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Multi-qubit entangling interactions arise naturally in several quantum computing
platforms and promise advantages over traditional two-qubit gates. In particular, a
fixed multi-qubit Ising-type interaction together with single-qubit X-gates can be used
to synthesize global ZZ-gates (GZZ gates). In this work, we first show that the synthesis
of such quantum gates that are time-optimal is NP-hard. Second, we provide explicit
constructions of special time-optimal multi-qubit gates. They have constant gate times
and can be implemented with linearly many X-gate layers. Third, we develop a heuristic
algorithm with polynomial runtime for synthesizing fast multi-qubit gates. Fourth,
we derive lower and upper bounds on the optimal GZZ gate-time. Based on explicit
constructions of GZZ gates and numerical studies, we conjecture that any GZZ gate
can be executed in a time O(n) for n qubits. Our heuristic synthesis algorithm leads to
GZZ gate-times with a similar scaling, which is optimal in this sense. We expect that
our efficient synthesis of fast multi-qubit gates allows for faster and, hence, also more
error-robust execution of quantum algorithms.

1 Introduction
Any quantum computation requires to decompose its logical operations into the platform’s native
instruction set. The performance of the computation depends heavily on the available instructions
and their implementation in the quantum hardware. In particular for early quantum devices a
major challenge is posed by their short decoherence times, which limits the runtime of a quantum
computation significantly. Therefore, it is not only necessary to optimize the number of native
instructions but also their execution time.

Ising-type interactions give rise to an important and rich class of Hamiltonians ubiquitous in
several quantum computing platforms [1–5]. Previously, we have utilized these Ising-type interac-
tions in a new synthesis method [6]. In particular, we have considered the problem of synthesizing
time-optimal multi-qubit gates on a quantum computing platform that supports the following basic
operations:

(I) single-qubit rotations can be executed in parallel, and

(II) it offers a fixed Ising-type interaction.

The corresponding synthesis of global ZZ-gates (GZZ gates) is given by the minimization of the
overall gate time, which can be written as a linear program (LP) [6]. This LP is exponentially large
in the number of qubits. It has been unclear whether such multi-qubit gates can be synthesized in
a computationally efficient way while keeping the gate time optimal.

In this work, we prove that this synthesis problem is NP-hard and provide a close-to-optimal
efficient heuristic solution. To establish this hardness result, we draw the connection between the
synthesis problem and graph theory. The cut polytope is defined as the convex hull of binary vectors
representing the possible cuts of a given graph [7]. We provide a polynomial time reduction of the
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membership problem of the cut polytope to the synthesis of time-optimal multi-qubit gates. Since
this membership problem is NP-complete [8], the synthesis of time-optimal multi-qubit gates is
NP-hard. This is akin to the NP-hardness of finding an optimal control pulse for multi-qubit gates
using the Mølmer-Sørensen mechanism [4, 5].

We provide several ways to circumvent the hardness of time-optimal GZZ-gates. First, we
provide explicit constructions of time-optimal multi-qubit gates realizing nearest-neighbor coupling
under physically motivated assumptions. Such constructed nearest-neighbor multi-qubit gates
exhibit a constant gate time and can be implemented with only linearly many single-qubit gate
layers. We then use these ideas to define relaxations of the underlying linear program, leading to a
hierarchy of polynomial-time algorithms for the synthesis of fast multi-qubit gates. By increasing
the level in the hierarchy, this heuristic approach can be adapted to provide substantially better
approximations to the optimal solution at the cost of higher polynomial runtime. For a small
number of qubits, numerical experiments show that the so-obtained gate times are close to the
optimal solution and come with significant runtime savings.

Among others, we prove bounds on the minimal multi-qubit gate time, and conjecture that it
scales at most linear with the number of qubits. This claim is supported by a class of explicit
constructions of time-optimal multi-qubit gates achieving the linear upper bound. Moreover, we
provide numerical evidence that these explicit solutions in fact yield the longest gate time for a
small number of qubits.

We expect our results to be useful for the implementation of time-optimal multi-qubit gates in
noisy and intermediate scale quantum (NISQ) devices and beyond. The polynomial-time heuristic
algorithm makes it possible to efficiently synthesize fast multi-qubit gates for a growing number of
qubits. The here considered multi-qubit gates have been useful in a number of different applications,
some of which we investigated in previous work [6]. Furthermore, they are the main building blocks
for a class of Instantaneous Quantum Polynomial time (IQP) circuits which might be classically
hard to simulate [9]. More recently, it was shown that quantum memory circuits and boolean
functions can be implemented with a constant number of GZZ gates and additional ancilla qubits
[10]. Moreover, there is an ancilla-free construction of multi-qubit Clifford circuits using at most 26
GZZ gates [11]. As noted in Ref. [11], there is also a shorter implementation for n ≤ 212, requiring
only 2(log2(n) + 1) GZZ gates. This implementation is based on a decomposition in Ref. [12] and
the log-depth implementation of a CX circuit in formula (4) of Ref. [13].

