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We show that it is possible to perform Heisenberg-limited metrology on GHZ-like
states, in the presence of generic spatially local, possibly strong interactions during the
measurement process. An explicit protocol, which relies on single-qubit measurements
and feedback based on polynomial-time classical computation, achieves the Heisenberg
limit. In one dimension, matrix product state methods can be used to perform this
classical calculation, while in higher dimensions the cluster expansion underlies the
efficient calculations. The latter approach is based on an efficient classical sampling
algorithm for short-time quantum dynamics, which may be of independent interest.
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1 Introduction
In classical physics, an ideal detector and noise-free experiment can perfectly measure the state of
a system. In quantum physics, this is fundamentally not possible: due to Heisenberg’s uncertainty
principle, we cannot deterministically measure the state of a spin-1/2 system without knowing the
axis along which its spin S is aligned. The rich field of quantum metrology has been developed
over the previous decades in order to understand both the fundamental limits on how many mea-
surements are needed to measure some parameter to a given accuracy in quantum mechanics, as
well as to develop protocols that can achieve such fundamental limits: see [1, 2, 3] for reviews.

As we will review below in more detail, it is well-established that using unentangled states of
N spins, after measuring M times some unknown parameter ω, the uncertainty δω ≳ (MN)−1/2.
This is called the standard quantum limit, and it arises from the classical central limit theorem
on the measurement outcomes of unentangled qubits. However, using a cleverly chosen entangled
quantum state, one can improve this sensitivity: δω ≳ M−1/2N−1. Such scaling is called the
Heisenberg limit. Thus, quantum entanglement can enhance the sensitivity of our measuring
apparatus.

Unfortunately, an entangled state of N qubits is extraordinarily fragile to perturbations, so it
is unlikely that such a state can plausibly ever be built in experiment. It is therefore of critical
importance to understand to what extent the Heisenberg limit is robust to perturbations. This pa-
per will address from one particular perspective, in which an experimentalist is handed a highly
entangled state capable of achieving the Heisenberg limit, yet in which the measurement procedure
itself is imperfect: the qubits interact with themselves in addition to sensing the external param-
eter ω. Similar problems were studied in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. We will show that
without proper “error correction" for these interactions, the experimentalist will lose any advantage
to using the entangled quantum state. At the same time, we prove that there is a classically com-
putable protocol involving measurement and feedback, which enables the experimentalist to achieve
Heisenberg-limited scaling. Our result proves a conjecture from this earlier literature (see e.g. [5])
that Heisenberg-limited metrology is robust in the presence of known unitary perturbations.

The remainder of the introductory section overviews our results in a more thorough fashion,
with explicit formulas outlining our setup and main results, together with some background into
the field of metrology. The remainder of the paper rigorously demonstrates our claims.

1.1 Heisenberg-limited metrology in an ideal world
Consider sensing a parameter ω (often a magnetic field along a specified axis) using N qubits (i.e.
spins- 1

2 ), whose Pauli matrices are denoted by Xj , Yj , Zj where j ∈ Λ := {1, · · · , N}. The spins
start in some initial state ρin, evolve under the Hamiltonian

H ideal
ω = ωZ := ω

N∑
j=1

Zj , (1)

for some time t, and are then measured. The goal is to use the measurement outcomes to learn
the parameter ω.
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One repeats this procedure M times: preparing the same initial state ρin, and running the
same protocol each time. After this, one uses the collective information about all the measurement
outcomes to deduce an optimal estimate ωest.

If the initial state is unentangled, the best precision (δω)2 := E[(ωest − ω)2] one can achieve is
given by the standard quantum limit (SQL)

δωSQL =
(
MNt2

)−1/2
. (2)

Here E[· · · ] denotes an average over all the possible measurement outcomes in each of the M
trials. The N−1/2 scaling arises because the N spins undergo independent dynamics, and the
measurement outcomes are uncorrelated. Here and below, we refer to reviews [1, 2, 3] for further
introduction to the subject of metrology. While this result also scales as M−1/2 because each trial
is independent and classical post-processing of the noisy measurement outcomes is constrained by
the central limit theorem of probability, this M scaling is unavoidable so long as one must repeat
the experiment M times using the same N qubits. The main question then becomes: can we
improve the N scaling of (2)?

The answer is yes. If we begin with an entangled initial state – the Greenberger–Horne–Zeilinger
(GHZ) state ρin = |GHZ⟩ ⟨GHZ|, where

|GHZ⟩ := 1√
2

(|0 · · · 0⟩ + |1 · · · 1⟩) , (3)

it is possible to parametrically reduce δω at large N . To see how, observe that if we evolve for
time t using H ideal

ω , this state evolves to

|ψid⟩ := e−itωZ |GHZ⟩ = 1√
2

(
eiNωt |0 · · · 0⟩ + e−iNωt |1 · · · 1⟩

)
, (4)

gaining an extensive phase difference between the two parts in (3). Then by measuring the expec-
tation value of observable X :=

∏
j Xj :

⟨X⟩id := ⟨ψid| X |ψid⟩ = cos(2Nωt), (5)

one achieves the Heisenberg limit (HL)

δωHL =
(
4MN2t2

)−1/2
, (6)

which scales as ∼ N−1 ≪ N−1/2, which is a dramatic advantage over SQL.
To derive (6), observe that for large M ,

(δω)2 ≈ 1
M

(∆X)2
id

|∂ω ⟨X⟩id|2
= 1
M

sin2(2Nωt)
|2Nt sin(2Nωt)|2

= 1
4MN2t2

. (7)

See Fig. 1(a) for an illustration of the first equality. Here we have used (5), and the fact that the
variation for Pauli-like (involutory) observable X obeys

(∆X)2
id :=

〈
X2〉

id − ⟨X⟩2
id = 1 − ⟨X⟩2

id . (8)

Beyond its theoretical desirability, this entanglement-enhanced metrology is efficient to imple-
ment (in the absence of quantum noise or errors!): the global operator X can be measured simply
by making simultaneous projective single-qubit measurements in the local X-basis. The needed
⟨X⟩ is just the parity ±1 of the product of the N measurement outcomes, averaged over M trials.

Notice that in the discussion above, we cannot fully determine the rotation angle θ = 2Nωt
using the algorithm as stated. The reason is that we cannot tell apart θ and θ + 2π. Happily, the
problem is easy to correct. We will assume, throughout this paper, that the “integer part”

ω′ = π

2Nt

(⌊
2Nωt
π

⌋
+ 1

2

)
. (9)
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Figure 1: (a) Given measurement of observable O with precision δ ⟨O⟩ = ∆O/
√

M , it leads to a precision δω
determined by the slope ∂ω ⟨O⟩. See (7) and (8) for the case of O = X in the ideal GHZ metrology. (b) A
sketch of qubit interactions. In this example, the interaction graph G is the 2d square lattice, so the distance
between two qubits d(·, ·) is the Manhattan distance. Two spatially local terms in V , VS and VS′ , are shown in
the two shaded regions, each coupling four qubits. They both contribute to the local strength defined in (13)
at qubit j. One can check that they have diameters diam(S) = 3 and diam(S′) = 2.

of ω is known, such that
ω ∈ Iω′ :=

[
ω′ − π

4Nt, ω
′ + π

4Nt

]
. (10)

We learn ω′ by, for example, evolving first for an extremely short time t, such that we can deduce
the first digit in ω (assuming we have an order of magnitude estimate for its value!). Then, we
double the time, such that we can get a slightly more accurate estimate of ω; iterating this process
many times, we can obtain as accurate of an estimate as we want, until we hit the HL (at which
point the best thing to do is takeM → ∞). See [15, 16, 17] for precise statements on this procedure;
in particular, the precision is of Heisenberg scaling in terms of the overall resources.

1.2 The problem of interest
In this paper, we study the robustness of the above GHZ metrology to known perturbations. In
particular, we assume the Hamiltonian acting on the spins is

Hω = V + ωZ, (11)

which contains unwanted local interaction V among the spins of local strength J . To be precise,
the N spins sit on the vertices of a graph G, connected by edges that define a distance function
d(·, ·) on the graph. We assume each vertex connects to at most K other vertices by edges. Then
we assume the interaction is

V =
∑

S⊆Λ:diam(S)≤ℓ

VS , (12)

where VS acts nontrivially on set S of qubits, diam(S) = maxi,j∈S d(i, j) is the diameter of set S,
and ℓ is the interaction range. The local strength is defined by

J := max
j∈Λ

∑
S∋j

∥VS∥ , (13)

which quantifies how strong the interaction on a single qubit can be. Here ∥·∥ denotes the operator
norm, i.e. the largest singular value of the operator. As an example of the above formal definitions,
V can be local interactions on a constant-dimensional lattice as sketched in Fig. 1(b), where each
VS =

∑
P aPP can expanded by the Pauli strings contained in the local set S, with coefficients
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aP = O(J).1 Note that J could depend on how the total operator V is decomposed into local terms
VS ; since our results apply to any such decomposition, the reader can just choose a convenient
decomposition, although in practice the results will be stronger for a decomposition that achieves
the smallest possible J . We in general do not require J to be small compared to ω, although
requiring so indeed gives a longer time scale for achieving HL, as we will see.

An explicit example of a Hamiltonian that is within the purview of the theory we describe
below would be a transverse-field Ising model in a strong magnetic field:

Hω = V + ωZ =
N−1∑
i=1

JXiXi+1 + ω

N∑
i=1

Zi. (14)

In an experiment, such a situation in (11) may arise when there are spin-spin interactions that one
cannot perfectly cancel (e.g. by dynamical decoupling [18]).2 If one wants to measure the magnetic
field in a very local spatial region, one needs to spatially move the N spins closer together, and V
may no longer be negligible. If V is neglected altogether, it could in principle become the dominant
noise in an experiment.

Besides changing the Hamiltonian, we also address more general initial states |ψ⟩in beyond the
ideal GHZ state. We evolve the system under (11) by a time t independent of N , and ask whether
measuring the final state

|ψω⟩ := e−itHω |ψ⟩in , (15)
can achieve HL, in terms of its N -scaling δω ∝ N−1, given the exact knowledge of V .

We will assume V is known exactly. The HL is impossible to achieve if each local VS has
uncertainty Ω(1/N). For example, suppose one pretends that there is no interaction, but there is
actually a weak interaction:

V = 1
N

N−2∑
j=1

ZjZj+1Zj+2 (16)

. When evolving the GHZ state, V contributes a Θ(1) phase difference between the two parts in
(4), which leads to Θ(1/N) biased error for ω that shares the same precision of the prior knowledge
(10) and cannot be reduced by increasing M . Therefore, an unknown V can be just as dangerous as
Z-type errors for metrology (the rate of which cannot exceed 1/N [19]). Nevertheless, our results
could be useful so long as V is a well-calibrated interaction.

1.3 Overview of our results
The first question one might ask is whether or not the same protocol sketched in (5) would apply.
Unfortunately, the answer is no: the naive protocol (5) is extremely sensitive to perturbation V ,
even if V is an on-site field: see Appendix A. Some intuition for this result is that an unknown V
is no better than decohering noise, which immediately leads to the SQL [20, 21]. Evidently, more
work will be required to achieve the Heisenberg limit in the presence of V . In this subsection, we
both outline the rest of the paper, and explain in less technical terms our main results along with
the intuition for why they hold. We focus on the ideal GHZ initial state for this section.

1.3.1 Robustness of the “phase difference" to perturbations

In the ideal case, the extensive phase difference (4) comes from the extensive difference in Z
polarization of the two parts: ⟨0 · · · 0|Z |0 · · · 0⟩ − ⟨1 · · · 1|Z |1 · · · 1⟩ = 2N . See the green curves
in Fig. 2(a), where |α⟩in represents |α · · ·α⟩ (or its generalized version, see Section 2). With
interactions, the two parts are evolved at time t to |ϕ0

ω⟩ and |ϕ1
ω⟩ that are no longer the maximally

polarized product states. Nevertheless, the extensive Z difference persists for short time:

⟨ϕ0
ω|Z |ϕ0

ω⟩ − ⟨ϕ1
ω|Z |ϕ1

ω⟩ = Θ(N), if t < cin/J, (17)

1Here and throughout the paper, f = O(g) means there exists a constant c determined by K and ℓ such that
f ≤ cg. We use Ω to denote the similar statement with ≥ instead, and f = Θ(g) if both f = O(g) and f = Ω(g)
hold.

2In many atomic systems, these spin-spin interactions could be long-ranged; this is a technical complication that
we will not address in this work.
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for some O(1) constant cin, as shown by the distance between the two red curves in Fig. 2(a). The
reason is simple: for each qubit, it needs a nonvanishing time Ω(1/J) to change its local state
(polarization) significantly, because it only couples to O(1) other qubits nearby on the interaction
graph. More precisely, this can be derived from∥∥∥∥ d

dtρi

∥∥∥∥ = ∥tric ([Hω, ρ])∥ = ∥tric ([Hon i, ρ])∥ ≤ 2∥Hon i∥ · ∥ρ∥ = O(J), (18)

where ρi = tric(ρ) (c means complement) is the local density matrix of qubit i, and Hon i contains
the finite number of terms in Hω that act nontrivially on i; other terms do not contribute due to
the cyclic property of the partial trace.

(17) implies that the two parts keep gaining an extensive phase difference for short time.
More precisely, when tuning ω, the phase difference changes accordingly by an extensive O(N)
sensitivity. In this process, since |ϕα

ω⟩ (α = 0, 1) also rotate in the physical Hilbert space (which is
absent in the ideal case), it is desirable that such rotation is subdominant comparing to the change
of phase. We show this from the fact that |ϕα

ω⟩ is short-time evolution from a product state and
thus short-range correlated. The intuition is that a local Hamiltonian like Hω maps a product state
(more generally, a short-range correlated state) to an orthogonal one with amplitude bounded by
O(

√
N) ≪ N ∼ ∥Hω∥. In Fig. 2(a), this is manifested by the O(

√
N) width of the wave-packets:

⟨ϕα
ω|Z2 |ϕα

ω⟩ − ⟨ϕα
ω|Z |ϕα

ω⟩ ⟨ϕα
ω|Z |ϕα

ω⟩ = O(N), (19)

for any α = 0, 1.
Gathering the two ingredients (17) and (19), we prove in Section 2 (which contains precise

statements) that HL is robust for t < cin/J , because the extensive phase difference (4) is well-
defined in the presence of interaction and can be measured in principle to estimate ω.

