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Loading functions into quantum comput-
ers represents an essential step in several
quantum algorithms, such as quantum par-
tial differential equation solvers. There-
fore, the inefficiency of this process leads
to a major bottleneck for the application
of these algorithms. Here, we present and
compare two efficient methods for the am-
plitude encoding of real polynomial func-
tions on n qubits. This case holds special
relevance, as any continuous function on a
closed interval can be uniformly approxi-
mated with arbitrary precision by a poly-
nomial function. The first approach relies
on the matrix product state representation
(MPS). We study and benchmark the ap-
proximations of the target state when the
bond dimension is assumed to be small.
The second algorithm combines two sub-
routines. Initially we encode the linear
function into the quantum registers either
via its MPS or with a shallow sequence of
multi-controlled gates that loads the lin-
ear function’s Hadamard-Walsh series, and
we explore how truncating the Hadamard-
Walsh series of the linear function affects
the final fidelity. Applying the inverse
discrete Hadamard-Walsh transform con-
verts the state encoding the series coeffi-
cients into an amplitude encoding of the
linear function. Thus, we use this con-
struction as a building block to achieve
an exact block encoding of the amplitudes
corresponding to the linear function on
k0 qubits and apply the quantum singu-

Javier Gonzalez-Conde: javier.gonzalezc@ehu.eus

lar value transformation that implements
a polynomial transformation to the block
encoding of the amplitudes. This unitary
together with the Amplitude Amplifica-
tion algorithm will enable us to prepare
the quantum state that encodes the poly-
nomial function on k0 qubits. Finally we
pad n − k0 qubits to generate an approx-
imated encoding of the polynomial on n
qubits, analyzing the error depending on
k0. In this regard, our methodology pro-
poses a method to improve the state-of-
the-art complexity by introducing control-
lable errors.

1 Introduction

Over the past few decades, there has been a sig-
nificant interest in quantum computing due to
its theoretical capacity to surpass classical in-
formation processing for certain specific applica-
tion areas. Despite the fact that current quan-
tum computers are hindered by noise and deco-
herence, there have been successful experimental
demonstrations of quantum advantage [1–3] and
even recently the first logical quantum processor
was announced [4]. However, these achievements
have yet to have any practical relevance, leaving
the search for useful applications ongoing. Many
promising quantum algorithms, such as solving
systems of linear equations [5,6], performing data
fitting [7], computing scattering cross sections
[8,9], pricing financial derivatives [10–17], and in
general solving differential equations [18–34], re-
quire the efficient loading of classical data into
quantum devices. Unfortunately, this step re-
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mains a challenging problem, and it is a major
bottleneck for the practical application of quan-
tum computation, especially within the emerging
field of quantum machine learning in the NISQ-
Era [35–37].

In this regard, the main drawback comes from
the fact there is no universal loading protocol
and each particular case must be carefully stud-
ied in order to design bespoke encoding protocols
that cater to the specific problem to be solved
[38–40]. In this sense, one of the main embed-
ding techniques is the amplitude encoding, which
loads the values of a discretized, normalized com-
plex function into the amplitude of the quantum
states [41–63]. Several approaches have already
been presented in the literature for implement-
ing the amplitude embedding, many requiring a
huge (exponential) number of resources (ancillas
and gates) [43–47], oracles [48–53], sparsity in the
quantum state [54], training variational circuits
[55–57], truncating a series expansion [58, 59],
use the quantum singular value transformation
[41,42] or matrix product states [60–69].

There exists a necessity for loading polynomial
functions due to the growing number of applica-
tions of quantum computing. Specifically, in fi-
nance [10–17], the ability to efficiently load first
order polynomials, f(j) = aj + b allows for op-
tions pricing via quantum amplitude estimation
(QAE) without coherent arithmetic [70]. In this
sense, applying QAE allows us to extract the
amplitude

∑
j f(j)p(j) = E[f(X)] where X is a

random variable with probability mass function
p(j). This approach can be generalized to the
multidimensional setting where the ability to load
multivariate linear functions yields efficient algo-
rithms for pricing basket options [71]. Further-
more, quantum circuits for efficiently loading the
linear function can be used to construct a block
encoding of the identity function thus allowing us
to apply the quantum singular value Transforma-
tion [72–77] (QSVT) in order to obtain any poly-
nomial amplitude encoding [41,42,78,79]. This is
a powerful tool capable of uniformly approximat-
ing the encoding of any continuous real function
defined on a closed interval with arbitrary preci-
sion [80,81].

In this article we present two methods for im-
plementing the amplitude encoding of real valued
polynomials into quantum computers with linear
complexity. The first one is based on the matrix

product sate (MPS) representation of quantum
states and its implementation on a quantum com-
puter. We explore how approximating the MPS
affects the achieved fidelity and the resources re-
quirements [82–87]. On the other hand, the sec-
ond method consists of two steps, first we propose
a novel protocol to efficiently load the linear func-
tion on k0 qubits based of the discrete Hadamard-
Walsh transform (DHWT) [88] that we use to
achieve a block encoding of the amplitudes with
complexity O(k0). Secondly, we use the QSVT
to implement a polynomial transformation on the
eigenvalues of the block encoding to achieve the
desired target state [78,79]. Note that as we have
implemented a block encoding of the linear func-
tion, our method avoids errors due to the polyno-
mial approximation of the arcsin(x) as proposed
in previous works [41, 42]. Furthermore, we re-
duce the complexity of the state-of-the-art for en-
coding polynomials functions via QSVT by intro-
ducing a controllable error.

The article is structured as follows, first we re-
view the loading of polynomials via MPS. Next,
we introduce our new methodology that com-
bines DHWT to load the linear function with the
QSVT to implement the polynomial transforma-
tion of the amplitudes. Finally we show numeri-
cal results and compare our method with previous
results in the literature.

2 Loading of polynomials via MPS

In this section we analyze the methods based on
MPSs to encode polynomials into the amplitude
of a quantum state according to following defini-
tion.

Definition 1 Let P (x) : [a, b] → C, be a polyno-
mial with complex coefficients. We define the n-
qubit normalized representative state of P (x) as
the quantum state |ΦP ⟩ = 1

CP

∑2n−1
j=0 P (xj) |j⟩,

with xj = a+ j b−a
2n−1 and CP the normalization

factor.

In the particular case of the linear func-
tion, i.e. P (x) = x, defined on [0, 2n − 1],
we have the normalization factor is
CP =

√
(2n+1 − 1)2n/(6(2n − 1)). For now on

for simplicity, we will assume that the polynomi-
als we work with are defined on the interval [0, 1],
so that might include rescaling of the domain of
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the linear function.

The complete description of a quantum state of
n linearly connected qubits (sites) can be repre-
sented by a tensor, A, with n physical indices. A
state of this kind is referred to as a matrix prod-
uct state (MPS) [82–85]. Each physical index is
assigned to a qubit and has a degree of d = 2 i.e.,
the index is either 0 or 1. For a specific choice
of each physical index ji, the tensor’s values give
rise to a collection of n matrices whose product is
equal to the amplitudes of the computational ba-
sis state |jn−1 . . . j0⟩. For open boundary condi-
tions, the MPS representation of a quantum state
is given by

|Ψ⟩ =
∑

j0···jn−1

∑
α1···αn−1

A
[1]
j0,α1

A
[2]
j1,α1α2

· · ·A[n]
jn−1,αn−1

|jn−1 . . . j0⟩ . (1)

This representation has n − 2 tensors of order
3, denoted as A[i]

ji−1,αi−1αi
, ∀ i ̸= 0, n − 1, and 2

external tensors A[1]
j0,α1

and A[n]
jn−1,αn−1

of order 2,
with ji the physical indexes that range from 0 to
d− 1 and αi the virtual indices from 0 to χi − 1.
The virtual dimensions, χi, connecting each pair
of tensors via the virtual indices are referred as
the bond dimensions. We define the bond dimen-
sion of the entire MPS as χ = maxi χi.

When it comes to representing polynomials as
quantum states, Grasedyck [60] proved that for a
real valued polynomial of degree d encoded in the
amplitudes of a quantum state according to Def.
1, the MPS bond dimension is as much χ = d+1.

2.1 Obtaining the exact MPS
The MPS representation of a quantum state |Ψ⟩
is not unique, as different choices of A[i]

ji,αi−1αi
can

yield the same quantum state. We focus on the
left canonical form, which implies the following
conditions∑

j0,α1

A
[1]
j0,α1

A
[1]†
j0,α1

= 1, (2)

∑
ji,αi

A
[i]
ji,αi−1αi

A
[i]†
ji,α′

i−1αi
= δαi−1α′

i−1
, (3)

∑
jn−1

A
[n]
jn−1,αn−1

A
[n]†
jn−1,α′

n−1
= δαn−1α′

n−1
. (4)

To obtain the MPS representation of a quantum
state, the singular value decomposition (SVD) is

employed [89]. Initially, the quantum state, rep-
resented as a tensor A of rank n and dimension 2,
is reshaped into a matrix by combining all the in-
dices except one. The SVD is then applied to this
matrix, decomposing it into the matrix of left sin-
gular vectors, U , the matrix of singular values, Σ,
and the matrix of right singular vectors, V †. As
we will depict in the following section, it is pos-
sible to truncate the smallest singular values by
choosing a desired bond dimension χ and keeping
only the χ largest values. Then, the matrix of sin-
gular values is contracted with the matrix of right
singular vectors (left canonical form), and the re-
sulting matrix, ΣV †, is reshaped back into a ten-
sor that now has an extra virtual index. This pro-
cess, shown in Fig. 1, is iterated for each physical
index. Finally, we obtain an MPS that approxi-
mates the original quantum state while providing
a compact and efficient representation.

The computational cost of performing SVD on
an m× n matrix is typically O

(
min(mn2,m2n)

)
and must be taken into account as a preprossess-
ing cost in this methodology. This cost can be
reduced for sparse or structured low-rank matri-
ces. In the case of an exact matrix product state
(MPS), the bond dimension doubles for each con-
nection between core tensors. This leads to a
maximum bond dimension of 2⌊n/2⌋, occurring in
the middle of the MPS. As a result, the compu-
tational cost of the entire algorithm is primar-
ily determined by the SVD of this central square
matrix, i.e. O(23n/2), which exhibits exponen-
tial scaling with the number of qubits. There-
fore, this non-negligible classical pre-processing
cost must be considered in the overall complexity
of the MPS algorithm.

