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Quantum walks have been used to develop quantum algorithms since their inception,
and can be seen as an alternative to the usual circuit model; combining single-particle
quantum walks on sparse graphs with two-particle scattering on a line lattice is sufficient
to perform universal quantum computation. In this work we solve the problem of two-
particle scattering on the line lattice for a family of interactions without translation
invariance, recovering the Bose-Hubbard interaction as the limiting case. Due to its
generality, our systematic approach lays the groundwork to solve the more general
problem of multi-particle scattering on general graphs, which in turn can enable design
of different or simpler quantum gates and gadgets. As a consequence of this work, we
show that a CPHASE gate can be achieved with high fidelity when the interaction acts
only on a small portion of the line graph.

1 Introduction
There are two well-known models of quantum walks, discrete- [1, 2] and continuous- [3] time
quantum walks. The former is closely related to classical random walks—it is composed of a
quantum particle and a quantum coin, and discrete time unitary dynamics mimics a coin toss
that determines the direction of a step taken by the particle. Continuous-time quantum walks, on
the other hand, consist of a quantum particle that evolves by the Schrodinger equation, with a
Hamiltonian on a lattice or graph that is analogous to the Laplacian in free space. This model of
quantum walk is the focus of our work.

Quantum walks were first studied as a tool for building quantum algorithms. They were shown
to exponentially outperform their classical counterparts [3–5], and an important milestone was the
discovery that they can be used to perform universal quantum computation, first by Childs [6],
later improved in collaboration with Gosset and Webb [7].

In [7], the quantum gates and other gadgets operate mostly in the regime where one particle
is propagating far from any others, essentially performing a single-particle quantum walk on a
complicated graph. Interactions are required only for two-qubit controlled-phase gates, where two
particles scatter off of each other on the simplest graph, a very long line, via a translation-invariant
Hamiltonian. This (approximate) translation invariance implies conservation of the momentum
which, together with energy conservation, severely restricts the outcome of the scattering, as the
momenta of the particles are individually preserved.

In this work, we solve the more general problem of two-particle quantum walks on the infinite
line with an interaction that does not display translation symmetry. More concretely, we consider
two particles that propagate on an infinite line graph, but only interact in a finite set of contiguous
vertices via the Bose-Hubbard Hamiltonian [8]. Inspired by scattering theory on continuous space,
we employ the Lippmann-Schwinger formalism [9] to find the S-matrix for this scenario. Crucially,
in contrast to previous works [7, 10, 11] that only compute the S-matrix for fixed particle momenta,
our approach explicitly treats the S-matrix as an operator on the full Hilbert space, allowing us to
describe momentum exchanges between the particles.

After solving the finite-region scattering problem, we also investigate how the solution converges
to the previously-known results for the infinite line [7]. We analytically prove this convergence in
the asymptotic limit, and numerically investigate the rate of convergence. Surprisingly, our results
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suggest that a few dozen interaction vertices might already be sufficient to obtain a high-fidelity
controlled-phase gate.

By not relying on translation symmetry, our results provide new tools to analyse the scattering
of particles on complex graphs, adding to the toolbox of [7]. In particular, we lay the groundwork
to solve the more general problem of multi-particle scattering on general graphs, which might
lead to better and more efficient quantum gates and gadgets for quantum computation. We also
note that multi-particle scattering theory has broad applications, e.g. in condensed matter and
particle physics, and its discrete-space counterpart has been much less explored, which suggests
applications for our results beyond the field of quantum computing.

This work is organized as follows. We review some basic notions about continuous time quantum
walks in Sec. 2, and we solve the scattering problem in Sec. 3.2. In Sec. 3.3 we show analytically
that in the limit of interaction on all sites we recover known results, and in Sec. 4 we show numerical
results indicating the corresponding rate of convergence.

2 Single-particle scattering
Let us begin by briefly motivating the general setup for continuous-time quantum walks [6, 7, 10].
Single-particle quantum walks on a one dimensional lattice can be seen as the discrete analogue of
free-particle evolution on continuous space. The latter is described by the Laplacian (up to some
constants):

Hcontinuous space = − ℏ2

2m∇2 = − ℏ2

2m
∂2

∂x2 . (1)

To discretize the one dimensional Laplacian, we can look to the natural definition of the derivative
as a limit

∂2f

∂x2 = lim
ϵ→0

[f(x+ ϵ) − f(x)] − [f(x) − f(x− ϵ)]
ϵ2

= lim
ϵ→0

f(x+ ϵ) + f(x− ϵ) − 2f(x)
ϵ2

. (2)

If we consider a particle on a one dimensional lattice, with spacing ϵ > 0 and amplitudes ⟨j|ψ⟩ =
ψ(j) defined at every lattice point jϵ, with j ∈ Z, a natural choice for the Hamiltonian is

