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Recent advances have led towards first pro-
totypes of quantum networks in which entan-
glement is distributed by sources producing bi-
partite entangled states. This raises the ques-
tion of which states can be generated in quan-
tum networks based on bipartite sources us-
ing local operations and classical communica-
tion. In this work, we study state transforma-
tions under finite rounds of local operations
and classical communication (LOCC) in net-
works based on maximally entangled two-qubit
states. We first derive the symmetries for ar-
bitrary network structures, as these determine
which transformations are possible. Then, we
show that contrary to tree graphs, for which it
has already been shown that any state within
the same entanglement class can be reached,
there exist states which can be reached prob-
abilistically but not deterministically if the
network contains a cycle. Furthermore, we
provide a systematic way to determine states
which are not reachable in networks consist-
ing of a cycle. Moreover, we provide a com-
plete characterization of the states which can
be reached in a cycle network with a protocol
where each party measures only once, and each
step of the protocol results in a deterministic
transformation. Finally, we present an exam-
ple which cannot be reached with such a simple
protocol, and constitutes, up to our knowledge,
the first example of a LOCC transformation
among fully entangled states requiring three
rounds of classical communication.

1 Introduction
In the last decades, a lot of effort has been de-
voted to realizing the first prototypes of a quan-
tum network [1, 2], based on various physical plat-
forms [3, 4, 5]. Quantum networks offer the possi-
bility for quantum information processing tasks such
as long-distance quantum communication [6], or dis-
tributed quantum computing [7, 8]. Moreover, they
are also interesting from a theoretical point of view

since they require novel tools to study the correlations
that can arise from such networks, which is in itself
a challenging problem, and to evaluate their perfor-
mance [9] (and Refs. therein). Nevertheless, a lot of
progress has recently been made concerning the char-
acterization of correlations [10] (and Refs. therein)
and entanglement [11, 12, 13, 14, 15, 16].

In quantum networks, entanglement is distributed
by multiple sources, rather than a single source. Sub-
sequently, the entanglement created in the network
can be manipulated, e.g., by means of entanglement
swapping [17], and can thus be spread over the en-
tire network [18]. Entanglement swapping is an in-
stance of a much larger and important class of lo-
cal operations assisted by classical communication
(LOCC). The general question consists of identifying
which state transformations are possible via LOCC
and which are the most useful states under such a
restriction. In the bipartite case, this question is
answered by the Nielsen majorization criterion [19].
In case the transformation is not required to be de-
terministically, one arrives at the so-called stochas-
tic LOCC (SLOCC) operations. For instance, in the
case of three qubits, it is known that there exist
only six classes of states that are equivalent under
SLOCC [20]. For four parties, the number of SLOCC
classes is already infinite [21].

Despite the fact that the class of LOCC operations
is of fundamental importance for many quantum in-
formation tasks it is notoriously difficult to charac-
terize (see, e.g., [22, 23, 24, 25, 26]). Despite many
difficulties, significant progress has been made, e.g.,
in the case where only finitely many rounds of clas-
sical communication (finite-round LOCC) are consid-
ered [27, 28, 29, 30, 31, 32, 33, 34].

In this work, we study the transformation of en-
tanglement in quantum networks under LOCC. We
emphasize that in case the parties have access to
many copies of maximally entangled states they can
use teleportation in order to realize an arbitrary en-
tangled state. This might, however, involve a po-
tentially large number of rounds of communication.
The fact that quantum memories cannot provide long
storage times motivates us to consider the more re-
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Figure 1: Schematic illustration of the procedure that allows
to identify the symmetries of the triangle network. the first
and the second picture are identical up to rearrangement
of the parties and nodes. In order to transform the second
picture into the third one we used that Y ⊗ 1l|Φ+⟩ = 1l ⊗
Y T |Φ+⟩. This, together with the fact that all symmetries of
the |Φ+⟩ state are of the form Y ⊗Y −T , proves that Eq. (7)
holds.

alistic scenario where sources distribute single copies
of bipartite maximally entangled states according to
some predefined network structure and then perform
an LOCC transformation involving only a finite num-
ber of rounds.

In Ref. [35], it has already been shown that if the
graph is a tree graph, then any state within this
SLOCC class can be realized. As we will show, for
any network that contains a cycle, i.e., that is not a
tree graph, this no longer holds true. We will deter-
mine pure states which can/cannot be reached within
such a scenario. First, we will show that surprisingly,
in such a network, all local symmetries are of a very
specific form. This allows us to provide a system-
atic approach to rule out a large class of states which
can never be realized within networks consisting of a
cycle. Moreover, we identify all states which can be
obtained in such networks under the restriction that
each party performs at most one non-trivial measure-
ment. Finally, we show that there exist states which
cannot be reached with a protocol where each party
measures only once, and which require three rounds
of communication.

2 Preliminaries

Any quantum network can be represented by a graph
G consisting of nodes 1, . . . , n which are connected
by edges e ∈ E. Each edge e corresponds to a two-
qubit state |ψ⟩e that is shared between the two nodes
it connects, i.e., e ≡ {ei

j , e
k
j } ∈ E, where j labels the

source, and i, k label the nodes that are connected by
the source j. We will use the convention that lower
indices refer to parties. Whenever additional indices
are required, such as summation or source indices,
the party index will be superscripted. Moreover, we
will, whenever it is convenient, denote the identity
matrix and the Pauli matrices σx, σy, σz by σi, with
i = 0, 1, 2, 3. We will assume that, initially, each edge
corresponds to a maximally entangled state |Φ+⟩e =

1√
2 (|00⟩ + |11⟩). Thus, the initial state of the network

can be written as

|ψini⟩ =
⊗
e∈E

|Φ+⟩e. (1)

The number of qubits that each node holds is deter-
mined by the number of connected edges, that is, its
degree in the graph G.