In the particular case of the linear function,
the analytical expression of the exact MPS [90],
which has bond dimension χ = 2, reads

|ΦL⟩ =
∑

j0···jn−1

(
j0/C 1

)( 1 0
2j1/C 1

)

· · ·
(

1
2n−1jn/C

)
|jn−1 . . . j0⟩ . (5)

2.2 Approximation of the exact MPS
While, in the worst case scenario, it is possible to
exactly represent any quantum state as an MPS
by allowing the bond dimensions to grow up to
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=
SVD Σ1

=
i j k

χ1 χ1

□ … □
⋮ ⋮ ⋮
□ … □

( j, k)
i

A[1] ≡ U1

=
SVD Σ2

=χ2 χ1 χ2

A[3] ≡ Σ2 VT2A[2] ≡ U2A[1]VT2U2A[1]

Σ1 VT1VT1U1

χ1

Figure 1: Iterative singular value decomposition (SVD)
[89] procedure for obtaining the MPS from a tensor with
n = 3 physical indices. The process involves n−1 uses of
the SVD. Notably, the matrices containing the singular
values are absorbed to the right, resulting in the left
canonical form of the MPS.

2⌊n/2⌋, we can potentially achieve an exponential
compression by approximating the initial tensor
using O(2nχ2) elements, given a fixed bond di-
mension, χi = χ ∀ i. However, as the entangle-
ment of the state to be approximated increases,
the minimum bond dimension χ required to get
a good description of the state using an approx-
imated MPS representation also grows [91, 92].
Notice that when truncating the maximum bond
dimension of the MPS, the complexity of the clas-
sical preprocessing becomes O(nχ3).

In order to estimate the error incurred when
truncating the bond dimension, it is necessary to
consider that during each iteration of the com-
pression protocol we perform a SVD and discard
singular values. The error incurred when approx-
imating a matrix by considering its k largest sin-
gular values is determined by the Eckart-Young
theorem [93], and corresponds to the sum of
the omitted singular values. During compres-
sion, this rank-k approximation is performed for
each core tensor. Thus, the overall error of the
MPS approximation can be upper bounded in the
Frobenius norm as

∥A− Ã∥2
F ≤

n−1∑
i=1

dim(Σi)∑
k=χi+1

σ2
k(Σi)

 , (6)

where Ã denotes the approximated MPS. This
equation encompasses the error contributions
from the n − 1 singular value matrices Σi, each
characterized by a fixed bond dimension, χi. In
order to keep the approximation error low, it
is crucial that the spectrum of each Σi decays
rapidly.

In this regard, the state-of-the-art technique
for preparing smooth, differentiable, real-valued

functions using matrix product states relies on
singular values exhibiting exponential decay as
demonstrated in Ref. [61]. This allows for good
approximations of such a class of functions while
maintaining low bond dimension values, thus sig-
nificantly reducing the required resources to pre-
pare the associated function-encoding quantum
state. The method relies on the fact that, for
such functions, the entanglement entropy, quan-
tified by the von Neumann entropy, scales log-
arithmically with the number of qubits, n, and
therefore, these functions can be efficiently ap-
proximated by an MPS with a low bond dimen-
sion, as argued in Ref. [91]. Although empirical
results with this technique applied to polynomi-
als show good performance with χ = 2, the up-
per bound of the von Neumann entropy depends
on the maximum derivative value of the function
within the considered interval. Consequently, as
we discuss later in this work, for certain polyno-
mials the truncation to χ = 2 does not yield a
satisfactory approximation.

In the particular case of the linear function, the
analytical expression from Eq. 2.1 reveals that
achieving the exact MPS representation requires
a bond dimension of χ = 2. However, one might
consider reducing the bond dimension to 1 to
investigate how severely accuracy decays. We
explore this possibility by comparing the linear
function approximated by MPSs of bond dimen-
sion χ = 2 (exact MPS) and χ = 1 (product
state) in Section 4.

2.3 From MPS to circuit

Let us now analyze the resources needed to trans-
late an MPS in either cases, exact or approx-
imated, into a quantum circuit [85, 86, 94, 95].
First we will assume that the bond dimensions
are powers of two, padding the tensors with zeros
if needed. Therefore, we can assume that these
tensors are isometries of 2χi × χi+1 and thereby
can be embedded into a unitary gate acting on
nχi = max{log2(2χi), log2(χi+1)} qubits. The
factor of two arises from the two possible val-
ues that each of the physical indices can take.
The arrangement of gates in the MPS conver-
sion process, following a linear topology, results
in the formation of a single layer of multi-qubit
unitaries, whose sizes nχi depends on the associ-
ated bond dimensions. These unitaries are orga-
nized in a staircase topology, commonly referred
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to as a linear circuit layer [94]. Therefore the
complexity is equivalent to implementing a cas-
cade of n − 1 multi-qubit unitaries. In the case
χ = 2, this complexity scales as O(n) two-qubit
unitaries. On top of this, the cost of decom-
posing these unitaries into two-qubit gates must
be taken into account. This cost is considerably
larger when decomposing multi-qubit unitaries
and might result in an exponential number of
two-qubit gates. [96,97]. Additionally, one might
consider implementing circuits that approximate
the exact multi-qubit unitaries [94]. Lastly, in
Ref. [87] authors proposed a method for loading
translation-invariant short-correlation MPS with
an error ϵ in depth O(log(N/ϵ)) thereby estab-
lishing a class of MPSs that admit efficient circuit
implementations.

We can conclude that even though MPSs en-
coding polynomials admit an analytical construc-
tion, we have to consider the cost of obtaining
the SVD and the cost of the decomposition of
the associated unitaries. These costs can be sig-
nificantly reduced by truncating down to a bond
dimension of χ = 2, although this introduces an
uncontrollable source of error [41, 61,62,98]. Ad-
ditionally, one can also consider the possibility
of approximating the multi-qubit unitaries of a
MPS’s circuit representation [94], which could re-
sult in high fidelity states in some cases although
there is not a priori guarantee of success.

3 Efficient loading of polynomials via
DHWT and QSVT
In this section we present a method for load-
ing polynomials by combining a technique to
encode the linear function into the amplitudes
of a quantum state via the discrete Hadamard-
Walsh transform (DHWT) with the quantum Sin-
gular Value Transformation (QSVT) algorithm.
The first methodology encodes the linear function
with a shallow sequence of multi-controlled gates
that loads its Hadamard-Walsh series expansion,
followed by the inverse discrete Hadamard-Walsh
transform. By truncating the series expansion,
we demonstrate that this approach allows for a
controllable approximation of the state represent-
ing the linear function up to a certain error. We
analyze this error in terms of infidelity, ϵ with re-
spect to the exact state and through the deviation
δ

(2)
j in each amplitude from the exact amplitudes.

W0

W1

W2

W3

W4

W5

W6

W7

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1-1 -1

j = 1 j = 2 j = 3 j = 4 j = 6j = 7j = 5j = 0

|k |b ≤ 1

|k |b ≤ 1

Figure 2: Discrete Hadamard-Walsh Transform for
n = 3 qubits in the natural order representation.

The second step leverages the results of [78,79] to
generate a block encoding of the linear function.
This involves using the unitary to load the lin-
ear function into amplitudes of a k0-qubit quan-
tum state. Then, the Quantum Singular Value
Transformation (QSVT) is applied to implement
a polynomial transformation, P (x), on the am-
plitudes of the quantum state corresponding to
the identity function. This results into a unitary
block encoding of the polynomial that applied to
an adequate initial state yields an encoding of
the desired polynomial. Finally, we pad the re-
maining n−k0 qubits, obtaining an approximated
encoding.

3.1 The Discrete Hadamard-Walsh transform
Definition 2 The discrete Hadamard-Walsh
transform (DHWT) is a linear, orthogonal and
symmetric operation that transforms discrete
signals or sequence of sorted data into a new
representation given by the Hadamard-Walsh
Series

HWT : (z(0)
n . . . z(N−1)

n ) → (x(0)
n . . . x(N−1)

n ), (7)

x(k)
n = 1√

N

N−1∑
j=0

z(j)
n Wk(j) (8)

where j =
∑n−1

m=0 jm2m, k =
∑n−1

m=0 km2m

with N = 2n, jm, km ∈ {0, 1} and
Wk(j) = (−1)

∑n−1
m=0 jmkm is the k-th Walsh func-

tion, where we have used the natural order.

We also define the binary norm of an integer as
|k|b =

∑n−1
m=0 km. Note that when |k|b = 1, it is
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equivalent to say that k is a power of 2. Addi-
tionally, when representing a quantum state |j⟩
in terms of a binary notation we will denote the
state as |jn−1 . . . j0⟩, taking the order of the ten-
sor product from right to left.

Lemma 1 Let (0, 1 . . . , 2n − 1) be the discrete
sorted input sequence. Then, the coefficients of
its Hadamard-Walsh series are given by

x(k)
n =


2n/2(2n − 1)/2 if k = 0
−2n/2k/2 if |k|b = 1
0 otherwise

(9)

Note that in general, the sparsity of the state
encoding the Hadamard-Walsh series of a poly-
nomial of degree d represented in n qubits, with
d ≤ n, is s =

∑d
k=0

(n
k

)
[99]. Therefore, one might

consider the techniques in Ref. [54] to implement
the state with depth O(log(ns)) and O(ns log(s))
ancillary qubits.

3.2 Exact loading of the linear function via
DHWT
In the particular case of the lin-
ear function, the target state is
|ΦL⟩n = 1

Cn

∑2n−1
j=0 j |j⟩, with normaliza-

tion constant Cn =
√

(2n+1 − 1)(2n − 1)2n/6.
Notice that Lemma 1 provides the state that
encodes the discrete Hadamard-Walsh transform
of the coefficients of |ΦL⟩n which we can write as∣∣∣Φ̃L

〉
n

= 1
C̃n

∑
|k|b≤1

x(k)
n |k⟩ ,

with C̃n the corresponding normalization fac-
tor. Note that the state above is a |1⟩-sparse
quantum state, i.e. the bit string represen-
tations of the basis states whose superposition
conforms the state have at most one |1⟩, i.e.
{|00 . . . 00⟩ , |10 . . . 0⟩ . . . , |00 . . . 01⟩}.