This paper is structured as follows: We first give a brief introduction to the synthesis of time-
optimal multi-qubit gates [6]. In Section 4 we proof that the time-optimal multi-qubit synthesis
problem is NP-hard. However, in Section 5 we explicitly construct a certain class of time-optimal
multi-qubit gates with constant gate time. The heuristic algorithm based on the ideas of the
previous section is introduced in Section 6. Section 7 provides gate time bounds for time-optimal
multi-qubit gates. Finally, Section 8 presents numerical evidence for the conjectured linear gate-
time scaling and numerical benchmarks for the heuristic algorithm.

2 Synthesizing multi-qubit gates with Ising-type interactions
In this section, we give a short introduction to the synthesis of time-optimal multi-qubit gates. For
more details we refer to the first two sections of Ref. [6].

On the abstract quantum computing platform with n qubits specified by the requirements (I)
and (II) above, interactions between the qubits are generated by an Ising-type Hamiltonian

HZZ := −
n∑

i<j

Jijσi
zσj

z , (1)

where σi
z is the Pauli-Z operator acting on the i-th qubit. Note, that diagonal terms, where i = j,

are excluded since they only change the Hamiltonian by an energy offset. By J we denote the
symmetric matrix with entries Jij in the upper triangular part and vanishing diagonal. We call J
the physical coupling matrix.

Conjugating the Hamiltonian HZZ with X gates on the qubits indicated by the binary vector
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b ∈ Fn
2 yields

σb
xHZZσb

x = −
n∑

i<j

Jijσbi
x σbj

x σi
zσj

zσbi
x σbj

x

= −
n∑

i<j

Jij(−1)bi(−1)bj σi
zσj

z

= −
n∑

i<j

Jijmimjσi
zσj

z =: H(m) ,

(2)

where we define the encoding m := (−1)b entry wise. The sign of the interaction between qubit i
and j is given by mimj ∈ {−1, +1}. We call H(m) the encoded Hamiltonian.

Given time steps λm ≥ 0 during which the encoding m is used, we consider unitaries of the
form ∏

m

e−iλmH(m) = e−i
∑

m
λmH(m) =: e−iH , (3)

where we used that the diagonal Hamiltonians H(m) mutually commute. For all possible encodings
m ∈ {−1, +1}n we collect the time steps λm in a vector λ ∈ R2n

and interpret t =
∑

m λm as
the total gate time of the unitary e−iH , implemented by the sequence of unitaries (3). Moreover,
we use the symmetry

(−m)(−m)T = mmT (4)
to reduce the degrees of freedom in λ from 2n to 2n−1 by adding up λm + λ−m to a single time
step.

The so generated unitary is the time evolution operator under the total Hamiltonian

H = −
n∑

i<j

Aijσi
zσj

z , (5)

where we have defined the total coupling matrix

A := J ◦
∑
m

λmmmT , (6)

and used the linearity of the Hadamard (entry-wise) product ◦. By construction, A is a symmetric
matrix with vanishing diagonal. Let us define the

(
n
2
)
-dimensional subspace of symmetric matrices

with vanishing diagonal by

Sym0(Rn) := {M ∈ Sym(Rn) |Mii = 0 ∀i ∈ [n]} . (7)

For A ∈ Sym0(Rn), we define an associated multi-qubit gate GZZ(A), where GZZ stands for “global
ZZ interactions”,

GZZ(A) := exp

i
n∑

i<j

Aijσi
zσj

z

 . (8)

To determine which matrices can be decomposed as in Eq. (6), we denote the non-zero index
set of a symmetric matrix as nz(M) := {(i, j) |Mij ̸= 0, i < j}. Then, the subspace of matrices A ∈
Sym0(Rn) that can be decomposed as in Eq. (6) is exactly given by the condition nz(A) ⊆ nz(J),
which we assume to hold from now on. Thus, all-to-all connectivity enables to decompose any
coupling matrix A ∈ Sym0(Rn) but is not strictly required by our approach. We call the number
of encodings m needed for the decomposition the encoding cost of GZZ(A), and

∑
m λm the total

GZZ time. Note, that both quantities depend on the chosen decomposition.
It is convenient to abstract the following analysis from the physical details given by J . For a

matrix A ∈ Sym0(Rn) with nz(A) ⊆ nz(J), its possible decompositions are in one-to-one corre-
spondence with the decompositions of the matrix M := A⊘ J ∈ Sym0(Rn) where

(A⊘ J)ij :=
{

Aij/Jij , i ̸= j and Jij ̸= 0 ,

0, otherwise .
(9)
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We further define the linear operator

V : R2n−1

≥0 → Sym0(Rn),

λ 7→
∑
m

λmmmT ,
(10)

represented in the standard basis by a matrix

V ∈ {−1, +1}(
n
2)×(2n−1) . (11)

