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Simulating the dynamics of large quantum systems is a formidable yet vi-
tal pursuit for obtaining a deeper understanding of quantum mechanical phe-
nomena. While quantum computers hold great promise for speeding up such
simulations, their practical application remains hindered by limited scale and
pervasive noise. In this work, we propose an approach that addresses these
challenges by employing circuit knitting to partition a large quantum system
into smaller subsystems that can each be simulated on a separate device. The
evolution of the system is governed by the projected variational quantum dy-
namics (PVQD) algorithm, supplemented with constraints on the parameters
of the variational quantum circuit, ensuring that the sampling overhead im-
posed by the circuit knitting scheme remains controllable. We test our method
on quantum spin systems with multiple weakly entangled blocks each consist-
ing of strongly correlated spins, where we are able to accurately simulate the
dynamics while keeping the sampling overhead manageable. Further, we show
that the same method can be used to reduce the circuit depth by cutting
long-ranged gates.

1 Introduction
Quantum computers are promising tools for simulating quantum systems [1–6]. Partic-
ularly, the efficient simulation of quantum dynamics can provide insightful information
about the nature of physical phenomena at the microscopic scale [7–12]. However, the
practical utility of quantum devices is currently constrained by limitations in scale and
the effects of noise [13–16]. While the size of available quantum computers is steadily
growing [17], most publicly available devices are still very limited in size. In order to
extend the capabilities of Noisy Intermediate-Scale Quantum (NISQ) devices [18], sev-
eral schemes have been proposed to partition large systems into small clusters that can
be solved individually on smaller quantum hardware [19–34]. To combine the solutions
and recover the entanglement between the subsystems, classical resources are usually em-
ployed. Hence, ultimately, these hybrid quantum-classical computing approaches allow for
quantum simulations on a larger scale.

Developing strategies for efficiently partitioning quantum computations is especially timely,
as one of the focuses of the next generation of quantum processors lies in connecting mul-
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tiple medium-size quantum chips, allowing for parallelization of quantum simulations with
real-time classical communication [17]. This strategy is of particular utility if each subsys-
tem that is simulated on a separate device is itself highly entangled and, hence, difficult to
simulate classically. On the other hand, the entanglement between the partitions should
be weak such that classical methods can be efficiently employed to recombine the subsys-
tems. The idea of splitting a quantum system into subsystems can also be motivated by the
underlying physical or chemical processes. Several interesting physical systems naturally
allow for partitioning into weakly-entangled subsystems such as ground and low-energy
eigenstates of local lattice Hamiltonians [35–37] and molecules [38], as well as quantum
impurities immersed in a bath [39,40].

Two prominent hybrid quantum-classical schemes that combine multiple quantum circuits
using classical post-processing are entanglement forging [28–30] and circuit knitting [19–
23]. Entanglement forging relies on the fact that a bipartite quantum state can always
be written in the Schmidt decomposition. This enables a classical computer to combine
the states of two systems implemented on separate quantum devices. If the two systems
are weakly entangled with each other, a small number of Schmidt coefficients suffices for a
good approximation of the full solution. Crucially, entanglement forging is limited to two
subsystems, as the Schmidt decomposition cannot be applied to general multipartite states.
Circuit knitting, on the other hand, employs quasi-probability distributions to cut gates
that span across different systems into locally realizable quantum channels. This allows
to arbitrarily cut a quantum circuit into multiple subsystems. However, this technique
imposes a sampling overhead that scales exponentially in the number of gates cut.

In this work, we propose a method for quantum time evolution that splits a quantum
circuit ansatz into multiple subsystems using circuit knitting while keeping the sampling
overhead controlled. This is achieved by imposing a constraint on the circuit parameters
during the optimization of the variational quantum circuit.

We employ this method to simulate the dynamics of quantum systems using the projected
variational quantum dynamics (PVQD) algorithm [41]. While there have been imple-
mentations of quantum-classical hybrid schemes to quantum dynamics using perturbation
theory [34] or by leveraging mean-field corrections and auxiliary qubits [31], an applica-
tion to variational quantum dynamics is largely missing in the literature. The task is
non-trivial, as evolving a parameterized quantum state in time either requires measuring
(complex) matrix elements of the geometric tensor [42–45] or fidelities between quantum
states [41, 46]. This poses a challenge to entanglement forging, where the ansatz is given
by a superposition of quantum circuits. There, measuring overlaps is expensive and usu-
ally requires non-local circuits such as Hadamard-tests [47]. Instead, in the framework
of circuit knitting, fidelities can be straightforwardly computed using, for example, the
compute-uncompute method [48] without introducing any ancilla qubits or long-ranged
gates.

