Sequential hypothesis testing for continuously-monitored quantum systems

Giulio Gasbarri1, Matias Bilkis1,2, Elisabet Roda-Salichs1, and John Calsamiglia1

1Física Teòrica: Informació i Fenòmens Quàntics, Department de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
2Computer Vision Center, Universitat Autònoma de Barcelona, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We consider a quantum system that is being continuously monitored, giving rise to a measurement signal. From such a stream of data, information needs to be inferred about the underlying system's dynamics. Here we focus on hypothesis testing problems and put forward the usage of sequential strategies where the signal is analyzed in real time, allowing the experiment to be concluded as soon as the underlying hypothesis can be identified with a certified prescribed success probability. We analyze the performance of sequential tests by studying the stopping-time behavior, showing a considerable advantage over currently-used strategies based on a fixed predetermined measurement time.

► BibTeX data

► References

[1] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. ``Cavity optomechanics''. Rev. Mod. Phys. 86, 1391–1452 (2014).

[2] James Millen, Tania S Monteiro, Robert Pettit, and A Nick Vamivakas. ``Optomechanics with levitated particles''. Reports on Progress in Physics 83, 026401 (2020).

[3] John Kitching, Svenja Knappe, and Elizabeth A. Donley. ``Atomic sensors – a review''. IEEE Sensors Journal 11, 1749–1758 (2011).

[4] Dmitry Budker and Michael Romalis. ``Optical magnetometry''. Nature Physics 3, 227–234 (2007).

[5] Bei-Bei Li, Lingfeng Ou, Yuechen Lei, and Yong-Chun Liu. ``Cavity optomechanical sensing''. Nanophotonics 10, 2799–2832 (2021).

[6] Pardeep Kumar, Tushar Biswas, Kristian Feliz, Rina Kanamoto, M.-S. Chang, Anand K. Jha, and M. Bhattacharya. ``Cavity optomechanical sensing and manipulation of an atomic persistent current''. Phys. Rev. Lett. 127, 113601 (2021).

[7] Shabir Barzanjeh, André Xuereb, Simon Gröblacher, Mauro Paternostro, Cindy A. Regal, and Eva M. Weig. ``Optomechanics for quantum technologies''. Nature Physics 18, 15–24 (2022).

[8] John Kitching. ``Chip-scale atomic devices''. Applied Physics Reviews 5, 031302 (2018).

[9] B. P. et al Abbott. ``Observation of gravitational waves from a binary black hole merger''. Phys. Rev. Lett. 116, 061102 (2016).

[10] Morgan W. Mitchell and Silvana Palacios Alvarez. ``Colloquium: Quantum limits to the energy resolution of magnetic field sensors''. Rev. Mod. Phys. 92, 021001 (2020).

[11] Mingkang Wang, Diego J. Perez-Morelo, Georg Ramer, Georges Pavlidis, Jeffrey J. Schwartz, Liya Yu, Robert Ilic, Andrea Centrone, and Vladimir A. Aksyuk. ``Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor''. Science Advances 9, eadf7595 (2023).

[12] H. M. Wiseman and G. J. Milburn. ``Quantum theory of field-quadrature measurements''. Phys. Rev. A 47, 642–662 (1993).

[13] Howard M Wiseman and Gerard J Milburn. ``Quantum measurement and control''. Cambridge university press. (2009).

[14] Stefan Forstner, Joachim Knittel, Eoin Sheridan, Jon D. Swaim, Halina Rubinsztein-Dunlop, and Warwick P. Bowen. ``Sensitivity and performance of cavity optomechanical field sensors''. Photonic Sensors 2, 259–270 (2012).

[15] Mankei Tsang. ``Continuous quantum hypothesis testing''. Phys. Rev. Lett. 108, 170502 (2012).

[16] Søren Gammelmark and Klaus Mølmer. ``Bayesian parameter inference from continuously monitored quantum systems''. Phys. Rev. A 87, 032115 (2013).

[17] Kurt Jacobs. ``Quantum measurement theory and its applications''. Cambridge University Press. (2014).

[18] Klaus Mølmer. ``Hypothesis Testing with Open Quantum Systems''. Physical Review Letters 114, 040401 (2015).

[19] Francesco Albarelli, Matteo A C Rossi, Matteo G A Paris, and Marco G Genoni. ``Ultimate limits for quantum magnetometry via time-continuous measurements''. New Journal of Physics 19, 123011 (2017).

[20] Alexander Holm Kiilerich and Klaus Mølmer. ``Hypothesis testing with a continuously monitored quantum system''. Physical Review A 98, 022103 (2018).

[21] Jason F. Ralph, Marko Toroš, Simon Maskell, Kurt Jacobs, Muddassar Rashid, Ashley J. Setter, and Hendrik Ulbricht. ``Dynamical model selection near the quantum-classical boundary''. Phys. Rev. A 98, 010102 (2018).

[22] Ricardo Jiménez-Martínez, Jan Kołodyński, Charikleia Troullinou, Vito Giovanni Lucivero, Jia Kong, and Morgan W. Mitchell. ``Signal tracking beyond the time resolution of an atomic sensor by kalman filtering''. Phys. Rev. Lett. 120, 040503 (2018).

[23] Jing Liu, Haidong Yuan, Xiao-Ming Lu, and Xiaoguang Wang. ``Quantum fisher information matrix and multiparameter estimation''. Journal of Physics A: Mathematical and Theoretical 53, 023001 (2019).