1.3.2 Measurement and feedback to achieve the Heisenberg limit

Now that we know there is a coherent phase difference between the two halves of the initial GHZ
state even in the presence of interactions, we must now develop a protocol to measure the state and
this relative phase difference accumulated. The key challenge is that if we do not measure in the
right basis, we will accidentally measure which of the two |ϕ0,1

ω ⟩ we are in (analogous to a Z error
destroying all entanglement in GHZ). Hence, we must now develop efficient protocols to measure
the phase difference over all N qubits, without causing such a generalized Z error, in order to
achieve HL for t < cin/J . Such protocols are desirable: the x-basis measurement in the ideal case
no longer works as shown in Appendix A,3 and one does not want to implement a protocol that
uses an exponential (in system size N) amount of classical/quantum resources.

If one can engineer generic Hamiltonian evolution in the quantum experiment, we show in
Appendix B that one can effectively4 reverse the evolution by Hω, after which an x-basis mea-
surement like the ideal case leads to HL. However, such quantum control is typically demanding
in experiment.

Therefore, we focus on another protocol based on local operations and classical communication
(LOCC). As depicted in Fig. 2(b), the qubits are measured one-by-one, where the measurement ba-
sis depends on previous measurement outcomes (i.e., classical communication) and is determined
by classical computation. During the measurement protocol, we assume the qubits undergo no
Hamiltonian evolution or decoherence. In practice, this condition holds if measurement and clas-
sical computation is much faster than Hamiltonian evolution etc, or if one deliberately separates
the qubits after the Hω evolution to well-isolated ones, awaiting for measurement.

Such an LOCC measurement protocol for pure-state metrology was previously proposed in [22],
where they specified an algorithm to find the measurement basis (using previous measurement

3For V = JX considered there, local measurements along a tilted axis (instead of along x) restore HL. However,
for general V that is not on-site, we expect HL cannot be achieved by any local-basis measurement, where the local
basis can vary qubit-by-qubit; we were, however, unable to prove this statement rigorously. In other words, we
expect classical communication is necessary in the LOCC measurement protocol developed later in this paper.

4Note that one cannot perfectly reverse the time evolution because ω is an unknown parameter, but we show
that this is not required to achieve HL.
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Figure 2: Sketch of our main results. (a) An illustration for robustness of HL, using distribution PZ in Z
polarization. We assume the initial state (green curves) is like |GHZ⟩, where the two parts |0⟩in and |1⟩in have
an extensive ∼ N difference in Z, and each of them has small ∼

√
N fluctuation. We prove these properties

hold after evolving for time t < cin/J (red curves), so that the two parts robustly gain an extensive phase
difference leading to HL. If J ≪ ω, this robustness extends to any N -independent time t. (b) A sketch of
the LOCC measurement protocol that achieves HL for t < cM/J . Although classical computation is needed to
determine the local measurement basis like |ex1x2 ⟩, we prove the overhead is poly (N) for many situations. In
the final step to extract the paramter ω, the average parity ⟨P⟩ of the measurement string x is compared to two
quantities f, ⟨P⟩′ from classical computation, using (67). (c) A sketch of the poly (N)-time classical sampling
algorithm at short time t < c+/J (under certain conditions), which also serves as an ingrediant for proving
efficiency of the LOCC measurement protocol in (b). To compute a local density matrix ρxn after measuring n
qubits (so that one can determine the measurement probability of qubit n+1), we prove that it only depends on
dynamics within distance m ∼ log N of the given vertex. In the figure m = 2. Constraining computation to the
radius-m ball (shown in orange) naively leads to a quasi-polynomial exp[(log N)d] complexity for d-dimensional
systems; we use the cluster expansion to get poly (N) for any d, and even for any bounded degree graph. Note
that measurements in the figure occur one-by-one in a spatially continuous way: This is only for simplicity of
drawing and not required in general.
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outcomes) that achieves the best possible precision. We adapt this algorithm to our problem
starting from Section 3, which achieves HL due to results described in Section 1.3.1. However,
[22] did not study the classical complexity of the algorithm, and in general one might expect it
to be exponentially difficult to find this ideal basis due to the many-body Hilbert space involved.
However, we will prove that the classical computation of this efficient basis can be done using
polynomial classical resources and runtime. This is usually denoted as poly (N) (i.e. bounded by
cqN

q for some constants q and cq).

1.3.3 Efficient classical sampling of short time dynamics

If the qubits are arranged in one dimension, the computation is done efficiently using matrix
product state (MPS) representations for the two parts |ϕα

ω⟩ of the state, because they are both
short-time evolution from a product state. This is detailed in Section 3. For higher dimensions
or general graph G, MPS techniques do not work, and we need to develop another method. The
classical computation in the LOCC algorithm turns out to be merely the same as another task of
its own interest, namely classically sampling LOCC measurements on |ϕ0

ω⟩.
More precisely, consider evolving an initial product state using a local Hamiltonian like (11)

for time t, after which the system is measured in the computational basis to output a classical
string x with probability px. It is crucial to understand whether this quantum experiment can
be classically simulated in polynomial time, i.e., whether a classical computer can also sample the
string x efficiently. It is believed (based on conjectures in theoretical computer science) that a
depth-3 quantum circuit in 2d, which can be viewed as a time-dependent Hamiltonian evolution
with t = Θ(1), already becomes exponentially hard to classically sample in the worst case [23].
However, it is unclear whether this quantum advantage holds for any constant t independent of
N . Moreover, generalizing computational-basis measurement, it is sometimes desirable to perform
LOCC measurement to try to do measurement-based quantum computation (MBQC) on the final
state [24]. Is this adaptive case even harder to classically simulate? Is it capable to do universal
quantum computation like MBQC on the cluster state [25]?

To answer these questions, in Section 4 we prove that for t < c+/J with a constant c+, the final
state can be sampled by a poly (N) classical algorithm. Therefore it is a computationally simple
state, and does not enable universal MBQC. Technically, we achieved this by generalizing the
cluster expansion method developed in [26, 27], and rely on one assumption that the measurement
basis is not so close to that of the initial state. The idea is shown in Fig. 2(c): the local state on an
unmeasured qubit is easy to simulate, because it only depends on dynamics (and measurement) in a
neighboring region of size ∼ logN . A rough physical picture for this is as follows. After evolution
in time t = 0.1/J , each pair of neighboring qubits only establishes ∼ 0.1 correlation. Suppose
qubits 1, 2 and 2, 3 are such pairs, but 1, 3 does not share correlation. Although measuring 2 may
help to create correlation between 1 and 3, the amount is 0.12 = 0.01. Repeating this argument
implies that faraway qubits have correlation exponentially small in distance, even after some local
measurements are done.

Based on the complexity result in Section 4, we return to the metrology problem in Section 5,
and prove (without assumptions on the measurement basis) that the LOCC protocol achieving HL
involves poly (N) classical computation, for general graphs and t < cM/J for some constant cM.

1.3.4 Robustness against weak perturbations

The above results hold even if the interaction is strong J ≫ ω. If it is actually weak J ≪ ω, we
show in Section 6 simply by energy conservation that HL is robust well beyond the time window
Jt < cin in Section 1.3.1. However, for such long times, we no longer have guarantees on the
efficiency of the measurement protocol in general. We also discuss prethermalization theory [28]
that plays a role in preserving Z polarization against small perturbations.

1.4 Further background on metrology: quantum Fisher information
The rest of the introduction provides further background knowledge, along with context, for our
work. In this subsection, we summarize further useful facts about quantum metrology which are
well-established in the literature. The first question we ask is whether the state (15) could achieve
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HL, without restriction on the kinds of measurements made (or classical algorithm used to process
them). This question is equivalent to asking for the scaling of the quantum Fisher information
(QFI) of |ψω⟩ with respect to ω: For a pure state, QFI is defined as [29, 30, 31] (see e.g. Eq.(4) in
[32])

F(|ψω⟩) = 4 ∥(1 − |ψω⟩ ⟨ψω|) ∂ω |ψω⟩∥2 = 4
(

⟨∂ωψω|∂ωψω⟩ − |⟨ψω|∂ωψω⟩|2
)
, (20)

The first expression in (20) is intuitive: QFI simply measures how fast |ψω⟩ rotates in the physical
Hilbert space when tuning ω, where the unphysical global phase does not contribute. On the other
hand, the second expression in (20) can be understood as some connected correlation function (see
(42) below). QFI bounds the estimation precision by the quantum Cramér-Rao bound (QCRB)

(δω)2 ≥ 1
MF(|ψω⟩) . (21)

In the M ≫ 1 regime that we focus here, (21) is saturable [30, 33] by projective measurements in
the eigenbasis of

Lω = 2 (1 − |ψω⟩ ⟨ψω|) |∂ωψω⟩ ⟨ψω| + H.c., (22)

followed by classical post-processing the data using maximum likelihood estimation. See [34] for
modification of QCRB in the case M = 1.

In general, to achieve HL it is necessary to have F(|ψω⟩) ∝ N2, which we prove in Corollary
2.3 and Proposition 2.5 for the problem described in Section 1.2. However, bounding QFI is not
the only way to show robustness of HL. Indeed the most direct result we will establish is (as
summarized above), based on proving that the extensive phase difference between the two halves
of the GHZ state is robust to arbitrary perturbations (at short t). While this fact does imply
the desired scaling of QFI, we will argue that the constraints of locality at short time scales in
quantum mechanics ensure more than simply good QFI: they also ensure an efficient measurement
protocol to achieve the HL in metrology. In particular, it is quite undesirable to do an eigenbasis
measurement of (22), because: (i) it requires evolving the many-body state |ψω⟩ which a priori
could be exponentially hard in N , (ii) the naive algorithm of just measuring Lω requires knowledge
of ω anyway, which is precisely what we want to learn, and (iii) measuring Lω is not realistic in
any experiment with N ≳ 4. In fact, property (ii) means the measurement protocol does only local
quantum estimation [33].

Ultimately, the QCRB can be saturated (or at least saturated up to a constant factor) by more
than one protocol. The goal of our work is to find efficient ones with global quantum estimation,
like the ideal one in Section 1.1, which involves only local measurements and applies to all ω in
range Iω′ (10).

1.5 Previous work on robustness of metrology
Special cases of our problem described in Section 1.2 have been considered in the literature. [4, 5]
show that HL is robust if V is on-site. In particular, [4] conjectures the robustness holds for more
general interactions, which is proven in this paper. [35, 6, 7, 8, 9, 10, 11, 12, 13, 14] consider
specific models, where the chosen interaction V sometimes enhances the precision or robustness of
metrology. For general unwanted interactions, it is proposed to reduce the interaction strength by
dynamical decoupling [36, 37, 38], where the qubits are actively operated by control pulses. Indeed,
quantum control is shown to have advantages in the setting of estimating multiple parameters
[39], especially learning a many-body Hamiltonian [40, 41]. In this respect, our result may be
surprising: HL for single-parameter estimation is actually robust even without quantum control
during sensing. The price to pay is the nontrivial (but provably efficient) LOCC measurement
procedure after sensing, in order to accurately estimate the parameter.

We assume the system is isolated from the environment throughout the paper. If there is
decoherence from coupling to the environment, HL is not robust anymore and reduces to SQL in
general [20, 21], even if the qubits couple to the environment independently. Intuitively, this comes
from the fragility of the global many-body entanglement of the GHZ state. In certain cases, HL
can be restored by active quantum error correction (QEC) [42, 43, 44, 45, 46, 47]. However, it is
usually assumed that the QEC operation is much faster than the decoherence rate. Our results
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may shed light on the actual QEC time scale needed, especially for decoherence that are correlated
among qubits [48, 49, 50, 51, 52].

2 Robustness of the Heisenberg limit
Having summarized our strategy, we can now begin by deriving our first key result: the Heisenberg
limit is robust if Jt is smaller than a constant even in the presence of strong perturbations. Note
that this result does not rule out the possibility of HL robustness on longer time scales (see e.g.
Section 6). Still, as we will see, this more limited result will be adequate for our purposes.

2.1 Generalized initial states
We allow for any initial state of the form

|ψ⟩in := (|0⟩in + |1⟩in) /
√

2, (23)

where the two parts |α⟩in (α = 0, 1) are orthonormal and satisfy the following two conditions:

1. They have extensive Z polarization difference:

⟨Z⟩0 − ⟨Z⟩1 = 2cinN, where ⟨O⟩α := ⟨α|O|α⟩in . (24)

Here α = 0, 1, O is any operator, and cin > 0 is a constant.

2. They are short-range correlated:

|⟨OAOB⟩α − ⟨OA⟩α ⟨OB⟩α| ≤ cξe−d(A,B)/ξ, (25)

for any subsets A,B ⊂ Λ, and operators in them with ∥OA∥ = ∥OB∥ = 1. Here d(·, ·) is the
distance function defined in Section 1.2, and ξ is the correlation length. If the graph G is
not finite-dimensional, we assume the correlation length is relatively short

ξ < 1/ log(K − 1). (26)

The GHZ state is thus the extreme case cin = 1 and ξ = 0. We expect these conditions are satisfied
by many more states of physical interest: e.g. equal superposition of Z2 symmetry broken states,
or “rotated” version of GHZ state like |0 · · · 0⟩ +

(
α̃ |0⟩ + β̃ |1⟩

)⊗N
(with |α̃|2 + |β̃|2 = 1, |β̃| > 0)

where the two parts have negligible ∼ exp(−N) overlap and can be massaged to form (23).
The time-evolved state |ψω⟩ (15) is then

|ψω⟩ = 1√
2

(
|ϕ0

ω⟩ + |ϕ1
ω⟩

)
, where |ϕα

ω⟩ := e−itHω |α⟩in . (27)

2.2 Robustness of the extensive phase difference
We first show that before some O(1) time, the two parts in (27) keep gaining an extensive phase
difference when varying ω, just like the ideal case.