We test our method on spin systems in a transverse field Ising model, where we weakly
couple multiple blocks of strongly correlated spins. We show that with a realistic sampling
overhead, we can significantly improve the accuracy of the simulation compared to a pure
block product approximation, which does not consider any entanglement between different
blocks. Furthermore, the trade-off between the sampling overhead and the accuracy of
the variational state can be tuned in a controlled way via a single hyperparameter of the
optimization. Finally, we demonstrate that our scheme can also reduce the required circuit
depth when simulating models containing long-range interactions.
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The structure of this paper is as follows: In Section 2, we explain how we use PVQD and
circuit knitting techniques to evolve a quantum circuit ansatz in time while keeping the
sampling overhead controlled. In Section 3, we test our method on quantum spin systems
in a transverse field Ising model for different setups. Finally, in Section 4, we discuss the
results and provide an outlook on possible future applications of the method.

2 Methods
We consider the dynamics of a quantum system represented by a Hilbert space partitioned
into N individual subsystems (called blocks) H = H1 ⊗H2 ⊗ · · · ⊗ HN , where the blocks
are simulated either in parallel on separate quantum devices or sequentially on the same
machine. While the qubits within one block can be highly entangled, we impose that
the entanglement between blocks is weak, such that it can be recovered efficiently using
classical resources.

2.1 Projected variational quantum dynamics
We perform the dynamics of the system governed by a Hamiltonian H using the projected
variational quantum dynamics (PVQD) algorithm [41]. While traditional trotterized time
evolution requires circuits that grow in depth with increasing evolution time t, the advan-
tage of variational algorithms such as PVQD is that the circuit depth remains constant
over the whole evolution. PVQD evolves the parameters θ of a quantum circuit ansatz
|ψ(θ)⟩ in time, by minimizing the infidelity

θt = arg min
θ

[
1−

∣∣ ⟨ψ(θ)| e−i∆tH |ψ(θt−1)⟩
∣∣2] (1)

at every time step t. This ensures that |ψ(θt)⟩ is the state within the manifold defined by
the ansatz that is closest to the true time-evolved state e−i∆tH |ψ(θt−1)⟩. Here, the time
evolution unitary e−i∆tH can be expanded into gates using the Trotter-Suzuki decompo-
sition of the first order for which the introduced error scales as O(∆t2). In our case, the
time step ∆t is chosen to be small to keep the error negligible.

Crucially, PVQD only requires measuring fidelities between two quantum states. This can
be achieved by sampling from hardware efficient circuits, in contrast to other variational
methods such as the time-dependent variational principle (TDVP) [42–45], where complex-
valued state overlaps need to be measured using for example Hadamard-tests.

The fidelity between two quantum circuits is usually obtained using the compute-uncompute
method [48], in which one measures the probability of retrieving the all-zero bit string af-
ter evolving the circuit in Eq. (1). The optimization of this global loss function is known
to be prone to cost function-dependent barren plateaus [49], i.e. the gradients vanish
exponentially fast in the number of qubits n. It has been shown that for small enough
time steps ∆t, PVQD is not affected by this problem as the initial guess |ψ(θt−1)⟩ has a
non-zero overlap with the target state e−i∆tH |ψ(θt−1)⟩ [41, 50]. In addition, in the fol-
lowing experiments, we further increase the variance of the gradient by measuring a local
observable with the same maximum as the global fidelity. The observable is defined as
averaging over the local |0⟩ ⟨0| projectors

Oloc = 1
n

n∑
k=1

1
⊗k−1 ⊗ |0⟩ ⟨0| ⊗ 1⊗n−k. (2)

Accepted in Quantum 2024-03-16, click title to verify. Published under CC-BY 4.0. 3



2.2 Circuit knitting
Performing any measurements on the variational state defined on the composite Hilbert
space H = H1⊗H2⊗· · ·⊗HN requires running circuits spanning across all blocks. To real-
ize measurements on circuits of smaller sizes, we utilize circuit knitting techniques [19–23]
to cut cross-block gates and recover the entanglement using additional circuit evaluations
and classical post-processing. Circuit knitting allows decomposing a global quantum chan-
nel U acting on a quantum state ρ into locally realizable quantum channels E i

k according
to a quasi-probability decomposition (QPD)

U [ρ] =
K∑

k=1
αkE1

k ⊗ E2
k ⊗ · · · ⊗ EN

k [ρ], (3)

for K ∈ N and αk ∈ R. In our specific case, U will be the channel defined by a unitary
gate acting on qubits of separate blocks Hi ⊗Hj , ρ = |ψ⟩ ⟨ψ| is the pure state defined by

the circuit prior to applying this gate, and {E i
k, E

j
k} are the corresponding set of channels

that act locally only within each subsystem Hi or Hj .

In practice, for every circuit evaluation, the global channel U is replaced by some locally
realizable channel Ek = E1

k ⊗ · · · ⊗ EN
k sampled according to the probability distribution

defined by pk ∝ |αk|. While the QPD provides an unbiased estimator of the true expecta-
tion value of the measurement, the sampling cost required to achieve the same precision
increases. Crucially, some of the αk can be negative, which leads to a sampling overhead
of

ω(U , {E i
k}k,i) =

(∑
k

|αk|
)2

. (4)

This overhead is multiplicative1 and, hence, scales exponentially in the number of gates
that are cut.

