ω−s(b)Tb | b ∈ J} and denote

by V s
J the subspace of the Hilbert space Cdn stabilized by Ss

J . By assumption, there exists
a c ∈ I ∩ J such that r(c) ̸= s(c). Therefore, for any vector |ψ⟩ ∈ V s

J ,

Πr
I |ψ⟩ =Πr

Iω
−s(c)Tc |ψ⟩ (145)

= 1
dn

∑
a∈I

ω−r(a)−s(c)TaTc |ψ⟩ (146)

= 1
dn

∑
a∈I

ω−r(a)−s(c)−β(a,c)Ta+c |ψ⟩ (147)

= 1
dn

∑
a∈I

ω−r(a+c)−r(c)−s(c)Ta+c |ψ⟩ (148)

= 1
dn

∑
a∈I

ω−r(a)−r(c)−s(c)Ta |ψ⟩ (149)

=ω−r(c)−s(c)Πs
I |ψ⟩ . (150)

That is, Πs
I |ψ⟩ = ω−r(c)−s(c)Πs

I |ψ⟩. But since r(c) ̸= s(c), ω−r(c)−s(c) ̸= 1 so this relation
can be true only if Πr

I |ψ⟩ = 0.
We can write

Πs
J =

dim(V s
J )∑

i=1
|ψi⟩ ⟨ψi| (151)

where {|ψi⟩ | 1 ≤ i ≤ dim(V s
J )} is a basis for V s

J . Therefore,

Πr
IΠs

JΠr
I =

dim(V s
J )∑

i=1
Πr

I |ψi⟩ ⟨ψi|Πr
I = 0. (152)

Taking a trace of this equation we get

Tr(Πr
IΠs

JΠr
I) = Tr(Πr

IΠs
J) = 0. (153)

This proves the lemma. □

B Proof of Lemma 1
To prove the lemma, we will use the concept of polar duality for objects in the affine space
Herm1(H) (see Ref. [51] for a discussion of polar duality). For a Hilbert space H with
inner product ⟨·, ·⟩ define1 the polar dual of a set P ⊂ H as

P ∗ =
{
x ∈ RN

∣∣∣∣ ⟨x, y⟩ ≥ − 1
dn

for all y ∈ P
}
. (154)

1The usual definition differs slightly by an irrelevant scaling factor.
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If P = conv{v1, . . . , vk} is a polytope, then this simplifies to

P ∗ =
{
x ∈ RN

∣∣∣∣ ⟨x, vi⟩ ≥ −
1
dn
, i, . . . , k

}
. (155)

If P ⊂ Q ⊂ H, then obviously Q∗ ⊂ P ∗.
In our setting, we are interested in objects living in the affine space of matrices of trace

one Herm1(H). We can project Herm1(H) into the linear subspace of Hermitian matrices
of trace zero Herm0(H) via the transformation

π : X ∈ Herm1(H)→ Herm0(H), X 7→ X − 1
dn
1. (156)

Now, observe that for X,Y ∈ Herm1(H) we have Tr(XY ) ≥ 0 if and only if

Tr(π(X)π(Y )) = Tr(XY )− Tr
(
X

1
dn
1

)
≥ − 1

dn
. (157)

Hence, by associating Herm0(H) and Herm1(H), we define for a set M ⊂ Herm1(H)

M∗ := {X ∈ Herm1(H) | Tr(XY ) ≥ 0 for all Y ∈M}. (158)

If P = conv{X1, . . . , Xm} ⊂ Herm1(H) is a polytope, then define its polar dual as

P ∗ = {Y ∈ Herm1(H) | Tr(XiY ) ≥ 0, i = 1, . . . ,m}. (159)

Thus, Λ = SP∗ for SP being the stabilizer polytope: SP := conv {|σ⟩ ⟨σ| | σ ∈ S}.
To prove that the set Λ is bounded, it will suffice to show that SP contains a set M ,

whose dual M∗ is bounded. Additionally, we will make us of the concept of dilation [62,
Chap. 9]: for a set M ⊂ Herm1(H) define its dilation centered at the maximally mixed
state via

c ·M :=
{ 1
dn
1 + cπ(X) | X ∈M

}
(160)

where π : Herm1(H)→ Herm0(H) is the projection that maps X ∈ Herm1(H) to X− 1
dn1.

