Stabilization of Hubbard-Thouless pumps through nonlocal fermionic repulsion

Javier Argüello-Luengo1, Manfred J. Mark2,3, Francesca Ferlaino2,3, Maciej Lewenstein1,4, Luca Barbiero5, and Sergi Julià-Farré1

1ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
3Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
4ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
5Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Thouless pumping represents a powerful concept to probe quantized topological invariants in quantum systems. We explore this mechanism in a generalized Rice-Mele Fermi-Hubbard model characterized by the presence of competing onsite and intersite interactions. Contrary to recent experimental and theoretical results, showing a breakdown of quantized pumping induced by the onsite repulsion, we prove that sufficiently large intersite interactions allow for an interaction-induced recovery of Thouless pumps. Our analysis further reveals that the occurrence of stable topological transport at large interactions is connected to the presence of a spontaneous bond-order-wave in the ground-state phase diagram of the model. Finally, we discuss a concrete experimental setup based on ultracold magnetic atoms in an optical lattice to realize the newly introduced Thouless pump. Our results provide a new mechanism to stabilize Thouless pumps in interacting quantum systems.

Topological phases have attracted great interest in recent years due to their striking global properties, ultimately related to the presence of a topological invariant robust to local imperfections. While topology exists for systems of noninteracting particles, the addition of many-body interactions is expected to lead to even more exotic phenomena. In this context, we provide numerical evidence of interaction-induced topological properties of one-dimensional fermionic systems, and propose an experimental setup to quantum simulate the model.

For one-dimensional lattice systems, the presence of a global topological invariant manifests itself through the quantized transport of particles in cyclic dynamics experiments, a phenomenon known as Thouless pump. In this work, we numerically simulate these periodic transport dynamics in a chain of fermions subject to both onsite and nearest-neighbor repulsion, to identify for which values of interactions the system is topological, i.e., it transports an integer amount of particles on each cycle of the dynamics. We find that, despite onsite and intersite interactions result in the absence of quantized transport when considered alone, as reported in previous theoretical and experimental works, the simultaneous presence of these two terms leads to exotic regimes in which increasing interactions leads to a recovery of the topological Thouless pump. We also show that magnetic atoms trapped in an optical lattice represent a prime platform to quantum simulate these physics.

This work shows that repulsive fermionic interactions are not fundamentally detrimental to Thouless pumps, opening up the possibility to experimentally observe an interaction-induced recovery of one-dimensional topological transport.

► BibTeX data

► References

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982a).

[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[4] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).

[5] L. D. Landau, E. M. Lifshitz, and M. Pitaevskii, Statistical Physics (Butterworth-Heinemann, New York, 1999).

[6] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).

[7] K. von Klitzing, Nat. Phys. 13, 198 (2017).

[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[9] S. Rachel, Rep. Prog. Phys. 81, 116501 (2018).

[10] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).

[11] Q. Niu and D. J. Thouless, Journal of Physics A: Mathematical and General 17, 2453 (1984).

[12] E. Berg, M. Levin, and E. Altman, Phys. Rev. Lett. 106, 110405 (2011).

[13] S. Greschner, S. Mondal, and T. Mishra, Phys. Rev. A 101, 053630 (2020).

[14] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F. Heidrich-Meisner, Phys. Rev. B 98, 245148 (2018).

[15] S. Mondal, S. Greschner, L. Santos, and T. Mishra, Phys. Rev. A 104, 013315 (2021).

[16] L. Lin, Y. Ke, and C. Lee, Phys. Rev. A 101, 023620 (2020a).

[17] S. Mondal, A. Padhan, and T. Mishra, Phys. Rev. B 106, L201106 (2022a).

[18] Y. Kuno and Y. Hatsugai, Phys. Rev. Res. 2, 042024 (2020).

[19] A. Padhan, S. Mondal, S. Vishveshwara, and T. Mishra, ``Interacting bosons on a Su-Schrieffer-Heeger ladder: Topological phases and Thouless pumping,'' (2023), arXiv:2306.09325 [cond-mat.quant-gas].

[20] M. Nakagawa, T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 98, 115147 (2018).

[21] E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Phys. Rev. B 106, 045141 (2022).