2.3 Overhead constrained PVQD
The circuit that needs to be run to evaluate the fidelity in Eq. (1) is composed of gates
arising from the Trotter step unitary e−i∆tH and gates in the variational ansatz state
|ψ(θ)⟩ = U(θ) |0⟩ that potentially span across multiple blocks and thus have to be cut (see
Fig. 1). For the Trotter gates, we restrict the analysis to 2-local Hamiltonians, such that
the multiqubit gates appearing in the Trotter expansion are given by two-qubit rotations
defined as e−i∆tJijσi⊗σj , for Pauli operators σi, σj ∈ {X,Y, Z} and coupling coefficients
Jij ∈ R2. The sampling overhead imposed by cutting a single instance of this gate with

the optimal decomposition is given as ωJij =
(
1 + 2| sin(2∆tJij)|

)2
[22, 23]. For the time

evolution to be accurate, we require ∆t to be small. Moreover, we consider only cases in
which the coupling Jij between qubits of different blocks is weak. Hence, we can assume
∆tJij ≪ 1, and thus, ωJij is close to 1. If the Trotter step requires a total of L such gates
to be cut, the overhead scales as ω∆t = ωL

J , where for simplicity, we take Jij = J ∀ij.
While this scales exponentially in the number of gates, the base is small, and for a finite
number of blocks, the overhead remains manageable.

1In general, the overhead is sub-multiplicative as, for the combination of multiple gates, a more efficient
QPD can be found [23,51,52]. In order to allow for a straightforward implementation of the circuit knitting
scheme, in the following, we nevertheless assume a multiplicative sampling overhead.

2This case includes widely studied spin-1/2 Hamiltonians like the Ising or Heisenberg models. However,
our framework can be extended to Hamiltonians with k-local interactions.
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Figure 1: Circuits used to measure the (local) fidelity between the time evolved state
e−i∆tHU(θt−1, φt−1) |0⟩ = e−i∆tH |ψ(θt−1, φt−1)⟩ and the ansatz |ψ(θ, φ)⟩ required for a PVQD
optimization step. We cut the circuits into distinct blocks (indicated by the red dashed lines), which
can each be simulated on a separate quantum device. In the experiments considered in this work,
the single-qubit gates are realized using RX rotations, while the two-qubit gates correspond to RZZ

rotations. Gray-shaded gates are fixed by the parameters of the last time step t, while the parameters of
the blue-shaded gates are varied to optimize Eq. (6). This structure is repeated d times to increase the
expressibility of the ansatz.The trotterized time evolution unitaries are colored yellow. Left panel: Block
product ansatz (BPA*) where the only entangling gates between different blocks appear in the Trotter
step. (In a pure block product approximation (BPA) all inter-block gates are omitted, including the
ones arising in the time evolution step.) Right panel: Circuit knitting ansatz (CKA). Here, additional
entangling gates between the different blocks are introduced into the ansatz. For clarity, the parameters
of these dashed, light-colored gates are labeled φ, whereas θ denotes the angles of all other gates that
do need to be cut.

For the cross-block gates introduced by the variational state U(θ), the analysis is less
straightforward, as generally, the ansatz can be constructed from an arbitrary gate set.
Many commonly used ansatzes consist of parameterized single-qubit rotations followed by
CNOT gates that impact the entanglement. Cutting a CNOT gate, however, comes at a
fixed cost of ωCNOT = 9. Even when employing more intricate cutting schemes that reduce
the overhead of cutting n CNOT gates simultaneously, the sampling overhead grows as
ωCNOT⊗n = (2n+1 − 1)2 [51]. An alternative class of two-qubit gates that allow more
control over the sampling overhead when being cut are parameterized two-qubit rotations
such as those appearing in the Trotter decomposition. If one cuts M two-qubit rotations
with angles φ1, . . . φM , the multiplicative sampling overhead needed to evaluate the PVQD
loss function with the circuit knitting scheme is given as

ω(φ) = ω∆t ·
(

M∏
i=1

(
1 + 2| sin(φi)|

)2)2

, (5)

where ω∆t is the overhead due to cutting the Trotter step, and the additional square
appears due to doubling the circuit (see Fig. 1). The total overhead can become extremely
large if the angles φi are unbound. A way to circumvent this issue is to employ a block
product ansatz that does not introduce any entangling gates between different blocks. This
ansatz is shown in Fig. 1 on the left and labeled as BPA* to distinguish it from a pure
block product approximation (BPA) where also the entangling Trotter gates are omitted.
While the BPA* comes at a minimal sampling overhead, it is not able to capture any
entanglement between different blocks. Even for weakly entangled systems, the ansatz
is thus expected to fail after evolving the system for a long enough time. Hence, it
becomes necessary to add parameterized entangling gates between different blocks of the
ansatz state (see right panel of Fig. 1). We refer to this type of ansatz as circuit knitting
approximation (CKA).
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Figure 2: Solving the constrained optimization problem defined in Eq. (6) to evolve the ansatz state
by one-time increment. The optimization starts at the parameters of the last time step t − 1. In
every iteration, the parameters are first updated to maximize the fidelity with respect to the true time
evolved state using an ADAM [53] update step (blue arrow). After the update, the multiplicative
sampling overhead ω(φ) is computed according to Eq. (5) and compared against the threshold τ . In
case ω(φ) > τ , the parameters are projected onto the manifold of ω(φ) ≤ τ (orange dashed arrow).
This procedure is repeated until the parameters converge; the final point is labeled as φt,τ . In contrast,
the path on the top represents the usual, unconstrained optimization with no predefined threshold that
converges to different parameters φt,∞ which, however, incur an uncontrolled sampling overhead.