Let v : Sym0(Rn) → R(n
2) be the (row-wise) vectorization of the upper triangular part of the

matrix input such that the columns of V are given by v(mmT ). Our objective is to minimize the
total gate time and the amount of m’s needed to express the matrix M ∈ Sym0(Rn). To this end
we formulate the following linear program (LP):

minimize 1T λ

subject to V λ = v(M),

λ ∈ R2n−1

≥0 ,

(12)

where 1 = (1, 1, . . . , 1) is the all-ones vector such that 1T λ =
∑

m λm. A feasible solution is an
assignment of the variables that fulfills all constraints of the optimization problem and an optimal
solution is a feasible solution which also minimizes/maximizes the objective function. Throughout
this paper, we indicate optimal solutions by an asterisk, e.g. λ∗. Note, that the LP (12) has a
feasible solution for any symmetric matrix M with vanishing diagonal [6, Theorem II.2]. The
theory of linear programming then guarantees the existence of an optimal solution with at most(

n
2
)

non-zero entries [6, Proposition II.3].
A standard tool in convex optimization is duality [14] which will be used in Section 7. The

dual LP to the LP (12) reads as follows:

maximize ⟨M, y⟩

subject to V T y ≤ 1,

y ∈ R(n
2) ,

(13)

with the inner product ⟨ · , · ⟩ : Sym0(Rn) × R(n
2) → R, ⟨M, y⟩ 7→ v(M)T y. Here, inequalities

between vectors are to be understood entry-wise. A simple, but important fact is the following: If
λ∗ is an optimal solution to the primal LP (12), then any feasible solution y to the dual LP (13)
provides a lower bound as ⟨M, y⟩ ≤ 1T λ∗. Moreover, the feasibility of the LP (12) implies that we
have strong duality : if y∗ is a dual optimal solution, then we have equality between the optimal
values, ⟨M, y∗⟩ = 1T λ∗.

3 Main results
We want to highlight our main contributions. First, we provide the hardness results for the
synthesis of time-optimal GZZ gates.

Theorem (Theorem 6). The decision version of the LP (12), is NP-complete.

We say that the synthesis of time-optimal multi-qubit gates (solving LP (12)) is NP-hard in
the sense of the function problem extension of the decision problem class NP [15]. We circumvent
the hardness of the time-optimal multi-qubit gate synthesis by providing an explicit construction
of GZZ gates realizing next neighbor coupling with constant gate time and linear encoding cost.
The assumption of a constant subdiagonal of J is physically motivated and can be realized in an
ion trap [16].
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Theorem (Theorem 10, informal). Let the subdiagonal of J and A be a constant with values c
and φ respectively. Then GZZ(A) on n qubits has the encoding cost of d ≤ 2n and constant total
GZZ time 2φ/c. This total gate time is optimal.

In Section 6 we define Algorithm 3 and introduce LP (41), a polynomial time heuristic to
synthesize GZZ gates with small, but not necessarily minimal, gate time. This heuristic does not
rely on any further assumptions and is applicable for arbitrary J, A ∈ Sym0(Rn). In Section 8 we
show numerically that this heuristic leads to GZZ gate times close to the optimum while solving
the synthesis problem much faster.

Furthermore, we proof lower and upper bounds on the GZZ gate time.

Theorem (Theorem 15). The optimal total gate time of GZZ(A) with A ∈ Sym0(Rn) is lower and
upper bounded by

∥A⊘ J∥ℓ∞ ≤ 1T λ∗ ≤ ∥A⊘ J∥ℓ1 . (14)

Here, the upper bound scales quadratic in n for a constant matrix M = A ⊘ J . This upper
bound is loose in the sense that it also holds for the GZZ gates constructed by the heuristic in
Section 6. Therefore, we tighten the upper bound to a linear scaling in n.

Conjecture (Conjecture 16). The optimal gate time of GZZ(A) with A ∈ Sym0(Rn) is tightly
upper bounded by

1T λ∗ ≤ ∥A⊘ J∥ℓ∞ ·

{
n , for odd n ,

n− 1 , for even n .
(15)

We provide evidence for this conjecture using an explicit construction (Theorem 21) that re-
alizes the conjectured upper bound for any n, as well as numerical evidence for n ≤ 8 (Fig. 1).
Unfortunately, we were not able to prove this result and state the challenges in Appendix A.

4 Synthesizing time-optimal GZZ gates is NP-hard
In this section, we investigate the complexity of solving the gate synthesis problem stated as
LP (12). We observe that LP (12) is an optimization over the convex cone generated by

En :=
{

mmT
∣∣ m ∈ {−1, +1}n, mn = +1

}
, (16)

which is the set of outer products generated by all possible encodings m. Due to the symmetry
Eq. (4) we can uniformly fix the value of one entry of m. We chose the convention mn = +1.
In the literature En is also known as the elliptope of rank one matrices [17]. In the following, we
consider the polytope

conv(En) :=
{∑

i

λiri

∣∣∣∣∣ ∑
i

λi = 1, λi ≥ 0, ri ∈ En

}
, (17)

and show the connection to graph theory, in particular to the cuts of graphs.