Due to its structure, the state
∣∣∣Φ̃L

〉
n

can
be efficiently encoded into a quantum com-
puter with gate complexity O(n) according to
the circuit depicted in Fig. 3, where the an-
gle of every multi-controlled rotation is given

by θk = arcsin
(

2x(2k)
n /C̃nGn(k)

)
, with k =

0, . . . , n − 1 and Gn(k) =
∏n−1

i=k+1 cos(θi/2) if
k < n− 1 and Gn(k) = 1 if k = n− 1. We denote
the unitary corresponding to this circuit as UL,n.
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<latexit sha1_base64="F1e5aHjR6dx0x1UHRupHczlAMCc=">AAAB6HicbZC9TsMwFIVv+C3lr8DIYlEhsVAlqALGChbGItEfqY0qx71pTR0n2A5SFfUdYELAxvPwArwNbskALWf6fM+xdM8NEsG1cd0vZ2l5ZXVtvbBR3Nza3tkt7e03dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LOjBP0IzqQPOSMGjtqPfQyeepNeqWyW3FnIovg5VCGXPVe6bPbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHYuSRqj9bLbuhByHsSJmiGT2/p3NaKT1OApsJqJmqOe96fA/r5Oa8NLPuExSg5LZiPXCVBATk2lr0ucKmRFjC5QpbrckbEgVZcbepmjre/NlF6F5VvHOK9Xbarl2lR+iAIdwBCfgwQXU4Abq0AAGI3iGN3h37p0n58V5/YkuOfmfA/gj5+Mb6b+M8g==</latexit>qn�1

<latexit sha1_base64="4pRNeMr/qrE16wlAT16i17HAfYU=">AAAB6nicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGXRDcuMZEfAxPSKXegoZ2ZtB0TMvISujLqzsfxBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jOTBL0JR1GPOSMGju6f3R7ikZDgf1yxa26c5Fl8HKoQK5Gv/zZG8QslRgZJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK7FiErUfjZfeEpOwlgRM0Iyf//OZlRqPZGBzUhqRnrRmw3/87qpCS/9jEdJajBiNmK9MBXExGTWmwy4QmbExAJlitstCRtRRZmx1ynZ+t5i2WVonVW982rttlapX+WHKMIRHMMpeHABdbiBBjSBgYRneIN3RzhPzovz+hMtOPmfQ/gj5+MbmrGN8w==</latexit>|0i
<latexit sha1_base64="4pRNeMr/qrE16wlAT16i17HAfYU=">AAAB6nicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGXRDcuMZEfAxPSKXegoZ2ZtB0TMvISujLqzsfxBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jOTBL0JR1GPOSMGju6f3R7ikZDgf1yxa26c5Fl8HKoQK5Gv/zZG8QslRgZJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK7FiErUfjZfeEpOwlgRM0Iyf//OZlRqPZGBzUhqRnrRmw3/87qpCS/9jEdJajBiNmK9MBXExGTWmwy4QmbExAJlitstCRtRRZmx1ynZ+t5i2WVonVW982rttlapX+WHKMIRHMMpeHABdbiBBjSBgYRneIN3RzhPzovz+hMtOPmfQ/gj5+MbmrGN8w==</latexit>|0i
<latexit sha1_base64="4pRNeMr/qrE16wlAT16i17HAfYU=">AAAB6nicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGXRDcuMZEfAxPSKXegoZ2ZtB0TMvISujLqzsfxBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jOTBL0JR1GPOSMGju6f3R7ikZDgf1yxa26c5Fl8HKoQK5Gv/zZG8QslRgZJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK7FiErUfjZfeEpOwlgRM0Iyf//OZlRqPZGBzUhqRnrRmw3/87qpCS/9jEdJajBiNmK9MBXExGTWmwy4QmbExAJlitstCRtRRZmx1ynZ+t5i2WVonVW982rttlapX+WHKMIRHMMpeHABdbiBBjSBgYRneIN3RzhPzovz+hMtOPmfQ/gj5+MbmrGN8w==</latexit>|0i

<latexit sha1_base64="4pRNeMr/qrE16wlAT16i17HAfYU=">AAAB6nicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGXRDcuMZEfAxPSKXegoZ2ZtB0TMvISujLqzsfxBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jOTBL0JR1GPOSMGju6f3R7ikZDgf1yxa26c5Fl8HKoQK5Gv/zZG8QslRgZJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK7FiErUfjZfeEpOwlgRM0Iyf//OZlRqPZGBzUhqRnrRmw3/87qpCS/9jEdJajBiNmK9MBXExGTWmwy4QmbExAJlitstCRtRRZmx1ynZ+t5i2WVonVW982rttlapX+WHKMIRHMMpeHABdbiBBjSBgYRneIN3RzhPzovz+hMtOPmfQ/gj5+MbmrGN8w==</latexit>|0i

<latexit sha1_base64="nIq2ay0rq2pLrYBxPgkdWmXl270=">AAAB63icbZDNTgIxFIU7+If4h7p000hMXJEZQ9Ql0Q1LTPiLMCGdcoGGdmbS3jGSCU+hK6PufBtfwLex4CwUPKuv95wm99wglsKg6345ubX1jc2t/HZhZ3dv/6B4eNQyUaI5NHkkI90JmAEpQmiiQAmdWANTgYR2MLmd++0H0EZEYQOnMfiKjUIxFJyhHd33EB4xbdcas36x5JbdhegqeBmUSKZ6v/jZG0Q8URAil8yYrufG6KdMo+ASZoVeYiBmfMJG0LUYMgXGTxcbz+jZMNIUx0AX79/ZlCljpiqwGcVwbJa9+fA/r5vg8NpPRRgnCCG3EesNE0kxovPidCA0cJRTC4xrYbekfMw042jPU7D1veWyq9C6KHuX5cpdpVS9yQ6RJyfklJwTj1yRKqmROmkSTkLyTN7Iu6OcJ+fFef2J5pzszzH5I+fjG5QGjog=</latexit>

WHT

<latexit sha1_base64="qDrR+ZfuO3ah9ZSvIMd7b+D2CiY=">AAACFXicbVDJSgNBFOyJW4zbqEcvjUHwFGaC2zHoxWOEbJAMoafzkjTpWeh+I4ZhvkN/Rk+iHgTP/o2d5aCJdapXVQ9ePT+WQqPjfFu5ldW19Y38ZmFre2d3z94/aOgoURzqPJKRavlMgxQh1FGghFasgAW+hKY/upn4zXtQWkRhDccxeAEbhKIvOEMjde1yB+EB05pKwplEk5hiRCVTA9BIMzrqOnQWoggq0FnXLjolZwq6TNw5KZI5ql37s9OLeBJAiFwyrduuE6OXMoWCS8gKnURDzPiIDaBtaMgC0F467ZbRk36kKA6BTuff2ZQFWo8D32QChkO96E3E/7x2gv0rLxVhnCCE3ESM10/kpPbkRbQnFHCUY0MYV8JcSfmQKcZNf10w9d3FssukUS65F6Xzu7Ni5Xr+iDw5IsfklLjkklTILamSOuHkibyQd/JhPVrP1qv1NovmrPnOIfkD6+sHGKGfVg==</latexit>

Truncation up to largest k0 terms

<latexit sha1_base64="4pRNeMr/qrE16wlAT16i17HAfYU=">AAAB6nicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGXRDcuMZEfAxPSKXegoZ2ZtB0TMvISujLqzsfxBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jOTBL0JR1GPOSMGju6f3R7ikZDgf1yxa26c5Fl8HKoQK5Gv/zZG8QslRgZJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK7FiErUfjZfeEpOwlgRM0Iyf//OZlRqPZGBzUhqRnrRmw3/87qpCS/9jEdJajBiNmK9MBXExGTWmwy4QmbExAJlitstCRtRRZmx1ynZ+t5i2WVonVW982rttlapX+WHKMIRHMMpeHABdbiBBjSBgYRneIN3RzhPzovz+hMtOPmfQ/gj5+MbmrGN8w==</latexit>|0i <latexit sha1_base64="5cXQkfilZMTv2sIhjdqIzW4YUcc=">AAAB9HicbVDLTsMwEHR4lvJK4cjFokIqB6oEVcCxggvHguhDaqPIcZ3WquNE9qaoivoncELAjS/hB/gb3JIDtMxpdmdWuztBIrgGx/myVlbX1jc2C1vF7Z3dvX27dNDScaooa9JYxKoTEM0El6wJHATrJIqRKBCsHYxuZnp7zJTmsXyAScK8iAwkDzklYFq+Xbr3J5UeDBkQP5Nn7vTUt8tO1ZkDLxM3J2WUo+Hbn71+TNOISaCCaN11nQS8jCjgVLBpsZdqlhA6IgPWNVSSiGkvm58+xSdhrLBZj+f1b29GIq0nUWA8EYGhXtRmzf+0bgrhlZdxmaTAJDUWo4WpwBDjWQK4zxWjICaGEKq4uRLTIVGEgsmpaN53F59dJq3zqntRrd3VyvXrPIgCOkLHqIJcdInq6BY1UBNR9Iie0Rt6t8bWk/Vivf5YV6x85hD9gfXxDS/6kQM=</latexit>

Ry(✓n�1)

<latexit sha1_base64="Jsmz29uYSWH2je68GiDOl2Dd2/Q=">AAAB9HicbVDLTsJAFJ3iC/FVdOlmIjHBhaQlvpZENy7RyCOBppkOtzBh+sjMFNM0/ImujLrzS/wB/8YBu1DwrM6959zce48XcyaVZX0ZhZXVtfWN4mZpa3tnd88s77dllAgKLRrxSHQ9IoGzEFqKKQ7dWAAJPA4db3wz0zsTEJJF4YNKY3ACMgyZzyhRuuWa5Xs3rfbVCBRxs/C0Pj1xzYpVs+bAy8TOSQXlaLrmZ38Q0SSAUFFOpOzZVqycjAjFKIdpqZ9IiAkdkyH0NA1JANLJ5qdP8bEfCazX43n925uRQMo08LQnIGokF7VZ8z+tlyj/yslYGCcKQqotWvMTjlWEZwngARNAFU81IVQwfSWmIyIIVTqnkn7fXnx2mbTrNfuidn53Vmlc50EU0SE6QlVko0vUQLeoiVqIokf0jN7QuzExnowX4/XHWjDymQP0B8bHNzHMkQU=</latexit>

Ry(✓n�2)

<latexit sha1_base64="iiM4qBoHodWxQjMZG7VtXuMye84=">AAAB7nicbVDLTgJBEOzFF+IL9ehlIjHBC9k1RD0SvXhEI48ENpvZYRYmzD6c6TUhG35DT0a9+TH+gH/jgHtQsE7VXdXprvYTKTTa9pdVWFldW98obpa2tnd298r7B20dp4rxFotlrLo+1VyKiLdQoOTdRHEa+pJ3/PH1TO88cqVFHN3jJOFuSIeRCASjaFrunTep9nHEkXrOqVeu2DV7DrJMnJxUIEfTK3/2BzFLQx4hk1TrnmMn6GZUoWCST0v9VPOEsjEd8p6hEQ25drP50VNyEsSKmNVkXv/2ZjTUehL6xhNSHOlFbdb8T+ulGFy6mYiSFHnEjMVoQSoJxmSWnQyE4gzlxBDKlDBXEjaiijI0HyqZ+M5i2GXSPqs557X6bb3SuMofUYQjOIYqOHABDbiBJrSAwQM8wxu8W4n1ZL1Yrz/WgpXPHMIfWB/ftWePFw==</latexit>