In order to keep the overhead ω controllable throughout the optimization of the CKA,
we add a constraint to the optimization of Eq. (1) such that ω is always bound by a
threshold τ > 1

θt, φt = arg min
θ,φ

[
1−

∣∣ ⟨ψ(θ, φ)| e−i∆tH |ψ(θt−1, φt−1)⟩
∣∣2] (6)

s.t.ω(φ) ≤ τ,

where we denote by θ the parameters of gates acting within a single block and by φ the
parameters of gates that are being cut, i.e. two-qubit gates stretching across two blocks.
We satisfy the constraint throughout the optimization by projecting the parameters φ back
into the allowed subspace defined by ω(φ) ≤ τ (see Fig. 2). This projection is performed
after every PVQD update step, which would result in circuits exceeding the predefined
overhead threshold. We note that the number of entangling gates is fixed by the ansatz
structure and the overhead is controlled by tuning the values of the parameter in those
gates. In some cases, this might lead to gates being effectively removed from the circuit
when the rotation angles are set to 0 during the optimization. This behavior is analyzed
in detail in Appendix B. The steps of the algorithm are outlined in Algorithm 1, and an
in-depth description is provided in Appendix A.

3 Results
As an example application of our method, we consider the transverse field Ising model
(TFIM) spin system

H =
∑
⟨ij⟩

JijZiZj +
∑

i

Xi, (7)

where we assume that the coupling between neighboring spins Jij is large for i, j in the
same block and small for i, j in different blocks. In all subsequent simulations, we start
the time evolution from the product state |0⟩⊗n of all n spins pointing up. We compare
our circuit knitting ansatz (CKA) with different thresholds τ to a pure block product
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Figure 3: Spins in a transverse field Ising model. In (a) and (b), the system is split into blocks, where the
coupling between two blocks J2 is much smaller than the coupling within a block J1. In (c), the strong
coupling corresponds to nearest-neighbor interactions, whereas the next-nearest neighbor interactions
are weak.

approximation (BPA) and to the BPA*, where the full Trotter step, including all cross-
block interactions, is implemented.

3.1 Spin chain
In the first experiment, we consider a spin chain of N = 3 blocks of 2 spins each, as
shown in Fig. 3 (a). The coupling within one block is chosen to be at the critical point
Jij = J1 = 1, whereas the coupling between two blocks is set to Jij = J2 = 1/4. The
ansatz follows the structure of the Trotter decomposition of e−i∆tH with d = 3 repetitions
of alternating layers of RX and RZZ rotations (see Fig. 1). The total number of RZZ gates
that need to be cut is N − 1 for the BPA* and (2d+ 1)(N − 1) for the CKA.

In Fig. 4 (a) we plot the fidelity of time-evolved states obtained through PVQD state vector
simulations with respect to the exact solution. We observe that the pure block product
ansatz optimized with block product Trotter gates (BPA) has the poorest performance as
the fidelity quickly drops and reaches a value of only 0.87 at time t = 2. This behavior
is, however, expected since neither the ansatz nor the optimization takes into account
any interactions or entanglement between different blocks of the systems. Adding (and
cutting) the Trotter gates involving cross-block interactions while keeping the same block
product ansatz (BPA*) slightly increases the fidelity. Finally, we expand the ansatz itself
by adding parameterized gates between the blocks which are cut (CKA), and employ the
overhead-constrained PVQD algorithm for the evolution. We are able to control the fidelity
by tuning the threshold hyper-parameter τ that constrains the allowed sampling overhead
for the ansatz. Ultimately, our optimization scheme gives us the means to naturally
interpolate between the results obtained with a block product ansatz which incurs only a
minimal sampling overhead, and the unconstrained PVQD evolved state, which gives rise
to an unbounded overhead.

In Fig. 4 (b), we show the evolution of a correlated observable acting on all three blocks.
The behavior of long-ranged observables is typically more difficult to capture in hardware-
efficient variational simulations, as their support grows faster compared to purely local
observables. The BPA(*) is expected to fail in representing correlations spanning across
different blocks, as becomes evident at times t > 1. In contrast, the CKA with the
particular thresholds chosen here can capture the inter-block correlations accurately also
for long times.