Definition 1 (cut polytope [7]). Let Kn = (Vn, En) be a complete graph with n vertices. Denote
δ(X) the set of all edges with one endpoint in X ⊂ Vn and the other endpoint in its complement
X̄, i.e., δ(X) defines the cut between X and X̄. Let χδ(X) ∈ {0, 1}|En| denote the characteristic
vector of a cut, with χ

δ(X)
e = 1 if e ∈ δ(X) and χ

δ(X)
e = 0 otherwise. We define the cut polytope

as the convex hull of the characteristic vectors

CUTn := conv
{

χδ(X) ∈ {0, 1}|En|
∣∣∣ X ⊆ Vn

}
. (18)

Lemma 2. For all n, CUTn is isomorphic to conv(En).

Proof. For each X ⊂ Vn we set mi = +1 if i ∈ X and mi = −1 if i ∈ X̄. Note, that there are
2n−1 different pairs of X and X̄. We then have mimj = −1 if i ∈ X and j ∈ X̄ (or the other way
around), and mimj = +1 if i, j ∈ X or i, j ∈ X̄. So the characteristic vector can be written as
χ

δ(X)
e = (1−mimj)/2 for each edge e ∈ En connecting vertices i and j. This is clearly a bijective

affine map between the vertices and thus CUTn is isomorphic to conv(En).
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The following decision problems are membership problems, where the task is to decide if a
given element x belongs to a set or not. In our case x is a vector and the set is a polytope.

Problem 3 (CUTn membership).
Instance The adjacency matrix M ∈ Sym0(Qn

≥0) of a weighted undirected graph with non-negative
weights.

Question Is M ∈ CUTn?

Problem 4 (conv(En) membership).
Instance The matrix M ∈ Sym0(Qn).
Question Is M ∈ conv(En)? That is, does there exist a decomposition M =

∑
i λiri with ri ∈ En

such that λi ≥ 0 and
∑

i λi = 1?

It is well known that the membership problem of the cut polytope, Problem 3, and Problem 4
are NP-complete [8, 18, 19]. Next, we state the decision version of our gate synthesis optimization.

Problem 5 (time-optimal multi-qubit gate synthesis).
Instance The matrix M = A⊘ J ∈ Sym0(Qn) and a constant K ∈ Q≥0.
Question Is there a decomposition M =

∑
i λiri with ri ∈ En such that λi ≥ 0 and

∑
i λi ≤ K?

Theorem 6. Problem 5, which is the decision version of the LP (12), is NP-complete.

Proof. A solution of Problem 5 can be verified in polynomial time since there always exists a
decomposition

∑
i λiri of M with minimal

∑
i λi which has at most

(
n
2
)

= n/2(n − 1) non-zero
terms [6, Proposition II.3]. Therefore, Problem 5 is NP.

To show that Problem 5 is NP-hard, we construct a polynomial-time mapping reduction from
Problem 4 to Problem 5. Given the matrix M ∈ Sym0(Qn) and a constant K ∈ Q≥0 as an instance
for Problem 5, let λi ≥ 0 be the positive coefficients of the decomposition. If we find

∑
i λi < K,

then we can always add additional λ’s such that equality holds. We choose the additional λ’s as the
coefficients of the decomposition for the all-zero matrix, see e.g. Lemma 8 below with k = 1n for an
explicit construction. We define the matrix M ′ := M/K and the positive coefficients λ′

i := λi/K.
Then M ′ =

∑
i λ′

iri with ri ∈ En and
∑

i λ′
i = 1.

5 Time-optimal GZZ synthesis for special instances
Although, solving the LP (12) is NP-hard we present explicit optimal solutions for certain families
of instances which is equivalent to constructing time-optimal GZZ gates. The constructions of
this section yield a qubit-independent total GZZ time which satisfies the optimal lower bound of
Lemma 7 below. Moreover, we show that some GZZ gates can be synthesized with an encoding cost
independent of the number of qubits. However, most of these constructions assume constant values
for the elements of the band-diagonal of the physical coupling matrix J . These assumptions are
relaxed throughout this section providing explicit optimal solutions for physically relevant cases.
These results build the foundation for the heuristic algorithm for fast GZZ gate synthesis in the
next section.

By ∥M∥ℓp we denote the ℓp-norm of a symmetric matrix M , which is given as the ℓp-norm of a
vector v(M) containing all lower/upper triangular matrix elements in some order. First, we proof
a lower bound on the optimal total GZZ time which can be used to verify time-optimality.

Lemma 7. For any M ∈ Sym0(Rn) the optimal objective function value of the LP (12) is lower
bounded by

∥M∥ℓ∞ ≤ 1T λ∗ . (19)

Proof. The lower bound can be verified by the fact that the matrix representation V of the linear
operator in Eq. (10) only has entries ±1 and that λ∗ is non-negative. Thus, it holds that ∥M∥ℓ∞ =
∥V λ∗∥ℓ∞ ≤ 1T λ∗.