⟨j|H lattice |ψ⟩ = − ℏ2

2mϵ2 (ψ(j + 1) + ψ(j − 1) − 2ψ(j)), (3)

or

H lattice = − ℏ2

2mϵ2
∑
j∈Z

|j⟩ ⟨j + 1| + |j + 1⟩ ⟨j| − 2 |j⟩ ⟨j| . (4)

We now adopt some simplifications: the Hamiltonian above has a term proportional to the
identity which adds an unimportant phase factor to the evolved state, so we drop it. We choose
units such that ℏ2/2mϵ2 = 1. Also, following a convention of previous literature, we choose the
negative of this Hamiltonian. With these changes, the Hamiltonian now reads

H lattice =
∑
j∈Z

|j⟩ ⟨j + 1| + |j + 1⟩ ⟨j| . (5)

Notice that this is exactly the adjacency matrix for the infinite line graph, i.e., a matrix whose ij
entry is 1 if {i, j} is an edge of the graph and 0 otherwise. The same procedure works for higher
dimensional lattices, which suggests that the adjacency matrix is the natural choice of Hamiltonian
for quantum walks on graphs.

Finding the corresponding eigenstates requires solving the Schrödinger equation

H lattice |ψ⟩ = E |ψ⟩ . (6)

which, in the position basis, results in the following difference equation

ψ(j + 1) + ψ(j − 1) = Eψ(j) ∀j ∈ Z. (7)
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Considering the ansatz ψ(j) = zj , there is a solution if z + z−1 = E. Since the energy must be a
real number, either z ∈ R or z lies on the unit circle. The only states that can be delta-function
normalizable are the ones with |z| = 1, so we can choose z = e−ip for some p ∈ [−π, π).

From now on, the eigenstate with momentum p is denoted by |p⟩. The energy of this state is
E = z + z−1 = 2 cos p and its amplitudes are given by

⟨j|p⟩ = 1√
2π
e−ijp, (8)

with normalization ⟨k|p⟩ = δ(k − p). Due to our choice of phase convention, the velocity of a
wavepacket with momentum centered on p is dE

d(−p) = 2 sin p, which is positive for p ∈ (0, π) and

negative for p ∈ (−π, 0).

3 Two-particle scattering
3.1 Two-particle free states
The usual Hamiltonian describing two noninteracting particles evolving with respect to Hamil-
tonians, say, HA and HB , is the Kronecker sum H(2) = HA ⊗ 1 + 1 ⊗ HB . In this case, given
eigenstates for both particles |ψ⟩A and |ϕ⟩B with energies Eψ and Eϕ, respectively, the tensor prod-
uct |ψ⟩A ⊗ |ϕ⟩B is a solution of the two-particle Schrodinger equation, with energy E = Eψ +Eϕ.
In our case, for distinguishable particles on a lattice, we write |p1⟩ |p2⟩ = |p1p

dist
2 ⟩ with amplitudes

⟨j1j2|p1p
dist
2 ⟩ = 1

2π e
−i(p1j1+p2j2). (9)

For bosons and fermions we have, respectively1,

⟨j1j2|p1p
boson
2 ⟩ = 1

2π
e−i(p1j1+p2j2) + e−i(p2j1+p1j2)

√
2

,

⟨j1j2|p1p
fermion
2 ⟩ = 1

2π
e−i(p1j1+p2j2) − e−i(p2j1+p1j2)

√
2

.

(10)

To avoid double counting, we always consider that p1 < p2 for bosonic and fermionic states. From
now on, the notation |p1p2⟩ will be used to represent any of the states above when the distinction
is unimportant. It is also convenient to define a constant b such that

⟨jj|p1p2⟩ = b

2π e
−i(p1+p2)j , (11)

where b = 1 for distinguishable particles, b =
√

2 for bosons and b = 0 for fermions.

3.2 Two-particle interacting quantum walk
We now consider the scattering of two particles propagating on an infinite line with a Bose-Hubbard
type interaction on 2L+ 1 contiguous vertices, namely,

H = H(2) + V :=
2∑

w=1

∑
j∈Z

(|j⟩ ⟨j + 1|w + |j + 1⟩ ⟨j|w) + U

L∑
j=−L

|jj⟩ ⟨jj| , (12)

where |a⟩ ⟨b|1 ≡ |a⟩ ⟨b| ⊗ 1, |a⟩ ⟨b|2 ≡ 1 ⊗ |a⟩ ⟨b|, so that H(2) is the Hamiltonian for two free
particles on the line and V is the interaction, which is proportional to some constant U . In other
words, the particles interact with each other when they are on the same site, but only for the
central 2L+ 1 sites.