To explicitly see how the fidelity obtained with the overhead-constrained optimization
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a) b)

Figure 4: Simulating the dynamics of a TFIM spin chain consisting of 3 blocks with 2 spins each.
(a) Fidelity of our time evolved ansatz with respect to the exact solution. (b) Expectation value of
the observable acting as Z on spins 1 and 5 and as X on spin 3. We compare an ansatz involving
parameterized two-qubit gates between blocks that are cut (CKA) while keeping the sampling overhead
controlled under a threshold τ and a block-product state ansatz without entangling gates between the
blocks (BPA). In the case of the latter, we further differentiate between optimizing with a block-product
Trotter gate (i.e, no inter-block interactions) or the full Trotter gate, including the exact inter-block
interactions (BPA*). We find that CKA can reach higher fidelities at longer times while the exact
accuracy can be controlled by changing the overhead threshold.

increases with a higher threshold, we plot the mean infidelity

I = 1
T

T∑
t=1

[
1− | ⟨ψ(θt, φt)|ψt⟩ |2

]
(8)

of the simulations with respect to the exact solution |ψt⟩ in Fig. 5 (a). A larger overhead
threshold improves the expressibility of the ansatz as the inter-block gate parameters are
less constrained. As a result, the mean infidelity decreases. In order to fully quantify
the computational cost required to achieve a certain fidelity, we further include a shot-
based simulation, taking into consideration finite sampling noise. Fig. 5 (b) shows how
the mean infidelity decreases as the total number of shots is increased. For every point,
10 simulations were performed with a fixed number of shots R per circuit evaluation. The
total number of shots for every run is calculated as

Rtot = R · niter · 2nparams ·
T∑

t=1
ω(φt), (9)

where niter = 200 is the number of iterations per time step3, 2 ·nparams the cost of calculat-
ing the gradient using the parameter shift rule for nparams parameters, and T = 40 the num-
ber of time steps in the simulation. The overhead is set to 1 for the BPA. While Fig. 5 (a)
suggests that increasing the threshold improves the expressibility of the ansatz, leading to
decreasing infidelities, Fig. 5 (b) demonstrates that shot noise limits the simulation from
reaching the ideal infidelity. Given a fixed budget of total shots Rtot, choosing the optimal
threshold τ and the number of shots R per circuit evaluation is a nontrivial constrained
optimization problem. In Fig. 5 (a), this balance is illustrated as there is a regime around
1011 total shots where having a lower threshold (but larger R) results in lower infidelity
than a high threshold (but smaller R). On the other hand, for a higher budget of around
1012 total shots, choosing the larger threshold is advantageous.

3This number has been chosen high to ensure the optimization converges. Exploiting smart termination
criteria should allow to significantly reduce the number of iterations.
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Figure 5: Mean infidelity over the time evolution. In (a) as a function of the threshold τ constraining
the sampling overhead in the statevector simulations presented in Fig. 4. The black points correspond
to additional simulations performed (for thresholds 5, 10, 25, 50, 250, 500, 5000) to interpolate between
the points shown in the other plots. In (b) as a function of the total shots required for the simulation,
with dashed lines indicating the result achieved by the statevector simulation. Note that here we do
not plot the CKA without a threshold, as the first point of this method would start at 1017 total shots
and is, thus, unfeasible in reality.

We further investigate how entanglement between different blocks can be captured with
the CKA and how the entanglement correlates to the sampling overhead. We generally
expect that imposing a threshold on the sampling overhead required for the circuit knit-
ting scheme limits the entanglement that can arise between the subsystems. In order to
quantify the entanglement in our ansatz state, we split the system shown in Fig. 3 (a)
into a bipartite system. We call A the subsystem containing the center block and B the
subsystem containing the outer two blocks. We write the pure state |ψ⟩ = U(θ, φ) |0⟩
defined by the quantum circuit in its Schmidt decomposition

|ψ⟩ =
dim(A)∑

k=1
λk |ak⟩ |bk⟩ , (10)

where λk ≥ 0 are the Schmidt coefficients, |ak⟩ , |bk⟩ the Schmidt basis states in systems
A and B, respectively. From this decomposition, the von Neumann entanglement entropy
can be easily computed as [54]

E(|ψ⟩) = −
dim(A)∑

k=1
λ2

k log
(
λ2

k

)
. (11)

In Fig. 6 (a), we show how the entanglement entropy grows in time for different ansatzes.
As expected, the BPA(*) captures no entanglement between the distinct blocks, while
the CKA without a threshold recovers the full entanglement of the exact solution. For
the CKA with τ = 100, 1000, we observe that the entanglement entropy eventually starts
deviating and stays below its exact value as expected. To understand whether the errors in
the entanglement entropy arise due to the constrained optimization problem, we also show
how the sampling overhead increases over time and, if applicable, caps at the threshold
(see Fig. 6 (b)). Interestingly, the entanglement entropy is growing even after the sampling
overhead saturates (indicated by the vertical lines) and does not plateau to a specific
value. In this case, the optimization learns that due to the multiplicative overhead it is
more efficient to have few entangling gates with large angles compared to many gates with
small angles. Once the threshold is reached, the entanglement generation thus starts to
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Figure 6: (a) The entanglement entropy between the center block and the outer two blocks is calculated
as a function of time for different ansatzes. The overhead threshold in the CKA determines the time
window for which the entanglement growth can be captured accurately. In contrast, the BPA(*) is
not able to account for any inter-block entanglement by construction. (b) Required sampling overhead
versus simulation time for different thresholds. We indicate the exact time at which the overhead
reaches the threshold as vertical dashed lines in (a).

be concentrated on a few gates which allows the entanglement entropy to grow further. A
detailed explanation for this behavior is provided in Appendix B.