In the following, we will restrict to transformations
among pure states [up to local unitary (LU) transfor-
mations] that preserve the ranks of the local reduced
density matrices. In this case, it is not possible to
reach any state outside of the SLOCC class [20]

h1 ⊗ . . .⊗ hn

∏
e∈E

|Φ+⟩e (2)

via a finite-round LOCC protocol, where hi is an in-
vertible operator acting on all the particles node i
has received from the sources. As LOCC and LOCCN
transformations have a rather complicated structure,
it is sometimes useful to consider larger classes of
transformations for which the possible transforma-
tions are easier to characterize. For instance, LOCC
operations are strictly contained in the set of separable
operations (SEP). A completely positive trance pre-
serving (cptp) map Λ is called separable if all its Kraus
operators are separable, i.e., Λ(ϱ) =

∑
i KiϱK

†
i , with

Ki = K1
i ⊗· · ·⊗Kn

i . It is well-known that LOCCN ⊊
SEP [25] (and Refs. therein), and thus, if a transfor-
mation is not possible via SEP, it is also not possible
via LOCC.

For LOCCN transformations among fully entangled
pure states, which we also consider here, it is known
that they are contained in the set of separable opera-
tions for which all Kraus operators are invertible, so-
called SEP1 transformations [36]. We will use the fol-
lowing SEP1 condition [37, 38] for the described sce-
nario, which is a necessary condition on finite-round
LOCC transformations to exist:∑

i

piS
†
iHSi = r1l, (3)

where {pi} is a probability distribution, and r ∈ R.
Moreover, in this context and in the following,

H = ⊗jHj = ⊗jh
†
jhj (4)

is determined by the final state in Eq. (2), and Si

are local symmetries of the initial state in Eq. (1).
The local symmetries are all S = ⊗S(j), with S(j) ∈
GL(dj) and dj being the local dimension of party j,
for which

S|ψini⟩ = |ψini⟩. (5)
The set of all local symmetries we will denote by
S(|ψini⟩). Intuitively, the condition in Eq. (3) guar-
antees that there exist Kraus operators that define
the correct cptp map in SEP1 that can achieve the
transformation from the initial state |ψini⟩ to the fi-
nal state h|ψini⟩ [37, 38]. Hence, it is the symmetries
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of the initial state which allow the transformation to
be deterministic.

In [39], the symmetries and SLOCC transfor-
mations of translationally invariant matrix product
states (which include certain network structures) have
been characterized. In the following, we character-
ize the symmetries of arbitrary networks of bipar-
tite sources that distribute maximally entangled two-
qubit states.

3 Symmetries of Quantum Networks
For simplicity, we will only provide the explicit proof
for the symmetries of the triangle network, as shown
in Fig. 1. However, the proof can be straightforwardly
generalized to arbitrary network structures.

In order to derive the symmetries, we will use the
property of |Φ+⟩ that Y ⊗1l|Φ+⟩ = 1l⊗Y T |Φ+⟩. With
this we have that

S(1) ⊗ S(2) ⊗ S(3)|Φ+⟩e1
1e2

1
|Φ+⟩e2

2e3
2
|Φ+⟩e3

3e1
3

=

S(1) ⊗ 1le3
2

⊗
[
(S(2) ⊗ 1le3

3
){(S(3))Te2

2 ⊗ 1le2
1
}
]
|Φ+⟩⊗3,

(6)

where Te2
2

denotes the partial transpose on e2
2 (see also

Fig. 1 for a graphical illustration). Using that the well
known symmetries of |Φ+⟩ are Y ⊗ Y −T this implies
that

(S(2) ⊗ 1le3
3
)[(S(3))Te2

2 ⊗ 1le2
1
] = (S(1)

e2
1e3

3
)−T ⊗ 1le2

2
. (7)

Remarkably, this condition can only be satisfied if S(2)

and (S(3))Te2
2 , and thus, also S(3), factorize. More

precisely, one can show that

XABZBC = YAC ⊗ 1lB , (8)

with system B being two-dimensional and X,Z in-
vertible operators, implies that X and Z factorize
with respect to the splitting A|B andB|C respectively
(see Lemma 4 in Appendix A). Note that, therefore,
S2 and S3 factorize for any symmetry of the triangle.
The triangle is invariant under cyclic permutation of
the parties, and therefore, via an analogous argumen-
tation, one can show that also S1 has to factorize for
any symmetry. Moreover, we emphasize that the same
argument can straightforwardly be extended to any
network structure.

To see this, observe that by construction, any qubit
is maximally entangled to exactly one other qubit,
which is held by a different party. Moreover, all qubits
that belong to one party are all entangled to differ-
ent parties. Thus, if one considers any party-local
symmetry on one party, one can repeatedly use that
Y ⊗ 1l|Φ+⟩ = 1l ⊗ Y T |Φ+⟩ to make this symmetry
overlap with another symmetry on exactly one qubit.
Then one employs Eq. (8) to see that the operators

Figure 2: Schematic illustration of the procedure that allows
to identify the symmetries for the example of the double-
triangle network. In order to transform one picture into the
other Y ⊗ 1l|Φ+⟩ = 1l ⊗ Y T |Φ+⟩ is used, as well as that
Eq. (8) implies that the operators factorize. From the last
picture it follows that all symmetries factorize.