Next, we provide calculation rules for the coupling matrix A ∈ Sym0(Rn) of the GZZ(A) gate.
These rules are inherited from matrix exponentials. Let A1, A2, A3 ∈ Sym0(Rn) then
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(i) GZZ(A1 + A2) = GZZ(A1) GZZ(A2),
(ii) GZZ(A1 ⊕A2) = GZZ(A1)⊗ GZZ(A2) and
(iii) GZZ(A1 ◦A2) = GZZ(A3), where the coupling matrices can be decomposed as

A1 :=
d1∑

k=1
λmk

mkmT
k , A2 :=

d2∑
k=1

βvk
vkvT

k , A3 :=
d3∑

k=1
γwk

wkwT
k ,

with d3 = d1d2, wk = (mi ◦ vj)k=d2i+j and γwk
= (λmiβvj )k=d2i+j for j = 1, . . . , d2 and

i = 0, . . . , d1 − 1.

In Item (iii) we can also express γ = λ⊗β with the Kronecker product. Note, that these generated
GZZ gates are not necessarily time-optimal.

We denote the k × k identity matrix by 1k, the k dimensional all-ones vector by 1k and the
k × k matrix of ones with vanishing diagonal by Ek := 1k1T

k − 1k. With the next two lemmas,
we bound the encoding cost and total gate time for special cases of Item (i) and Item (ii), where
the total gate time is constant. These results will provide a basis for all other constructions. The
following result constructs total coupling matrices A ∈ Sym0(Rn) on arbitrary subsets of qubits.

Lemma 8. Let the coupling matrix J be constant, i.e. Jij = c ∈ R≥0 for all i, j ∈ [n] with i ̸= j.
For any φ ∈ R and s ∈ Z≥0 the GZZ(A) with the matrix

A = φ
s⊕

i=1
Eki

, (20)

with ki ≥ 1 for i = 1, . . . , s has the encoding cost of d = 2⌈log2(s)⌉ ≤ 2s and constant total GZZ
time φ/c. This total gate time is optimal.

Proof. W.l.o.g. we set c = φ = 1. We have n :=
∑s

i=1 ki qubits. Note, that Eki
= E1 = 0 only

contributes to an entry in the diagonal of A, and hence this qubit does not participate in the
GZZ(A) gate. We denote the d×d Hadamard matrix by Hd×d and the matrix consisting of its first
s columns by Hd×s where s ≤ n. The orthogonality of the columns of any Hadamard matrix yields
(Hd×s)T Hd×s = d1s. Replacing each i-th column by ki copies of it we obtain the d × n-matrix
Hd×n

k from Hd×s. Then, we attain the diagonal block matrix structure

(Hd×n
k )T Hd×n

k − d1n = d

s⊕
i=1

Eki . (21)

We set the diagonal elements on the left-hand side to zero, since they only contribute to an energy
offset in the Hamiltonian. Take each row of Hd×n

k as a possible vector m ∈ {−1, 1}n to construct
the total coupling matrix

A = 1
d

∑
m∈rows(Hd×n

k
)

mmT , (22)

i.e., the time steps have been chosen as λm = 1
d [m ∈ rows(Hd×n

k )], with the Iverson bracket [ · ].
Clearly, we have

∑
m λm = 1. If we take the constants c and φ into account, we just multiply

Eq. (22) by φ/c which gives a total GZZ time of φ/c. Furthermore, this total GZZ time is optimal
since ∥M∥ℓ∞ = ∥A⊘ J∥ℓ∞ = φ/c satisfies the lower bound of Lemma 7.

The encoding cost of GZZ(A) considered in this lemma can be reduced if redundant encodings
m = m′ ∈ {−1, 1}n are present by adding the corresponding time steps λm + λm′ . It can be
further reduced by using the Hadamard conjecture [20, 21]. If the Hadamard conjecture holds, then
there exists Hadamard matrices of any dimension divisible by 4. It is known that the Hadamard
conjecture holds for dimensions s ≤ 668 [22, 23], thus the encoding cost can be reduced to d =
4⌈s/4⌉ ≤ s− 4 in this regime. The encoding cost of the following Lemma 9, Theorems 10 and 11
and the efficient heuristic in Section 6 can be reduced in the same fashion.

The assumption in Lemma 8 of a constant coupling matrix, Ji ̸=j = c, is physically unreasonable.
Therefore, we relax this assumption for block sizes ki = 2 which corresponds to pairwise next
neighbor couplings. We use Lemma 8 to construct time-optimal GZZ gates for a certain family of
coupling matrices.
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Lemma 9. Let n be even and the coupling matrix J be constant on the first subdiagonal (the other
elements are arbitrary), i.e. Jij = c for i ∈ [n− 1] and j = i± 1. Then

GZZ(A) =
n/2⊗
i=1

GZZ(φE2) , (23)

has the encoding cost of d = 2⌈log2(n)−1⌉ < n and constant total GZZ time φ/c. This total gate
time is optimal.