3.2 Two-leg ladder
Next, we demonstrate that our scheme can also be applied to lattice geometries beyond
the simple 1d spin chain. To that end, we consider the Ising model on a two-dimensional
extension of the chain as shown in Fig. 3 (b). Each of the two blocks is comprised of 4
spins and coupled to the other block via weak nearest-neighbor interactions. To simulate
the dynamics of this system, we choose an ansatz layout reflecting the corresponding
trotterized time evolution operator. Specifically, we use alternating layers of single-qubit
RX rotations and RZZ rotations, repeated d = 5 times. The total number of RZZ that
need to be cut is 2 for the BPA* and 2(2d+ 1) for the CKA.

In Fig. 7, we show how the fidelity of the different ansatzes with respect to the exact
solution evolves in time. Additionally, we plot the expectation value of the observable
that acts as X on the four outer qubits (the two qubits on the left of the first block
and the two qubits on the right of the second block). While the block product ansatz
(BPA*) initially tracks the qualitative behavior of the dynamics, it fails in the second half
of the simulation period. Here, adding the cross-block entangling unitaries to the ansatz
is necessary to accurately approximate the time-evolved state. The CKA with a threshold
of τ = 100 captures the qualitative dynamics of the observable plotted in Fig. 7 until
t ≈ 1.5. In order to accurately simulate the dynamics until t = 2, the threshold has to be
increased to τ = 1000.

3.3 Reducing circuit depth
Many state-of-the-art quantum computing platforms such as those based on supercon-
ducting qubits feature only a limited qubit connectivity. Gates acting on qubits that are
not adjacent in the device layout have to be implemented via additional two-qubit SWAP
operations. However, these extra gates increase the amount of noise in a computation. In
the era of NISQ devices, it is therefore crucial to find ways of reducing the circuit depth
while keeping the simulations as accurate as possible. To that end, circuit knitting can be
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Figure 7: Simulating the dynamics of the two-leg ladder TFIM. (a) Fidelity of the simulation with
respect to the exact solution for the BPA, BPA* and CKA with different thresholds. (b) Expected
value of the observable acting as X on the four outer qubits (cf. in Fig. 3 (b)). The accuracy of the
simulation improves as the threshold is increased.

employed to cut long-range acting gates.

Here, we demonstrate the use of circuit knitting to effectively reduce the circuit depth
in the variational simulation of the dynamics of the J1-J2 transverse field Ising model
depicted in Fig. 3 (c) and defined by

H = J1
∑
⟨ij⟩

ZiZj + J2
∑

⟨⟨ij⟩⟩
ZiZj +

∑
i

Xi, (12)

where we again choose J1 = 1, J2 = 1/4. ⟨ij⟩ indicates nearest-neighbors, whereas ⟨⟨ij⟩⟩
corresponds to next-nearest-neighbors. Instead of cutting the system into blocks, we here
cut the long-range gates induced by the next-nearest-neighbor interactions. We compare
the PVQD dynamics for similar ansatzes as in the previous experiments with d = 4
repeated layers. Specifically, we consider an ansatz that is composed only of hardware-
efficient gates, i.e, gates acting only on nearest-neighbor spins/qubits. For consistency,
we refer to this ansatz as BPA(*), even though we are not cutting the system into blocks
in this case. In contrast, the CKA ansatz reflects the full interaction graph of the model
and contains additional 4(2d + 1) long-range entangling gates that are cut using circuit
knitting.

The results of our simulations are provided in Fig. 8, where we show both the time depen-
dence of the fidelity to the exact state and of an observable acting on two non-adjacent
spins. In the BPA, all gates acting on next-nearest-neighbors are omitted from the circuit,
including the Trotter step. As a result, the fidelity quickly deteriorates as we effectively
evolve with a slightly different model where J2 =0. In contrast, for BPA*, the finite next-
nearest-neighbor interactions are included in the Trotter step while the ansatz is kept
hardware-efficient. In this case, the fidelities stay high throughout the time evolution in-
terval. Hence, the hardware-efficient ansatz comprised of d = 4 repeated layers is already
able to accurately represent the long-range correlations and entanglement generated by
the next-nearest-neighbor interactions of the model. However, we can improve on these
fidelities even further by using the CKA with a comparatively small overhead threshold
of τ = 10.

In order to quantify the depth reduction enabled by cutting long-ranged gates in this
example, we count the number of SWAP gates required to run PVQD on this system
without cutting any gates. Given a quantum device where the connectivity coincides with
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Figure 8: Simulating the dynamics of J1-J2 Ising model sketched in Fig. 3 (c). We show (a) the
fidelity of the simulation with respect to the exact solution as well as (b) the expectation value of the
observable acting as X on the upper left qubit and as Z on the lower right qubit. BPA here indicates a
hardware efficient circuit, whereas CKA includes next-nearest-neighbor 2-qubit gates that are cut using
circuit knitting while the overhead is constrained by a threshold τ . The main improvement over the BPA
is given by BPA*, where next-nearest-neighbor interactions are considered in the Trotter decomposition
of e−i∆tH .

this geometry (i.e. nearest-neighbor spins/qubits are connected), every Trotter layer would
require 2 SWAP gates. For the ansatz with 4 repeated layers, this results in 2+2·4·2 = 18
SWAP gates that can be saved using circuit knitting (2 for the Trotter step, 4 ·2 for
the ansatz, and the extra factor of 2 comes from doubling the circuit in the compute-
uncompute method).