[24] Júlia Amorós-Binefa and Jan Kołodyński. ``Noisy atomic magnetometry in real time''. New Journal of Physics 23, 123030 (2021).

[25] Marta Maria Marchese, Alessio Belenchia, and Mauro Paternostro. ``Optomechanics-based quantum estimation theory for collapse models''. Entropy 25 (2023).

[26] Harry L. Van Trees. ``Detection, Estimation, and Modulation Theory, Part I''. Wiley-Interscience. (2001). 1 edition.

[27] Pieter Bastiaan Ober. ``Sequential analysis: hypothesis testing and changepoint detection''. Journal of Applied Statistics 42, 2290–2290 (2015).

[28] Abraham Wald. ``Sequential analysis''. Courier Corporation. (2004).

[29] Esteban Martínez Vargas, Christoph Hirche, Gael Sentís, Michalis Skotiniotis, Marta Carrizo, Ramon Muñoz Tapia, and John Calsamiglia. ``Quantum sequential hypothesis testing''. Phys. Rev. Lett. 126, 180502 (2021).

[30] Yonglong Li, Vincent Y. F. Tan, and Marco Tomamichel. ``Optimal adaptive strategies for sequential quantum hypothesis testing''. Communications in Mathematical Physics 392, 993–1027 (2022).

[31] Thomas M. Cover and Joy A. Thomas. ``Elements of information theory (wiley series in telecommunications and signal processing)''. Wiley-Interscience. USA (2006).

[32] A. Wald. ``Sequential Tests of Statistical Hypotheses''. The Annals of Mathematical Statistics 16, 117 – 186 (1945).

[33] Sergei Slussarenko, Morgan M. Weston, Jun-Gang Li, Nicholas Campbell, Howard M. Wiseman, and Geoff J. Pryde. ``Quantum State Discrimination Using the Minimum Average Number of Copies''. Physical Review Letters 118, 030502 (2017).

[34] A. Wald and J. Wolfowitz. ``Optimum Character of the Sequential Probability Ratio Test''. The Annals of Mathematical Statistics 19, 326–339 (1948). url: https:/​/​​stable/​2235638.

[35] Viacheslav P. Belavkin. ``Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes''. In Austin Blaquiére, editor, Modeling and Control of Systems. Pages 245–265. Springer Berlin Heidelberg, Berlin, Heidelberg (1989).

[36] Gopinath Kallianpur. ``Stochastic filtering theory''. Volume 13. Springer Science & Business Media. (2013).

[37] Tyrone Edward Duncan. ``Probability densities for diffusion processes with applications to nonlinear filtering theory and detection theory''. Stanford University. (1967).

[38] Richard Edgar Mortensen. ``Optimal control of continuous-time stochastic systems''. University of California, Berkeley. (1966).

[39] Uroš Delić, Manuel Reisenbauer, Kahan Dare, David Grass, Vladan Vuletić, Nikolai Kiesel, and Markus Aspelmeyer. ``Cooling of a levitated nanoparticle to the motional quantum ground state''. Science 367, 892–895 (2020).

[40] Massimiliano Rossi, Luca Mancino, Gabriel T. Landi, Mauro Paternostro, Albert Schliesser, and Alessio Belenchia. ``Experimental assessment of entropy production in a continuously measured mechanical resonator''. Phys. Rev. Lett. 125, 080601 (2020).

[41] A. C. Doherty and K. Jacobs. ``Feedback control of quantum systems using continuous state estimation''. Phys. Rev. A 60, 2700–2711 (1999).

[42] Alessio Serafini. ``Quantum continuous variables: a primer of theoretical methods''. CRC press. (2017).

[43] Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd. ``Gaussian quantum information''. Rev. Mod. Phys. 84, 621–669 (2012).

[44] Ludovico Lami Marco G. Genoni and Alessio Serafini. ``Conditional and unconditional gaussian quantum dynamics''. Contemporary Physics 57, 331–349 (2016).

[45] R. E. Kalman and R. S. Bucy. ``New Results in Linear Filtering and Prediction Theory''. Journal of Basic Engineering 83, 95–108 (1961).

[46] Marco Fanizza, Christoph Hirche, and John Calsamiglia. ``Ultimate Limits for Quickest Quantum Change-Point Detection''. Physical Review Letters 131, 020602 (2023).

[47] Hannes Risken and Hannes Risken. ``Fokker-planck equation''. Springer. (1996).

[48] A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen. ``Mechanical squeezing via parametric amplification and weak measurement''. Phys. Rev. Lett. 107, 213603 (2011).

[49] Andrew C. Doherty, A. Szorkovszky, G. I. Harris, and W. P. Bowen. ``The quantum trajectory approach to quantum feedback control of an oscillator revisited''. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 5338–5353 (2012).

[50] Massimiliano Rossi, David Mason, Junxin Chen, Yeghishe Tsaturyan, and Albert Schliesser. ``Measurement-based quantum control of mechanical motion''. Nature 563, 53–58 (2018).

[51] M. Bilkis. ``Github''. https:/​/​​matibilkis/​qmonsprt (2020).

[52] D. Kazakos and P. Papantoni-Kazakos. ``Spectral distance measures between Gaussian processes''. IEEE Transactions on Automatic Control 25, 950–959 (1980).

[53] Alessio Fallani, Matteo A. C. Rossi, Dario Tamascelli, and Marco G. Genoni. ``Learning feedback control strategies for quantum metrology''. PRX Quantum 3, 020310 (2022).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-04-12 04:30:53). On SAO/NASA ADS no data on citing works was found (last attempt 2024-04-12 04:30:54).