We are interested in computing the S-matrix, defined by [12]:

Sk1k2;p1p2 = ⟨k1k
−
2 |p1p

+
2 ⟩ , (13)

1For the special case where p1 = p2, the correct states are |p1pboson
2 ⟩ = |p1pdist

2 ⟩ and |p1pfermion
2 ⟩ = 0.
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where |p1, p
±
2 ⟩ are scattering states, i.e., eigenstates of the interacting Hamiltonian which converge,

in the asymptotic past (+) or future (−) to the free-particle states |p1p2⟩. In other words, Sk1k2;p1p2

is the probability amplitude of preparing the state |p1p2⟩ in the distant past and measuring the
state |k1k2⟩ in the distant future. The scattering and free-particle states can be related by the
Lippmann-Schwinger equation

|p1p2
±⟩ = |p1p2⟩ + (E −H(2) ± iϵ)−1V |p1p2

±⟩ ,

where we take the limit ϵ → 0 at the end of the computation. After some manipulations, we can
arrive at a simpler expression for the S-matrix [? ]:

Sk1k2;p1p2 = δ(k1 − p1)δ(k2 − p2) − 2πiδ(Ek1k2 − Ep1p2) ⟨k1k2|V |p1p2
+⟩ , (14)

where Eq1q2 = 2 cos q1 + 2 cos q2.
From Eq. (14), and due to the nature of the interaction, we only need to compute amplitudes

when particles are on the same site, namely, terms of the type ⟨jj|p1p2⟩. From the definition of V ,

⟨k1k2|V |p1p2
+⟩ = bU

2π

L∑
l=−L

ei(k1+k2)l ⟨ll|p1p2
+⟩ . (15)

An equation for ⟨ll|p1p2
+⟩ can be found by taking the inner product of the Lippmann-Schwinger

equation with ⟨ll| for −L ≤ l ≤ L:

⟨ll|p1p2
+⟩ = b

2π e
−i(p1+p2)l

+ U

4π2

L∑
m=−L

⟨mm|p1p2
+⟩
∫ π

−π

∫ π

−π

e−i(k1+k2)(l−m)

E − 2 cos k1 − 2 cos k2 + iϵ
dk1dk2,

(16)

where we used the resolution of the identity 1 =
∫ π

−π
∫ π

−π |k1k
dist
2 ⟩ ⟨k1k

dist
2 | dk1dk2. Let us define new

variables k± = k1±k2
2 and the following family of integrals (discussed in more detail in Appendix

A)

J(E,n) = 1
2π lim

ϵ→0

∫ π

−π

∫ π

−π

e−i(k1+k2)n

E − 2 cos k1 − 2 cos k2 + iϵ
dk1dk2

= 1
2π lim

ϵ→0

∫ π

−π
e−2ik+n

∫ π

−π

1
E − 4 cos k+ cos k− + iϵ

dk−dk+.

(17)

Finally, to find the S-matrix we must solve the system of 2L+ 1 linear equations (16). Simpli-
fying notation, we can write

L∑
m=−L

(2πδlm − UJ(E, l −m))xm = b(cp1p2)l , (18)

where xm = ⟨mm|p1p2
+⟩ and (cp1p2)l := e−i(p1+p2)l. Note that −L ≤ m, l ≤ L. The coefficients

t(n) := 2πδn0 − UJ(E,n) form an N ×N Toeplitz matrix

TN =


t(0) t(−1) t(−2) · · · t(−(N − 1))
t(1) t(0) t(−1) · · · t(−(N − 2))
t(2) t(1) t(0) · · · t(−(N − 3))
...

...
...

. . .
...

t(N − 1) t(N − 2) t(N − 3) · · · t(0)

 , (19)

such that Eq. (18) can be written as the matrix equation TNx = bcp1p2 . Looking back at Eq. (15),
the factor related to the interaction is

⟨k1k2|V |p1p2
+⟩ = bU

2π c
†
k1k2

x = b2U

2π c†
k1k2

T−1
N cp1p2 , (20)
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and finally the S-matrix for finite N is

SNk1k2;p1p2
= δ(k1 − p1)δ(k2 − p2) − ib2Uc†

k1k2
T−1
N cp1p2δ(Ek1k2 − Ep1p2). (21)

Equation (21) shows that, in general, the particles can exchange momentum as a result of
scattering, for any finite region of interaction. We show in the next section that, in the limit
L → ∞, that is no longer the case and the momentum of each particle is individually conserved2.

3.3 Asymptotic behaviour for L → ∞
So far, our results are exact for the Bose-Hubbard interaction restricted to a finite region. Let us
now explore the limit L → ∞. We begin by using the known fact [13] that Toeplitz matrices can
be asymptotically approximated by circulant matrices. One possible circulant approximation is
the matrix

CN =


c(0) c(1) c(2) · · · c(N − 1)

c(N − 1) c(0) c(1) · · · c(N − 2)
c(N − 2) c(N − 1) c(0) · · · c(N − 2)

...
...

...
. . .