Theorem 2.1. If the initial state satisfies (24) and (25), then

∂ω |ϕα
ω⟩ = −i [c′ + (−1)αcω]N |ϕα

ω⟩ + O(
√
N), (28)

where
cω ≥ t(cin − Jt). (29)

As a result, the whole state satisfies (dropping the unphysical global phase)

|ψω⟩ = 1√
2

(
e−if(ω)/2 |ϕ0

ω′⟩ + eif(ω)/2 |ϕ1
ω′⟩

)
+ O(1/

√
N), (30)

where the function f(ω) : Iω′ →
[
− π

2 ,
π
2

]
satisfies f(ω′) = 0, and is an increasing function for

t < cin/J with slope proportional to N :

2t(cin − Jt)N ≤ ∂ωf(ω) ≤ 2tN. (31)
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We will provide the proof shortly. Without QFI, (30) is already transparent on why HL is
achievable for constant time t < cin/J , even for global quantum estimation: the two states |ϕ0

ω⟩
and |ϕ1

ω⟩ just gain opposite phases that are proportional to N when tuning ω. Suppose the function
f is known, then for t < cin/J up to a negligible error O(N−1/2), a protocol achieves HL as long as
it measures the relative phase5 between the two states with outcome fE (a number), because one
can then solve f(ωest) = fE to get an estimate ωest of the true ω. As we will show, the function
f will be efficiently computable by a classical computer: one does not need to compute the value
f(ω̃) for every ω̃; it suffices if for any given ω̃ ∈ Iω′ , the classical algorithm outputs f(ω̃) with
good accuracy. The reason is that one can easily perform a classical binary search algorithm when
comparing to the quantum experimental value fE:

Proposition 2.2. Suppose there is an oracle such that for each given ω̃ ∈ Iω′ , it outputs an
approximation fO(ω̃) with error

|fO(ω̃) − f(ω̃)| ≤ 1/
√
M. (32)

Then based on the quantum experimental result fE, calling the oracle O(logM) times gives an
estimate ωest for the true ω with HL.

Proof. After M measurements, the precision |fE − f(ω)| ≤ π/(2
√
M), because the range of func-

tion f is bounded by |f(ω)| ≤ π/2. As a result, since the oracle has similar precision (32), it
suffices to find an ωest such that the oracle output fO(ωest) is within distance O(1/

√
M) to the

experimental value fE. This would achieve HL due to (31).
To find ωest, we use the following binary search algorithm. If one is lucky that |fE| = O(1/

√
M),

then ωest = ω′. Otherwise depending on whether fE is positive or negative (we assume positive for
simplicity), calculate fO(ω′+π/(4Nt)) and compare it to fE: if it is within distance O(1/

√
M) then

ωest = ω′ + π/(4Nt); otherwise call the oracle at the middle point ω′ + π/(8Nt) of the candidate
interval, and repeat the above process. The length of the candidate interval shrinks exponentially
with the number of steps, so that after O(logM) calls of the oracle, one is guaranteed to get an
ωest with HL (7).

For completeness, we show that (28) indeed implies HL for QFI.

Corollary 2.3. If the initial state satisfies (24) and (25), then QFI defined in (20) satisfies

F(|ψω⟩) ≥ 4t2N2(cin − Jt)2 + O(N3/2), (33)

which scales as ∼ N2 so long as t < cin/J . Note that we assume this short time inequality when
stating (33).

Proof. We derive from the bound (28). From (20) and (27),

F(|ψω⟩) = 2
∑

α,β=0,1
⟨∂ωϕ

β
ω|∂ωϕ

α
ω⟩ +

 ∑
α,β=0,1

⟨ϕβ
ω|∂ωϕ

α
ω⟩

2

= 2c2
ωN

2
∑

α,β=0,1
(−1)α−β ⟨ϕβ

ω|ϕα
ω⟩ − c2

ωN
2

 ∑
α,β=0,1

(−1)α ⟨ϕβ
ω|ϕα

ω⟩

2

+ O(N3/2)

≥ 4c2
ωN

2 + O(N3/2) ≥ 4t2N2(cin − Jt)2 + O(N3/2). (34)

Here in the second line, we have used ∥∂ω |ϕα
ω⟩∥ = O(N) according to (28), so that the second term

in (28) only contributes to O(N3/2) here. In the last line we have used ⟨ϕβ
ω|ϕα

ω⟩ = ⟨β|α⟩in = δβα

and (29).

5For example, one can measure the observable |ϕ0
ω′ ⟩ ⟨ϕ1

ω′ | + |ϕ1
ω′ ⟩ ⟨ϕ0

ω′ | which does not depend on ω but only on
the prior knowledge ω′. However, this is a nonlocal operator in general that is hard to implement experimentally,
so starting from next section we will find efficient measurement protocols.
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2.3 Proof of Theorem 2.1
We first sketch the idea, focusing on (28) since (30) will follow by a simple integration over ω. The
c′ term in (28) is an unimportant global phase. The cω term, on the other hand, is the crucial
relative phase between the two parts α = 0, 1. Intuitively, an extensive Z polarization leads to
an extensive relative phase gained by tuning ω, so we will first show the initial extensive ⟨Z⟩
difference (24) persists in short time. This is summarized in Lemma 2.4, which does not rely on
the condition on correlation (25). Due to the presence of V , the two parts do not simply gain
phases, but also rotate in the physical Hilbert space (where states differing by an overall phase
are identified). Nevertheless, since the two parts are initially short-range correlated (25), the state
rotated by a single term in the local Hamiltonian is orthogonal to each other. As a simple example,
Xi |0 · · · 0⟩ ⊥ Xj |0 · · · 0⟩ for i ̸= j. Therefore, the norm squared of the rotated part of the state
scales linearly with N . This leads to the last term in (28), which is subdominant ∼

√
N comparing

to the relative phase ∼ N . We note that similar locality estimates are also used to prove that even
if the Hamiltonian is interacting, SQL cannot be surpassed by separable initial states [53].

We now show that the extensive phase difference cω term in (28) comes from condition (24)
alone.

Lemma 2.4. The two components in (27) satisfy

i
(
⟨ϕ0

ω| ∂ω |ϕ0
ω⟩ − ⟨ϕ1

ω| ∂ω |ϕ1
ω⟩

)
≥ 2t(cin − Jt)N. (35)

This does not rely on condition (25).

Proof. Taking derivative on the matrix e−itHω with respect to ω, we have

∂ω |ϕα
ω⟩ = −i

∫ t

0
ds e−i(t−s)HωZe−isHω |α⟩in = −ite−itHωZ |α⟩in , where Z = 1

t

∫ t

0
ds eisHωZe−isHω .

(36)
Therefore

i ⟨ϕα
ω| ∂ω |ϕα

ω⟩ = t ⟨α|in eitHω e−itHωZ |α⟩in = t ⟨Z⟩α . (37)

Using (24),

i
(
⟨ϕ0

ω| ∂ω |ϕ0
ω⟩ − ⟨ϕ1

ω| ∂ω |ϕ1
ω⟩

)
= t

(
⟨Z⟩0 − ⟨Z⟩1

)
= t

(
⟨Z⟩0 − ⟨Z⟩1 + ⟨Z − Z⟩0 − ⟨Z − Z⟩1

)
≥ 2t(cinN −

∥∥Z − Z
∥∥). (38)

In general, the time-averaged operator Z is close to Z in short time:

∥∥Z − Z
∥∥ ≤ 1

t

∫ t

0
ds

∥∥eisHωZe−isHω − Z
∥∥

= 1
t

∫ t

0
ds

∥∥∥∥∫ s

0
ds′eis′Hω [Hω, Z]e−is′Hω

∥∥∥∥
≤ 1
t

∫ t

0
ds s ∥[Hω, Z]∥ = t

2 ∥[V,Z]∥ = t

2

∥∥∥∥∥∥
∑

j

∑
S∋j

VS , Zj

∥∥∥∥∥∥ ≤ NJt, (39)

where we have used (13) and ∥[A,B]∥ ≤ 2 ∥A∥ ∥B∥. This establishes (35) due to (38).

Proof of Theorem 2.1. Since we have proven the extensive relative phase (35), to prove (28) it
remains to show the extra rotation in the physical Hilbert space contributes O(

√
N) in (28):

⟨∂ωϕ
α
ω| (1 − |ϕα

ω⟩ ⟨ϕα
ω|) |∂ωϕ

α
ω⟩ ≤ Nt2g(Jt), (40)

where the function g(Jt) is independent of N , and t2 comes from dimensional analysis due to two
ω-derivatives on the left hand side. We have projected out the part in ∂ω |ϕα

ω⟩ proportional to |ϕα
ω⟩,
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which would contribute to the cω term in (28). One can verify that combining (35) and (40) yields
(28). The reason is as follows. One can always decompose

|∂ωϕ
α
ω⟩ = |ϕα

ω⟩ ⟨ϕα
ω|∂ωϕ

α
ω⟩ + (1 − |ϕα

ω⟩ ⟨ϕα
ω|) |∂ωϕ

α
ω⟩ , (41)

where (40) implies that ∥(1 − |ϕα
ω⟩ ⟨ϕα

ω|) |∂ωϕ
α
ω⟩∥ = O(t

√
N) and thus corresponds to the second

term of O(
√
N) in (28). For the first term of (28), the c′ term just corresponds to a global phase,

and is unimportant. Taking the inner product between (41) and ⟨ϕα
ω|, the cω term is further

extracted by subtracting the two choices of α, which leads to (29) from (35).
To show (40), we first rewrite its left hand side using (36), (37) and ⟨∂ωϕ

α
ω|∂ωϕ

α
ω⟩ = t2 ⟨α|in ZeitHω e−itHωZ |α⟩in =

t2 ⟨Z2⟩α. The result is6

t2
(

⟨Z2⟩α − ⟨Z⟩2
α

)
= t2

∑
i

∑
j

(
⟨ZiZj⟩α − ⟨Zi⟩α ⟨Zj⟩α

)
≤ t2N max

i

∑
j

(
⟨ZiZj⟩α − ⟨Zi⟩α ⟨Zj⟩α

)
.

(42)

In some sense, the final sum quantifies the total correlation shared by spin i with all other spins,
in the final state |ϕα

ω⟩. Intuitively, since in finite time i can only build correlation effectively with
a finite set of neighboring spins, we expect∑

j

⟨ZiZj⟩α − ⟨Zi⟩α ⟨Zj⟩α ≤ g(Jt), (43)

i.e., bounded by some function independent of N , which leads to (40).
More rigorously, since V is local, we have Lieb-Robinson bound [54]: There exists an operator

Zi,r(t) supported inside the ball Bi,r := {k ∈ Λ : d(k, i) ≤ r} centered at i of radius r, such that

∥Zi(t) − Zi,r(t)∥ ≤ cLReµ(vt−r), ∀r ≥ 1, (44)

where ∥Zi,r(t)∥ ≤ 1, and cLR, µ, v > 0 are constants.7 The bound (44) holds similarly for the time-
averaged operator Zi(t), because one can bound the approximation error of the integral in (36)
by a triangle inequality like the first line of (39). Then using the initial condition (25), connected
correlation for any pair i, j is bounded by an exponential-decaying function

⟨ZiZj⟩α − ⟨Zi⟩α ⟨Zj⟩α ≤ (cξ + 6cLR) exp
(

−d(i, j) − 2vt
ξ + 2µ−1

)
, (45)

following [56] (see also Theorem 5.9 in [55]).
Now sum (45) over j. The result is independent of N for finite-dimensional lattices, because the

exponential decay in distance d(i, j) overcomes the polynomial number of js at the given distance.
For general graphs with bounded degree K, the number of spins at a given distance to i is upper
bounded by K(K − 1)d(i,j)−1, so the decay in (45) still wins due to (26), and the fact that µ can
be chosen arbitrarily large in (44) (by adjusting cLR and v accordingly) [55]. This establishes (43)
and further (40) from (42).

We have proven (28) from (35) and (40). It remains to integrate it from ω′ to ω to derive (30).
Since |ω − ω′| = O(N−1) (10), the O(

√
N) term in (28) translates to the O(1/

√
N) term in (30).

At the same time, f(ω) =
∫ ω

ω′ cω′′dω′′, so f(ω′) = 0, and the first inequality of (31) simply comes
from (28). The second inequality of (31) comes from the first line of (38), which implies cω ≤ tN
because ∥∥Z∥∥ ≤ t−1

∫ t

0
ds ∥Z∥ = ∥Z∥ = N. (46)

Due to this bound on the slope, the range of f(ω) is contained in [−π/2, π/2].

6Note that (42) is proportional to the QFI of |ϕα
ω⟩ as a function of ω.

7Zi,r(t) can be obtained by projecting Zi(t) onto its components supported inside the ball Bi,r.; see Propositions
3.5 and 4.1 in [55].
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2.4 An alternative viewpoint: correlation cannot decay in O(1) time
Theorem 2.1 above is one central result of this paper: it shows the robustness of the relative
phase for GHZ-like states, proves HL for QFI in (33), and sets foundations for the latter sections
on efficient protocols. As an interlude, this subsection is devoted to an alternative argument for
robustness of metrology, at least at the level of QFI. The intuition is that the super-sensitivity of
|GHZ⟩ with respect to the Z field stems from its large ZZ correlation/fluctuation. Mathematically,
one can verify that QFI (20) is just proportional to ZZ connected correlation function (see (47))
when V = 0. Then for robustness, we basically need to show such long-range correlation cannot
be killed in O(1) time evolution. Formalizing this idea, we have:

Proposition 2.5. If initially

⟨ZZ⟩in − ⟨Z⟩in ⟨Z⟩in = c′
inN

2, (47)

with c′
in > 0, then QFI defined in (20) satisfies

F(|ψω⟩) ≥ 4t2N2(c′
in − 4Jt), (48)

which is HL for t < c′
in/(4J).