Overall, in this example, circuit knitting enables us to trade-off a larger circuit depth for
an increased sampling overhead.

4 Discussion & Outlook
Circuit knitting allows for the simulation of larger quantum systems using small quantum
devices. While in general, cutting circuits can be expensive due to the sampling overhead,
we show that this overhead can be controlled by constraining the parameters in the vari-
ational circuit optimization. Applying this technique to the dynamics simulation of spin
systems with PVQD, we are able to achieve the optimal fidelity given a fixed budget of
samples. A change in the threshold hyper-parameter τ leads to a trade-off between the
accuracy of the simulation and the sampling overhead. The optimal threshold therefore
depends on the quantum computing resources available, the desired accuracy, and the
total evolution time.

In the examples considered in this work, we show that with a realistic sampling overhead,
the accuracy of the dynamics simulations can be drastically improved compared to a simple
block product ansatz. Classical resources can thus effectively be used to recover entan-
glement between the different subsystems. Our framework opens the door to simulating
the dynamics of quantum systems with a large number of qubits that are otherwise not
reachable with current hardware. Possible systems of interest are, for example, quantum
impurities immersed in a bath [39,40] or low-energy eigenstates of local lattice Hamiltoni-
ans and molecules [35–38]. Furthermore, we show that our technique can also be used to
reduce the circuit depth if, instead of cutting the system into blocks, we cut long-ranged
but weak interactions. Here, we observed that with a controlled sampling overhead, the
dynamics can be accurately simulated with hardware-efficient circuits.
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Overhead-constrained circuit knitting allows for combining multiple quantum circuits that
are individually already difficult to simulate classically, enabling the simulation of even
larger systems given that the entanglement between subcircuits remains weak. This is of
particular importance as the current trend in quantum hardware is to combine several
smaller devices for distributed computing applications [17]. Hence, our method presents
another step towards the overarching goal of quantum utility [12,55].

The direct application of circuit knitting to a trotterized simulation of dynamics, as per-
formed in the recent utility experiments by IBM [12] is prohibitively expensive. The reason
is the accumulated sampling overhead when cutting a Trotter time evolution into subsys-
tems. The sampling overhead is fixed by the coupling strength and scales exponentially
with the simulation time and thus cannot be controlled to remain below a manageable
threshold. This issue is addressed with our overhead-constrained circuit knitting approach
applied to PVQD where we provide a way to control the total budget of circuit evalua-
tions.

An expansion of this work would encompass a hardware experiment of the overhead-
constrained PVQD. In this regard, it will be interesting to see whether current error
mitigation techniques are powerful enough to mitigate the hardware noise to a level where
the (local) fidelities can be measured to sufficient precision for the optimization to be
successful.

Moreover, the constrained optimization presented in this work is not limited to PVQD
but can be extended to arbitrary loss functions. As such, it could, for example, be ap-
plied to simulate ground states using circuit knitting and VQE [56, 57] while keeping the
sampling overhead controlled. More general, the overhead-constrained circuit knitting can
be extended to any variational quantum algorithms where the total system can be split
into weakly entangled blocks. In cases where the optimal partitioning of the system into
subsystems cannot be physically motivated, heuristic methods might be applied to find the
optimal placement of cuts [58]. Overall, the question of where to optimally place the cuts
is a non-trivial optimization problem on its own and represents an interesting direction
for future research.

Finally, we remark that the calculations of the sampling overhead throughout this work
are based on the worst-case scenario, where the total overhead is the product of the over-
heads required to cut individual gates. It has recently been proposed that this overhead
can be further reduced by using more intricate decompositions that cut multiple gates
simultaneously [51,52]. Alternatively, we could also take into consideration quantum com-
munication between the different devices [59]. In a recently appeared manuscript [31], it
has been shown that under similar conditions this can significantly increase the fidelity
in distributed simulations of quantum dynamics. However, the hardware to implement
a knitting scheme with quantum communication is currently missing and the additional
computational costs of such a method will highly depend on how efficient and flexible
these quantum links will be.