...
c(1) c(2) c(3) · · · c(0)

 , (22)

with coefficients given by

c(n) =
{
t(0) n = 0,
t(n) + t(n−N) n = 1, · · · , N − 1.

(23)

Every circulant matrix is diagonalized by the unitary Fourier matrix [14], given by Flm = 1√
N
w−lm,

where w = e
2πi
N (in our case, it is convenient to define both indices running from −L to L). That

is, we can write CN = F †diag(λN )F , where the eigenvalues of CN are

(λN )m =
N−1∑
n=0

c(n)wnm.

Therefore, we can approximate Eq. (20) by a much simpler expression:

⟨k1k2|V |p1p2
+⟩ = b2U

2π c†
k1k2

T−1
N cp1p2 ≈ b2U

2π c†
k1k2

F †diag(λN )−1Fcp1p2 , as N → ∞. (24)

Let now us obtain the asymptotic behavior of the λl. Noting that J(E,−n) = J(E,n), we
have,

(λN )l = 2π − U

2L∑
n=−2L

J(E,n)wnl. (25)

Using the definition in Eq. (17), switching the sum and the integral and then taking the limit of
large N , we can write

(λN )l = 2π − U

2

∫ π

−π

1
E − 4 cos πlN cos k− + iϵ

dk− − U

2

∫ π

−π

1
E + 4 cos πlN cos k− + iϵ

dk−, (26)

where we used the fact that 1
T

∑
n∈Z e

2πi n
T = δT (x) =

∑
n∈Z δ(x − nT ) is the Dirac comb, the

periodic version of the Dirac delta, and we used the identity 2δT (2x) = δT (x) + δT (x+ T
2 ), proved

in Appendix B. The computation of these integrals is left to Appendix A. The result, as ϵ → 0, is

(λN )l = 2π − 2πU√
E2 − 16 cos2 πl

N

, (27)

2For distinguishable particles, they actually switch their momenta, but they still cannot trade an arbitrary
amount of momentum.
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where the square root is defined to have positive imaginary part if the radicand is negative.
Going back to Eq. (24), we have

⟨k1k2|V |p1p2
+⟩ = b2U

2πN

L∑
l,m,n=−L

wl(n−m)e−i(k1+k2)mei(p1+p2)n(λN )−1
l . (28)

Note that the variables m and n are uncoupled, so we can sum over them independently, in the
limit of large L, to obtain

⟨k1k2|V |p1p2
+⟩ = 2πb2U

N

L∑
l=−L

δ2π

(
k1 + k2 + 2πl

N

)
δ2π

(
p1 + p2 + 2πl

N

)
(λN )−1

l . (29)

We now replace the sum by an integral with variable ℓ = 2π
N l, dℓ = 2π

N , such that

⟨k1k2|V |p1p2
+⟩ = b2Uδ2π(k1 + k2 − p1 − p2)

∫ π

−π

δ2π(p1 + p2 + ℓ)
2π − 2πU√

E2−16 cos2 ℓ
2

dℓ

= b2U

2π − 2πU√
E2−16 cos2 p1+p2

2

δ2π(k1 + k2 − p1 − p2).
(30)

Since E2 = 16 cos2 p+ cos2 p− ≤ 16 cos2 p+, where p± = p1±p2
2 , and recalling that this square root

was defined to have positive imaginary part, we can write

⟨k1k2|V |p1p2
+⟩ = b2U

2π + πiU
| sin p1−sin p2|

δ2π(k1 + k2 − p1 − p2), (31)

where we have used the identity sin p1 − sin p2 = 2 cos p+ sin p−.
To compute the S-matrix of Eq. (14), we can now use the following identity, proven in Appendix

B,

δ(Ek1k2 − Ep1p2)δ2π(k1 + k2 − p1 − p2) = 1
2| sin k1 − sin k2|

(δ2π(k1 − p1)δ2π(k2 − p2)

+δ2π(k1 − p2)δ2π(k2 − p1)).
(32)

Finally we plug this into Eq. (14) to obtain

Sk1k2;p1p2 = δ(k1 − p1)δ(k2 − p2) − 2πiδ(Ek1k2 − Ep1p2) ⟨k1k2|V |p1p2
+⟩

= δ(k1 − p1)δ(k2 − p2)
(

1 − 2ib2U

4| sin p1 − sin p2| + 2iU

)
− δ(k1 − p2)δ(k2 − p1)

(
2ib2U

4| sin p1 − sin p2| + 2iU

)
.

(33)

This expression shows us that, in the limit where we recover translation invariance, the particles
cannot exchange any amount of momentum; they either conserve both momenta individually, or
at most exchange them.

For distinguishable particles we have b = 1, and the reflection and transmission coefficients are
given by, respectively:

R(p1, p2) = −iU
2| sin p1 − sin p2| + iU

,

T (p1, p2) = 2| sin p1 − sin p2|
2| sin p1 − sin p2| + iU

.