factorize (see Fig. 2 for a simple example). Repeating
this procedure for all qubits on any party, one sees
that all symmetries have to be local symmetries. Fi-
nally, if the graph G that describes the connectivity of
the network contains leaves, i.e., nodes that only have
a single neighbour, one arrives in a situation where
Eq. (8) becomes trivial, i.e., XBZBC = YC ⊗ 1lB . In
this case, one can directly observe that ZBC factorizes
by multiplying with X−1

B from the left.
With this, we have that there can only exist sym-

metries acting locally on ei
j and ek

j for any ej ≡
{ei

j , e
k
j } ∈ E. Using that the local symmetries of |Φ+⟩

are X ⊗X−T we obtain that the set of symmetries is
given by

⊗
e∈E(Xe ⊗X−T

e )e. Note that here Xe can
be different for any edge e. This results in the follow-
ing observation.

Observation 1. For any network structure the local
symmetries of

∏
e∈E |Φ+⟩e are given by

⊗
e∈E(Xe ⊗

X−T
e )e.

Hence, only symmetries acting locally on single
qubits can contribute and enable transformations.

4 States which cannot be prepared via
finite round LOCC transformations in
networks
Within a tree graph network, any state in the cor-
responding SLOCC class is reachable [35]. Here, we
will show that if a network contains a cycle, this is
no longer true. For convenience, we will consider
here and in the following as initial state

⊗
e∈E |Ψ−⟩e,

which is local unitary (LU) equivalent to
⊗

e∈E |Φ+⟩e,
and therefore has the symmetries

⊗
e∈E(Xe ⊗ Xe)e

with det(Xe) = 1. We make the following observa-
tion.

Observation 2. An example for a class of states
which cannot be reached via finite round LOCC from
the initial network state containing a cycle is given by
(⊗i∈cyclehi ⊗j ̸∈cycle 1l)

⊗
e∈E |Ψ−⟩e with Hi = (1l/4 +

αiσz⊗σz)⊗ ̸∈cycle1l acting non-trivially only on the two
qubits which are part of the cycle and

∏
i∈cycle αi > 0.
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Proof. Consider the projection of Eq. (3), with Hi be-
ing of this form, on |Ψ−⟩e for all edges except one edge
that is part of the cycle, i.e., on

⊗
E\ẽ∈cycle |Ψ−⟩e.

One obtains that in order for the transformation to
be possible it has to hold that∑

i

pi(Xi ⊗Xi)†J(Xi ⊗Xi) = r1l, (9)

with J = 1l/4N +
∏

j∈cycle αjσz⊗σz andN the number
of parties within the cycle. From the projection of
this equation on |Ψ−⟩ one obtains that r = 1/4N −∏

j∈cycle αj .
Considering then the trace leads to an equation of

the following form

∑
i

pi
1

4N

{
[|ai|2 + |ci|2 + |bi|2 + |di|2]2 − 4

}
+

{
[|ai|2 + |ci|2 − (|bi|2 + |di|2)]2

+ 4
} ∏

j∈cycle

αj = 0, (10)

where aidi − bici = 1 for any i. As [|ai|2 + |ci|2 +
|bi|2 + |di|2]2 ≥ 4 for aidi − bici = 1 and [|ai|2 + |ci|2 −
(|bi|2+|di|2)]2+4 > 0 this equation can not be fulfilled
if

∏
j∈cycle αj > 0.

We note that, as the proof relies on Eq. (3), the
class of states defined above is also not reachable
by SEP1 transformations. Before characterizing all
states which can be reached with simple LOCC pro-
tocols in cycle networks, we present a systematic way
to decide whether or not a state is reachable for many
cases.

5 Systematic way to determine finite
round LOCC transformations which are
not possible in a cycle network
In the following, we will restrict to networks which
correspond to a cycle of size N (which we will call
cycle networks). Moreover, we will use the following
necessary and sufficient condition for a transforma-
tion to be possible if party k performs a generalized
measurement, communicates the outcome to the other
parties, and these apply LUs. Note that this corre-
sponds to a single round within a LOCC protocol.
Such a transformation is solely possible among pure
states if the following conditions are satisfied. Firstly,
the initial state is of the form

h1 ⊗ . . .⊗ gk ⊗ hk+1 . . . hN |Ψ⟩ (11)

and the final state is (up to LUs)

h1 ⊗ . . .⊗ hk ⊗ hk+1 . . . hN |Ψ⟩. (12)

Secondly, there must exist local symmetries Si =⊗
j S

(j)
i ∈ S(|Ψ⟩) and probabilities {pi} such that

(S(j)
i )†HjS

(j)
i ∝ Hj (13)

for parties j = 1, . . . , k− 1, k+ 1, . . . N , and for party
k ∑

i

pi(S(k)
i )†HkS

(k)
i = rGk = rg†

kgk, (14)

for some r ∈ R [29, 30, 40]. The transformation is
non-trivial, i.e., the initial and the final state are not
LU equivalent, if

(S(k)
i )†GkS

(k)
i ̸∝ Hk (15)

for all symmetries for which Eq. (13) holds true.
Note that for any finite round LOCC protocol

transforming a pure state into some other pure state,
the final round is exactly of the form described above,
i.e., it has to transform deterministically one pure
state into another within a single round. Hence, for
any state which is reachable via a finite-round LOCC
protocol, there have to exist symmetries for which Eq.
(13) holds true for N − 1 parties and for at least one
symmetry Si for which Eq. (13) holds

(S(k)
i )†HkS

(k)
i ̸∝ Hk (16)

for the remaining party (in order for an operator
Gk ̸∝ Hk to possibly exist) [40]. In order to decide
whether a given H fulfills this requirement one can
first determine the local operators Xj ⊗ Yj which ful-
fill Eq. (13) locally for a given Hj , i.e.,

(Xj ⊗ Yj)†Hj(Xj ⊗ Yj) ∝ Hj . (17)

Then one considers for these local operators⊗
j ̸=k Xj ⊗ Yj and determines whether there exists

a symmetry such that
⊗

j ̸=k S
(j)
i =

⊗
j ̸=k(Xj ⊗ Yj).