The GHZ state corresponds to the case c′
in = 1. We do not need the conditions (24) and (25)

here, although it might be possible to derive (47) from those (possibly under physical assumptions
that off-diagonal elements like ⟨0|Z|1⟩in are subdominant). Beyond GHZ metrology, Proposition
2.5 thus also applies to metrology using spin-squeezed states [57]. However, we leave as future
work to design efficient measurement protocols for such states.

Proof. Using (36) in a similar way as (42), QFI in (20) becomes

1
4t2 F(|ψω⟩) = ⟨Z2⟩in − ⟨Z⟩2

in

= ⟨Z2⟩in − ⟨Z⟩2
in + ⟨Z(Z − Z) + (Z − Z)Z + (Z − Z)2⟩in − 2 ⟨Z⟩in ⟨Z − Z⟩in − ⟨Z − Z⟩2

in

≥ c′
inN

2 − 4N
∥∥Z − Z

∥∥ . (49)

Here in the second line we have used Z = Z + (Z − Z). In the third line, we have used (47),
⟨(Z − Z)2⟩in ≥ ⟨Z − Z⟩2

in, |⟨Z⟩in| ≤ N and ⟨Z(Z − Z)⟩in ≥ − ∥Z∥
∥∥Z − Z

∥∥ = −N
∥∥Z − Z

∥∥.
Plugging in (39) leads to (48).

3 LOCC protocol in 1d: sampling matrix product states
3.1 LOCC protocol
For our situation where the system remains in a pure state, [22] shows that QCRB can always
be saturated by a measurement protocol built of local operation and classical communication
(LOCC), where the spins {1, 2, · · · , N} are measured one after another, adaptively. Namely, first
measure spin 1 in some chosen basis, and then measure spin 2 in a basis depending on the previous
measurement outcome x1 ∈ {0, 1}, and so on. After measuring all the spins, one obtains a binary
string x := x1 · · ·xN , from which one tries to decode the parameter ω. Note that spins with nearby
labels do not need to be close spatially. The measurement is described by the set of projectors Ex,
or equivalently the set of product states |Ex⟩:

Ex = ex1 ⊗ ex1x2 ⊗ · · · ⊗ ex1···xN
, (50a)

|Ex⟩ = |ex1⟩ ⊗ |ex1x2⟩ ⊗ · · · ⊗ |ex1···xN
⟩ (50b)

where ex1···xj
= |ex1···xj

⟩ ⟨ex1···xj
| is a projector on spin j that projects onto a basis {|ex1···xj−10⟩ , |ex1···xj−11⟩}

determined by the previous measurement outcomes x1 · · ·xj−1. Like in measurement-based quan-
tum computation, such classical communication is necessary in general [22]; see also [58]. Note
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that we use lowercase e for operator/state on a single qubit, while uppercase E for projector on
multiple qubits.

For t < cin/J , combining Corollary 2.3 with [22] implies the existence of a LOCC protocol
that achieves HL, at least for local estimation. However, although [22] describes a procedure to
obtain the local basis Ex defining the protocol based on the quantum state, it is not guaranteed
that this procedure is easy to implement in practice. More precisely, we need to show that the
local basis is classically computable in poly (N) runtime (which implies space complexity is also
poly (N)). From now on, we show that there is indeed a LOCC protocol of global estimation that
(i) achieves HL for certain class of GHZ-like initial states with t < cin/J , and (ii) is provably
efficient to implement. In this section, after showing the procedure to determine the local basis
(50a), we focus on 1d where the complexity result is relatively easy to establish, and applies to
more general initial states, using matrix product states (MPSs). In the next two sections, we use
sampling complexity results to deal with general interaction graphs.

3.2 Finding the LOCC measurement basis
In this subsection, we adapt the procedure in [22] to our case of GHZ metrology with global estima-
tion. Namely, we show how to determine the local measurement basis Ex from knowledge of |ψω′⟩
where ω′ is known. Observe that the probability distribution ⟨ψω′ |Ex |ψω′⟩ of the measurement
string for |ψω′⟩ is

⟨ψω′ |Ex |ψω′⟩ = 1
2

(
⟨Ex⟩ϕ0

ω′
+ ⟨Ex⟩ϕ1

ω′

)
+ Re ⟨ϕ0

ω′ |Ex |ϕ1
ω′⟩ , (51)

Since the relative phase between ϕ0
ω′ and ϕ1

ω′ only contributes to the second term, the intuition is
to make the second term large enough, and check that is also the case for any ω ∈ Iω′ . Indeed, if
the measurement basis is not chosen carefully, the second term would become exponentially small,
leading to SQL as shown in Proposition A.1. Strictly speaking, the second term has amplitude∣∣⟨ϕ0

ω′ |Ex |ϕ1
ω′⟩

∣∣ and phase θ′
x = arg ⟨ϕ0

ω′ |Ex |ϕ1
ω′⟩, and we demand a criterion for each:

1. We want the amplitude to be as large as possible: In order to saturate Cauchy-Schwarz
inequality∣∣⟨ϕ0

ω′ |Ex |ϕ1
ω′⟩

∣∣ =
∣∣∣⟨ϕ0

ω′ |E1/2
x · E1/2

x |ϕ1
ω′⟩

∣∣∣ ≤ 1
2

(
⟨ϕ0

ω′ |E1/2
x · E1/2

x |ϕ0
ω′⟩ + ⟨ϕ1

ω′ |E1/2
x · E1/2

x |ϕ1
ω′⟩

)
= 1

2

(
⟨Ex⟩ϕ0

ω′
+ ⟨Ex⟩ϕ1

ω′

)
, (52)

we desire E1/2
x |ϕ0

ω′⟩ and E1/2
x |ϕ1

ω′⟩ only differ by a phase, or equivalently,

⟨Ex| M |Ex⟩ = 0, where M := |ϕ0
ω′⟩ ⟨ϕ0

ω′ | − |ϕ1
ω′⟩ ⟨ϕ1

ω′ | . (53)

2. The phase
eiθ′

x = (−1)xi = ±i, (54)

where the + (−) sign is for even (odd) string x, i.e., determined by the parity. This requires
⟨ϕ0

ω′ |Ex |ϕ1
ω′⟩ is pure imaginary, or equivalently,

⟨Ex| (M̃ + M̃†) |Ex⟩ = 0, where M̃ := |ϕ1
ω′⟩ ⟨ϕ0

ω′ | . (55)

These two conditions combine to

⟨Ex|ϕ1
ω′⟩ = (−1)xi ⟨Ex|ϕ0

ω′⟩ . (56)

Note that the phase (54) is chosen deliberately such that (56) is satisfied by the standard x-basis
measurement in the unperturbed case V = 0, where a known field ω′ (9) would accumulate a phase
θ = π/2 modular π. In general, the measurement basis satisfying (56) can be determined by the
following procedure that generalizes [22].
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Procedure 3.1. Procedure to determine the local basis ex1 , ex1x2 , · · · along a given trajectory
x1, x2, · · · .

1. Calculate “reduced matrices” on spin 1: M∅ = tr2···N M,M̃∅ = tr2···N M̃. Here subscript
∅ means no previous substring.

2. Find an orthonormal basis |ex1⟩ for spin 1 s.t.

⟨ex1 | M∅ |ex1⟩ = 0, and ⟨ex1 |
(

M̃∅ + M̃†
∅

)
|ex1⟩ = 0. (57)

This is possible because two traceless Hermitian matrices can be simultaneously zero-diagonalized
[22]: there is always a basis such that one matrix is proportional to Pauli X, while the other
is linear combination of X and Y . Moreover, Im ⟨e0| M̃∅ |e0⟩ is chosen to be positive. This
completely determines ex1 , as long as M∅ and M̃∅ are nonvanishing.

3. Calculate Mx1 = tr3···N ⟨ex1 | M |ex1⟩ ,M̃x1 = tr3···N ⟨ex1 | M̃ |ex1⟩. We are using ⟨ex1 |M|ex1⟩
to denote an operator acting only on spins 2, . . . , N .

4. Find an orthonormal basis {|ex1x2⟩ : x2 = 0, 1} for spin 2 s.t.

⟨ex1x2 | Mx1 |ex1x2⟩ = ⟨ex1x2 |
(

M̃x1 + M̃†
x1

)
|ex1x2⟩ = 0. (58)

The sign of Im ⟨ex10| M̃x1 |ex10⟩ is chosen to be (−1)x1 .

5. Repeat steps 3 and 4 for spins 3, · · · , N .

One can verify that condition (56) is satisfied in the final step.

3.3 Matrix product state approximations
In general, the states |ϕα

ω′⟩ and therefore the matrices M,M̃ cannot be computed exactly. Instead,
we need approximations of them that (i) can be computed efficiently, and (ii) induces negligible
error for quantum metrology. This will lead to approximation Eap

x of the local basis, along which
the quantum measurement is actually done. In this section, we focus on the easier case of one
dimension, where we use MPS to approximate states.

An MPS on a chain of qubits {1, · · · , N} is defined by a set of D ×D matrices A = {A(j)
α }:

|A⟩ =
∑

α1=0,1
· · ·

∑
αN =0,1

tr
(
A(1)

α1
· · ·A(N)

αN

)
|α1 · · ·αN ⟩ , (59)

where D is called the bond dimension. Pictorially {A(j)
α } are tensors with three legs: one physical

leg and two bond legs, and the MPS is represented by contracting the bond legs of nearest-
neighbors. See Fig. 3(a). Although any state can be expressed as an MPS, the bond dimension
is typically exponentially large in N . In contrast, MPSs of physical interest are those whose bond
dimension is upper bounded by poly (N), which contains only a polynomial number of parameters.
Such an MPS is easy to manipulate, because many properties of it can be computed classically in
polynomial time by contracting the tensors. For example, given a string operator O = O1⊗O2⊗· · · ,
its matrix element between two MPSs is represented by sandwiching the operator by the tensors
of the two MPSs (one is conjugated). As shown in Fig. 3(b), one can contract this tensor from left
to right, using only poly (N) memory and runtime if bond dimensions are bounded by poly (N).
Our first result shows that given our assumptions in the previous section, such an efficient MPS
must exist.

Proposition 3.2. Assuming (25) holds for |α⟩in in one dimension, there is an approximation
|Ψω′⟩ = 1√

2

(
|Φ0

ω′⟩ + |Φ1
ω′⟩

)
for the state |ψω′⟩, such that

∥|Φα
ω′⟩ − |ϕα

ω′⟩∥ ≤ 1/
√
N, (60)

and |Φα
ω′⟩ is an MPS with poly (N) bond dimension.
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Figure 3: (a) Tensor representation of MPS |A⟩ for N = 5. (b) Tensor representation for ⟨B|O|A⟩, where
O = O1 ⊗ O2 ⊗ · · · is a string operator. It can be contracted along the spatial direction in poly (N) memory
and runtime, if the bond dimensions of the two MPSs are poly (N). More precisely, at the n-th step one
has contracted the tensors on the leftmost n qubits to a matrix C(n) of dimension poly (N); C(n) is then
contracted with tensors A(n+1), On+1, B(n+1) to yield C(n+1), which costs poly (N) overhead. When finding
the measurement basis for the LOCC protocol, we need e.g. O = ex1 ⊗ · · · ⊗ ex1···xn ⊗ On+1 to calculate
M̃x1···xn . (c) 3-layer circuit unitary U ′ that approximates e−itHω′ with error ϵ. Each gate acts on at most
L = O(log(tN/ϵ)) neighboring spins, so U ′ maps MPS to MPS preserving the condition that the bond dimension
is poly (N). Adapted from [59]. (d) Acting a 2-layer unitary circuit on an MPS, the bond dimension is increased
at most by a factor of the local physical dimension. This can be seen by viewing the shaded region as the new
matrix for the final state, whose legs are shown by red. (e) A sketch of why MPS is easy to sample: Whenever
a qubit is measured, that qubit can be contracted and the neighboring matrix gets updated. The state is still
an MPS on one fewer qubit, with the bond dimension unchanged.

Proof. In 1d, any |α⟩in with exponential decay of correlation (25) can be approximated by an MPS
|α⟩IN with bond dimension poly (N), with a small error [60]:

∥|α⟩IN − |α⟩in∥ ≤ N−3/2. (61)

On the other hand, there exists a quantum circuit unitary U ′ (which can be found using the
HHKL algorithm [59]) shown in Fig. 3(c) that approximates the evolution unitary e−itHω′ to error∥∥U ′ − e−itHω′

∥∥ ≤ ϵ, (62)

where U ′ consists of three layers of local gates. Each gate is acting on at most L = O(log(tN/ϵ))
neighboring spins, and is simply e∓itHω′,local , where Hω′,local only contains terms in Hω′ that are
supported inside the given region. Only the second layer is backward time evolution with + sign
on the exponent. We choose ϵ = 1/

√
2N and focus on constant time, so that L = O(logN).8

We then define |Φα
ω′⟩ = U ′ |α⟩IN, which satisfies (60) from (61) and (62). Since |α⟩IN is an MPS

with poly (N) bond dimension, the output |Φα
ω′⟩ from acting quantum circuit U ′ on it remains to be

such an MPS, because U ′ increases the bond dimension at most by a multiplicative factor poly (N).
To see this, one can combine each block of L qubits to one qudit of dimension 2L = poly (N); the
matrices A(j) for |α⟩IN are simply multiplied within each block, which does not change the bond
dimension. On the other hand, the quantum circuit U ′ is simply two layers of nearest-neighbor
2-local gates on the qudits (with a layer of 1-local gates in between), which can multiply at most
a factor of poly (N) to the bond dimension, because the quantum circuit can be expressed as a
matrix product operator of poly (N) bond dimension [61]. One can also see this fact in Fig. 3(d)
by identifying the MPS structure of the final state.