(34)

On the other hand, for bosons we have b =
√

2, and since we considered ordered momenta for the
bosonic states, namely, p1 < p2 and k1 < k2, we are left with the following S-matrix

Sk1k2;p1p2 = δ(k1 − p1)δ(k2 − p2)2| sin p1 − sin p2| − iU

2| sin p1 − sin p2| + iU
. (35)
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This expression recovers the two-particle result of [8] and in the Appendix B of [7], but without
restricting the particles to be counterpropagating [i.e. p1 ∈ (−π, 0) and p2 ∈ (0, π)]. Convergence
of operators in infinite dimensional Hilbert spaces is not straightforward, so the fact that we can
recover the correct S-matrices by this limiting process is not entirely obvious and is quite useful,
as the limiting problem might be much more difficult to solve.

In the next section we analyse two natural questions about this result; how to measure the
convergence and what is the rate of convergence.

4 Numerical analysis
In this section, we numerically analyse the behaviour of the S-matrix for a finite number of interac-
tion sites. We start from Eq. (21), up until which every computation was exact for finite L. Note
that throughout this section we do not use the circulant approximation used previously, in Sec.
3.3—the purpose of that approximation was only to recover known results in the L → ∞ limit.

We begin by noting that it is not trivial to measure how close the finite-L S-matrix from Eq.
(21) is to the limiting case described in Eq. (35). For example, let us consider narrow wavepackets
in momentum space; in the limiting case, they scatter off of each other and acquire a phase
factor depending on both momenta; on the other hand, for any finite region of interaction, these
wavepackets do not acquire a phase after scattering, as we will see shortly. Therefore, there
always exists some state for which the S-matrices give consistently different results, which means
that the finite-case S-matrix does not converge to the asymptotic S-matrix in operator norm,
even though we showed they converge element-wise. We sidestep this difficulty by taking a more
pragmatic approach—we measure the distance between output states generated by the S-matrices
when acting on a particular subspace of input states, namely, those that would arise in quantum
walk based computation.

If we analyze carefully the construction of a universal quantum computer proposed in [7], we
see that only three families of states might propagate in a long linear graph, corresponding to zero,
one or two particles. Within the dual-rail encoding used in [7], for the purposes of implementing a
CPHASE gate, the presence (absence) of a particle in the linear graph is equivalent to the logical
state |1⟩ (resp. |0⟩). More concretely: the logical two-qubit state |00⟩ is represented by the absence
of any particles. The logical states |01⟩ and |10⟩ are represented by a single particle moving to
the left or right, respectively (this choice is arbitrary), and, following [7], we chose them to be in
a state of the form

|kσ⟩ := 1√
2σ

∫ k+σ

k−σ
|k′⟩ dk′, (36)

for momentum k and width 2σ. Finally, we choose the logical state |11⟩ as the (normalized) bosonic
state

|kσ1 ⟩ |kσ2 ⟩ + |kσ2 ⟩ |kσ1 ⟩√
2 + 2| ⟨kσ1 |kσ2 ⟩ |2

. (37)

For concreteness, in our numerical computation we follow the choice made in [7] and fix one
particle to have momentum centered around k1 = π

4 , the other one centered around k2 = −π
2 , and

U = 2 +
√

2. Setting these choices in (35), a scattering eigenstate |p1p
boson
2 ⟩ would accrue a phase

of −i. This scattering eigenstate is recovered by setting σ → 0 in the equation above, so we expect
to recover a perfect phase gate with phase −i in the limit of large L and small σ.

As our main figure of merit, we compute the average gate fidelity between the finite-case S-
matrix and a CPHASE gate with phase ϕ, as in [15]:

F (ϕ) :=
∫
dψ ⟨ψ|C†

ϕSN |ψ⟩ ⟨ψ|S†
NCϕ |ψ⟩ , (38)

where SN is the S-matrix given in Eq. (14) for N = 2L + 1 interaction sites, the integration is
carried over the two-qubit state space with the Haar measure, and

Cϕ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

 . (39)
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Note that we could instead compute the fidelity between the finite-case S-matrix and its asymptotic
limit directly. However, this would give us the same qualitative results as just computing the fidelity
as described above and setting ϕ = −π

2 (cf. Figure 1). Therefore, we focus our analysis on the
fidelity described in Eq. (38), as it gives us more flexibility by allowing us to choose different values
for the parameter ϕ. Finally, using the fact that the S-matrix acts as the identity whenever there
are less than two particles present, we can simplify the average gate fidelity as

F (ϕ) = 1
10(6 + 3Re(e−iϕF) + |F|2), (40)

where F = ⟨11|SN |11⟩ is the only quantity left to calculate; it can be computed using the expres-
sion of the S-matrix (21) together with the definition of the bosonic wavepacket (37). Note that it
is a function of the wavepacket width σ.
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Figure 1: Solid line: Fidelity between SN and the CPHASE gate with the ideal phase ϕ = − π
2 as a function of

the wavepacket half width σ. Dashed line: Fidelity between SN and the limit S-matrix as a function of σ.