[22] S. Mondal, E. Bertok, and F. Heidrich-Meisner, Phys. Rev. B 106, 235118 (2022b).

[23] S. Mondal, E. Bertok, and F. Heidrich-Meisner, Phys. Rev. B 107, 239903 (2023).

[24] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

[25] J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012).

[26] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).

[27] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller, Nature 607, 667 (2022).

[28] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson, K.-M. C. Fu, M. Greiner, K. R. Hazzard, R. G. Hulet, A. J. Kollár, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K.-K. Ni, A. C. Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. Spielman, K. Temme, D. S. Weiss, J. Vučković, V. Vuletić, J. Ye, and M. Zwierlein, PRX Quantum 2, 017003 (2021).

[29] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys. 91, 015005 (2019).

[30] R. Citro and M. Aidelsburger, Nat. Rev. Phys. 5, 87 (2023).

[31] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[32] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Phys. Rev. Lett. 109, 106402 (2012).

[33] A. Cerjan, M. Wang, S. Huang, K. P. Chen, and M. C. Rechtsman, Light: Science & Applications 9, 178 (2020).

[34] M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Nature 596, 63 (2021).

[35] M. Jürgensen, S. Mukherjee, C. Jörg, and M. C. Rechtsman, Nat. Phys. 19, 420 (2023).

[36] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch, Nat. Phys. 12, 350 (2016).

[37] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296 (2016).

[38] J. Minguzzi, Z. Zhu, K. Sandholzer, A.-S. Walter, K. Viebahn, and T. Esslinger, Phys. Rev. Lett. 129, 053201 (2022).

[39] A.-S. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S. Roschinski, K. Sandholzer, K. Viebahn, and T. Esslinger, Nat. Phys. 19, 1471 (2023).

[40] K. Viebahn, A.-S. Walter, E. Bertok, Z. Zhu, M. Gächter, A. A. Aligia, F. Heidrich-Meisner, and T. Esslinger, ``Interaction-induced charge pumping in a topological many-body system,'' (2023), arXiv:2308.03756 [cond-mat.quant-gas].

[41] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum many-body systems, Vol. 54 (Oxford University Press, Oxford, 2012).

[42] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

[43] P. Sompet, S. Hirthe, D. Bourgund, T. Chalopin, J. Bibo, J. Koepsell, P. Bojović, R. Verresen, F. Pollmann, G. Salomon, C. Gross, T. A. Hilker, and I. Bloch, Nature 606, 484 (2022).

[44] J. Léonard, S. Kim, J. Kwan, P. Segura, F. Grusdt, C. Repellin, N. Goldman, and M. Greiner, Nature 619, 495 (2023).

[45] S. Ejima and S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007).

[46] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).

[47] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and T. Pfau, Reports on Progress in Physics 86, 026401 (2022).

[48] U. Schollwöck, Ann. Phys. 326, 96 (2011).

[49] J. Hauschild and F. Pollmann, SciPost Phys. Lect. Notes , 5 (2018).

[50] M. Nakamura, J. Phys. Soc. Japan 68, 3123 (1999).

[51] M. Nakamura, Phys. Rev. B 61, 16377 (2000).

[52] E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002).

[53] P. Sengupta, A. W. Sandvik, and D. K. Campbell, Phys. Rev. B 65, 155113 (2002).

[54] A. W. Sandvik, L. Balents, and D. K. Campbell, Phys. Rev. Lett. 92, 236401 (2004).

[55] Y. Z. Zhang, Phys. Rev. Lett. 92, 246404 (2004).

[56] K.-M. Tam, S.-W. Tsai, and D. K. Campbell, Phys. Rev. Lett. 96, 036408 (2006).

[57] S. Glocke, A. Klümper, and J. Sirker, Phys. Rev. B 76, 155121 (2007).

[58] M. Di Dio, L. Barbiero, A. Recati, and M. Dalmonte, Phys. Rev. A 90, 063608 (2014).

[59] S. Julià-Farré, D. González-Cuadra, A. Patscheider, M. J. Mark, F. Ferlaino, M. Lewenstein, L. Barbiero, and A. Dauphin, Phys. Rev. Res. 4, L032005 (2022).