Ry(✓1)

<latexit sha1_base64="rczQK6+VVsQKZfFd2OE6GbxR0fU=">AAAB7nicbVDLTgJBEJzFF+IL9ehlIjHBC9k1RD0SvXhEI48ENpvZoRcmzD6c6TUhG35DT0a9+TH+gH/jgHtQsE7VXdXprvYTKTTa9pdVWFldW98obpa2tnd298r7B20dp4pDi8cyVl2faZAighYKlNBNFLDQl9Dxx9czvfMISos4usdJAm7IhpEIBGdoWu6dN6n2cQTIPPvUK1fsmj0HXSZOTiokR9Mrf/YHMU9DiJBLpnXPsRN0M6ZQcAnTUj/VkDA+ZkPoGRqxELSbzY+e0pMgVtSspvP6tzdjodaT0DeekOFIL2qz5n9aL8Xg0s1ElKQIETcWowWppBjTWXY6EAo4yokhjCthrqR8xBTjaD5UMvGdxbDLpH1Wc85r9dt6pXGVP6JIjsgxqRKHXJAGuSFN0iKcPJBn8kbercR6sl6s1x9rwcpnDskfWB/fs+iPFg==</latexit>

Ry(✓0)
<latexit sha1_base64="rzcnJUP1Jc5zYK3HWxXJPGLvcHw=">AAAB6XicbZDLTgJBEEVr8IX4Ql26mUhMXJEZQ9Ql0Q1LTOSRwIT0NDXQoeeR7hojmfARujLqzt/xB/wbG5yFgnd1uu7tpG75iRSaHOfLKqytb2xuFbdLO7t7+wflw6O2jlPFscVjGauuzzRKEWGLBEnsJgpZ6Evs+JPbud95QKVFHN3TNEEvZKNIBIIzMqNun/CRssZsUK44VWchexXcHCqQqzkof/aHMU9DjIhLpnXPdRLyMqZIcImzUj/VmDA+YSPsGYxYiNrLFvvO7LMgVjaN0V68f2czFmo9DX2TCRmN9bI3H/7n9VIKrr1MRElKGHETMV6QSptie17bHgqFnOTUAONKmC1tPmaKcTLHKZn67nLZVWhfVN3Lau2uVqnf5Icowgmcwjm4cAV1aEATWsBBwjO8wbs1sZ6sF+v1J1qw8j/H8EfWxzdEGo3J</latexit>

H

<latexit sha1_base64="rzcnJUP1Jc5zYK3HWxXJPGLvcHw=">AAAB6XicbZDLTgJBEEVr8IX4Ql26mUhMXJEZQ9Ql0Q1LTOSRwIT0NDXQoeeR7hojmfARujLqzt/xB/wbG5yFgnd1uu7tpG75iRSaHOfLKqytb2xuFbdLO7t7+wflw6O2jlPFscVjGauuzzRKEWGLBEnsJgpZ6Evs+JPbud95QKVFHN3TNEEvZKNIBIIzMqNun/CRssZsUK44VWchexXcHCqQqzkof/aHMU9DjIhLpnXPdRLyMqZIcImzUj/VmDA+YSPsGYxYiNrLFvvO7LMgVjaN0V68f2czFmo9DX2TCRmN9bI3H/7n9VIKrr1MRElKGHETMV6QSptie17bHgqFnOTUAONKmC1tPmaKcTLHKZn67nLZVWhfVN3Lau2uVqnf5Icowgmcwjm4cAV1aEATWsBBwjO8wbs1sZ6sF+v1J1qw8j/H8EfWxzdEGo3J</latexit>

H

<latexit sha1_base64="rzcnJUP1Jc5zYK3HWxXJPGLvcHw=">AAAB6XicbZDLTgJBEEVr8IX4Ql26mUhMXJEZQ9Ql0Q1LTOSRwIT0NDXQoeeR7hojmfARujLqzt/xB/wbG5yFgnd1uu7tpG75iRSaHOfLKqytb2xuFbdLO7t7+wflw6O2jlPFscVjGauuzzRKEWGLBEnsJgpZ6Evs+JPbud95QKVFHN3TNEEvZKNIBIIzMqNun/CRssZsUK44VWchexXcHCqQqzkof/aHMU9DjIhLpnXPdRLyMqZIcImzUj/VmDA+YSPsGYxYiNrLFvvO7LMgVjaN0V68f2czFmo9DX2TCRmN9bI3H/7n9VIKrr1MRElKGHETMV6QSptie17bHgqFnOTUAONKmC1tPmaKcTLHKZn67nLZVWhfVN3Lau2uVqnf5Icowgmcwjm4cAV1aEATWsBBwjO8wbs1sZ6sF+v1J1qw8j/H8EfWxzdEGo3J</latexit>

H

<latexit sha1_base64="rzcnJUP1Jc5zYK3HWxXJPGLvcHw=">AAAB6XicbZDLTgJBEEVr8IX4Ql26mUhMXJEZQ9Ql0Q1LTOSRwIT0NDXQoeeR7hojmfARujLqzt/xB/wbG5yFgnd1uu7tpG75iRSaHOfLKqytb2xuFbdLO7t7+wflw6O2jlPFscVjGauuzzRKEWGLBEnsJgpZ6Evs+JPbud95QKVFHN3TNEEvZKNIBIIzMqNun/CRssZsUK44VWchexXcHCqQqzkof/aHMU9DjIhLpnXPdRLyMqZIcImzUj/VmDA+YSPsGYxYiNrLFvvO7LMgVjaN0V68f2czFmo9DX2TCRmN9bI3H/7n9VIKrr1MRElKGHETMV6QSptie17bHgqFnOTUAONKmC1tPmaKcTLHKZn67nLZVWhfVN3Lau2uVqnf5Icowgmcwjm4cAV1aEATWsBBwjO8wbs1sZ6sF+v1J1qw8j/H8EfWxzdEGo3J</latexit>

H

<latexit sha1_base64="rzcnJUP1Jc5zYK3HWxXJPGLvcHw=">AAAB6XicbZDLTgJBEEVr8IX4Ql26mUhMXJEZQ9Ql0Q1LTOSRwIT0NDXQoeeR7hojmfARujLqzt/xB/wbG5yFgnd1uu7tpG75iRSaHOfLKqytb2xuFbdLO7t7+wflw6O2jlPFscVjGauuzzRKEWGLBEnsJgpZ6Evs+JPbud95QKVFHN3TNEEvZKNIBIIzMqNun/CRssZsUK44VWchexXcHCqQqzkof/aHMU9DjIhLpnXPdRLyMqZIcImzUj/VmDA+YSPsGYxYiNrLFvvO7LMgVjaN0V68f2czFmo9DX2TCRmN9bI3H/7n9VIKrr1MRElKGHETMV6QSptie17bHgqFnOTUAONKmC1tPmaKcTLHKZn67nLZVWhfVN3Lau2uVqnf5Icowgmcwjm4cAV1aEATWsBBwjO8wbs1sZ6sF+v1J1qw8j/H8EfWxzdEGo3J</latexit>

H

<latexit sha1_base64="kEqGVOTVwYfrJJJ02HwdY8XECYo=">AAAB9nicbVDLTsMwEHTKq5RXoEcuFhVSOVAliNexggvHguhDaqPIcd3WquNE9gYRRf0VOCHgxofwA/wNbskBWuY0uzMrzU4QC67Bcb6swtLyyupacb20sbm1vWPv7rV0lCjKmjQSkeoERDPBJWsCB8E6sWIkDARrB+Prqd5+YErzSN5DGjMvJEPJB5wSMCvfLt/5abUHIwbEz+Tx2HcmR75dcWrODHiRuDmpoBwN3/7s9SOahEwCFUTrruvE4GVEAaeCTUq9RLOY0DEZsq6hkoRMe9ks/AQfDiKFTQA8m397MxJqnYaB8YQERnpemy7/07oJDC69jMs4ASapsRhtkAgMEZ52gPtcMQoiNYRQxU1KTEdEEQqmqZJ5351/dpG0Tmruee3s9rRSv8qLKKJ9dICqyEUXqI5uUAM1EUUpekZv6N16tJ6sF+v1x1qw8psy+gPr4xuzvpHh</latexit>

Ry(✓n�k0
) <latexit sha1_base64="rzcnJUP1Jc5zYK3HWxXJPGLvcHw=">AAAB6XicbZDLTgJBEEVr8IX4Ql26mUhMXJEZQ9Ql0Q1LTOSRwIT0NDXQoeeR7hojmfARujLqzt/xB/wbG5yFgnd1uu7tpG75iRSaHOfLKqytb2xuFbdLO7t7+wflw6O2jlPFscVjGauuzzRKEWGLBEnsJgpZ6Evs+JPbud95QKVFHN3TNEEvZKNIBIIzMqNun/CRssZsUK44VWchexXcHCqQqzkof/aHMU9DjIhLpnXPdRLyMqZIcImzUj/VmDA+YSPsGYxYiNrLFvvO7LMgVjaN0V68f2czFmo9DX2TCRmN9bI3H/7n9VIKrr1MRElKGHETMV6QSptie17bHgqFnOTUAONKmC1tPmaKcTLHKZn67nLZVWhfVN3Lau2uVqnf5Icowgmcwjm4cAV1aEATWsBBwjO8wbs1sZ6sF+v1J1qw8j/H8EfWxzdEGo3J</latexit>

H

<latexit sha1_base64="4pRNeMr/qrE16wlAT16i17HAfYU=">AAAB6nicbZDNTgIxFIXv4B/iH+rSTSMxcUVmDFGXRDcuMZEfAxPSKXegoZ2ZtB0TMvISujLqzsfxBXwbC85CwbP6es9pcs8NEsG1cd0vp7Cyura+UdwsbW3v7O6V9w9aOk4VwyaLRaw6AdUoeIRNw43ATqKQykBgOxhfz/z2AyrN4+jOTBL0JR1GPOSMGju6f3R7ikZDgf1yxa26c5Fl8HKoQK5Gv/zZG8QslRgZJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK7FiErUfjZfeEpOwlgRM0Iyf//OZlRqPZGBzUhqRnrRmw3/87qpCS/9jEdJajBiNmK9MBXExGTWmwy4QmbExAJlitstCRtRRZmx1ynZ+t5i2WVonVW982rttlapX+WHKMIRHMMpeHABdbiBBjSBgYRneIN3RzhPzovz+hMtOPmfQ/gj5+MbmrGN8w==</latexit>|0i