The dilation has the following property:

Lemma 8 The dilation of a set M ⊂ Herm1(H) satisfies

(c ·M)∗ = 1
c
·M∗. (161)

Proof of Lemma 8. Observe that every A, Y ∈ Herm1(H) can be written as

Y = 1
dn
1 + cπ(X), A = 1

dn
1 + 1

c
π(B)

for suitable B,X ∈ Herm1(H). Then

Tr(AY ) = 1
d2n

Tr(1) + Tr(π(B)π(X)) (162)

= 1
dn

+ Tr
(
B(X − 1

dn
1)
)

+ Tr
(
− 1
dn
1(X − 1

dn
1)
)

(163)

= 1
dn
− 1
dn

+ Tr(BX) (164)

= Tr(BX). (165)
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Hence, if Y ∈ c ·M with X ∈M , then A ∈ (c ·M)∗ if and only if

0 ≤ Tr(AY ) = Tr(BX) ⇐⇒ B ∈M∗, (166)

which is equivalent to A ∈ 1
c ·M

∗ □
Having introduced all necessary concepts, we will proceed with the proof of Lemma 1.
Proof of Lemma 1. By definition, Λ is a polyhedron and therefore convex and closed.

To prove that Λ is bounded, the previous discussion implies that it suffices to find a set
M ⊂ SP such that M∗ is bounded. The object we will choose here will be a dilation of
the full-dimensional simplex

△Herm1(H):= conv
{
Aγ := 1

dn

∑
u∈E

ωγ(u)Tu

∣∣∣∣ (167)

γ : E → Zd, γ(u+ v) = γ(u) + γ(v)
}
. (168)

The simplex △Herm1(H) is the Wigner simplex for d being an odd prime [29, 59]. For every
d, it is a full-dimensional polytope as the convex-hull of d2n affinely independent vertices
Aγ in the (d2n − 1)-dimensional affine space Herm1(H). Due to Tr

(
AγAγ′

)
= δγ=γ′ for

additive functions γ, γ′ : E → Zd, one can easily verify that the simplex △Herm1(H) has the
following hyperplane description:

△Herm1(H)= {X ∈ Herm1(H) | Tr(AγX) ≥ 0}, (169)

which makes it a self-dual simplex, i.e. △Herm1(H)=△∗
Herm1(H).

Now, Lemma 8 implies that for c > 0 the simplex (c· △Herm1(H))∗ is bounded, since

(c· △Herm1(H))∗ = 1
c
△∗

Herm1(H)=
1
c
△Herm1(H) . (170)

Hence, it suffices to show that c· △Herm1(H)⊂ SP for some c > 0, because then

Λ = SP∗ ⊂ (c· △Herm1(H))∗ = 1
c
△Herm1(H) (171)

implies that Λ is bounded. Therefore, we will show that dilations of the vertices of
△Herm1(H) are contained in SP, i.e.there is c > 0 such that

1
dn
1 + c(Aγ −

1
dn
1) ∈ SP (172)

for all additive maps γ.
To achieve this, we will write 1/dn

1 + c(Aγ − 1/dn
1) as a convex combination of

normalized projectors of the form |⟨a⟩|
dn Πr

⟨a⟩ ∈ SP for a ∈ E with noncontextual value

assignments r : ⟨a⟩ → Zd. Due to Corollary 1 in Appendix A, the elements |⟨a⟩|
dn Πr

⟨a⟩ are
indeed contained in SP. A noncontextual value assignment on a line ⟨a⟩ is always additive,
that is

r(ka) = kr(a), ∀k ∈ Zd (173)

because with the phase convention chosen in eq. (3), it can be checked directly that TaTka =
T(k+1)a, and so by definition β(a, ka) = 0 for all a ∈ E. Let C = {a1, . . . , aN} ⊂ E be a
set that “covers” E, that is