8Note that [59] further splits U ′ to polylog(N/ϵ) layers of universal gate set, which is not needed here.
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Based on the MPS approximation, the measurement basis is not exactly the one determined
by (56), but an approximate version Eap

x that satisfies

⟨Eap
x |Φ1

ω′⟩ = (−1)xi ⟨Eap
x |Φ0

ω′⟩ . (63)

This basis is again determined by Procedure 3.1; the only difference is that the matrices are
substituted by

Map = |Φ0
ω′⟩ ⟨Φ0

ω′ | − |Φ1
ω′⟩ ⟨Φ1

ω′ | , (64a)

M̃ap = |Φ1
ω′⟩ ⟨Φ0

ω′ | . (64b)

This procedure becomes efficient to implement, as we will show.

3.4 Efficient metrology protocol with Heisenberg limit
With the developments above, we propose the following metrology protocol sketched in Fig. 2(b).

Procedure 3.3. Robust metrology protocol with LOCC measurement in 1d:

1. Prepare the quantum system in state |ψ⟩in in (23) that satisfies (24) and (25).

2. Evolve under Hω for time t.

3. Measure {Eap
x } determined by Procedure 3.1 with MPS-approximated matrices (64), record

the parity ±1 of the string x1 · · ·xN . In this step, do not calculate Eap
x for all x because there

are exponentially many of them. Instead, just calculate the one chosen by the measurement
trajectory.

4. Repeat steps 1-3 for 1 ≪ M ≪ N times to extract an estimate of the average parity

⟨P⟩ =
∑
x

(−1)xpx, where px := ⟨ψω|Eap
x |ψω⟩ . (65)

5. Classically simulate

⟨P⟩′ =
∑
x

(−1)xp′
x, where p′

x := ⟨ψω′ |Eap
x |ψω′⟩ , (66)

with error bounded by 1/
√
N . Note that this quantity does not depend on the unknown ω.

6. Match the experimental result of ⟨P⟩ − ⟨P⟩′ with − sin[f(ω)] to read out the parameter ω,
using binary search in Proposition 2.2, where the function f(ω̃) is classically computed for
any given ω̃ with error bounded by 1/

√
N .

Clearly, this protocol is to globally estimate any ω ∈ Iω′ , and involves poly (N) quantum
resources. We show that for short-time dynamics, it achieves HL and involves only poly (N)
classical computation.

Theorem 3.4. For t < cin/J in 1d, Procedure 3.3
(0) gives an unbiased estimation of ω at large N :

⟨P⟩ − ⟨P⟩′ = − sin[f(ω)] + O(1/
√
N), (67)

and satisfies HL.
Furthermore, the classical computation involved has poly (N) runtime. Specifically, there is a

poly (N) classical algorithm for calculating each of the following up to error O(1/
√
N):

(1) f(ω̃) for any ω̃ ∈ Iω′ .
(2) The local basis by Procedure 3.1 for a given trajectory x.
(3) ⟨P⟩′.
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Proof. We prove the claims (0-3) one by one.
(0) ⟨P⟩ is the expectation of observable P =

∑
x(−1)xEap

x in the final state ψω with ∥P∥ = 1.
(30) together with (60) implies

|ψω⟩ = |Ψω⟩ + O(1/
√
N), where |Ψω⟩ = 1√

2

(
e−if(ω)/2 |Φ0

ω′⟩ + eif(ω)/2 |Φ1
ω′⟩

)
, (68)

so

⟨P⟩ = ⟨Ψω| P |Ψω⟩ + O(1/
√
N), (69a)

⟨P⟩′ = ⟨Ψω′ | P |Ψω′⟩ + O(1/
√
N). (69b)

By explicit calculation,

⟨Ψω| P |Ψω⟩ =
∑
x

(−1)x
{

1
2

(
⟨Eap

x ⟩Φ0
ω′

+ ⟨Eap
x ⟩Φ1

ω′

)
+ Re

[
eif(ω) ⟨Φ0

ω′ |Eap
x |Φ1

ω′⟩
]}

= ⟨Ψω′ | P |Ψω′⟩ −
∑
x

∣∣⟨Φ0
ω′ |Eap

x |Φ1
ω′⟩

∣∣ sin[f(ω)]

= ⟨Ψω′ | P |Ψω′⟩ −
∑
x

1
2

(
⟨Eap

x ⟩Φ0
ω′

+ ⟨Eap
x ⟩Φ1

ω′

)
sin[f(ω)]

= ⟨Ψω′ | P |Ψω′⟩ − sin[f(ω)]. (70)

Here the first line follows from (51) and (68). In the third line, we have used the MPS version of
(56). To get the last line, we used

∑
xE

ap
x = 1. Thus (67) is established by combining (69) and

(70).
Since M ≪ N , the experimental error 1/

√
M for ⟨P⟩ is dominant in (67). As a result, we

can ignore the 1/
√
N errors from the final term, or the computation of ⟨P⟩′ and f(ω). The HL

is therefore satisfied, because the experimental ⟨P⟩ is compared to a function of ω that has ∝ N
slope according to (31), using the binary search algorithm in Proposition 2.2.

(1) From (30) and (36),

f(ω̃) = i
∫ ω̃

ω′
dω′′ ⟨ϕ0

ω′′ | ∂ω′′ |ϕ0
ω′′⟩ − ⟨ϕ1

ω′′ | ∂ω′′ |ϕ1
ω′′)⟩

=
∫ ω̃

ω′
dω′′

∫ t

0
ds ⟨eisHω′′Ze−isHω′′ ⟩0 − ⟨eisHω′′Ze−isHω′′ ⟩1

≈ ∆ω∆t

∑
ω′′=ω′,ω′+∆ω,··· ,ω̃

∑
s=0,∆t,··· ,t

⟨eisHω′′Ze−isHω′′ ⟩0 − ⟨eisHω′′Ze−isHω′′ ⟩1 , (71)

where we approximate the integral by a sum in the last line with step-sizes ∆ω,∆t to be determined.
(71) reduces to expectation of local Zj in finite time evolution from |α⟩in. According to Lieb-
Robinson bound (44), to simulate ⟨eisHω′′Zje−isHω′′ ⟩0 with error O(N−1/2),9 one can truncate
the dynamics in a region of size O(logN) around j. Furthermore, |α⟩in can be replaced by MPS
|α⟩IN, because the error (61) contributes O

(
1/

√
N

)
to (71). It takes poly (N) classical runtime to

contract the matrices to get the initial density matrix of |α⟩IN on the O(logN)-size region. Evolving
the state and taking expectation of Zj invokes another poly (N) overhead. So the total complexity
for computing the last line of (71) is poly (N) / (∆ω∆t), because there are O(1/ (N∆ω∆t)) number
of summation terms. Finally, since each summation term varies with both ω′′ and s by a bounded
slope O(N2) (e.g.

∣∣∂s ⟨eisHω′′Ze−isHω′′ ⟩0
∣∣ ≤ ∥[Hω′′ , Z]∥ = O(N2)), the error of approximating the

integral is bounded by O(1/ (N∆ω∆t) × N2∆2
ω × N2∆2

t ) = O(N3∆ω∆t) = O(N−1) by choosing
∆ω,∆t = O(N−2). To summarize, f(ω̃) can be computed with error O(N−1/2) in poly (N) time.

(2) Steps 2 and 4 in Procedure 3.1 are just calculations for 2-by-2 matrices, so it suffices to
show poly (N) complexity for steps 1 and 3, where in general one wants to compute

Map
x1···xn

= trn+2···N ⟨eap
x1

| · · · ⟨eap
x1···xn

| Map |eap
x1

⟩ · · · |eap
x1···xn

⟩ , (72)

9This scaling is chosen to ensure that the overall error in f(ω̃) is O(N−1/2). To ensure this, note that
∑

ω′′ ∆ω =
|ω̃ − ω′| = O(1/N), while we have N on site terms in Z and thus the difference of ⟨· · · ⟩0 − ⟨· · · ⟩1 will scale as O(N).
We therefore need the accuracy in simulating ⟨eisHω′′ Zje−isHω′′ ⟩0 to be O(N−1/2).
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and M̃ap
x1···xn defined in a similar way. Since Map is the difference of (the density matrices of)

two MPSs (64), (72) can be computed by contracting tensors as shown in Fig. 3(b), which takes
poly (N) classical runtime due to poly (N) bond dimension. This contraction algorithm works for
M̃ap similarly. An alternative way to see this is depicted in Fig. 3(e): each time a qubit gets
projected, the remaining qubits keep in an MPS with bond dimensions unchanged, so that one can
easily iterate this process.

(3) Since the next measurement basis is always easily calculable as shown in (2), sampling
string x with probability p′

x is classically easy, because any adaptive single-site measurement (e.g.
measurement-based quantum computation) on MPS with poly (N) bond dimension is classically
simulable [62, 63]. The idea is that one can sample the classical distribution p′

x by outputing
the bits x1, x2, · · · one by one, where x1, for example, is generated by a random variable 0, 1 with
probabilities ⟨eap

0 ⟩Ψω′
, ⟨eap

1 ⟩Ψω′
accordingly. These two probabilities are equal to ⟨eap

0 ⟩Φ0
ω′
, ⟨eap

1 ⟩Φ0
ω′

due to the MPS version of (51) and (64), which are easy to calculate from contracting tensors of
the MPS Φ0

ω′ described in (2). After sampling N strings x, one gets an estimate for ⟨P⟩′ with
error ∼ 1/

√
N . This in total takes poly (N) classical resources.

4 Sampling of real time evolution
The MPS techniques in the previous section do not generalize to higher dimensions. For example,
we used a poly (N) classical algorithm that samples LOCC measurement on MPS; while 2d tensor
network states like the cluster state are hard to sample classically, because they have the potential
to perform universal quantum computation. To make progress, in this section we restrict the state
to be obtainable by short-time evolution with a local Hamiltonian from a product state. For such
states, we give a poly (N) sampling algorithm under certain conditions. This section can be read
independently of the rest of the paper, which will subsequently apply the results of this section to
develop an efficient LOCC metrology protocol in a general interaction graph G.

We consider a time-dependent Hamiltonian

H(s) =
∑

a

λaJa(s)Ha, (73)

acting on qubits Λ = {1, 2, · · · , N}, where each Ha is a local Pauli string with a time-dependent co-
efficient λaJa(s) satisfying |Ja(s)| ≤ J̃ , and |λa| ≤ 1. 10 We further require the whole Hamiltonian
has F Fourier components {ων}, i.e.,

Ja(s) =
F∑

ν=1
e−iων sJa,ν , (74)

where ων does not depend on a. We say two Pauli strings Ha and Hb (a ̸= b) overlap if there is
a qubit on which they both act nontrivially. Let d be the maximal number of Hbs that an Ha

overlaps with, and k be the maximal number of qubits an Ha acts on (i.e., H is k-local).
The system starts from initial product state |0 · · · 0⟩, evolves under H(s) for time t, and is then

measured by LOCC in local basis Ex introduced in (50a). This process generates a binary string
x := (x1, · · · , xN ) ∈ {0, 1}N with probability distribution

px = ⟨ϕ|Ex|ϕ⟩ , where |ϕ⟩ = T e−i
∫ t

0
dsH(s) |0 · · · 0⟩ , (75)

where T means time-ordering. We will show that, under certain conditions, px is easy to sample
on a classical computer if J̃ t is smaller than a constant. In particular, the frequencies ωνs can be
arbitrarily large comparing to J̃ . We focus on qubit systems, but the results generalize naturally
to higher-dimensional local degree-of-freedom, i.e., qudits.

In Section 4.5, we show how the results about the time-dependent case (73) can be modified to
the time-independent case (11) with an extra local field ωZ, which we no longer assume needs to
be small.

10Note that we use J̃ to differ from the local strength J defined in (13), although they can be related by a constant
determined by geometry.
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4.1 Assumption on the local measurement basis
Our rigorous results will hold for the following situation. Suppose the local measurement basis
always have a finite overlap with the local initial state |0⟩:

|⟨0|ex1···xn
⟩| ≥ cm, ∀ substring x1 · · ·xn, (76)

for some constant 0 < cm ≤ 1/
√

2 (subscript m means measurement). The upper bound 1/
√

2
has to be there in order to satisfy (76) for |ex1···xn−10⟩ and |ex1···xn−11⟩ that comprise a local
orthonormal basis. Due to the same reason, (76) also implies

|⟨1|ex1···xn
⟩|2 = 1 − |⟨0|ex1···xn

⟩|2 =
∣∣〈0|ex1···xn−1(1−xn)

〉∣∣2 ≥ c2
m. (77)

Therefore condition (76) merely says the measurement basis is far from the computational basis
(that contains the initial state). This is satisfied by, for example, measurement in the x-basis.

Intuitively, to do useful quantum information processing in short time, one typically wants to
measure in a way like (76), instead of in the computational basis {|0⟩ , |1⟩}. The reason is that
after short time evolution, the qubit is still close to its initial state |0⟩, so the computational-basis
measurement would just output a boring 0 with high probability. Indeed, we will see in the next
section that for robust metrology, one always measures in a basis satisfying (76), like the ideal case
with x-basis measurement.

4.2 Polynomial-time classical sampling of short-time evolved product states
Theorem 4.1. For any LOCC measurement satisfying (76), there is a constant time

t∗ =
[
4e2c−2k

m d(d + 1)J̃
]−1

, (78)

such that for all t < t∗, the measurement string x can be classically sampled in poly (N) runtime,
where the output probability distribution pcl

x (cl means “classical”) is close to the true one px in
total variation distance: ∥∥pcl − p

∥∥
1 :=

∑
x

∣∣pcl
x − px

∣∣ ≤ 1/poly (N) . (79)

As will be shown in the proof, it is crucial that the whole Hamiltonian has a bounded number
F of frequencies; if each local term has its own set of F frequencies that do not agree with
those of other terms, one can adjust the proof to achieve a quasi-polynomial O(N log log N ) runtime
algorithm.