Our first main result can be seen in Figure 1. There we observe that the fidelity for the phase
ϕ = −π

2 , for small σ, increases for larger values of L, which tells us that in the limit L → ∞, narrow
momentum wavepackets scatter with the correct phase. We also verify this in Fig. 2, where we
plot the highest fidelity relative to some phase gate (left), with the corresponding phase ϕ (right).
There, we see that, except for very small σ, the best phase approaches ϕ = −π

2 for large L, as
expected.

On the other hand, Fig. 1 also tells us that wavepackets cannot be arbitrarily narrow, as the
fidelity to a CPHASE gate with ϕ = −π

2 tends to 7/10 as σ → 0. This can be shown analytically,
since if we take the limit σ → 0 for any finite L, the S-matrix acts as the identity on these
wavepackets. We can interpret physically this as follows: since the interaction is proportional to
the amplitude of both particles being at the same site, which vanishes for σ → 0, any finite number
of vertices of interaction is not enough to produce an effect asymptotically. This analysis is also
corroborated by both graphs of Fig. 2 which show that, indeed, whenever σ is too small the closest
phase gate has ϕ → 0, with fidelity close to one.

Two other important features stand out in the graphs in Fig. 1 and Fig. 2. First, all of
them display a plateau of behaviour above a certain wavepacket width, which suggests that a
gate implemented this way would be robust to variations of the wavepacket preparation (contrast
this with the results of [15] for scattering of two photons on a line of interaction sites, where the
maximum only occurs for a single well-calibrated value of σ). Second, very high fidelities (over
95%) are already achieved for relatively small number of interaction sites (under 30). This suggests
that these two-qubit gates might be feasible with a modest amount of resources in a real-world
implementation of this computational model. Furthermore, since the fidelity achieved is close to
unity, it means that the scattering does not change appreciably the shape of the wavepackets, which
is surprising given that the particles have many degrees of freedom that can become entangled.

Finally, Fig. 1 suggests that the maximal fidelity is approaching 1 as a function of L. In Fig.
3 we plot the infidelity, 1 − F (−π

2 ) (minimized over choice of σ) as a function of L to verify that
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Figure 2: Left: Maximized fidelity over all phases as a function of σ. Right: Corresponding phase ϕ for which
the fidelity is maximized.

fact and extract a rate of convergence. Though we have few data points to extrapolate the results,
we can infer that the fidelity is clearly converging to unity relatively fast.
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0.04

4 6 8 10 12

Figure 3: Loglog plot of infidelity as a funcion of L. The fitted curve corresponds to the power law 1 − F =
0.24L−0.76.

5 Conclusion
We have fully solved the scattering problem for two particles propagating on an infinite line inter-
acting via the Bose-Hubbard Hamiltonian on a finite region of contiguous vertices. We analyzed
the scattering in the asymptotic limit of infinite interaction vertices both analytically and numer-
ically. The S-matrix we obtained reduces to previously-known results [7, 8] in the asymptotic
limit (though the full S-matrix is not described explicitly in those papers, it can be inferred). By
numerically analyzing the scattering in the finite region regime, we observed that a two-qubit gate
with high fidelity can be already be achieved for very few interaction sites, and with wavepackets
that may be easier to prepare than approximations to momentum eigenstates (e.g. with the aid of
momentum filters [6]).

Our work showcases how the Lippmann-Schwinger formalism can be used to solve the more
general problem of multiparticle scattering on graphs, paving the way for a variety of future research
directions. The more obvious next steps are to develop a full framework to treat multiparticle
scattering on graphs with semi-infinite paths attached, such as those considered in [7]. This might
be used, for example, to develop new graphs that implement multi-qubit gates directly, or to
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simplify gadgets such as the momentum switches [16]. A primitive in this direction would be
to find nontrivial graphs with perfect transmission from input to output paths for two or more
interacting particles.

Another goal is to filter out which ingredients make multiparticle scattering universal for quan-
tum computing, developing new tools to study the computational complexity of quantum walks.
For example, it is interesting to consider whether it is possible to perform universal computation
where all particles have the same momenta (dispensing with the use of momentum switches), and
for which values of momentum this holds. Conversely, one might ask whether there are values of
momenta for which multiparticle scattering is classically simulable or otherwise nonuniversal [17].