In case this is possible, one can consider all the sym-
metries Si for which this is true and check whether
Eq. (16) holds.

In the following, we present a systematic way to
evaluate for a givenHj which operators fulfill Eq. (17)
locally. In order to do so, we use ideas which have also
been used in Ref. [33] to determine the symmetries of
four-qubit states. Eq. (17) holds true if and only if

(X̃j ⊗ Ỹj)†H̃j(X̃j ⊗ Ỹj) ∝ H̃j (18)

with H̃j = (M ⊗ M̄)†Hj(M ⊗ M̄) and X̃j ⊗ Ỹj =
M−1XjM ⊗ M̄−1YjM̄ for any M, M̄ invertible. We
then choose M ⊗ M̄ such that H̃j is Bell diagonal
denoted by H̃B

j . Note that it has been shown [41] that
this is always possible. We will call in the following
H̃B

j the local standard form of Hj and we obtain

(X̃B
j ⊗ Ỹ B

j )†H̃B
j (X̃B

j ⊗ Ỹ B
j ) ∝ H̃B

j . (19)

Transforming then H̃B
j and X̃B

j ⊗ Ỹ B
j into the magic

basis, i.e., Hmb
j = U†H̃B

j U and Oj = U†X̃B
j ⊗
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Ỹ B
j U where U = |Φ+⟩ ⟨00| − i|Φ−⟩ ⟨01| + |Ψ−⟩ ⟨10| −
i|Ψ+⟩ ⟨11|, we obtain that Hmb

j is a diagonal matrix
with real non-zero entries (as Hj is a positive definite
matrix) and Oj is a special orthogonal matrix. With
this we have that

Aj = O†
jH

mb
j Oj ∝ Hmb

j . (20)

This implies that

AT
j Aj = (Oj)T (Hmb

j )THmb
j Oj = (Hmb

j )THmb
j . (21)

Note that as this is a similarity transformation the
set of eigenvalues has to stay invariant. As the
eigenvalues of (Hmb

j )THmb
j have to be real and pos-

itive this implies that there is no proportionality
factor. Alternatively, Eq. (21) can be written as
[(Hmb

j )THmb
j , Oj ] = 0 and it is straightforward to

solve this equation. From the resulting matrices Oj

one obtains potential candidates for X̃B
j ⊗ Ỹ B

j =
UOjU

†. We then insert them into Eq. (19) and eval-
uate the ones that indeed leave HB

j invariant up to
a factor. Note that if one knows the local operators
X̃B

j ⊗ Ỹ B
j which fulfill Eq. (19) for the local standard

forms one can directly calculate the ones which fulfill
Eq. (17) for a given Hj via the relations

Hj = (M−1 ⊗ M̄−1)†H̃B
j (M−1 ⊗ M̄−1) (22)

and
X ⊗ Y = MX̃B

j M
−1 ⊗ M̄Ỹ B

j M̄−1. (23)
The explicit symmetries for all local standard forms
can be found in Appendix B. Using the method pre-
sented in [41] one can identify the matrices M and
M̄ which relate Hj to its local standard form and
with this it is easy to determine the matrices X and
Y which fulfill Eq. (17). Determining from the so
obtained operators whether there exists a way of con-
catenating them to form a symmetry on N − 1 party
allows to straightforwardly employ the necessary con-
ditions in Eqs. (13) and (16) to identify states that
cannot be reached via finite round LOCC protocols in
cycle networks. In the following, we will use Eqs. (13)
and (14) also to determine the class of states which
can be reached with a LOCC protocol where each
party measures solely once.

6 A simple class of finite round LOCC
protocols in cycle networks
In case the necessary conditions in the previous sec-
tion are fulfilled, a transformation may be possible. In
particular, these conditions provide a complete char-
acterization of states which can be realized with pro-
tocols where each party measures once in a cycle net-
work. In order for a state to be reachable from the
network of maximally entangled states with a proto-
col where each party measures only once, the condi-
tions in Eqs. (13) and (14) have to be fulfilled for

some choice of k and Gk = A†A ⊗ B†B for some
A,B ∈ SL(2). If they do not hold true, the state
cannot be reached via such a protocol, as can be seen
as follows. For a successful transformation, the ini-
tial state in the final round has to be of the form⊗

i ̸=k hi ⊗ gk|Ψ⟩ where k is the party measuring in
the final round. It is easy to see that for the consid-
ered class of protocols, gk has to be of the form A⊗B,
as party k did not perform any measurement yet and
the only way how one may obtain a non-trivial gk

is via the symmetries. However, if the conditions are
not fulfilled the transformation in the final round can-
not be deterministic. In case they hold true, one can
devise a protocol implementing the transformation.
This results in the following observation.

Observation 3. A state h|Ψ⟩ can be reached from the
initial network via LOCC, where each party measures
only once, and each step of the protocol is determin-
istic, if and only if the conditions in Eqs. (13),(14)
and (15) are fulfilled for some choice of k and Gk =
A†A⊗B†B for some A,B ∈ SL(2).