Proof. Since the matrix E2 only has non-zero entries in the first subdiagonal, the coupling matrix
J only needs to be constant there. The claim follows immediately from Lemma 8 by setting
k1 = · · · = kn/2 = 2. Clearly, the total GZZ time is optimal since it saturates the lower bound of
Lemma 7.

Lemma 9 guarantees an encoding cost of d < n, which is a quadratic saving compared to the
general LP solution with encoding cost

(
n
2
)
. We note, that

A = φ

n/2⊕
i=1

(
0 1
1 0

)
(24)

corresponds to parallel ZZ(φ) gates, which find applications in simulating molecular dynamics [24].
The assumption of a constant subdiagonal of J can be realized in an ion trap platform by applying
an anharmonic trapping potential [16].

By combining (i), Lemma 8 and Lemma 9 we obtain the GZZ gate for next neighbor coupling.

Theorem 10. Let the subdiagonal of J be constant, i.e. Jij = c for i ∈ [n−1] and j = i±1. Then
GZZ(A) on n qubits with

A = φ


0 1
1 0 1

1 0 1
1 0 1

. . .

 , (25)

has the encoding cost of d ≤ 2n (for n > 4) and constant total GZZ time 2φ/c. This total gate
time is optimal.

Proof. We set c = φ = 1 w.l.o.g. For now, we assume that n is even. Then

A =
n/2⊕
i=1

E2 + E1
⊕ n/2−1⊕

i=1
E2

 ⊕
E1

=


0 1
1 0

0 1
1 0

. . .

 +



0
0 1
1 0

0 1
1 0

. . .



=


0 1
1 0 1

1 0 1
1 0 1

. . .



(26)

Again, the diagonal entries do not contribute to the interactions. The first term can be imple-
mented, using Lemma 9, with the encoding cost d1 = 2⌈log2(n)−1⌉ and the GZZ time of 1. The
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second term can be implemented, using Lemma 8, as
s⊗

i=1
GZZ(φEki

) , (27)

where s = n/2 + 1, k1 = ks = 1 and ki = 2 for i = 2, . . . , n/2, with the encoding cost d2 =
2⌈log2(n+2)−1⌉ and the GZZ time of 1. Adding the encoding costs d = d1 + d2 and GZZ times of
both terms yields the desired result. If n is not even, then repeat the previous steps for n + 1 but
in the end reduce the dimension of all the resulting m by discarding the last entry.

This construction corresponds to a feasible solution of the primal LP (12) with the objective
function value 2. To show optimality it suffices to construct a feasible solution for the dual LP (13)
with the objective function value of 2. First, consider the case n = 3 with the total coupling matrix

A =

0 1 0
1 0 1
0 1 0

⇒ v(A)T = (1, 0, 1) , (28)

and the matrix representation of the linear operator

V T =


1 1 1
1 −1 −1
−1 1 −1
−1 −1 1

 , (29)

as in Eq. (10). A feasible dual solution satisfying V T y ≤ 1 is y = (1,−1, 1)T . Thus, we can verify
optimality for n = 3 since the objective function value is ⟨A, y⟩ = v(A)T y = 2. Now, we consider
arbitrary n > 3. Extending the dual solution for the case n = 3 with zeros y = (1,−1, 1, 0, . . . , 0)T

does not change the objective function value ⟨A, y⟩ = v(A)T y = 2. Such an extended dual
solution is still feasible since V T restricted to the first three columns only has rows which are
already contained in Eq. (29) due to the symmetry of Eq. (4).

Algorithm 1 is the pseudocode implementation of Theorem 10. It takes the number of qubits n,
the constant value c of the subdiagonal of J and the factor φ of A as input and returns the sparse
vector λ, containing the time steps. The encodings m are given by the indices of the non-zero
elements λm ̸= 0.

Algorithm 1 Synthesize GZZ(A) as in Theorem 10.
Input: n, c, φ

Initialize λ = 0 ∈ R2n

is_odd ← false
if n odd then

n← n + 1
is_odd ← true

Let Hd1×d1
1 be a Hadamard matrix ▷ With d1 = 2⌈log2(n)−1⌉ as in Lemma 9

H
d1× n

2
1 ← n

2 columns of Hd1×d1
1 ▷ It does not matter which columns

Hd1×n
1 ← duplicate columns i = 1, . . . , n

2 of H
d1× n

2
1

Let Hd2×d2
2 be a Hadamard matrix ▷ With d2 = 2⌈log2(n+2)−1⌉

H
d2×( n

2 +1)
2 ← n

2 + 1 columns of Hd2×d2
2 ▷ It does not matter which columns

Hd2×n
2 ← duplicate columns i = 2, . . . , n

2 of H
d2×( n

2 +1)
2

for j ∈ {1, 2} do
if is_odd then

Delete one column of H
dj×n
j ▷ It does not matter which column

for m ∈ rows(Hdj×n
j ) do

λm ← φ
djc

Output: λ ▷ Can efficiently be saved in a sparse data format
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The following theorem does not require any additional assumptions on J . It shows, how the
LP (12) can be supplemented with the explicit solution to exclude certain qubits.