E = ∪a∈C⟨a⟩. (174)
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For each subset I ⊂ [N ] := {1, . . . , N}, there is an aI ∈ E such that

⟨aI⟩ :=
⋂
k∈I
⟨ak⟩. (175)

First, we will write Aγ as a linear combination of stabilizer code projectors Πr
⟨a⟩. We claim

that

Aγ = 1
dn

∑
I⊂[N ]

(−1)|I|+1 · |⟨aI⟩| ·Π
γ|⟨aI ⟩
⟨aI⟩ . (176)

Since γ is additive, the restriction γ|⟨aI⟩ : ⟨aI⟩ → Zd satisfies (173) and defines a noncon-
textual value assignment on ⟨aI⟩. We rewrite the right hand side of (176) in the following
way:

1
dn

∑
I⊂[N ]

(−1)|I|+1 · |⟨aI⟩| ·Π
γ|⟨aI ⟩
⟨aI⟩ (177)

= 1
dn

∑
I⊂[N ]

(−1)|I|+1 ∑
b∈⟨aI⟩

ωγ(b)Tb (178)

= 1
dn

∑
b∈E

( ∑
I⊂[N ] : b∈⟨aI⟩

(−1)|I|+1
)
ωγ(b)Tb. (179)

Thus, it suffices to show that ∑
I⊂[N ] : b∈⟨aI⟩

(−1)|I|+1 = 1 ∀b ∈ E. (180)

However, this is a consequence of the inclusion-exclusion principle [63], that is

1 =δb∈E = δb∈∪a∈C⟨a⟩ =
∑

I⊂[N ]
(−1)|I|+1δb∈∩k∈I⟨ak⟩ (181)

=
∑

I⊂[N ]
(−1)|I|+1δb∈⟨aI⟩ =

∑
I⊂[N ] : b∈⟨aI⟩

(−1)|I|+1. (182)

Finally, we will show that there is c > 0 such that we can write 1
dn1 + c(Aγ − 1

dn1) for
every γ as a convex combination of the operators |⟨aI⟩|

dn Π
γ|⟨aI ⟩
⟨aI⟩ ∈ SP.

Observe that the identity (176) is equivalent to

Aγ −
1
dn
1 =

∑
I⊂[N ]

(−1)|I|+1 · |⟨aI⟩|
dn

·Π
γ|⟨aI ⟩
⟨aI⟩∗ (183)

with
Πr

⟨a⟩∗ := 1
|⟨a⟩|

∑
b∈⟨a⟩\{0}

ωr(b)Tb ∈ Herm0(H), r : ⟨a⟩ → Zd. (184)

Moreover, due to Lemma 5, we have

1 =
∑

r

Πr
⟨a⟩ =⇒ 0 =

∑
r

Πr
⟨a⟩∗ (185)

for all a ∈ E, |⟨a⟩|
dn Πr

⟨a⟩ ∈ SP, where r ranges over all noncontextual value assignments
r : ⟨a⟩ → Zd. This implies that

(−1) ·Π
γ|⟨aI ⟩
⟨aI⟩∗ =

∑
r ̸=γ|⟨a⟩

Πr
⟨aI⟩∗ . (186)
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As a consequence, every summand in the right hand side of eq. (183) can be written as
a conic combination of elements Πr

⟨a⟩∗ . By properly properly rescaling, we can find c > 0
such that

c(Aγ −
1
dn
1) =

∑
a

αaΠra

⟨a⟩∗ with αa ≥ 0,
∑

a

αa = 1, (187)

which is equivalent to

1
dn
1 + c(Aγ −

1
dn
1) =

∑
a

αa(Πra

⟨a⟩∗ + 1
dn
1) =

∑
a

αaΠra

⟨a⟩ ∈ SP. (188)

This proves that c· △Herm1(H)⊂ SP for some c > 0, which remained to be shown. □
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