If the conditions in Observation 3 hold, the follow-
ing protocol allows us to reach the state h|Ψ⟩ deter-
ministically. First, note that we consider in the fol-
lowing the SLOCC operator H for which

trej
j−1

(Hj) = 21l (24)

holds for j ∈ {3, . . . , N − 1} and

tre2
1
(B−†

e2
1
H2B

−1
e2

1
) = 21l. (25)

Here we use that S†HS with S ∈ S(Ψ) defines the
same state as H (see also [31]). Hence, there is some
ambiguity in the choice of H and we will make use of
this to ensure the desired property. Note that for any
state in a cycle network, it is possible to transform a
given H in such a form (if we choose to normalize the
operator accordingly). We further denote here with-
out loss of generality k = 1 and enumerate the par-
ties and edges consecutively, i.e., ej = (ej

j , e
j+1
j ) ∈ E.

First, party N applies the generalized measurement

{1/4hN [(A−1σi)eN
N

⊗ (σk)eN
N−1

]}, (26)

with tr(A−†HNA
−1) = 4 for normalization. Depend-

ing on the measurement outcome, party 1 and party
N − 1 apply σi and σk respectively on the qubit
that is connected to party N . Then, beginning with
party N−1 and proceeding in decreasing order, party
j ∈ {3, . . . , N} applies the generalized measurement

{1/2hj(1lej
j

⊗ (σi)ej
j−1

)} (27)

and for outcome i party j−1 applies σi on ej−1
j−1 before

it measures in the subsequent round. Finally, party 2
applies the measurement

{1/2h2(1le2
2

⊗ (B−1σi)e2
1
)} (28)
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and for outcome i party 1 implements σi. With
this, the initial state in the final round is given by
A ⊗ B ⊗N

i=2 hi|Ψ⟩. In the last round party 1 applies
the generalized measurement {h1S

(1)
i } which is a valid

POVM due to Eq. (14). For outcome i, all other par-
ties apply the unitary V (j)

i such that V (j)
i hj = hjS

(j)
i .

These unitaries exist due to Eq. (13). This protocol
allows to reach the state h|Ψ⟩ deterministically.

Unfortunately, however, this provides no complete
characterization of finite round LOCC transforma-
tions in cycle networks, as the following example il-
lustrates.

7 Example of a transformation that re-
quires one party to measure more than
once
Analogous to the case of unitary symmetries, it may
be that probabilistic steps are required [29, 30]. More-
over, even if one restricts to protocols for which each
LOCC round corresponds to a deterministic transfor-
mation among pure states (and therefore Eqs. (13)
and (14) have to hold true for each round), it is not
straightforward to find these protocols as parties may
be required to measure more than once. In the sim-
plest case of transformation between bipartite states
with pure initial state, it is known that one round of
communication is always sufficient [42, 19]. For more
parties, more rounds may be required. The minimum
number of rounds is also called the round complexity,
and it it is known that exist tasks, including state dis-
crimination and entanglement distillation, that show
a separation between LOCC protocols with different
round complexity [25].

In case of transformations among generic four-qubit
states [31], it can be easily seen that certain transfor-
mations require a round complexity of two. More-
over, the following transformation provides, up to our
knowledge, the first example of a pure state LOCC
transformation among fully entangled states that re-
quires a round complexity of three. For this trans-
formation, which requires one party to measure more
than once, we consider the triangle network and the
SLOCC operators

Hj = 1l +
∑

i=x,y

a
(j)
i σi ⊗ σi (29)

for j ∈ {1, 2} and

H3 = U†
1 ⊗ U†

1 (1l + cσz ⊗ σz)U1 ⊗ U1 (30)

with a
(j)
i ̸= 0, a(j)

x ̸= ±a(j)
y , c ̸= 0 and U1 = eiαxσx

with αx ̸= 0,mπ/4 and m being an integer. In partic-
ular, we will show that for all symmetries for which
Eq. (13) is fulfilled for two parties, Eq. (14) with
gk = 1l (i.e., party k has not performed a measure-
ment yet) does not hold true for the remaining party

k. Thus, this state cannot be reached from the initial
network state via a protocol where each party mea-
sures solely once. If party 3 is allowed to measure
twice, the state can be reached, and we will provide
an explicit protocol achieving this transformation.

We will make use of the necessary conditions in Eqs.
(13) and (14) and the systematic approach explained
in Section 5 that allows to identify the local operators
which fulfill Eq. (13). Note that for party 1 and 2 Hj

is already Bell diagonal and corresponds to the non-
degenerate case, which implies that for party 1 and 2
the symmetries that can potentially be used locally in
the last round are σi ⊗ σi, and for party 3 they are

U†
1 ⊗ U†

1 {[Z(ϕ1) ⊗ Z(ϕ2)](σx ⊗ σx)k}U1 ⊗ U1 (31)

with k ∈ {0, 1} and Z(ϕ) = diag(eiϕ, e−iϕ) as the
local standard form has two double degenerate eigen-
values (see Appendix B).