Proof. The proof closely follows [64], where we showed the imaginary-time version of Theorem 4.1,
namely sampling high-temperature thermal states is easy (see also [65]).

As the starting point, sampling the whole string x is reduced to the problem of computing
conditional probabilities (marginals) p(xn+1|xn) for measurement outcome xn+1 to appear after a
previous substring xn := (x1, · · · , xn). More precisely, the sampling algorithm works as follows:
First choose x1 ∈ {0, 1} from probability p(x1), then choose x2 based on marginal p(x2|x1), then
choose x3 based on p(x3|x1x2), and so on. Lemma 4 in [64] guarantees that to achieve (79) with
the right hand side being N1−α, it suffices to get an approximation pcl(xn+1 = 0|xn) with error
(pcl(1|xn) will be just 1 − pcl(0|xn))∣∣pcl(0|xn) − p(0|xn)

∣∣ ≤ N−α, where α > 1. (80)

For each marginal, we invoke the following Lemma that we prove later.

Lemma 4.2. If t < t∗ in (78) and (76) holds, the marginal is given by

p(0|xn) = |⟨0|ex1···xn0⟩|2 +
∞∑

m=1
γmt

m, (81)
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where γm is bounded:
|γm| ≤ mt−m

∗ . (82)

This implies the series (81) converges absolutely. Moreover, γm can be computed in time O [exp(cm)]
where

c = log
(
d22k+1F

)
, (83)

is a constant; recall the definitions of d and k below (74).

This Lemma implies a polynomial algorithm for computing pcl(0|xn) in (80), by truncating the
sum to m ≤ M = η logN , where η > α/ log(t∗/t). Combined with the sampling-to-computing
reduction above, we get the desired sampling algorithm, with runtime O(N1+cη) to output one
string x.

4.3 Proof of Lemma 4.2 using cluster expansion, and its corollary
We need an operator formalism for the proof.11 Namely, each operator O is viewed as a vector |O)
in an “operator Hilbert space". For example, the initial density matrix

|0) := |0 · · · 0⟩ ⟨0 · · · 0| =
N⊗

j=1
|0⟩j ⟨0| , (84)

is a direct-product vector in the operator space. Define the inner product between operators

(O|O′) := tr
(
O†O′) , (85)

which induces the operator 2-norm

∥|O)∥2 :=
√

(O|O). (86)

We rewrite the (forward-in-time) Heisenberg evolution as

d
ds |O(s)) = L(s) |O(s)) , where L(s) := −i[H(s), ·]. (87)

One can verify that the Liouvillian L(s) is anti-Hermitian in terms of inner product (85). As a
result, the final density matrix |ϕ⟩ ⟨ϕ|, as an operator |ϕ), is

|ϕ) = T e
∫ t

0
dsL(s) |0) , (88)

where iL(s) plays the role of a Hermitian Hamiltonian.

Proof of Lemma 4.2. Using (88), the conditional probability satisfies

p(0|xn) − |⟨0|ex1···xn0⟩|2 = (xn0| T e
∫ t

0
dsL(s) |0)

(xn| T e
∫ t

0
dsL(s) |0)

− |⟨0|ex1···xn0⟩|2 = ∂κ log Z|κ=0, (89)

where the “partition function”

Z := (xn| eκEn+1T e
∫ t

0
dsL(s) |0)

(xn|0) . (90)

Note that we extract the term |⟨0|ex1···xn0⟩|2 in (89) such that the right hand side vanishes for β = 0,
and will become the m ≥ 1 expansion in (81). In (90), En+1 is the superoperator that multiplies

11We refer to Section 2.1 of [55] for a comprehensive review, although some notations are slightly different from
here.
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e′
n+1 to the left of an operator – En+1|O) = |e′

n+1O) – where e′
n+1 := ex1···xn0 − |⟨0|ex1···xn0⟩|2 acts

on qubit n+ 1, and

|xn) :=
n⊗

j=1
ex1···xj

N⊗
j=n+1

Ij , (91)

is a direct-product operator.
Thanks to our assumption (76), the denominator in (90) is nonzero. It does not matter that

the denominator is exponentially small in n, as we will see.
Now compare to Lemma 5 in [64]. The conclusions of the lemmas are almost the same, where

the value of t∗ (78) has an extra factor
(
2c−2k

m J̃
)−1 comparing to β∗ in [64], and an extra F appears

in (83) for the runtime. On the other hand, the starting point, (89) and (90), are in a similar form
to Eqs. (A2) and (A3) in [64]. The differences are (1 ) (90) is real-time evolution viewing iL as
the Hamiltonian, not imaginary-time e−βH ; (2 ) (90) is a ratio of matrix elements (in the operator
space), not a trace; (3 ) evolution in (90) is time-dependent. We show that these differences can
be incorporated into the proof of Lemma 5 in [64], which leads exactly to the extra factors in
Lemma 4.2. We encourage the reader to get familiar with the proof in [64] first, which relies on
the technique of cluster expansion developed in [26, 27].

Difference (1 ) is straightforward to tackle, because the proof in [64] does not rely on the fact
that the inverse-temperature β is real: it can be replaced by it here. Below we show how to deal
with (2 ) and (3 ).

The key quantity to be bounded is the cluster derivative of Z, the simplest case κ = 0 being

(DVZ)0 =
∑

σ∈Sm

∫
Tm

dsJaσ1
(s1) · · · Jaσm

(sm)
(xn| Laσ1

· · · Laσm
|0)

(xn|0) (92)

where V = {a1, · · · , am} is a connected cluster of size m, Sm is the m-th permutation group, and
La := −i[Ha, ·]. Due to time-ordering, the integral in (92)∫

Tm

ds :=
∫ t

0
ds1 · · ·

∫ sm−1

0
dsm, (93)

is on a simplex Tm, whose volume is Vol(Tm) = tm/m!. Since the states |0) , |xn) are both
product states, the matrix element in (92) can be restricted in the support region Supp(V) ⊂ Λ
of V: the numerator and denominator factorize (e.g. (xn|0) = (xn|0)Supp(V) · (xn|0)Λ\Supp(V)) so
that contributions outside the region Supp(V) cancel. We then bound the restricted numerator
and denominator as follows. The numerator is bounded by Cauchy-Schwarz inequality:

(xn| Laσ1
· · · Laσm

|0)Supp(V) ≤
√

(xn|xn)Supp(V)

(
max

a
∥La∥

)m √
(0|0)Supp(V) = 2 1

2 (|Supp(V)|−nV)·2m,

(94)
where we used the superoperator norm bounded by Hölder inequality ∥AB∥2 ≤ ∥A∥ ∥B∥2:

∥La∥ := max
∥|O)∥2=1

∥La |O)∥2 = max
∥|O)∥2=1

∥|HaO −OHa)∥2 ≤ max
∥|O)∥2=1

2 ∥Ha∥ ∥|O)∥2 = 2 ∥Ha∥ = 2,

(95)
and nV denoting the number of measured qubits in Supp(V). The denominator is bounded by
(76):

(xn|0)Supp(V) ≥ c2nV
m . (96)

Putting ingredients together, (92) is bounded by

|(DVZ)0| ≤ m!Vol(Tm)J̃m2m+ 1
2 (|Supp(V)|−nV)c−2nV

m

≤
(
tJ̃

)m 2mc−2|Supp(V)|
m ≤

(
2tJ̃

)m
c−2km

m =
(
2c−2k

m tJ̃
)m

. (97)

Here in the second line, we maximize the expression at the largest nV = |Supp(V)| ≤ km due to
cm ≤ 1/

√
2. Comparing (97) to the bound βm in Eq. (A14) of [64], we see difference (2 ) just

invokes the advertised extra factor 2c−2k
m J̃ . Here 2 comes from taking commutator in (95), c−2k

m
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comes from the denominator in (92), and J̃ is just fixing the energy unit. (82) then follows from
the proof in [64].

To bound the runtime, observe that difference (3 ) only modifies the first step to calculate a
given cluster derivative DV log Z. In [64], the first step is to compute ZK (originating from the
K-th order β-expansion of e−βH), where Z :=

∑
a∈V zaHa with za being some integers, and K ≤ m

is a positive integer. Here, due to time dependence, the first step is to compute

Q :=
∫
TK

dsZ(s1) · · · Z(sK), (98)

where Z(s) :=
∑

a∈V zaJa(s)Ha. Thanks to (74), Z(s) only has F frequencies:

Z(s) =
F∑

ν=1
e−iων sZν , (99)

so that

Q =
F∑

ν1=1
· · ·

F∑
νK=1

(∫
TK

dse−i
∑K

η=1
ωνη sη

)
Zν1 · · · ZνK . (100)

Since the integral inside the bracket can be done analytically, the overhead incurred by time-
dependence is merely that instead of a single product of matrices ZK, one needs to compute
FK ≤ Fm such products.12 Each product Zν1 · · · ZνK is no harder to compute than ZK: one simply
multiplies the K sparse matrices one by one. (83) then follows from [64] where one adds an extra
factor Fm to the runtime. This finishes the proof of Lemma 4.2.

In the next Section, we will also consider the following quantity

p̃(0|xn) := (xn0| T e
∫ t

0
dsL(s) |1,0)

(xn| T e
∫ t

0
dsL(s) |1,0)

, (101)

similar to the form of p(0|xn) in (89), where

|1,0) := |1 · · · 1⟩ ⟨0 · · · 0| . (102)

Although the operator |1,0) is not a quantum state so that p̃(0|xn) is not interpreted as a marginal
probability, Lemma 4.2 generalizes to yield a cluster expansion for p̃(0|xn) because of the following:
In the above proof, we only need two properties of the initial operator (84): its direct-product
structure, and its nonvanishing local overlap with the previous measurement basis |xn). These
properties also hold for |1,0), because |⟨0|ex1···xn

⟩ ⟨ex1···xn
|1⟩| ≥ c2

m from (76) and (77). As a
result, we have the following corollary of Lemma 4.2:

Corollary 4.3. If t < t∗ in (78) and (76) holds,

p̃(0|xn) = ⟨ex1···xn0|1⟩ ⟨0|ex1···xn0⟩ +
∞∑

m=1
γ̃mt

m, (103)

where γ̃m has the same bound (82) for γm. This implies the series (103) converges absolutely.
Moreover, γ̃m can be computed in the same runtime O [exp(cm)] as γm where c is defined in (83).

4.4 Measuring short-time evolved states cannot generate long-range correlation
Similar to Theorem 3 in [64], a straightforward modification of the proof of Lemma 4.2 leads to
the following:

12If each coupling Ha has its own set of F frequencies, Z(s) will have F m frequencies and (F m)m products need
to be evaluated. For the final algorithm, this leads to quasi-polynomial overhead N log log N because m = Θ(log N).
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Theorem 4.4. At short time t < t∗ (78), after projecting n qubits onto local basis using projector
Exn

:= |xn) (91) that satisfies (76), two unmeasured qubits i, j have correlation exponentially small
in their distance d(i, j)

Cor(i, j) := max
Oi,Oj

⟨ϕ|OiOjExn |ϕ⟩
⟨ϕ|Exn

|ϕ⟩
− ⟨ϕ|OiExn |ϕ⟩

⟨ϕ|Exn
|ϕ⟩

⟨ϕ|OjExn |ϕ⟩
⟨ϕ|Exn

|ϕ⟩
≤ c′

cor

(
t

t∗

)ccord(i,j)
, (104)

for some constants ccor, c
′
cor > 0, where Oi, Oj act on i and j respectively with ∥Oi∥ , ∥Oj∥ ≤ 1.

It is well-known that one can perform universal measurement-based quantum computation
(MBQC) on the 2d cluster state, which can be prepared from an initial product state by Θ(1)-time
Hamiltonian evolution. Theorem 4.4 suggests that the evolution time has to be Ω(1) in order for
the final state to be a universal MBQC resource. This constraint also holds for large-distance
teleportation using measurements [66], because teleportation is equivalent to building long-range
correlation [58]. It is an interesting question whether the condition (76) can be removed, which
may demand deeper understanding of the cluster expansion itself.

4.5 Eliminating local fields via the interaction picture
Results in this section generalize to the case (11) where the Hamiltonian Hω is time-independent
with a local field ωZ. For example, sampling is easy as long as Jt is smaller than a constant, even
if ω is much larger than the local strength J of V . The reason is as follows. In the interaction
picture,

e−itHω =
(

T̃ e−i
∫ t

0
dsV (s)

)
e−iωtZ , where V (s) = e−iωsZV eiωsZ , (105)

where T̃ is anti-time ordering. Acting on the initial state |0 · · · 0⟩, the e−iωtZ part becomes trivial,
so the evolution is just generated by a time-dependent Hamiltonian H(s) = V (t − s). Since
interaction V has finite range and Z is integer-valued, V (s) has finite number of frequencies each
being an integer multiple of ω. Thus the situation reduces to the case (73) with (74), and we have
the following:

Theorem 4.5. Suppose product state |0 · · · 0⟩ is evolved under Hamiltonian (11) for time t, after
which LOCC measurement satisfying (76) is performed. There exists a constant c+ > 0 (indepen-
dent of N) determined by geometry and cm, such that for t < c+/J , there is a poly (N) classical
sampling algorithm achieving (79).

5 LOCC protocol in higher dimensions
In Section 3, we presented a provably efficient LOCC measurement protocol for Heisenberg-limited
metrology in 1d, using the fact that MPS with small bond dimension is easy to sample from. In
this section, we establish similar results for general graphs, using the sampling result in Section 4.
In contrast to 1d, here we deal with a more restricted class of initial states, since correlation decay
(25) no longer guarantees easiness of sampling.13 For simplicity, we assume the initial state is just
the ideal GHZ state. The following results can be generalized to other initial states, for example,
sufficiently short time evolution on |GHZ⟩, or rotated version of GHZ states.

The metrology protocol is similar to Procedure 3.3. The only difference is how to approximate
Ex determined by (56). In 1d, we used MPS approximations to get Eap

x ; here in the next subsection,
we use cluster expansions developed in the previous section (which also applies to 1d as a special
case). Note that although one still has a tensor network representation for ψω′ in higher dimensions
[59], it is not manifestly easy to sample so is not used here.