<latexit sha1_base64="CHRuXph4cqswhVUxJ7VXGgrn0oE=">AAACE3icbVC7TsNAEDzzJrwClDQnIiRoIhvxEhWChiJFkEhAioN1vmySU85n626NiIw/A34GKgRU8AH8DZeQgtdUszuz0s6EiRQGXffDGRufmJyanpktzM0vLC4Vl1fqJk41hxqPZawvQ2ZACgU1FCjhMtHAolDCRdg7GegX16CNiNU59hNoRqyjRFtwhnYVFF0f4QazSsxahub01kchW5D51a7Ir7LNXuAeqq08qPiaqY6EwJ6U3LI7BP1LvBEpkRGqQfHNb8U8jUAhl8yYhucm2MyYRsEl5AU/NZAw3mMdaFiqWASmmQ2T5XSjHWuKXaDD+bs3Y5Ex/Si0nohh1/zWBsv/tEaK7YNmJlSSIihuLVZrp5JiTAcF0ZbQwFH2LWFcC/sl5V2mGUdbY8HG936H/Uvq22Vvr7x7tlM6Oh4VMUPWyDrZJB7ZJ0fklFRJjXByTx7JC3l17pwH58l5/rKOOaObVfIDzvsnZVmeaw==</latexit>

Loads |�̃(k0:n)
L in
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Loads |�̃Lin

Figure 3: Circuit implementation for loading the
quantum state |ΦL⟩n, denoted as UL,n with com-
plexity O(n) multi-controlled gates. The an-
gle of every multi-controlled rotation is given by
θk = arcsin

(
2x(2k)

n /C̃nGn(k)
)

, with k = 0 . . . n −
1 and Gn(k) =

∏n−1
i=k+1 cos(θi/2) if k < n − 1

and Gn(k) = 1 if k = n − 1. The first part of
the circuit loads the state encoding its Hadamard-
Walsh series

∣∣Φ̃L

〉
n

and once it has been loaded,
we apply the Hadamard-Walsh transform to achieve
|ΦL⟩n. If we consider only the first k0 rotations,
then we get the approximated Hadamard-Walsh se-
ries

∣∣∣Φ̃(k0:n)
L

〉
n

and the respectively approximated state∣∣∣Φ(k0:n)
L

〉
n
. With this truncation the angles change

its value to θk0
k = arcsin(2x(2k)

n /C̃
(k0:n)
n G

(k0:n)
n (k)),

with C̃
(k0:n)
n the new normalization factor and

G
(k0:n)
n (k) =

∏n−1
i=k+1 cos(θk0

i /2) if n− k0 ≤ k < n− 1
and G

(k0:n)
n (k) = 1 if k = n − 1 and the complexity is

reduced to O(k0). We denote this last circuit that loads
the approximated state as U (k0:n)

L,n . See the appendix in
Ref. [55] for the details of the decomposition of multi-
controlled gates.

Once that we have encoded the state
∣∣∣Φ̃L

〉
n

that
represents the discrete Hadamard-Walsh series of
our target state, we can simply uncompute the
Hadamard-Walsh transform to obtain |ΦL⟩n. In
terms of gates on a quantum computer, this op-
eration is a parallel implementation of Hadamard
gates on all the qubits.

Additionally, we would like to remark that due
to normalization, any linear function with an ar-
bitrary slope and 0 offset will lead to the same en-
coding. However, it is possible to vary the slope
by changing the offset of the linear function un-
der the restriction of the quantum state to be
normalized.
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Figure 4: Comparison of different methods for loading the linear function on n = 6 qubits. (i) Illustrates the resulting
state by using different encoding protocols, DHWT with k0 = 3 and MPS χ = 1, in noisy an ideal scenarios. The
choice of k0 = 3 is due to the fact this case has a high fidelity and the minimum error measured in the L2 norm
for DHWT method in presence of noise. This is shown in (ii) and (iii), where fidelity and error measured in the L2
norm for both the ideal and noisy DHWT methods are plotted with respect to k0. We have not considered noise for
the case MPS χ = 1 as its loading circuit is only a layer of single qubit rotations, and its impact is marginal.

3.3 Approximated loading of linear polynomi-
als via DHWT
In the preceding section, we have conclusively
demonstrated the efficient loading of linear func-
tions. Now, the inevitable query arises: can the
Hadamard-Walsh series be deliberately truncated
while maintaining control over the process? In
other words, is it possible to strike a balance be-
tween the number of terms truncated and the re-
sulting error, thereby achieving a quantum state
approximation that accurately encodes our in-
tended target?

We now proceed to illustrate how the loading
of the linear function can be approximated by
truncating the Hadamard-Walsh series. Let us
assume that we have the DHWT for n qubits,
then the non zero coefficients are

h⃗n = (x(0)
n x(1)

n x(2)
n x(4)

n . . . x(2n−1)
n ) (10)

with |x(1)
n | < |x(2)

n | < . . . < |x(2n−1)
n | < |x(0)

n |.
We keep x0 and the largest k0 values
of the coefficients with |k|b = 1, i.e.
h⃗

(k0:n)
n = (x(0)

n 0 0 . . . 0 x
(2n−k0 )
n . . . x

(2n−1)
n ).

Next, we construct the circuit to generate the
state encoding these renormalized coefficients of
the truncated series. Then, the fidelity of the
resulting state, |Φ(k0:n)

L ⟩n, with the exact state,
|ΦL⟩n, is given by

F =
1
4 (−1 + 2n)2 + 1

32−2+2n
(
1 − 2−2k0

)
1
4 (−1 + 2n)2 + 1

32−2+2n (1 − 2−2n)
. (11)

More details about how to derive this expression

are given in the Appendix A.

Note that while the structure of the circuit is
the same, see Fig. 3, the angles have changed its
value to θk0

k = arcsin(2x(2k)
n /C̃

(k0:n)
n G

(k0:n)
n (k)),

with C̃
(k0:n)
n the new normalization factor and

G
(k0:n)
n (k) =

∏n−1
i=k+1 cos(θk0

i /2) if n − k0 ≤ k <

n− 1 and G(k0:n)
n (k) = 1 if k = n− 1.

Now, assuming an infidelity ϵ = 1 − F , it is
possible to obtain the expression

k0 = −1
2 log2

[ 1
22n

+ ϵ

(
4 + 2(1 − 3 · 2n)

22n

)]
(12)

which establishes the trade off between infidelity
and truncation. In the asymptotic limit n → ∞,
we obtain k0 = 1

2 log2 [1/(4ϵ)] .

Additionally to this analysis, we also study
the deviation of the amplitudes of the ap-
proximated state,

∣∣∣Φ(k0:n)
L

〉
n

with respect to
the ideal state, |ΦL⟩n. We now focus on
describing the state

∣∣∣Φ(k0:n)
L

〉
n

that comes
from the truncation of the series, denoted as
h⃗

(k0:n)
n = (x(0)

n 0 0 . . . 0 x
(2n−k0 )
n . . . x

(2n−1)
n ).

We compare the k0 qubit state obtained from
h⃗

(k0:n)
k0

= (x(0)
n x

(2n−k0 )
n . . . x

(2n−1)
n ) with the state

produced by the series corresponding on doing
the DHWT to the linear function encoded on k0
qubits given by h⃗k0 = (xk0 x

(0)
k0
x

(20)
k0

. . . x
(2k0−1)
k0

).
From this comparison we can obtain that

α := x(2n−k0+j)
n /x

(2j)
k0

= 23/2(n−k0)
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∀ j = 0, ..., k0 − 1.
Therefore we can write

h⃗
(k0:n)
k0

= α(x(0)
k0

x
(20)
k0

. . . x
(2k0−1)
k0

)

+β(2(0)
k0/2 0 . . . 0) (13)

with β = 2(n−k0)/2−1(2n−k0 − 1) the offset that
will induce the maximum deviation in the ampli-
tude between both the ideal and approximated
quantum state. Thus, we can conclude that when
truncating the sate, we are loading the k0-qubit
state

∣∣∣Φ(k0:n)
L,k0

〉
= 1

C
(k0:n)
k0

∑2k0 −1
j=0 (αj + β) |j⟩

on the most significant k0 qubits, with C
(k0:n)
k0

the corresponding normalization factor. When
adding the remaining n−k0 qubits, this will lead
to an state with a degeneracy 2n−k0 on every of
this amplitudes (graphically a step wise function)

∣∣∣Φ(k0:n)
L

〉
n

= 1
C

(k0:n)
n

2k0 −1∑
j=0

2n−k0 −1∑
l=0

(αj + β) |j⟩ |l⟩

with

C(k0:n)
n = 2n/2

[
α2

6 (2k0+1 − 1)(2k0 − 1)

+αβ(2k0 − 1) + β2
]1/2

. (14)

Finally, merging both sums we finally get

∣∣∣Φ(k0:n)
L

〉
n

= 1
C

(k0:n)
n

2n−1∑
j=0

(α⌊j/2n−k0⌋+β) |j⟩ . (15)

From these expression we can define the deviation of
the amplitude of |j⟩ as

δ
(2)
j :=

∣∣∣∣∣ 1
C

(k0:n)
n

(α⌊j/2n−k0⌋ + β) − j

Cn

∣∣∣∣∣ ≤ β/C(k0:n)
n

(16)
In the asymptotic limit the upper bound of δ(2)

j

given by β/C(k0:n)
n decays as O( 1√

2n ) with a dom-
inant coefficient given by

1

23k0/2+1
(

(2k0 −1)(2k0 −1)
6·23k0 + 2k0 −1

23k0+1 + 1
23k0+2

)1/2 ,

(17)
which converges to 0 when k0 tends to infinity
as O( 1

2k0 ). We depict the complexities of loading
the exact and approximated versions of linear

function either via MPS or DWHT in Tab. 1.

Alternative to this set up, one can also con-
sider a MPS based methodology to load the lin-
ear function, which in the exact case scales lin-
early on the number of qubits, see Section 2.3.
Thus, from now on, we will assume that we have
access to a state preparation oracle of the exact
linear function on k0 qubits denoted as UL,k0 , for
1 ≤ k0 ≤ n, along with its adjoint and their con-
trolled variants. This allows us to load the linear
function either in an exact manner with a cir-
cuit depth that scales O(k0). Note that in the
worst case scenario, the controlled version can be
achieved by controlling every gate of the oracle,
which keeps the complexity invariant.

3.4 Polynomial transformation of amplitudes
via quantum singular value transformation

Once we have introduced the quantum circuit
that loads the linear function into k0 qubits via
the unitary operator UL,k0 with a complexity of
O(k0), our method uses the quantum singular
value transformation (QSVT) [72–77] to achieve
the polynomial transformation of the amplitudes.
One also could consider the unitary to load the
MPS of the linear function with χ = 1 on k0
qubits, although the final results are considerable
worst as we show later.