[60] M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).

[61] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

[62] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010).

[63] S. R. Manmana, A. M. Essin, R. M. Noack, and V. Gurarie, Phys. Rev. B 86, 205119 (2012).

[64] V. Gurarie, Phys. Rev. B 83, 085426 (2011).

[65] T. Yoshida, R. Peters, S. Fujimoto, and N. Kawakami, Phys. Rev. Lett. 112, 196404 (2014).

[66] D. Wang, S. Xu, Y. Wang, and C. Wu, Phys. Rev. B 91, 115118 (2015).

[67] B.-T. Ye, L.-Z. Mu, and H. Fan, Phys. Rev. B 94, 165167 (2016).

[68] B. Sbierski and C. Karrasch, Phys. Rev. B 98, 165101 (2018).

[69] L. Barbiero, L. Santos, and N. Goldman, Phys. Rev. B 97, 201115 (2018).

[70] N. H. Le, A. J. Fisher, N. J. Curson, and E. Ginossar, npj Quantum Inf. 6, 24 (2020).

[71] Y.-T. Lin, D. M. Kennes, M. Pletyukhov, C. S. Weber, H. Schoeller, and V. Meden, Phys. Rev. B 102, 085122 (2020b).

[72] A. Montorsi, U. Bhattacharya, D. González-Cuadra, M. Lewenstein, G. Palumbo, and L. Barbiero, Phys. Rev. B 106, L241115 (2022).

[73] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982b).

[74] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[75] R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).

[76] J. A. Marks, M. Schüler, J. C. Budich, and T. P. Devereaux, Phys. Rev. B 103, 035112 (2021).

[77] K. Loida, J.-S. Bernier, R. Citro, E. Orignac, and C. Kollath, Phys. Rev. Lett. 119, 230403 (2017).

[78] L. Barbiero, A. Montorsi, and M. Roncaglia, Phys. Rev. B 88, 035109 (2013).

[79] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, Nature 462, 74 (2009).

[80] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M. C. Bañuls, L. Pollet, I. Bloch, and S. Kuhr, Science 334, 200 (2011).

[81] T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E. Demler, I. Bloch, and C. Gross, Science 357, 484 (2017).

[82] A. Patscheider, B. Zhu, L. Chomaz, D. Petter, S. Baier, A.-M. Rey, F. Ferlaino, and M. J. Mark, Phys. Rev. Research 2, 023050 (2020).

[83] L. Su, A. Douglas, M. Szurek, R. Groth, S. F. Ozturk, A. Krahn, A. H. Hébert, G. A. Phelps, S. Ebadi, S. Dickerson, F. Ferlaino, O. Marković, and M. Greiner, Nature 622, 724 (2023).

[84] S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L. Chomaz, M. J. Mark, and F. Ferlaino, Phys. Rev. Lett. 121, 093602 (2018).

[85] J. Fraxanet, D. González-Cuadra, T. Pfau, M. Lewenstein, T. Langen, and L. Barbiero, Phys. Rev. Lett. 128, 043402 (2022).

[86] M. Sohmen, M. J. Mark, M. Greiner, and F. Ferlaino, SciPost Phys. 15, 182 (2023).

[87] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, and C. Chin, Phys. Rev. A 79, 013622 (2009).

Cited by

[1] Ashirbad Padhan and Tapan Mishra, "Quantized Thouless charge pumping in a system with onsite quasiperiodic disorder", Physical Review B 109 17, 174206 (2024).

[2] Sergi Julià-Farré, Javier Argüello-Luengo, Loïc Henriet, and Alexandre Dauphin, "Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays", arXiv:2402.09311, (2024).

[3] Stavros Athanasiou, Ida Egholm Nielsen, Matteo M. Wauters, and Michele Burrello, "Thouless pumping in Josephson junction arrays", SciPost Physics 16 3, 083 (2024).

[4] Ashirbad Padhan and Tapan Mishra, "Disorder driven Thouless charge pump in a quasiperiodic chain", arXiv:2312.16568, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-25 03:02:17) and SAO/NASA ADS (last updated successfully 2024-05-25 03:02:18). The list may be incomplete as not all publishers provide suitable and complete citation data.