13Correlation decay is always present in finite-time evolved states [55], but such states are expected to be hard to
sample, since they include cluster states capable of MBQC.
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5.1 Finding the next LOCC measurement basis via cluster expansion: assuming no
previous errors

We want to compute an approximation

Eap
x = eap

x1
⊗ eap

x1x2
⊗ · · · ⊗ eap

x1···xN
, (106)

of Ex (containing ex1···xn
) that is determined by matrices M and M̃ in (53) and (55). Following

Procedure 3.1, we compute the local basis in (106) one-by-one, where the previously computed
eap

x1···xj s (j ≤ n) are used for the next one eap
x1···xn+1 . For illustration purpose, in this subsection we

first show that if the previously computed basis happen to equal the true ones ex1···xj
, and they all

satisfy (76), then the next one can be computed efficiently with small error. We will analyze the
accumulated errors, as well as justify (76), in the next subsection.

Observe that the key quantity to compute in Procedure 3.1 is the 2-by-2 matrix 14

Mx1···xn
= ρ0

x1···xn
− ρ1

x1···xn
, (107)

where ρ0
x1···xn

for example is the normalized reduced density matrix of n + 1 after measuring the
previous qubits 1, · · · , n, in the time-evolved all-zero (instead of GHZ) state ϕ0

ω′ . One of its matrix
elements is given by

⟨ex1···xn0| Mx1···xn
|ex1···xn0⟩ = p0(0|xn) − p1(0|xn), (108)

where pα(0|xn) is just the marginal probability in (81) that is shown to obey the cluster expansion!
Note that (81) is exactly the case α = 0, and is straightforwardly generalized to the case α = 1
where one just changes the initial state to be all-one. Furthermore, since the proof of Lemma 4.2
does not depend on the precise basis |ex1···xn0⟩, the expectation value of ρα

x1···xn
on any state obeys

the cluster expansion. Since the off-diagonal matrix element ⟨ex1···xn0| ρα
x1···xn

|ex1···xn1⟩ is a linear
combination of such expectations in states |ex1···xn0⟩ + eiθ |ex1···xn1⟩ where θ ∈ {0, π/2, π, 3π/2}, it
also obeys a cluster expansion like (81). Therefore, according to Lemma 4.2, all matrix elements of
ρα

x1···xn
, and furthermore all matrix elements of Mx1···xn , can be computed within error 1/poly (N)

using poly (N) classical runtime.
M̃x1···xn

can be computed using cluster expansion in a similar way: Explicit calculation similar
to (108) yields

⟨ex1···xn0| M̃x1···xn |ex1···xn0⟩ = (xn0| etLω′ |1,0)
(xn| etLω′ |1,0) , (109)

where Lω′ := −i[Hω′ , ·]. This exactly corresponds to the quantity p̃(0|xn) defined in (101), which
has a cluster expansion of the same form of p(0|xn) in Corollary 4.3. As a result, all matrix elements
of M̃x1···xn can also be computed within error 1/poly (N) using poly (N) classical runtime.

Due to the proper normalization of Mx1···xn ,M̃x1···xn , the above 1/poly (N) approximation
error for the two 2-by-2 matrices (whose largest matrix element is Θ(1)) propagates to 1/poly (N)
error on the next computed local basis:∥∥∥eap

x1···xn+1
− ex1···xn+1

∥∥∥ ≤ 1/poly (N) , if eap
x1···xj

= ex1···xj
, (j ≤ n) and satisfy (76). (110)

5.2 Finding the LOCC measurement basis: the whole procedure and error analysis
In reality, eap

x1···xj does not equal the ideal ex1···xj , but one can still perform the computation above
using the computed eap

x1···xj instead without knowing the ideal one, as long as it obeys (76). More
explicitly, we use the following procedure based on cluster expansion that mimics Procedure 3.1.
We focus on M, and M̃ is treated analogously.

14From now on we normalize the matrix such that Mx1···xn = Mold
x1···xn

/Nx1···xn where Mold
x1···xn

is the one
used in Section 3. Here Nx1···xn := ⟨ϕα

ω′ | ex1 ⊗ · · · ⊗ ex1···xn |ϕα
ω′ ⟩ is a normalization factor (which holds for both

α = 0, 1 because the previous basis are chosen to zero-diagonalize Mold
x1··· such as (58)). This normalization makes

the new matrix Mx1···xn to be of order 1 (instead of exponentially small for Mold
x1···), and does not change the basis

obtained from Procedure 3.1. M̃x1··· is normalized analogously.
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Procedure 5.1. Procedure to determine a local basis eap
x1
, eap

x1x2
, · · · along a given trajectory x1, x2, · · ·

using the cluster expansion algorithm.

1. Compute the reduced density matrices ρα
∅ on spin 1 in the state ϕα

ω′ (whose initial state
is all-α instead of GHZ). Using the cluster expansion algorithm above, a polynomial-time
computation outputs an approximation ρα,ap

∅ (here subscript ∅ means no previous substring
measured) with 1/poly (N) error for all of its matrix elements. This yields

Map
∅ := ρ0,ap

∅ − ρ1,ap
∅ , (111)

which approximates M∅ with 1/poly (N) error. Find an approximation M̃ap
∅ for M̃∅ anal-

ogously.

2. Find an orthonormal basis |eap
x1

⟩ for spin 1 s.t.

⟨eap
x1

| Map
∅ |eap

x1
⟩ = 0, and ⟨eap

x1
|
(

M̃ap
∅ + M̃ap,†

∅

)
|eap

x1
⟩ = 0. (112)

This is possible because two traceless Hermitian matrices can be simultaneously zero-diagonalized
[22]. Moreover, Im ⟨eap

0 | M̃ap
∅ |eap

0 ⟩ is chosen to be positive, which completely determines eap
x1

.

3. Compute the reduced density matrices ρα
x1,ap on qubit 2 after measuring eap

x1
on qubit 1 in state

ϕα
ω′ . As long as eap

x1
does not coincide with the computational basis (76), the computation can

be done via cluster expansion in poly (N) time and outputs an approximation ρα,ap
x1

of ρα
x1,ap

(note the conceptual differences between the two) with error 1/poly (N). Use them to compute

Map
x1

:= ρ0,ap
x1

− ρ1,ap
x1

(113)

as an approximation of Mx1 . Compute M̃ap
x1

that approximates M̃x1 similarly.

4. Find an orthonormal basis {|eap
x1x2

⟩ : x2 = 0, 1} for spin 2 s.t.

⟨eap
x1x2

| Map
x1

|eap
x1x2

⟩ = ⟨eap
x1x2

|
(

M̃ap
x1

+ M̃ap,†
x1

)
|eap

x1x2
⟩ = 0. (114)

The sign of Im ⟨eap
x10| M̃ap

x1
|eap

x10⟩ is chosen to be (−1)x1 .

5. Repeat steps 3 and 4 for spins 3, · · · , N .

We want to show that Procedure 5.1 is accurate and efficient, in the sense that the measurement
basis automatically satisfy (76) enabling the cluster expansion algorithm, and that the errors
accumulate in a mild way.

Proposition 5.2. Suppose |GHZ⟩ is evolved under Hamiltonian (11) for time t. Procedure 3.1
defines a LOCC measurement basis Ex for metrology, while Procedure 5.1 yields an approximate
basis Eap

x based on the cluster expansion algorithm. There exists positive constants cM, cm (here
subscript M stands for “metrology”) independent of N such that the following holds. If t < cM/J ,
the local basis elements are far from the computational basis∣∣〈0|eap

x1···xn

〉∣∣ ≥ cm, ∀ substring x1 · · ·xn, (115)

so that Procedure 5.1 only needs poly (N)-time classical computation. Furthermore, the result Eap
x

is close to Ex in the sense that∥∥∥eap
x1···xn+1

− ex1···xn+1

∥∥∥ ≤ 1/poly (N) , ∀ substring x1 · · ·xn. (116)

Proof. Let ϵ = 1/poly (N) be the desired accuracy on the right hand side of (116). We have shown
in the previous subsection that (116) holds for the first step n = 0 ((115) also holds trivially),
because there is no previously computed basis. We prove for the later measurements n = 1, 2, · · ·
by induction. Supposing (115) and (116) hold for 0, 1, · · · , n− 1, we want to show that they also
hold for n.
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To show (115), we know from (81) that at sufficiently short time, the conditioned reduced den-
sity matrix ρα

x1···xn−1,ap on spin n after evolving |α · · ·α⟩ and measuring eap
x1···xj (j ∈ {1, · · · , n−1})

that satisfies (115) is close to |α⟩ ⟨α|. Since the difference, ρ0
x1···xn−1,ap −ρ1

x1···xn−1,ap ≈ ρ0,ap
x1···xn−1 −

ρ1,ap
x1···xn−1 = Map

x1···xn−1 , have almost zero diagonal elements in basis |eap
x1···xn⟩, the basis cannot be

close to the computational basis. This argument can be shown explicitly by∣∣⟨0|eap
x1···xn

⟩
∣∣2 = ⟨eap

x1···xn
| ρ0

x1···xn−1,ap |eap
x1···xn

⟩ + O(Jt)
= ⟨eap

x1···xn
| ρ0,ap

x1···xn−1
|eap

x1···xn
⟩ + O(ϵ) + O(Jt)

= ⟨eap
x1···xn

| ρ1,ap
x1···xn−1

|eap
x1···xn

⟩ + O(ϵ) + O(Jt) = ⟨eap
x1···xn

| ρ1
x1···xn−1,ap |eap

x1···xn
⟩ + O(ϵ) + O(Jt)

=
∣∣⟨1|eap

x1···xn
⟩
∣∣2 + O(ϵ) + O(Jt) = 1 −

∣∣⟨0|eap
x1···xn

⟩
∣∣2 + O(ϵ) + O(Jt),

⇒
∣∣〈0|eap

x1···xn

〉∣∣2 = 1/2 + O(ϵ) + O(Jt). (117)

Here in the first line, O(Jt) comes from the m ≥ 1 expansion of (81) and does not depend on n,N .
To get the second line, we used the induction hypothesis (115) for the previous measurements that
enables a polynomial-time computation for ρ0

x1···xn−1,ap with error O(ϵ). The third line uses (114),
and the rest uses the above arguments again for α = 1. For any cm < 1/2, (117) satisfies (115) if
cM is sufficiently small, because Jt < cM and ϵ ≪ 1.

To show (116), we first show that the conditioned local density matrix ρα
x1···xn,ap of n+ 1 after

projection eap
x1

⊗ · · · ⊗ eap
x1···xn is close to the ideal one ρα

x1···xn
after projection ex1 ⊗ · · · ⊗ ex1···xn .

From the proof of Lemma 4.2, each order in (81) can differ by

|γap
m tm − γmt

m| ≤ c′
∗kmϵ (c∗Jt)m

, (118)

where γap
m is the coefficient of the cluster expansion for (a matrix element of) ρα

x1···xn,ap. Here c∗, c
′
∗

are O(1) constants, kmϵ comes from the fact that there are at most km local projections involved
for a cluster of size m, with error ϵ for each projection according to our induction hypothesis. Then
the total error of the conditioned local density matrix is bounded by

∞∑
m=1

c′
∗kmϵ (c∗Jt)m ≤ ϵ c′′

∗Jt, if c∗Jt < 1, (119)

where c′′
∗ is a constant independent of N . Then if Jt < 1/2 max(c∗, c

′′
∗), which we ensure by

choosing
cM ≤ 1

2 max(c∗, c′′
∗) , (120)

one can truncate to order m ≤ Θ(logN) with a truncation error ϵ (1 − c′′
∗Jt) > 1

2ϵ, so that the
computed conditioned local density matrix ρα,ap

x1···xn (as an approximation to ρα
x1···xn,ap) is of error

ϵ (the projection error (119) and truncation error combined) to the ideal one ρα
x1···xn

. Then the
computed eap

x1···xn+1 from the conditioned local density matrix is also of error ϵ = O (1/poly (N))
given by (116). This finishes the inductive proof.

5.3 Main result
Proposition 5.2 implies the metrology protocol given in Procedure 3.3 is efficient and achieves HL.
Therefore, we have an explicit protocol to achieve HL metrology in the presence of local interactions
for arbitrary interaction graphs.

Theorem 5.3. Suppose |GHZ⟩ is evolved under Hamiltonian (11) for time t. For t < cM/J
where cM is defined in Proposition 5.2, the LOCC measurement protocol described in Procedure
3.3 (with the basis determined by Procedure 5.1) achieves HL and requires only poly (N) classical
computation.

Proof. We show the facts established in the 1d Theorem 3.4 also apply here.
(0) (67) holds, so that the estimation of ω is unbiased at large N . Following the 1d proof of

(67), here we only need to show that the error of local basis (116) induces O(1/
√
N) error for
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any observable like P.15 We choose the right hand side of (116) to scale as N−3/2. With this
bound and a similar argument of the sampling-to-computing reduction around (80), we know the
measured probability distribution px is close to the ideal one (with Ex) with total variational
distance O(1/

√
N). This error bound also holds for observables, and is thus absorbed in the last

term in (67).
The classical computation of the following quantities are poly (N):
(1) f(ω̃) for any ω̃ ∈ Iω′ : The proof of part (1 ) of Theorem 3.4 still applies, as it only relies

on a Lieb-Robinson bound, which holds for general graphs [55].
(2) The local basis by Procedure 5.1 for a given trajectory x: This is guaranteed by Proposition

5.2.
(3) ⟨P⟩′: This is established by (115) and the easiness of sampling in Theorem 4.5.

6 Robustness against small perturbations
In previous sections, we did not require weak interaction

J ≪ ω. (121)

If (121) holds, the Z field is dominant in Hω, so (24) implies the two parts ϕ0
ω and ϕ1

ω have a large
energy difference with respect to Hω. By energy conservation, the two parts keep an extensive
difference in Z polarization forever. Formalizing this idea, we show that the HL is robust to much
longer time scales, compared to Jt < cin in previous sections (see Theorem 2.1).