In this work we follow the procedure detailed
in Ref. [78] and in its subsequent exponential im-
provement in Ref. [79], which provides a general-
ization that presents a diagonal block encoding
and introduces the importance sampling. The
remarkable insight of these works lies in the au-
thors’ demonstration of how it is possible to use
the QSVT polynomial transformation to explic-
itly construct quantum circuits that apply the
polynomial transformation to the amplitudes of
any quantum state of interest, provided that the

qubits
method Exact Aprx

k0 O(k0) -
n O(n) O(k0(ϵ))

Table 1: Complexities for loading the linear function into
a different number of qubits k0 and n, with k0 < n,
either in an exact or approximated form. k0(ϵ) corre-
sponds to Eq. (12).
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Parameter Description Value
SQG time Single qubit gate time (ns) 35
CX time CX gate time (ns) 540

rD Deviation ratio for the single qubit gates 2,457E-04
Pbf Bit-flip error during the rz gate 2,457E-04

CNOTerror Deviation ratio for CX gate 8,328E-03
pmeas Readout error 2,23E-01

pth Thermal population of the ground state 0.01
T1 Decoherence time (us) 214.84
T2 Dephasing time (us) 214.84

Table 2: Noise parameters description and their value. We have estimated the numerical values from the calibration
data provided for the IBM device ‘ibm_jakarta’.

encoding unitary is known.
The steps needed to achieve the state ampli-

tude encoding of the polynomial are: the block
encoding of the amplitudes, the polynomial trans-
formation of the block encoding and the quantum
amplitude amplification algorithm.

3.4.1 Block encoding

The first step is the block encoding of the am-
plitudes of the linear function given the unitary
UL,k0 that prepares the state that represents the
linear function.

Definition 3 [42,72–77,100] Let be A a k0 qubit
operator, α, ε ∈ IR+ and a ∈ IN. We say that
the (a+ k0)-qubit unitary UA is an (α, a, ε)-block
encoding of A if

∥A− α(⟨0|⊗a ⊗ I)UA(|0⟩⊗a ⊗ I)∥2 ≤ ε. (18)

where α is the proportionality constant, a the
number of ancilla qubits required and ϵ the error
achieved measured with ||A||2 = σmax(A).

According to Theorem 2 in Ref. [79], given
a k0-qubit state |ψ⟩ =

∑2k0 −1
j=0 ψj |j⟩ with

real amplitudes loaded by a unitary U , i.e.
U |0⟩⊗n =

∑2k0 −1
j=0 ψj |j⟩, ψj ∈ R, it is possible

to prepare a (1, k0 + 3, 0) block encoding UA of
A =

∑2k0 −1
j=0 ψj |j⟩ ⟨j| with O(k0) circuit depth

and O(1) queries to a controlled version of U .
Note that if the amplitudes are real the number
of ancillary qubits required for the block encoding
is k0 + 2.

Here we use this result to create from UL,k0

the unitary UAL,k0
which is a (1, k0 + 2,

0) block encoding of the Hermitian operator

AL,k0 = 1
Ck0

∑2k0 −1
j=0 j |j⟩ ⟨j| that encodes the am-

plitudes of |ΦL⟩k0
with O(k0) circuit depth, see

Appendix C for further details.
An alternative (1, 1, 0)-block encoding UB re-

sulting by following the idea of Ref. [41] could
be implemented by applying the unitary dila-
tion technique [101] to B = 1

2k
0−1

∑2k
0−1

j=0 j |j⟩ ⟨j|,
given that ∥B∥ ≤ 1. This operation would re-
quire an efficient simulation of the Hamiltonian
H = arccos(B) [102]. Discussions of more pos-
sible block encoding for the linear function are
shown in Appendix C.

3.4.2 Polynomial transformation of the block en-
coding

Once that we have obtained the amplitude block
encoding, we show how to implement poly-
nomial transformations of complex amplitudes
via the Quantum Singular Value Transformation
(QSVT) [41, 42, 75, 78, 79]. The construction and
efficiency of explicit quantum circuits for apply-
ing the polynomial transformation to amplitudes
of a k0-qubit quantum state rely on the complex-
ity of implementing the block encoding of the am-
plitudes, denoted as UL,k0 . It is crucial that the
complexity of UL,k0 remains of the order O(k0) to
prevent it from dominating the overall algorith-
mic cost.

Lemma 2 (Lemma 7 in Ref. [79]) Let γ > 0.
Given a (1, k0 + 2, 0) block-encoding UA of
A =

∑2k0 −1
j=0 ψj |j⟩ ⟨j| and P (x) a polynomial

with complex coefficients of degree d, such that
|P (x)| ≤ 1/4 ∀x. Then, it is possible to obtain a
(1, k0 + 5, δ) block encoding UP (A) of P (A) with
O(dk0) circuit depth and O(d) calls to the con-
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trolled version of UA and U †
A. The circuit (rota-

tion angles) can be computed with classical time
complexity of O(poly(d, log(1/γ)) [77,104,105].

By applying Lemma 2 with a polynomial
P (x) to UL,k0 one obtains a block encoding
UP,k0 of P (AL,k0). Additionally, note that due
to the normalization, the values of the ampli-
tudes of the state encoding the linear function
have been renormalized to the interval [0, (2k0 −
1)/
√

(2k0+1 − 1)(2k0 − 1)2k0/6]. Therefore, to
standardize the application of polynomials to the
interval [0,1], we must compose the polynomial
with the rescaling transformation, which keeps
the degree of the polynomial invariant. For sim-
plicity’s sake, we will ignore this transformation
from now on.

3.4.3 Amplitude amplification

We now apply the unitary UP (A) to the initial
state |+⟩⊗k0 |0⟩⊗k0+5. This results into a quan-
tum state 1

4
√

2k0 ||P ||∞

∑
j P (j/Ck0)|j⟩ |0⟩⊗k0+5 +

. . . . The success probability of measuring
|ΦP ⟩k0

= 1
4

√
2k0 ||P ||∞

∑
j P (j/Ck0)|j⟩ |0⟩⊗k0+5 is

given by 0.0625F2
P , with FP being the filling ratio

defined as

F = ||P ||2√
2k0 ||P ||∞

, (19)

and ||P ||∞ = maxx∈[0,1]|P (x)|. Therefore
the quantum amplitude amplification algorithm
would require O(4/F) rounds of the oracle that
prepares the state to boost the success probabil-
ity to 1 [41].

Note that the complexity of this protocol de-
pends on the polynomial encoding that we aim
to achieve. In this sense, some particular trans-
formations will head to an efficient circuit, while
others will introduce an exponential consumption
of resources, depending on the filling ratio F .

Once that we have obtained the state |ΦP ⟩k0

we can tensor it with the state |+⟩n−k0 to ob-
tain a quantum state

∣∣∣Φ(k0:n)
P

〉
n
=|ΦP ⟩k0

⊗|+⟩n−k0

that approximately encodes the polynomial P on
n qubits.

Before concluding this section, we would like
to remark that for the particular case the polyno-
mial transformation satisfies P (0) = 0, one can
use the importance sampling technique recently
presented in Ref. [79] (Theorem 3) to achieve an

exponential enhancement in the overall complex-
ity do to the improvement in the step that en-
codes the transformed amplitudes into the final
state.

3.5 Amplitude deviation in the polynomial en-
coding
Finally, once the polynomial transformation has
been achieved, we can analyze how the error com-
ing from the approximation of loading the exact
k0 qubit polynomial into n qubits. In order to set
a proper comparison with Ref. [41, 42], we com-
pute the error in the same way,

δ = maxx

∥∥∥∥∥ Pexact(x)
||Pexact(x)||∞

− Paprx(x)
||Paprx(x)||∞

∥∥∥∥∥
∞
(20)

for our particular case we assume
||Pexact(x)||∞ = M and therefore

δ = maxx
1
M

∥∥∥∥∥Pexact(x)−Pexact(x± 2n−k0 − 1
2n − 1 )

∥∥∥∥∥
∞

≤ maxx

|P ′(x)|2n−k0 −1
2n−1

M
(21)

If we now assume P (x) =
∑d

k=0 ckx
k, then

δ∞ ≤
d2−d

2
2n−k0 −1

2n−1
M

D (22)

with D = maxk{|ck|}. In the asymptotic limit
this upper bound decays as O( 1

2k0 ).
Note that one might think that it can be much

cheaper to prepare an appropriate product state
and then try to achieve an approximation to the
desired polynomial encoding by applying a poly-
nomial function to the product state via QSVT.
However, since the complexity of the block encod-
ing is not dominated by the oracle that loads the
linear function, a reduction in complexity would
not be achieved. Additionally, due to the approx-
imation of MPS,this leads to a non-uniform grid
discretization would result in a higher overall er-
ror when transforming the amplitudes.

4 Numerical Results
Having established the theoretical framework,
in this section we present numerical simulations
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Method F L2 norm Fidelity
DHWT (k0 = 1) + QSVT 0.8164 0.1506 0.0753
DHWT (k0 = 2) + QSVT 0.6864 0.1486 0.0858
DHWT (k0 = 3) + QSVT 0.6331 0.0828 0.6095
Direct Pol MPS (χ = 1) - 0.0752 0.6712

Lin MPS (χ = 1) + QSVT - 0.0701 0.7099
DHWT (k0 = 4) + QSVT 0.6190 0.0370 0.9144
Direct Pol MPS (χ = 2) - 0.0252 0.9597

DHWT (k0 = 5) + QSVT 0.6183 0.0141 0.9874
Direct Pol MPS (χ = 3) - 0.0049 0.9985

DHWT (k0 = 6) + QSVT 0.6184 0 1
Direct Pol MPS (χ = 4) - 0 1

Table 3: Error in L2 Norm (fourth column) and Fidelities (fifth column) for Different Loading Methods of
P (x) = 1

Cp
(x − 1/(2n − 1))(x − 20/(2n − 1))(x − 50/(2n − 1))(x − 60/(2n − 1)) defined on [0, 1]. Methods

are arranged in ascending order based on fidelity of the polynomial encoding (fifth column). We also show the fidelity
of loading the linear functions for those 2 steps methods (second column) and the filling ratio F (third column) for
the different k0 values.

comparing the methods outlined in this paper.
The primary objective is to provide empirical sup-
port for our analytical findings.

4.1 Linear function

We begin our analysis by evaluating the perfor-
mance of the exact and approximated loading of
the linear function and its its robustness in terms
of fidelity against noise.

When performing noisy simulations, the quan-
tum circuit is transpiled to a native set of gates,
including CNOT, Id, Rz (θ), X, and Sx. We
consider various noise quantum channels, namely,
bit-flip (Pbf), amplitude-damping (T1), dephas-
ing (T2), gate errors (rD, CNOT error), and mea-
surement error (pmeas). The specific noise pa-
rameters used in the simulations are summarized
in Tab. 2.