The only operators ⊗j ̸=kXj ⊗ Yj on two parties
which have a non-zero intersection with a symme-
try restricted to two parties are (a) σ⊗4

i on party
1 and 2 (with corresponding symmetries σ⊗6

i ) or
(b) U†

1Z(ϕ)U1 ⊗ 1l⊗3 and σ⊗4
x on party 3 and one

of the other parties (with corresponding symmetries
U†

1Z(ϕ)U1 ⊗ 1l⊗4 ⊗ U†
1Z(ϕ)U1 and σ⊗6

x ).
Let us first consider case (a) in which the party

measuring in the last round is party 3. It is straight-
forward to see that the final state is not reachable in
a protocol where this party has not performed any
measurement before, and therefore g3 = A⊗B. This
is due to the fact that∑

i

piσi ⊗ σiH3σi ⊗ σi ̸∝ G3 = A†A⊗B†B (32)

for any probability distribution pi (see Observation 3).
Analogously, we have that for case (b)∑

i

piU
†
1Z(−ϕi)U1 ⊗1lHjU

†
1Z(ϕi)U1 ⊗1l ̸∝ A†A⊗B†B

(33)
for j ∈ {1, 2} and therefore also in this case, it is not
possible to reach the final state if each party measures
only once. Note here that the symmetry σ⊗6

x does
not need to be taken into account as σ⊗6

x commutes
with H and hence is equivalent to the identity in our
analysis.

However, it can be reached via the following proto-
col. First party 3 measures

{ 1√
2
h̃3,

1√
2
h̃3(1l ⊗ σy)}, (34)

with h̃3 =
√

1l + c̃σz ⊗ σz and c̃ = 1/4tr(H3σz ⊗ σz)
which corresponds to a valid POVM. In case of the
second outcome party 2 applies σy on the qubit which
is entangled with the second qubit of party 3. With
this they reach deterministically the state (1l ⊗ 1l ⊗
h̃3)(

⊗
e∈E |Φ+⟩e). Then party 1 and 2 measure

{ 1√
2
hj ,

1√
2
hj(1l ⊗ σz)}, (35)
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where for the second outcome, σz is acting on the
qubit that is connected to the third party and in
case this outcome is obtained, party 3 applies σz

on the qubit which originated from the same source.
By doing so, they obtain deterministically the state
(h1 ⊗ h2 ⊗ h̃3)(

⊗
e∈E |Φ+⟩e). Finally, party 3 imple-

ments the measurement

{ 1√
2
h3(σi ⊗ σi)h̃−1

3 }, (36)

with i = 0, z. This is a valid POVM and party j = 1, 2
apply for outcome i the unitary Vij with the prop-
erty that Vijhj = hj(σi ⊗ σi) (which have to exist as
[Hj , (σi ⊗ σi)] = 0). This transformation determinis-
tically reaches the desired state.

8 Conclusion and Outlook
In this work, we have studied finite-round LOCC
transformation in networks. We first provided the
symmetries for arbitrary network structures, if the
sources distribute two-qubit states. Which finite-
round LOCC transformations can be implemented is
determined by the symmetries [37, 38, 36, 40], and
we use this to show that (in contrast to tree net-
works [35]) for networks containing a cycle there exist
states which are not reachable. For cycle networks,
we provide a systematic way to determine classes of
states that cannot be reached via finite-round LOCC
transformations. Moreover, we characterize all states
which can be reached with protocols where each party
measures once, and each step of the protocol is deter-
ministic. Finally, we provide an example of a state
which is not reachable with simple protocols where
each party measures solely once, showing that in gen-
eral more involved protocols have to be considered.

In this work we have only considered qubit sources.
One may generalize our approach to derive the sym-
metries to higher-dimensional systems, and use this
to characterize finite-round LOCC transformations in
networks distributing qudit states. Furthermore, the
scenario we consider, namely a network distributing
single copies of bipartite states accompanied with
finite-round LOCC transformations, is highly relevant
for quantum communication tasks and of practical
relevance. Hence, it would be desirable to further
study the resource theory of network entanglement
and identify operationally meaningful entanglement
measures.

Acknowledgements
We thank Hayata Yamasaki, Martin Hebenstreit, Bar-
bara Kraus and Otfried Gühne for discussions and
comments. This work has been supported by the the
Austrian Science Fund (FWF): J 4258-N27, Y879-N27

and P 32273-N27, the Austrian Academy of Sciences,
the ERC (Consolidator Grant 683107/TempoQ), and
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation - 447948357 and 440958198).

References
[1] H. J. Kimble, Nature 453, 1023 (2008).

[2] S. Wehner, D. Elkouss and R. Hanson, Science
362, 9288 (2018).

[3] J. I. Cirac, P. Zoller, H. J. Kimble, and H.
Mabuchi, Phys. Rev. Lett. 78, 3221 (1997).

[4] L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82,
1209 (2010).

[5] A. Reiserer and G. Rempe, Rev. Mod. Phys.
87,1379 (2015).

[6] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller,
Nature 414, 413 (2001).

[7] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C.
Macchiavello, Phys. Rev. A 59, 4249 (1999).

[8] T. P. Spiller, K. Nemoto, S. L. Braunstein, W. J.
Munro, P. van Loock, and G. J. Milburn, New J.
Phys. 8, 30 (2006).

[9] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss,
B. Li, AVS Quantum Sci. 3, 014101 (2021).

[10] N. Gisin, J.-D. Bancal, Y. Cai, P. Remy, A.
Tavakoli, E. Zambrini Cruzeiro, S. Popescu, N.
Brunner, Nat. Commun. 11, 2378 (2020).

[11] T. Kraft, S. Designolle, C. Ritz, N.Brunner,
O. Gühne, and M. Huber, Phys. Rev. A. 103,
L060401 (2021).

[12] M. Navascués, E. Wolfe, D. Rosset, and A. Pozas-
Kerstjens, Phys. Rev. Lett. 125, 240505 (2020).

[13] M.-X. Luo, Adv. Quantum Technol., 2000123
(2021).