Theorem 11 (Excluding qubits). Let N be the total number of qubits on the quantum hardware
and n = N − s be the participating qubits in the GZZ gate. Synthesize the GZZ(A) gate with A ∈
Sym0(Rn), using the LP (12). Then, the total encoding cost (on N qubits) is at most

(
n
2
)
2⌈log2(s+1)⌉

and the total GZZ time, 1T λ∗, (on N qubits) is the same as for the LP run on n qubits.

Proof. Assume w.l.o.g. that all qubits to be excluded are at the end of the qubit array. Let k1 = n
and k2, . . . , ks+1 = 1. Using Lemma 8 we obtain an encoding cost of d1 = 2⌈log2(s+1)⌉ and total
GZZ time 1 to generate the matrix

A1 =
(

En 0
0 0

)
. (30)

Solving the LP (12) for a matrix A ∈ Sym0(Rn) yields the encoding cost d2 =
(

n
2
)

and the total
GZZ time 1T λ∗. We define the extension of A ∈ Sym0(Rn) by A2 ∈ Sym0(RN ). The extension
can be done by appending s arbitrary elements in {−1, +1} to all vectors m ∈ {−1, +1}n given
by the LP (12). Clearly,

A1 ◦A2 =
(

En 0
0 0

)
◦

(
A ∗
∗ ∗

)
=

(
A 0
0 0

)
. (31)

By (iii), the total encoding cost is d1d2 and the total GZZ time is

d1∑
i=1

d2∑
j=1

1/d1λ∗
j = 1T λ∗ . (32)

Consider now an arbitrary coupling matrix J . Then

J ◦A1 ◦A2 = J ◦
(

En 0
0 0

)
◦

(
Ã ∗
∗ ∗

)
=

(
A 0
0 0

)
, (33)

where Ã = A⊘ J is decomposed by the LP (12).

Algorithm 2 takes the total number of qubits N , the total coupling matrix A (on n qubits) and
the set Z := {i ∈ [N ] | exclude qubit i} as input and returns the sparse vector γ, containing the
time steps. The encodings w are given by the indices of the non-zero elements γw ̸= 0.

Algorithm 2 Excluding qubits.
Input: N, A,Z (set of qubit indices to be excluded)

Initialize γ = 0 ∈ R2N

s← |Z|
Z ← {i ∈ [N ] | i /∈ Z}
Let Hd1×d1

1 be a Hadamard matrix ▷ With d1 = 2⌈log2(s+1)⌉

H
d1×(s+1)
1 ← s + 1 columns of Hd1×d1

1 ▷ It does not matter which columns
Hd1×N

1 ← duplicate one column of H
d1×(s+1)
1 n− 1 times and place them at indices i ∈ Z

λ∗ ← Solve A =
∑

m λmmmT ▷ using LP (12)
for v ∈ rows(Hd1×N

1 ) do
for m ∈ {m | λ∗

m ̸= 0} do ▷ There are at most
(

n
2
)

such m
m̃← extend m with arbitrary elements from {−1, +1} at indices i ∈ Z.
w ← v ◦ m̃
γw ← λ∗

m

d1

Output: γ ▷ Can efficiently be saved in a sparse data format

We showed explicit constructions of time-optimal GZZ gates for total coupling matrices A ∈
Sym0(Rn) with diagonal block structure and next neighbor couplings. The resulting GZZ gates
have a constant gate time and require only linear many encodings to be implemented.
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6 Efficient heuristic for fast GZZ gates
In this section, we build on the results of Lemma 8 to derive a heuristic algorithm for synthesizing
GZZ(A) gates with low total gate time for any A ∈ Sym0(Rn). This algorithm runs in polynomial
time as opposed to the general LP (12), which we have shown in Theorem 6 to be NP-hard. The
runtime saving is due to the restriction of the elliptope En in Eq. (16), with exponential many
elements, to a set with polynomial many elements. This restriction yields a polynomial sized LP
which can be solved in polynomial time. In practice, the simplex algorithm has a runtime that
scales polynomial in the problem size [25].

Recall the modified Hadamard matrix Hd×n
k defined in the proof of Lemma 8, where we used

the rows of Hd×n
k as encodings m to generate block diagonal target coupling matrices under some

assumptions. Here, s is the number of block matrices on the diagonal of the target matrix, k ∈ Ns

contains the dimensions for each block and d = 2⌈log2(s)⌉ is the required number of encodings to
construct such a block diagonal matrix. From now on, we only consider k = (j, 1 . . . 1) ∈ Ns such
that

(Hd×n
k )T Hd×n

k − d1n = d (Ej ⊕ E1 ⊕ · · · ⊕ E1) , (34)

see Eq. (21). The requirement that
∑

i ki = n implies that such a vector k has s = n − j + 1
entries. Permuting the columns of Hd×n

k results in the same permutation of the rows and columns
of the right-hand side of Eq. (34). We denote the set of all column-permuted Hd×n

k by C(j). A
specific element of C(j) is denoted by Hd×n

r , where r ∈ Nj is an ordered multi-index r1 < · · · < rj

indicating which columns of Hd×n
r are identical. For example, r = (2, 5, 6) indicates that the

columns of Hd×n
r with indices 2, 5 and 6 are identical, i.e. replacing column 5 and 6 with column