The analysis of loading the linear function is
depicted in Fig. 4, where we have considered
n = 6 qubits. In Fig. 4 (i) we have depicted a
comparison of the ideal case χ = 1 for the MPS
technique, the noisy and ideal cases with k0 = 3
for the DHWT, and the exact encoding. In Fig. 4
(ii) and (iii), we observe a trade-off between the
truncation error and the experimental error for
different values of k0 when using the DHWT tech-
nique. The two figures of merit considered are
the fidelity and the L2 norm, which is defined as

∥v⃗∥2 =
(

1
2n

∑
|vi|2

)1/2
, where v⃗ corresponds to

the difference between the approximation and the

ideal quantum state. We observe that the high-
est fidelity and the smallest L2 norm error are
achieved at truncation levels k0 = 2 and k0 = 3.
In the comparison, we also include the ideal MPS
with χ = 1.

4.2 Example of polynomial function
We present a second analysis where we consider
the encoding of a polynomial function. In Fig. 5,
we present the loading of the polynomial function

P (x) = 1
Cp

(x− 1/(2n − 1))(x− 20/(2n − 1))

(x− 50/(2n − 1))(x− 60/(2n − 1)),

with Cp the normalization factor, by using n = 6
qubits and the two methods studied in this pa-
per. Our approach involves two distinct load-
ing strategies: first, loading the linear function
and then applying the polynomial transformation
with the QSVT method, ensuring no induced er-
rors (Figs. 5 (i) and (ii)), and second, using the
matrix product state (MPS) representation of the
polynomial itself (Fig. 5 (iii)). For additional ex-
amples see Appendix D.

In order to load the linear function, we utilize
either the DHWT method introduced in this work
for different truncation values k0, or the MPS ap-
proach with χ = 1. In Tab. 6 we show the L2
norm and fidelity of the final state with respect
to the exact state for each methodology. We ob-
serve that for k0 ≥ 5, the value of the fidelity
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(iii)

Figure 5: Different methods to load the polynomial function P (x) = 1
Cp

(x − 1/(2n − 1))(x − 20/(2n − 1))(x −
50/(2n − 1))(x− 60/(2n − 1)) for n = 6 qubits using different methods. For this particular example the filling ratio
for k0 = 6 is F = 0.6184. The worst and best implementation methods in which the linear function is loaded first,
followed by the application of QSVT are displayed in (i) and (iii), respectively. In (ii), results for the loading using
MPS are shown, achieving perfect loading with χ = 4, although theory predicts χ = 5 as the upper bound. The L2
norm and fidelities for each case are displayed in Tab. 6.

achieved by the combined protocol is better than
the direct polynomial MPS technique with χ = 2.

Additionally, the fidelities resulting from com-
bining the approximate loading of the linear func-
tion with the QSVT to perform the polynomial
transformation are presented. Remarkably, the
loading of the linear function via a χ = 1 MPS
achieves a fidelity of F = 0.9885. This suggests
that the quantum state of the linear function is
nearly a product state. To gain deeper insights,
we performed an analysis of the single-qubit ro-
tations that generate this approximate state. We
fitted the angles of the rotations to an analyt-
ical expression and leveraging this fitting infor-
mation, we trained a variational circuit aimed at
preparing a product state that optimizes the fi-
delity with respect to the exact linear function.
It is crucial to emphasize that the effectiveness of
the fitting is not guaranteed across different num-
ber of qubits, hence we undertook this approach
as a validation method. For additional details,
please refer to the Appendix B.

5 Comparison with other methods

The first statement we would like to highlight
is that we have put large part of our efforts in
achieving an approximate loading of functions as
simple as the linear function, by introducing a
controllable error that reduces the depth of an
already efficient circuit. As far as our knowledge
is, there is no previous result in the literature that
can do the same task with a comparable perfor-
mance. That being said, we proceed to compare

our method with similar results.

The QSVT enables the application of poly-
nomial transformations to the amplitudes of a
quantum state. However, when utilizing this
technique to load a polynomial function encoded
in the quantum state’s amplitudes, the efficient
loading of the linear function is crucial. Previ-
ously in literature, authors in Ref. [41, 42] ex-
plored the possibility of applying the QSVT to
block encoding of the sine function. Our method
posses the same advantages of using QSVT that
they mention: ‘we avoid discretizing the values
the function can take, providing instead a contin-
uous approximation to the function. Our method
is straightforward and versatile, as the same cir-
cuit template can be used for a wide range of
functions. In contrast, our method avoids the er-
ror that propagates into the final loaded state due
to the polynomial approximation of the arcsin
function by efficiently loading the block encod-
ing of linear function, and the subsequent poly-
nomial transformations applied to load the de-
sired polynomials into the amplitudes. In this
context, our approach focuses on implementing
the block encoding of the linear function rather
than the sinusoidal function. To achieve this, we
have proposed a method based on the Hadamard-
Walsh Transform. The cost of this replacement
in the block encoding can me mainly expressed
in terms of adding n + 1 extra ancillary qubits
to the circuit, see Tab. 4 for comparison. From
this table we can observe that or the encoding of
a polynomial without error, our algorithm scales
with the same complexity as [41, 42] with the er-
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Sine encoding [41, 42] This work QSVT MPS
Block encoding 1+2 Ancillas (n+2)+2 Ancillas n/a

O(n) Gates O(n) Gates [78,79]
Exact block encoding n/a O(nd) O(n2d)

poly degree d
Approximated block O(n d(δ∞)) [41] O(d k0(δ∞)) O(n) (χ = 2)

encoding d(δ∞) ∼ log(B/δ∞)
ν k0(δ∞) ∼ log

(
D(d2−d)
2δ∞M

)
Non controllable

poly degree d ν = 1 − sin((2n − 1)/2n) error
Amplitude Amplification O(n d(δ∞)/F) O(k0(δ∞)d/F) n/a

Table 4: Comparison between the methodology proposed in Refs. [41, 42] and the current work, with
||Pexact(x)||∞ = M , F the filling ratio, D = maxk{|ck|} and δ∞ = ||P (j)/||P (j)||∞ − P̃ (j)/||P̃ (j)||∞||∞,
where P =

∑d
k=0 ckx

k is the exact polynomial and P̃ its approximation, and B ≥
∑

k |ck|. We neglect amplitude
amplification and precomputational errors and complexities. In both cases where QSVT is used we have assumed no
error in the classical preporcesing of the angles needed to implement the polynomial transformation.

ror resulting from the arcsin approximation. In
order to explore the polynomial degree overhead
needed in the methodology presented in Ref [41]
to encode a polynomial into amplitudes of a quan-
tum state we present Tab. 5. Additionally, our
methodology allows the introduction of a control-
lable error that reduces the complexity of the ex-
act case for the encoding of polynomial functions.
In the general case of loading an arbitrary func-
tion the trade off between the additional resources
of our protocol versus the approximation of arc-
sin should be taken into account. For instance,
[41,42] are more efficient for loading trigonomet-
ric polynomials.

In addition to QSVT-based methods, there
have been approaches utilizing matrix product
states (MPS) for the loading of smooth differ-
ential real-valued functions (SDR) into quantum
state amplitudes [60, 61, 63, 69]. Ref. [61] shows

Degree d Fidelity
4 0.0736
8 0.4969
10 0.8477
12 0.9672
14 0.9931
16 0.9985
18 0.9997
20 0.9999

Table 5: Fidelities corresponding to different degrees
of the approximation polynomial employed to load
P (x) = 1

Cp
(x− 1

2n−1 )(x− 20
2n−1 )(x− 50

2n−1 )(x− 60
2n−1 )

using the method outlined in Ref. [41].

that for such functions, favorable outcomes can
be obtained by employing a fixed bond dimen-
sion of two, attributed to the logarithmic scal-
ing of entanglement entropy in these cases [62].
In this paper, we have explored the resource re-
quirements of this approach and compare it to our
linear function+QSVT approach, specially in the
case of loading of the linear function, for which we
have analytical expressions for fidelity and error
propagation.

Considering a different perspective, it was re-
cently proposed the use of the Hadamard-Walsh
series [58] for amplitude encoding. This proposal
leverages the fact that for functions whose deriva-
tive is bounded, the error resulting from trun-
cating their discrete Hadamard-Walsh Series is
exponentially suppressed with the index of the
truncation [103]. The authors use Hamiltonian
simulation techniques presented in [99] to achieve
a Hadamard-Walsh approximated simulation of
the unitary U = e−if̂ϵ0 with error ϵ1, where
f̂ =

∑
x f(x) |x⟩ ⟨x| is the operator correspond-

ing to the target function to be encoded. Finally
they use an ancillary qubit to generate the oper-
ator −i(I− e−if̂ϵ0) acting on the state

∑
x |x⟩ |1⟩,

which approximates the target state to first or-
der of ϵ0 and introduces a protocol conditioned to
the probability of measuring the ancillary qubit
in the state |1⟩. Therefore the total protocol in-
troduces two sources of error, ϵ1 corresponding to
the truncation of the Hadamard-Walsh series and
ϵ0 corresponding to the Taylor expansion. This
technique introduces an error for loading func-
tions even for those cases in which ϵ1 = 0, as
in the linear case. By contrast our subroutine
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that uses the DHWT leverages the sparsity of
the series corresponding to polynomial functions
to efficiently generate quantum circuits that en-
code the states directly into the amplitudes. Ad-
ditionally, this state loading algorithm based on
the Hadamard-Walsh transform is not as efficient
as our methodology for the application of loading
the linear function, which is an important factor
when loading the linear function for the deriva-
tive pricing use case.

Finally, we remark that our method is not lim-
ited by the condition of a bounded derivative of
the target function, as is the case for the MPS [61]
or the Hamiltonian simulation based on DHWT
[58].

6 Conclusions

In this article, we have considered the problem
of loading real polynomials into a quantum com-
puter, with a particular focus on the encoding of
the linear function. We have presented and re-
viewed two methodologies based on different ap-
proaches. The first method is based on matrix
product states, and even though it offers compet-
itive results for some particular cases [61], it is dif-
ficult to precisely control the error the method in-
curs. The second algorithm introduced in this pa-
per utilizes the discrete Hadamard-Walsh trans-
form (DHWT) to achieve the block encoding of
the amplitudes which is fed into the quantum
singular value transformation (QSVT) in order
to apply a polynomial transformation to the am-
plitudes.This technique is able to exactly encode
polynomials with same complexity as previous
works [41,42] that incurred into an approximation
error. Furthermore we have been able to reduce
the complexity of the protocol via introducing a
controllable error.