Finally, we envision applications of these results beyond the field quantum computation. Scat-
tering theory is a successful formalism used in other fields such as quantum optics, quantum field
theory, condensed matter, and so on, and its discrete-space analogue is not so well-understood. In
that sense, our result is analogous to that of [15, 18], and it is an interesting question to try to
extend this analogy further.
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A Computing J(E, n)
Let us consider the family of integrals

J(E,n) = 1
2π lim

ϵ→0

∫ π

−π

∫ π

−π

e−i(k1+k2)n

E − 2 cos k1 − 2 cos k2 + iϵ
dk1dk2. (41)

It is easy to see that J(E,n) = J(E,−n) = −J(−E,n), so we only need to compute the integral
for n ≥ 0 and E ≥ 0. Let us assume E ≥ 0 in the following steps. Changing to the variables
k± = k1±k2

2 , we have

J(E,n) = 1
2π lim

ϵ→0

∫ π

−π
e−2ik+n

∫ π

−π

1
E − 4 cos k+ cos k− + iϵ

dk−dk+. (42)

Introducing a complex variable z = eik− , the inner integral is written as

I = i

∮ 1
2 cos(k+)z2 − (E + iϵ)z + 2 cos k+

dz, (43)

where the contour is the unit circle in the positive orientation. The poles of the integrand are the

roots of the denominator, z± = E+iϵ
4 cos k+

±
√(

E+iϵ
4 cos k+

)2
− 1, where the square root is chosen to have

positive real part. Let us assume for the moment that cos k+ > 0.
If 4 cos k+ < E, then the roots are close to real and as ϵ → 0 we have z− < 1 < z+ as we can

see in figure 4. So for sufficiently small ϵ, the only root inside the unit circle is z−.

If 4 cos k+ > E, we can write the roots as z± = E+iϵ
4 cos k+

± i

√
1 −

(
E+iϵ

4 cos k+

)2
, where the square

root is chosen to have positive real part, similar to before. then the roots are not on the real line,
and approach the unit circle as ϵ → 0, as pictured in figure 4. But for ϵ ̸= 0 and |a| < 1, we have∣∣∣a+ iϵ± i

√
1 − (a+ iϵ)2

∣∣∣2 = 1 ± 2ϵ√
1 − a2

+O(ϵ2), (44)

so, in both cases, the only root inside the contour is z−. For the case cos k+ < 0, the roots z±
switch roles, specifically, only the root z+ is inside the contour.

Figure 4: Left: Real roots z± for the case 0 < 4 cos k+ < E as ϵ → 0. Right: Complex roots z± for the case
4 cos k+ > E.
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By residues, we have

I = 2πi


Resz=z−

i

2 cos k+(z − z−)(z − z+) if cos k+ > 0

Resz=z+

i

2 cos k+(z − z−)(z − z+) if cos k+ < 0

= 2π√
(E + iϵ)2 − 16 cos2 k+

,

(45)

where the square root is chosen as before; in the limit ϵ → 0, the square root is
√
E2 − 16 cos2 k+

for 4| cos k+| < E and i
√

16 cos2 k+ − E2 for 4| cos k+| > E. Now we can take the ϵ → 0 limit and
we have

J(E,n) =
∫ π

2

0

cos 2np√(
E
4
)2 − cos2 p

dp. (46)

By decomposing cos 2np = T2n(cos p), where Tm is the m-th Chebyshev polynomial of the first
kind, we only need to compute the integrals∫ π

2

0

cos2n p√(
E
4
)2 − cos2 p

dp = 1

i

√
1 −

(
E
4
)2

(∫ π
2

0

cos2n p√
1 − k2 sin2 p

dp

)∗

=: 1

i

√
1 −

(
E
4
)2

(Cn)∗, (47)

where k =
√

16
16−E2 is called the elliptic modulus, and the square root of a negative number is

taken to have positive imaginary part at all steps. The integrals Cn are related to the complete
elliptic integrals of the first and the second kind, K(k) and E(k) respectively. They are defined as

K(k) =
∫ π

2

0

dp√
1 − k2 sin2 p

,

E(k) =
∫ π

2

0

√
1 − k2 sin2 p dp.

(48)

The sequence of integrals Cn can be computed with the following recurrence relation (see
equation 312.05 of [19]):

C0 = K(k),

C1 = 1
k2

(
E(k) − (1 − k2)K(k)

)
,

Cn = (2n− 2)(2k2 − 1)Cn−1 − (2n− 3)(1 − k2)Cn−2

(2n− 1)k2 ∀n ≥ 2.