[14] J. Åberg, R. Nery, C. Duarte, R. Chaves, Phys.
Rev. Lett. 125, 110505 (2020).

[15] T. Kraft, C. Spee, X.-D. Yu, and O. Gühne,
Phys. Rev. A 103, 052405 (2021).

[16] K. Hansenne, Z.-P. Xu, T. Kraft, and O. Gühne,
Nat. Commun. 13, 496 (2022).

[17] C. H. Bennett, G. Brassard, C. Crépeau, R.
Jozsa, A. Peres, and W. K. Wootters, Phys. Rev.
Lett. 70, 1895 (1993).

[18] A. Acín, J. Cirac, M. Lewenstein, Nature Physics
3, 256 (2007).

[19] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).

[20] W. Dür, G. Vidal, and J.I. Cirac, Phys. Rev. A
62,062314 (2000).

[21] F. Verstraete, J. Dehaene, B. De Moor, and H.
Verschelde, Phys. Rev. A 65, 052112 (2002).

Accepted in Quantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 7

https://doi.org/10.1038/nature07127
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1038/35106500
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1088/1367-2630/8/2/030
https://doi.org/10.1088/1367-2630/8/2/030
https://doi.org/10.1116/5.0024062
https://doi.org/10.1038/s41467-020-16137-4
https://doi.org/10.1103/PhysRevA.103.L060401
https://doi.org/10.1103/PhysRevA.103.L060401
https://doi.org/10.1103/PhysRevLett.125.240505
https://doi.org/10.1002/qute.202000123
https://doi.org/10.1002/qute.202000123
https://doi.org/10.1103/PhysRevLett.125.110505
https://doi.org/10.1103/PhysRevLett.125.110505
https://doi.org/10.1103/PhysRevA.103.052405
https://doi.org/10.1038/s41467-022-28006-3
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1038/nphys549
https://doi.org/10.1038/nphys549
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.65.052112


[22] M. J. Donald, M. Horodecki, and O. Rudolph, J.
Math. Phys. 43, 4252 (2002).

[23] E. Chitambar, Phys. Rev. Lett. 107, 190502
(2011).

[24] E. Chitambar, W. Cui, and H.-K-. Lo, Phys. Rev.
Lett. 108, 240504 (2012).

[25] E. Chitambar, D. Leung, L. Mancinska, M.
Ozols, A. Winter, Commun. Math. Phys. 328,
303 (2014).

[26] S. M. Cohen, Phys. Rev. Lett. 118, 020501
(2017).

[27] S. Turgut, Y. Gül, and N. K. Pak, Phys. Rev. A
81, 012317 (2010).

[28] S. Kintas and S. Turgut, J. Math. Phys. 51,
092202 (2010).

[29] C. Spee, J.I. de Vicente, D. Sauerwein, B. Kraus,
Phys. Rev. Lett. 118, 040503 (2017).

[30] J.I. de Vicente, C. Spee, D. Sauerwein, B. Kraus,
Phys. Rev. A 95, 012323 (2017).

[31] J. I. de Vicente, C. Spee, and B. Kraus, Phys.
Rev. Lett. 111, 110502 (2013).

[32] K. Schwaiger, D. Sauerwein, M. Cuquet, J. I. de
Vicente, B. Kraus, Phys. Rev. Lett. 115, 150502
(2015).

[33] C. Spee, J. I. de Vicente, B. Kraus, J. Math.
Phys. 57, 052201 (2016).

[34] M. Hebenstreit, C. Spee, and B. Kraus, Phys.
Rev. A 93, 012339 (2016).

[35] H. Yamasaki, A. Soeda, and M. Murao, Phys.
Rev. A 96, 032330 (2017).

[36] M. Hebenstreit, M. Englbrecht, C. Spee, J. I. de
Vicente, and B. Kraus, New J. Phys. 23, 033046
(2021).

[37] G. Gour and N. R. Wallach, New J. Phys. 13,
073013 (2011).

[38] G Gour and N. R. Wallach, New J. Phys. 21,
109502 (2019).

[39] D. Sauerwein, A. Molnar, J. I. Cirac, and B.
Kraus, Phys. Rev. Lett. 123, 170504 (2019).

[40] M. Hebenstreit, C. Spee, N. K. H. Li, B. Kraus,
J. I. de Vicente, Phys. Rev. A 105, 032458 (2022).

[41] F. Verstraete, J. Dehaene, and B. De Moor, Phys.
Rev. A 64, 010101(R) (2001).

[42] H.-K. Lo and S. Popescu, Phys. Rev. A, 63,
022301 (2001).

A Proof of Lemma 4
In the following, we provide a proof for the fact that the local symmetry operators S2 and S3 in Eq. (7) in the
main text have to factorize.

Lemma 4. The relation XABZBC = YAC ⊗ 1lB with system B being two-dimensional, and X,Z invertible can
only hold true if XAB = X̄A ⊗ XB and ZBC = Z̄B ⊗ ZC for some choice of invertible operators X̄A, XB , Z̄B

and ZC , i.e., the operators factorize.

Proof. We will show that XABZBC = YAC ⊗ 1lB , with system B being two-dimensional, and X,Z invertible
implies that XAB = X̃A ⊗ XB and ZBC = Z̃B ⊗ ZC . As we have explained in the main text (see also Fig. 1
in the main text), this implies that in any network the local symmetries have to factorize with respect to the
different particles the parties receive from the sources.