Code availability Simulations presented in this work were performed in Julia [60] using
the Yao.jl framework [61] and are available on Github [62].
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A Detailed description of the optimization
In this appendix, we provide a detailed description of the algorithm applied to opti-
mize Eq. (6), including numerical values of hyper-parameters. An overview of the al-
gorithm is given in the main text and in Algorithm 1. The initial guess for the new
parameters for time step t + 1 is given by θk=0 = θt + ∆θ, where ∆θ = θt − θt−1 (the
same procedure holds for the parameters φ). For the first time step t = 1, we set ∆θ = 0.
Starting from this initial guess, we make an ADAM [53] update on θk, φk according to
the gradient of the objective function in Eq. (6), where the gradient is calculated using
auto-differentiation for statevector simulations and using the parameter shift rule for shot
based simulations. We further modify the ADAM algorithm slightly by keeping the mo-
mentum for the inter-block parameters φ at 0. This has been observed to speed up the
convergence. Otherwise, we use standard hyper-parameters β1 = 0.9 and β2 = 0.999. The
learning rate is set to 10−3 for statevector simulations and to 10−2 for shot-based simu-
lations. This update step yields the next single-block parameters θk+1 and a candidate
for the cross-block parameters φ̃k+1. The total sampling overhead is computed according
to Eq. (5) and compared against the threshold τ . If ω(φ̃k+1) ≤ τ , the parameters are
accepted and we continue with the next iteration. If, however, the overhead is larger
than the threshold, the cross-block parameters φ are projected back to the region where
ω(φ) ≤ τ using the following procedure. The gradient g = ∇φω(φ̃k+1) is calculated using
auto-differentiation. Using a step size of µ = 10−3 (for the 1d statevector experiments we
set µ = 10−5), we perform m ∈ N steps from φ̃k+1 along g until

ω(φ̃k+1 −m · µ · g

∥g∥
) ≤ τ (13)

is fulfilled. The new cross-block parameters are then defined as φk+1 = φ̃k+1−m · µ · g
∥g∥ ,

ensuring that the next optimization step starts in the constraint satisfying region. This
procedure is repeated until convergence; in our simulations we ran the optimizations for
200 iterations. The number of (purely classical) steps required to project the parameters
back to the constraint satisfying region is in the order of m ≈ 1 for µ = 10−3 and m ≈ 50
for µ = 10−5. An example of a learning curve resulting from this optimization procedure
is given in Fig. 9.

Algorithm 1 Algorithm employed to solve the constrained optimization problem defined
in Eq. (6) in order to perform a time step of the overhead-constrained PVQD.

1: θ0, φ0 ← θt−1, φt−1
2: k ← 0
3: while algorithm not converged do
4: k ← k + 1
5: θk, φ̃k ← ADAM [53] update step on the objective function in Eq. (6)
6: if ω(φ̃k) > τ then
7: g ← ∇φω(φ̃k)
8: µ∗ ← min{µ > 0 |ω(φ̃k − µg) ≤ τ}
9: φk ← φ̃k − µ∗g

10: else
11: φk ← φ̃k

12: end if
13: end while
14: θt, φt ← θk, φk
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Figure 9: Example of a training curve given by the local infidelity loss function of Eq. (6), here for the
30th time step of the simulation with a threshold τ = 1000 as shown in Fig. 4 of the main text. The
blue stars indicate the final loss of each iteration, whereas the yellow triangles show the loss after the
ADAM update but before projecting the parameters to the constraint-satisfying subspace. We only plot
the first 50 of 200 iterations.

B Parameter behavior in overhead-constrained PVQD
In this appendix, we analyze how the circuit parameters evolve during the overhead-
constrained PVQD, explaining how the entanglement between subsystems is able to grow
even after the threshold on the sampling overhead has been reached. Fig. 10 shows the
circuit parameters during the time evolution of the Ising chain discussed in Section 3.1.
The three CKA simulations are identical until the sampling overhead saturates at the
threshold τ (indicated by vertical, dashed lines). At this point, the parameters φ of the
gates between blocks are no longer freely optimized but are constrained such that the
overhead ω(φ) remains below the threshold.

Nevertheless, Fig. 6 in the main text shows that the entanglement entropy increases after
the threshold has been reached. This is achieved by reducing the angles in the entangling
gates for two of the three layers of the ansatz, allowing the angles in the remaining layer to
increase further. The optimization algorithm thus learns that concentrating the generation
of entanglement onto one layer reduces the sampling overhead. This is due to the fact
that the overhead is multiplicative (see Eq. (5) in the main text).

Indeed, for τ = 100 only one layer is parameterized by non-zero angles at the end of the
evolution. For the τ = 1000 case, a similar development is observed, albeit not as extreme
(only for one layer the angles become zero). The single-qubit gates and two-qubit gates
within a block are optimized to accommodate this transition, leading to a more intricate
evolution of the parameters.
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Figure 10: Parameter evolution during simulations of the Ising chain as shown in Fig. 4 of the main
text for CKA runs without threshold and with thresholds τ = 100, 1000. The vertical black dashed
lines indicate the exact time when the sampling overhead reaches the imposed threshold. We differ-
entiate between angles parameterizing the gates between blocks (referred to as φ in the main text)
and parameters of the single-qubit and remaining two-qubit gates (referred to as θ). For the CKA
simulation without a threshold, the parameters evolve smoothly throughout the evolution. When a
threshold is imposed, the parameter evolution becomes more involved once the threshold has been
reached. Furthermore, to limit the (multiplicative) overhead, the algorithm effectively removes some of
the inter-block gates by reducing their parameters to zero.
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