(49)

Finally, the integral J(E,n) for E ≥ 0 can be computed as

J(E,n) = 4nn

i

√
1 −

(
E
4
)2

n∑
m=0

(−1)m(2n−m− 1)!
4mm!(2n− 2m)! (Cn−m)∗. (50)

B Some Dirac comb identities
The Dirac comb is just a periodic extension of the Dirac delta, and one possible representation is
given by its Fourier series:

δT (x) = 1
T

∑
n∈Z

ei2πn
x
T , (51)

where T is the period of the Dirac comb.
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One intuitive identity we used (in (26)) is the scaling of the Dirac comb by a factor of two,
2δT (2x) = δT

2
(x) = δT (x) + δT (x + T

2 ), similar to the related scaling identity for the Dirac delta,

but also changing the frequency. This can be easily proved using the Fourier series representation:

δT (x) + δT (x+ T

2 ) = 1
T

∑
n∈Z

ei2πn
x
T + 1

T

∑
n∈Z

ei2πn
x+ T

2
T

= 1
T

∑
n∈Z

ei2πn
x
T + 1

T

∑
n∈Z

(−1)nei2πn x
T

= 2
T

∑
n even

ei2πn
x
T

= 2
T

∑
n∈Z

ei4πn
x
T = 2δT (2x).

(52)

Another identity was used (in (33)) :

δ(Ek1k2 − Ep1p2)δ2π(k1 + k2 − p1 − p2) = 1
2| sin k1 − sin k2|

(δ2π(k1 − p1)δ2π(k2 − p2)

+δ2π(k1 − p2)δ2π(k2 − p1)).
(53)

where Eq1q2 = 2 cos q1 + 2 cos q2 = 4 cos q+ cos q− with q± = q1±q2
2 .

Starting with the left side, we can simplify it

δ(Ek1k2 − Ep1p2)δ2π(k1 + k2 − p1 − p2)
= δ(4 cos k+ cos k− − 4 cos p+ cos p−)δ2π(2k+ − 2p+)

= δ(4 cos k+ cos k− − 4 cos p+ cos p−)1
2(δ2π(k+ − p+) + δ2π(k+ − p+ + π))

= 1
8| cos k+|

(δ(cos k− − cos p−)δ2π(k+ − p+)

+ δ(cos k− + cos p−)δ2π(k+ − p+ + π)),

(54)

where we used the identity (51) on the second line.
The first delta of cosines can be further simplified to a sum of Dirac combs:

δ(cos k− − cos p−) = 1
| sin k−|

(δ2π(k− − p−) + δ2π(k− + p−)), (55)

and similarly for the second product. So we have the full expression

1
8| cos k+ sin k−|

(δ2π(k− − p−)δ2π(k+ − p+) + δ2π(k− + p−)δ2π(k+ − p+)+

δ2π(k− − p− + π)δ2π(k+ − p+ + π) + δ2π(k− + p− + π)δ2π(k+ − p+ + π)),
(56)

and we want to go back to the original variables, k1, k2, p1 and p2.
We compute in detail the first product of the above expression.

Lemma 1.

1
2δ2π(k− − p−)δ2π(k+ − p+) =δ4π(k1 − p1)δ4π(k2 − p2)

+ δ4π(k1 − p1 + 2π)δ4π(k2 − p2 + 2π).
(57)

Proof. Let us expand the factors on the right hand side as Fourier series:
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1
(4π)2

∑
n,m∈Z

ein
k1−p1

2 eim
k2−p2

2 (1 + (−1)n+m) = 1
(4π)2

∑
n,l∈Z

ein
k1−p1

2 ei(l−n) k2−p2
2 (1 + (−1)l)

= 2
(4π)2

∑
n∈Z
l even

ein(k−−p−)eil
k+−k−−p++p−

2

= 2
(4π)2

∑
n,l∈Z

ein(k−−p−)eil(k+−k−−p++p−)

= 1
2

1
(2π)2

∑
q,l∈Z

eiq(k−−p−)eil(k+−p+) = 1
2δ2π(k− − p−)δ2π(k+ − p+),

(58)

where we set l = m+ n in the first line and q = n− l in the last line.

Similarly, by substituting k1 → k1 + 2π in Lemma 1, we get an identity for the third delta
product of Eq. (56):

1
2δ2π(k− − p− + π)δ2π(k+ − p+ + π) =δ4π(k1 − p1 + 2π)δ4π(k2 − p2)

+ δ4π(k1 − p1)δ4π(k2 − p2 + 2π).
(59)

So, summing the first and third delta products in Eq. (56), we get a 2π periodic expression
instead of a 4π periodic one:

1
2δ2π(k− − p− + π)δ2π(k+ − p+ + π) + 1

2δ2π(k− − p−)δ2π(k+ − p+)

= δ2π(k1 − p1)δ2π(k2 − p2).
(60)

Similarly, the same steps can be done for the second and fourth delta products in Eq. (56), by
exchanging k1 and k2. Finally, we can simplify Eq. (56) to

1
8| cos k+ sin k−|

(2δ2π(k1 − p1)δ2π(k2 − p2) + 2δ2π(k1 − p2)δ2π(k2 − p1))

= 1
2| sin k1 − sin k2|

(δ2π(k1 − p1)δ2π(k2 − p2) + δ2π(k1 − p2)δ2π(k2 − p1)).
(61)
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