Using this technique based on the DHWT, the
coefficients of the Hadamard-Walsh series of a
given function are loaded into a quantum state
and the inverse discrete Hadamard-Walsh trans-
form (DHWT) is applied to achieve the ampli-
tude encoding of the target function. This idea
constitutes a novel and promising approach for
functions whose Hadamard-Walsh series can be
efficiently encoded, as for instance when it sparse
[54] or efficiently truncated [99].

We would like to remark that even though our
work has been focused on encoding real polyno-

mials, it could be easily extended to load polyno-
mials valued on complex values, i.e. P : C → C ,
multivariate polynomials or even non-linear func-
tions approximated with polynomials [41, 78, 79].
Future work will consider the feasibility of using
our DHWT-based method to load highly discon-
tinuous square wave-like functions.
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Appendix A Proofs
In this appendix we derive the expression shown in Eq. 11. Let us first consider the exact state
corresponding to the Walsh Hadamard series∣∣∣Φ̃L

〉
= 1
C̃

∑
|k|b≤1

x
(n)
k |k⟩ = x(0)

n |0...0⟩ + x(20)
n |0...1⟩ + ...+ x(2n−1)

n |1...0⟩

with C̃ = 2n/2
√(

2n−1
2

)2
+ 22n−1

12 . If we truncate keeping the largest k0 values with |k|b = 1 and x(n)
0 ,

the renormalized state results∣∣∣Φ̃k0
L

〉
= 1
C̃k0

∑
|k|b≤1

x(k)
n |k⟩ = x0

n |0......0⟩ + x2n−k0
n |0...1...0⟩ + ...+ x(2n−1)

n |1......0⟩

with C̃k0 = 2n/2
√(

2n−1
2

)2
+ 1

12
(
22n − 22(n−k0)). When we calculate

∣∣∣∣⟨Φ̃L|Φ̃L⟩k0

∣∣∣∣2 =
(
C̃k0

C̃

)2

and manipulating this expression, this lead to Eq. 11.

Appendix B Variational circuit for linear function
In this article, we investigated the loading of a linear function using an MPS (Matrix Product State)
with a bond dimension of χ = 1, which yielded remarkably high fidelities. These high fidelities suggest
that the linear function closely resembles a product state, given that an MPS with χ = 1 can be
efficiently constructed using single qubit rotations Ry(θ). Building on this insight, our focus in this
section is to develop a variational algorithm to find the optimal angles that maximize the fidelity of
our linear function approximation within a product state framework.

To initiate the process, we derived the angles from the MPS with bond dimension 1 for a system of
n = 8 qubits. Subsequently, we performed an analytical fitting for the angles, given by

θq = exp
(
exp

(
−q0.9/1.23

)
− 0.24

)
, (23)

where q ranges from 1 to 8, representing each qubit. The fitting results are depicted in Fig. 6.
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Figure 6: Angles of the single qubit rotations to load the linear function through an MPS with χ = 1 for n = 8 and
its analytical fitting.
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Moving on to our variational model, we utilized a system with n = 6 qubits, aiming to maximize
the fidelity of the linear function. We initialized the angles based on the fitting provided by Eq. 23.
To optimize this process, we employed gradient descent and employed the squared L2 norm as the loss
function to quantify the disparity between the exact linear function and the predicted state. For the
n = 6 qubit system, the fidelity between the exact linear function and the one obtained from the MPS
with χ = 1 was FMPS = 0.9875747. After the training, our variational model achieved an improved
fidelity of Fvar = 0.9875750.

Appendix C Block Encoding of Real-valued Statevector Amplitudes
In this paper we are primarily concerned applying the methods of Ref. [78] to loading polynomial
functions into quantum registers. In order to achieve this, we introduced an amplitude encoding of the
linear function UL : |0⟩n 7→ |ΦL⟩ ∝

∑
j j|j⟩n. The unitary UL is used to construct a block-encoding UA

of a matrix A ∝ diag(0, 1, ..., 2n − 1) to which the either the QSVT can be applied to transform the
diagonal entries by an arbitrary polynomial; alternatively products and linear combinations of these
block-encodings can be used to more efficiently encode low degree polynomials. In this appendix, we
consider how the methods of Ref. [78] have been improved upon by Ref. [79] in order to efficiently
construct the block-encoding UA.

When constructing the block-encoding UA, we are concerned with the special case where the stat-
evector amplitude loading unitary U |0⟩n =

∑
j ψj |j⟩n has real-valued amplitudes ψj ∈ R i.e., U = UL.

In order to construct UA, we first must define several unitary operators. Following the notation intro-
duced in Ref. [79], we first define the operator W0

W0 := (In ⊗H ⊗ In)CUC(In ⊗H ⊗ In) (24)

where UC and C are defined as

UC := (U ⊗ |0⟩⟨0|1 + In ⊗ |1⟩⟨1|1) ⊗ In (25)

C := In ⊗ |0⟩⟨0|1 ⊗ In +
2n−1∑
k,j=0

|j ⊕ k⟩⟨j|n ⊗ |1⟩⟨1|1 ⊗ |k⟩⟨k|n (26)

UC is implemented using a controlled version of the amplitude loading unitary U and C is "controlled-
copy" circuit which can be implemented with a cascade of n Toffoli gates, see Ref. [79] for more details.

The W0 operator sends states |0⟩n|0⟩1|k⟩n to |Φ0
k⟩ = 1

2((|ψ⟩n + |k⟩n)|0⟩1 +(|ψ⟩n −|k⟩n)|1⟩1)|k⟩n. The
W0 operator is used to construct another operator G0 which is defined as

G0 := W0((In+1 − 2|0⟩⟨0|n+1) ⊗ In)W †
0 (In ⊗ Z ⊗ In) (27)

The operator G0 has the important property that |Φ0
k⟩ are its eigenvectors with eigenvalues ψj ∈ R.

G0 and its inverse G†
0 can then be used to construct the desired (1, n + 2, 0)-block-encoding UA of

A = diag(ψ0, ψ1, ..., ψ2n−1),

UA := (XZX ⊗ I2n+1)(H ⊗W †
0 )(|0⟩⟨0|1 ⊗G0 + |1⟩⟨1|1 ⊗G†

0)(H ⊗W0) (28)

As stated in Ref. [79], UA can be implemented with O(n) circuit depth, 3 queries to a controlled-U
gate and 3 queries to an inverse controlled-U gate.
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Additionally, one can also consider some alternative ways to achieve the block encoding of the linear
function

• Using the rotation oracle acting on
∑

x |x⟩ |0⟩ [48]:

rot |x⟩ |0⟩ → |x⟩ (sin(θ) |0⟩ + cos(θ) |1⟩),

where θ is a m bit approximation to arcsin(x). To implement this procedure, the quantum
computer would calculate θ, store the value in m ancillary registers, and use that register as the
control for a sequence of rotation operations on the qubit. Therefore this step incurs into the use
of coherent arithmetics.

• Using the comparing oracle acting on
∑

x |x⟩ |0⟩n |0⟩. We firstly implement the Amplitude oracle
that encodes the uniform superposition in a secondary ancilla register |x⟩,

amp |x⟩ |0⟩n |0⟩ → 1
2n

∑
y

|x⟩ |y⟩ |0⟩ .

This can be straightforwardly done by applying a layer of Hadamard gates to n ancillary qubits.

Next we use the comparison oracle [49]

comp |x⟩ |y⟩ |0⟩ →


|x⟩ |y⟩ |0⟩ if x < y

|x⟩ |y⟩ |1⟩ if x ≥ y

By composing this two oracles, comp◦amp, and apply them to the initial state
∑

x |x⟩ |0⟩n |0⟩, and
subsequently erasing the n-ancilla register, one obtain the state |x⟩ (x/2n |0⟩ +

√
1 − (x/2n)2 |1⟩).

The complexity of this protocol is O(n) and uses n+ 1 ancillas for the block encoding. Therefore,
this is an equivalent methodology to achieve the same result that we have presented in the main
text.

• Using Hamiltonian simulation techniques applied to the unitary dilation of B. As we already men-
tion in the main text, by applying the unitary dilation technique [101] to B = 1

2n−1
∑2n−1

n=0 j |j⟩ ⟨j|,
given ∥B∥ ≤ 1. This operation would require an efficient simulation of the Hamiltonian
H = σ̂y ⊗ arccos(B). This leads to the block encoding unitary

U =
(

B
√

1 −B2
√

1 −B2 −B

)
= (σ̂z ⊗ I) exp (iσ̂y ⊗H) ,

which is a (1, 1, 0)-block encoding, and could be efficiently implemented with the techniques
shown in Ref. [102].
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Appendix D Additional numerical examples
Here we provide two more numerical experiments for n = 6 qubits for two different polynomials.

P1(x) P1(x) P1(x) P2(x) P2(x) P2(x)
Method L2 norm Fidelity poly F L2 norm Fidelity poly F

Lin MPS (χ = 1) + QSVT 0.0790 0.6408 - 0.0570 0.8026 -
DHWT (k0 = 1) + QSVT 0.1715 0.0034 0.7234 0.2357 0.6044 0.8539
DHWT (k0 = 2) + QSVT 0.1889 0.0202 0.5801 0.1522 0.0671 0.7884
DHWT (k0 = 3) + QSVT 0.1339 0.1818 0.5542 0.0700 0.7112 0.7010
DHWT (k0 = 4) + QSVT 0.0647 0.7498 0.5023 0.0304 0.9418 0.6677
DHWT (k0 = 5) + QSVT 0.0252 0.9598 0.4730 0.0115 0.9915 0.6539
DHWT (k0 = 6) + QSVT 0 1 0.4621 0 1 0.6551
Direct Pol MPS (χ = 1) 0.0885 0.5619 - 0.0763 0.6622 -
Direct Pol MPS (χ = 2) 0.0291 0.9467 - 0.0105 0.9930 -
Direct Pol MPS (χ = 3) 0.0134 0.9885 - 0.0014 0.9999
Direct Pol MPS (χ = 4) 0 1 - 0 1 -

Table 6: Error in L2 Norm and Fidelities for Different Loading Methods of two different polynomials P1(x) = 1
Cp

(x−
2/(2n − 1))(x− 16/(2n − 1))(x− 40/(2n − 1))(x− 50/(2n − 1))(x− 62/(2n − 1)) and P1(x) = 1

Cp
(x− 2/(2n −

1))(x− 32/(2n − 1))(x− 60/(2n − 1)). We also provide the filling ratios F for the different k0 values
.
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Figure 7: Various approaches for loading polynomial functions P1(x) = 1
Cp

(x − 2
2n−1 )(x − 16

2n−1 )(x − 40
2n−1 )(x −

50
2n−1 )(x− 62

2n−1 ) in the upper portion of the figure and P2(x) = 1
Cp

(x− 2
2n−1 )(x− 32

2n−1 )(x− 60
2n−1 ) in the lower

portion for n = 6 qubits.
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