Theorem 6.1. Suppose
2J < cinω. (122)

Then if (24) and (25) are satisfied by the initial state, (28) and (30) hold for any constant time
t = O(N0) that does not scale with N , with

cω ≥ t (cin − 2J/ω) , and 2 (cin − 2J/ω) tN ≤ ∂ωf(ω) ≤ 2tN. (123)

Proof. By energy conservation eisHω (ωZ + V )e−isHω = ωZ + V ,∥∥eisHωZe−isHω − Z
∥∥ =

∥∥∥∥ 1
ω

(
V − eisHωV e−isHω

)∥∥∥∥ ≤ 2
ω

∥V ∥ ≤ 2NJ/ω. (124)

Combining (124) with (38) and the first line of (39) yields

i
(
⟨ϕ0

ω| ∂ω |ϕ0
ω⟩ − ⟨ϕ1

ω| ∂ω |ϕ1
ω⟩

)
≥ 2 (cin − 2J/ω) tN. (125)

Substituting (35) by (125), the rest of the proof of Theorem 6.1 follows verbatim to establish
Theorem 6.1. In particular, the errors O(

√
N) in (28) and O(1/

√
N) in (30) come from the fact

that g(Jt) in (43) does not scale with N , which holds for any constant t = O(N0).

Theorem 6.1 implies HL for QFI following Corollary 2.3. In terms of achieving HL by the
LOCC measurement protocol, 1d results in Section 3 continue to hold here for any constant t
independent of N , because the two parts of the state remain to be MPS with poly (N) bond
dimensions. However, efficiency of the protocol in higher dimensions is not guaranteed if Jt ≳ 1.

In the proof of Theorem 6.1, we used bound (124) that simply comes from energy conservation.
If the system is finite-dimensional and (121) holds, there is actually another mechanism called
prethermalization [28, 67, 68, 69] that yields a similar bound (127) below. In a nutshell, although
the U(1) rotational symmetry along the z direction is explicitly broken by the interaction V ,
prethermalization theory proves that there is an approximately conserved U(1)-charge (which is a
dressed version of Z) on time scales t ≪ tpre, where the prethermalization time (after which the
system thermalizes with no conserved U(1)-charge)

tpre := J−1 exp(cpre ω/J), (126)

15In 1d this is established in (69) directly by the closeness of a state to its MPS approximation (60). Here we do
not have an approximation of the state itself.
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which is exponentially large in ω/J ≫ 1. Here cpre is a constant independent of N,ω, J .
Physically, prethermalization roughly says that an initial eigenstate of Z cannot decay into

other charge sectors in short time. This is because the other charge sectors have at least ∆E = ω
energy difference in time-dependent perturbation theory of J/ω, so at any finite order the decay
channel is off-resonant and ineffective. To overcome this energy gap by gaining energy from the
perturbation V , one has to go to non-perturbatively large order k∗ ∼ ω/J , where the local decay
rate is exponentially small in k∗. This leads to the large prethermalization time (126) for Hω. For
more general class of models with a many-body gap, this dynamical stability under perturbation
is made precise in [70], albeit with a slightly weaker bound on tpre.

Applying prethermalization to the metrology setting, we have∥∥eisHωZe−isHω − Z
∥∥ ≤ cZ

preNJ/ω, ∀s ≤ tpre, (127)

from combining Theorem 3.1 and 3.2 in [28], where the constant cZ
pre is determined by geome-

try of the interaction graph. If cZ
pre ≤ 2, (127) would be a stronger bound than (124) in the

prethermalization time window, which further gives a tighter bound than (123) on the slope of
f(ω).

In higher dimensions, it is interesting to ask whether an evolved product state is easy to
sample before prethermalization time tpre. This might be tackled by combining the Schrieffer-
Wolff transformation involved in prethermalization [70] and the cluster expansion techniques in
Section 4. If such a polynomial-time classical sampler exists, we expect the LOCC measurement
protocol would be efficient to implement in higher dimensions, for t < tpre.

7 Outlook
In this paper, we proved the robustness of the Heisenberg limit: starting with a GHZ state, un-
wanted (but known) interactions do not spoil our ability to perform Heisenberg-limited metrology.
We moreover presented a provably efficient LOCC protocol that requires only polynomial classical
computational resources to achieve the HL.

It will be interesting to see whether our results generalize to (i) other paradigms of quan-
tum metrology, e.g., using spin-squeezed states [71, 57] that do not reach the HL generated
by microscopic Hamiltonians; (ii) long-range interaction V [72, 73, 74]; (iii) multi-parameter
quantum metrology [39]. Since GHZ states have been created in experiments up to ∼ 20 qubits
[75, 76, 77, 78, 79], it is possible to demonstrate our protocol in near-term quantum devices.

Part of our result relied on a polynomial-time classical algorithm to sample from a short-
time evolved state, assuming the measurement basis is far from the computational basis. We
leave as future work whether one can get rid of this assumption on the sampling basis. Our
sampling algorithm may also be useful as a subroutine for other applications in classical/quantum
computation: for example, it has been proposed to use real-time evolution to study quantum
thermal states at finite temperature [80, 81, 82].
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A Failure of the ideal protocol under perturbation
Proposition A.1. Suppose V = JX = J

∑
j Xj, and the state (15) after evolution is projected

onto the x-basis. Let px be the probability to get measurement outcome x. Define another probability
distribution p̃x from performing the same metrology protocol but on a mixed initial state

ρ̃in := 1
2 (|0 · · · 0⟩ ⟨0 · · · 0| + |1 · · · 1⟩ ⟨1 · · · 1|) . (128)
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Then, for generic t ̸= nπ/
√
ω2 + J2 with integer n, px is exponentially close to p̃x in total variation

distance
∥p− p̃∥1 :=

∑
x

|px − p̃x| = exp [−Ω(N)] . (129)

We will prove this Proposition shortly. Assuming the number of repeated measurements M is
at most polynomial in N (i.e., number of samples of x is polynomial), (129) implies that one cannot
distinguish the two distributions. The true experiment is done as if the initial state is replaced by
the mixed state (128), where the two parts evolve incoherently and the extensive phase difference
is lost. Thus the x-basis measurement cannot perform HL and returns to SQL, at least for generic
t. At the specific integer values of t, the state returns to the inital GHZ state; for more general V
that couples spins, we expect SQL for any t > 0 due to the absence of such many-body recurrence.

Proof of Proposition A.1. For the chosen V , Hω = ωZ + JX acts on the spins individually. Each
spin just rotates along a tilted magnetic field with angular frequency 2

√
ω2 + J2, so

|ψω⟩ = 1√
2

(
|φ0⟩⊗N + |φ1⟩⊗N

)
, (130)

where {|φ0⟩ , |φ1⟩} is an instantaneous local basis for a single spin. Note that the relative phase
difference between the two terms in (130) is absorbed in the local basis. Then

px = |⟨x|ψω⟩|2 = 1
2

[
⟨φ⊗N

0 |x⟩ ⟨x|φ⊗N
0 ⟩ + ⟨φ⊗N

1 |x⟩ ⟨x|φ⊗N
1 ⟩ +

(
⟨φ⊗N

0 |x⟩ ⟨x|φ⊗N
1 ⟩ + c.c.

)]
= p̃x + 1

2
(
⟨φ⊗N

0 |x⟩ ⟨x|φ⊗N
1 ⟩ + c.c.

)
, (131)

because p̃x is from measuring state
(

|φ0⟩ ⟨φ0|⊗N + |φ1⟩ ⟨φ1|⊗N
)
/2. Bounding the second term in

(131) involves ∣∣⟨x|φ⊗N
α ⟩

∣∣ =
∣∣∣⟨+|φα⟩N+ ⟨−|φα⟩N−

∣∣∣ = ηN+
α

(√
1 − η2

α

)N−
, (132)

where {|+⟩ , |−⟩} is the local x-basis, and N+ (N− = N − N+) is the number of + (−) in string
x. We have defined ηα = |⟨+|φα⟩| so that |⟨−|φα⟩| =

√
1 − |⟨+|φα⟩|2 =

√
1 − η2

α. Similarly the
two ηs are related by η1 =

√
1 − η2

0 . As a result, (131) implies

∑
x

|px − p̃x| ≤
∑
x

η
N+
0

(√
1 − η2

0

)N−

η
N+
1

(√
1 − η2

1

)N−

=
∑
x

(
η0

√
1 − η2

0

)N

= (f(η0))N
,

(133)
where f(η0) := 2η0

√
1 − η2

0 ≤ 1, with equality only at η0 = 1/
√

2. For generic t ̸= nπ/
√
ω2 + J2,

an initial |0⟩ is rotated to point towards |+⟩ more (comparing to |−⟩), so η0 = |⟨+|φ0⟩| > 1/
√

2,
which leads to (129).

B Measurement protocol based on undoing the perturbation
In the main text, Section 2 establishes robustness of HL at the level of QFI, while the later sections
develop an LOCC measurement protocol achieving HL that, under certain conditions, is efficient to
implement. In this Appendix, we provide another such protocol, which requires quantum controls
beyond single-qubit that effectively reverses the evolution caused by interaction V . For simplicity
we assume the initial state is the ideal GHZ state.

Recall that without V , the measurement is simply done for observable X, the product of Xjs
in (5). We try to deform the observable according to V .

cos(2Nωt) = ⟨X⟩id = ⟨GHZ| eitωZXe−itωZ |GHZ⟩ = ⟨GHZ| eitHω e−itHω eitωZXe−itωZeitHω e−itHω |GHZ⟩
= ⟨ψω| Xω |ψω⟩ , (134)

where
Xω = R†

ωXRω =
∏

j

Xj,ω, Rω := e−itωZeitHω (135)
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is a product of almost local operators, because Xj,ω = R†
ωXjRω evolved by unitary Rω is mostly

supported in a finite set of spins near site j. If one measures observable Xω in the final state
|ψω⟩, then it is equivalent to measure X in the unperturbed protocol. In practice, one can apply
unitary Rω to |ψω⟩ to effectively time-reverse the dynamics, and then measure X by projective
measurement to the x-basis.

However, the above measurement does only local estimation because Xω depends on the un-
known parameter ω. For global estimation, instead, we propose to measure observable Xω′ deter-
mined by prior knowledge ω′ (9). By bounding the difference between Xω′ and Xω, we show such
measurement achieves HL for sufficiently small Jt.

Proposition B.1. The measurement observable ⟨ψω| Xω′ |ψω⟩ satisfies

|⟨ψω| Xω′ |ψω⟩ − cos(2Nωt)| ≤ ∥Xω′ − Xω∥ ≤ πJt/2. (136)

Moreover,
|∂ω ⟨ψω| Xω′ |ψω⟩| ≥ Nt [2 |sin(2Nωt)| − (π + 2)Jt] , (137)

which leads to HL for
t < 2 |sin(2Nωt)| /(π + 2)J, (138)

because the denominator in (7) is |∂ω ⟨ψω| Xω′ |ψω⟩|2 = Θ(N2).

Proof. From (135) and ∥X∥ = 1, we have

∥Xω′ − Xω∥ ≤ 2
∥∥∥e−itω′ZeitHω′ − e−itωZeitHω

∥∥∥ = 2
∥∥∥∥T ei

∫ t

0
dsV ′(s) − T ei

∫ t

0
dsV (s)

∥∥∥∥
= 2

∥∥∥∥T
∫ t

0
ds ei

∫ t

s
ds′V ′(s′)[V ′(s) − V (s)]ei

∫ s

0
ds′V (s′)

∥∥∥∥ ≤ 2
∫ t

0
ds ∥V ′(s) − V (s)∥

≤ 2
∫ t

0
ds

∫ s

0
ds′ ∥[(ω′ − ω)Z, V (s′)]∥ = 2

∫ t

0
ds

∫ s

0
ds′ |ω′ − ω| ∥[Z, V ]∥

≤ 2t2 |ω′ − ω|NJ. (139)

In the first line we have used the interaction picture

e−itωZeit(V +ωZ) = T ei
∫ t

0
dsV (s)

, where V (s) = e−isωZV eisωZ , (140)

and V ′(s) is defined similarly with ω replaced by ω′. In the second and third lines of (139), we
have used the Duhamel identity. (136) then follows from (10).

To get (137),

|∂ω ⟨ψω| Xω′ |ψω⟩| = |∂ω ⟨ψω| Xω |ψω⟩ + ∂ω ⟨ψω| Xω′ − Xω |ψω⟩|
≥ |∂ω ⟨ψω| Xω |ψω⟩| − ∥∂ω (Xω′ − Xω)∥ − 2 ∥Xω′ − Xω∥ ∥|∂ωψω⟩∥
≥ 2Nt |sin(2Nωt)| − 2t2NJ − πJt · tN = Nt [2 |sin(2Nωt)| − (π + 2)Jt] .

(141)

Here in the last line, we have used the Lipschitz property (139) that holds for any ω, ω′ to bound
∥∂ω (Xω′ − Xω)∥ = ∥∂ωXω∥ ≤ 2t2NJ , and (136) together with ∥|∂ωψω⟩∥ ≤ tN from (36) for the
last term.

The time window (138) is O(J−1) for almost all ω ∈ Iω′ except if ω is very close to ω′±π/(4Nt);
the latter case can be avoided by slightly adjusting N or t. After measuring g(ω) := ⟨ψω| Xω′ |ψω⟩
quantumly, one cannot compare it to the ideal function cos(2Nωt) to read out ω due to the error
(136). Instead, one needs to classically calculate g(ω) as a function of ω to compare the quantum
result with. In general dimensions, there are algorithms with runtime being quasi-polynomial in
N (poly (N) for ≤ 2d) [83, 84, 85, 86] for such classical simulation, known as the quantum mean
value problem, if Jt = O(logN). To conclude, the Xω′ measurement protocol satisfies HL and
requires (quasi-)polynomial classical computation to implement.
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