So let us consider the equation
XABZBC = YAC ⊗ 1lB . (A1)

Note that this equation holds true if and only if

X̃ABZ̃BC = YAC ⊗ 1lB , (A2)

with Q̃ = M−1
B QMB for Q = X,Z. Note further that Q factorizes with respect to the splitting B versus rest

if and only if Q̃ does. We will decompose the operators X̃ and Z̃ in an operator basis {λi ⊗ σj}, where σj is
acting on system B and correspond to the Pauli operators, i.e.,

X̃AB =
∑
i,j

xijλi ⊗ σj (A3)

and
Z̃BC =

∑
k,l

zklσk ⊗ λl =
∑

l

Wl ⊗ λl. (A4)
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Moreover, we will choose M such that W0 =
∑

k zk0σk is in Jordan decomposition. Here we chose without loss
of generality to bring the matrix W0 acting on B for the component λ0 into Jordan form, however, in case this
component does vanish we relabel the basis for C such that some non-zero component is referred to as λ0. The
matrix W0 can then either be diagonal or have a Jordan block of size 2. We will first discuss the diagonal case.
Then in order for Eq. (A2) to hold true we have that for all i and j ∈ 1, 2, 3

tr[(X̃ABZ̃BC)(λi ⊗ σj ⊗ λ0)] = tr[(X̃AB{1lA ⊗W0})(λi ⊗ σj)] = 0.

This is equivalent to

xi1z00 + ixi2z30 = 0,
xi2z00 − ixi1z30 = 0,
xi3z00 + xi0z30 = 0. (A5)

These equations can also be written as

v⃗j
i · ω⃗ = 0, (A6)

with ω⃗ = (z00, z03)T , v⃗1
i = (xi1, ixi2)T ,v⃗2

i = (xi2,−ixi1)T and v⃗3
i = (xi3, ixi0)T . From Eq. (A6) for j = 1 and

j = 2 we have that v⃗2
i = civ⃗

2
i with ci being some proportionality factor, which can be straightforwardly be

shown to be ±i. With this we have that xi2 = ±ixi1. In case xi1 ̸= 0 it therefore follows that z00 = ±z03. This
implies that xi2 = ±ixi1 for all i, i.e. it is the same sign for all i, and also xi3 = ∓xi0 for all i. It should be
noted that these constraints lead to a matrix Wi which has a kernel. The corresponding eigenvector is (1, 0)T

for xi2 = ixi1 or (0, 1)T for xi2 = −ixi1. As any Wi has the same kernel this solution is only possible if Z̃ is
not invertible (which contradicts our assumption). Hence, it has to hold that xi2 = xi1 = 0. From Eq. (A6) for
j = 3 it follows that all vectors v⃗3

i have to be parallel (or the zero vector), which corresponds to the case that
X̃ factorizes. It can be straightforwardly seen that in this case also Z̃ has to factorize.

It remains to consider the case that W0 is a Jordan block of size 2, i.e. z30 = 0 and z20 = iz10 = i/2. Then
Eq. (A1) is fulfilled only if for all i

xi1z00 + i(xi0 + xi3)z10 = 0,
xi2z00 + i(xi0 + xi3)z10 = 0,
xi3z00 + i(ixi1 − xi2)z10 = 0. (A7)

Let us first consider the case that z00 = 0. Then for all i it has to hold that xi2 = ixi1 and xi0 = −xi3. As before
this would imply in contradiction to our assumption that Z̃ is not invertible. Considering the case z00 ̸= 0 it
can be easily seen that xi2 = ixi1 and xi3 = 0. We can then write the first condition in Eq. (A7) as

0 = xi1z00 + ixi0z10 ≡ r⃗i · s⃗,

with r⃗i = (xi1, xi0)T and s⃗ = (z00, iz10)T . Hence, for all i the vectors r⃗i have to be parallel (or the zero vector).
This implies that X̃ and hence also Z̃ has to factorize, which completes the proof that in order for Eq. (A1) to
hold X and Z have to factorize.

B Symmetries for the local standard form
The local standard form is chosen such that Hmb

j is diagonal with real positive entries. Which symmetries
are possible will depend on the degeneracy. Note that one can always permute the diagonal entries of Hmb

j to
bring it in a form mentioned below, e.g., one can permute |Ψ+⟩ ⟨Ψ+| and |Ψ−⟩ ⟨Ψ−| (leaving at the same time
|Φ±⟩ ⟨Φ±| invariant) by conjugation with

√
iσz ⊗

√
−iσz. Via the procedure outlined in the main text one can

determine the symmetries of HB
j . We obtain the following results:

(i) No degeneracy, i.e., Hmb
j = diag(a, b, c, d): The local operators which leave HB

j invariant are σi ⊗ σi (see
also [33]).

(ii) A double-degenerate and two different eigenvalues, i.e., Hmb
j = diag(a, a, b, c): The operators [Z(ϕ) ⊗

Z(ϕ)](σx ⊗ σx)k with Z(ϕ) = diag(eiϕ, e−iϕ) and k ∈ {0, 1} are the only local ones which leave HB
j

invariant.
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(iii) Two double-degenerate eigenvalues, i.e., Hmb
j = diag(a, a, b, b): The symmetries of HB

j are [Z(ϕ1) ⊗
Z(ϕ2)](σx ⊗ σx)k with k ∈ {0, 1}.

(iv) Triple degenerate eigenvalues, i.e., Hmb
j = diag(a, a, a, b): The local symmetries of HB

j are given by
Z(ϕ1)X(α)Z(ϕ2) ⊗ Z(ϕ1)X(−α)Z(ϕ2) with X(α) = eiασx .

(v) Four degenerate eigenvalues, i.e., Hmb
j = 1l: All local unitaries leave HB

j invariant.
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