2. This notation will be useful later.

Definition 12. For any j ∈ {2, 3, . . . , n}, we define the restricted elliptope

E(j)
n :=

{
mmT

∣∣∣ m is a row of Hd×n
r ∈ C(j)

}
. (35)

Further we define

E [j]
n :=

j⋃
i=2
E(i)

n . (36)

We choose the definition in Eq. (35) similar as in Eq. (16). Next, we show the size scaling of
the restricted elliptopes. This directly translates to the size and runtime of the heuristic synthesis
optimization.

Proposition 13. For any j ∈ {2, 3, . . . , n}, the number of different encodings m generating the
restricted elliptope E [j]

n scales as O(nj+1).

Proof. Note, that |C(j)| =
(

n
j

)
since there are j duplicate columns in Hd×n

r . The binomial coefficient
can be bounded by

(
n
j

)
≤ nj/j!. Since there are d = 2⌈log2(n−j+1)⌉ < 2(n − j + 1) rows of

Hd×n
r we have a rough upper bound of the number different encodings generating the restricted

elliptope,
∣∣E(j)

n

∣∣ ≤ d
(

n
j

)
< 2(n − j + 1)

(
n
j

)
< 2nj+1/j!. The first inequality is due to possible

redundant encodings in the definition of E(j)
n . Similarly, we can upper bound

∣∣E [j]
n

∣∣ ≤∑j
i=2

∣∣E(i)
n

∣∣ <

2
∑j

i=2 ni+1/i! which is a polynomial of order j + 1.

We denote the convex cone generated by a set V by

cone(V ) :=
{∑

i

λivi

∣∣∣∣∣ λi ≥ 0, vi ∈ V

}
. (37)

With that, we are ready to present the main result of this section.

Theorem 14. cone(E(2)
n ) = Sym0(Rn).
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Proof. W.l.o.g. we can assume d = n and denote Hd×d
r ∈ C(2) by Hd

(r1,r2) with the property

(Hd
(r1,r2))T Hd

(r1,r2) − d1d = d e(r1,r2) , (38)

where e(r1,r2) is an element of the standard basis for symmetric matrices with vanishing diagonal.
By Eq. (38) it holds Sym0(Rn

≥0) ⊆ cone(E(2)
n ), i.e., symmetric matrices with non-negative entries

are in the convex cone.
It is left to show that Sym0(Rn

<0) ⊆ cone(E(2)
n ), i.e., that also symmetric matrices with negative

entries are in the convex cone. To show this inclusion we define Hd
(r1,−r2) similar as Hd

(r1,r2) except
the duplicate column at r2 is multiplied by −1 such that

(Hd
(r1,−r2))T Hd

(r1,−r2) − d1d = −d e(r1,r2) . (39)

We have to show that for each row m ∈ rows(Hd
(r1,−r2)) there exist r̃1 and r̃2 such that m ∈

rows(Hd
(r̃1,r̃2)). This can be verified straightforwardly for d = 4 by checking all rows. W.l.o.g.

we show that the hypothesis holds for any H2d
(r1,−r2) by assuming it holds for Hd

(r1,−r2). The
Sylvester-Hadamard matrix is constructed inductively according to

H2d =
(

Hd Hd

Hd −Hd

)
. (40)

We consider three cases for H2d
(r1,−r2).

Case 1. For a H2d
(r1,−r2) with identical columns, up to minus sign, at indices r1, r2 ∈ [d] or r1, r2 ∈

[d + 1, 2d] the hypothesis holds by our assumption by choosing r̃1, r̃2 ∈ [d] or r̃1, r̃2 ∈ [d + 1, 2d]
respectively.

Case 2. Considering the first d rows of H2d
(r1,−r2) with identical columns, up to minus sign, at

indices r1 ∈ [d] and r2 ∈ [d + 1, 2d]. This case is equivalent to Case 1. with r1, r2 ∈ [d + 1, 2d] since
only the column at r2 is negated.

Case 3. Considering the last d rows of H2d
(r1,−r2) with identical columns, up to minus sign, at

indices r1 ∈ [d] and r2 ∈ [d + 1, 2d]. These rows are included in the last d rows of H2d
(r̃1,r̃2) with

r̃1, r̃2 ∈ [d+1, 2d] and r̃2 = r2 since the column r2 is negated which is equivalent to just duplicating
a column of −Hd.

We have shown that for each row m ∈ rows(Hd
(r1,−r2)) there exist r̃1 and r̃2 such that m ∈

rows(Hd
(r̃1,r̃2)). Therefore, Sym0(Rn

<0) ∪ Sym0(Rn
≥0) = Sym0(Rn) = cone(E(2)

n ). The last equality
follows from the definition of cone and E(2)

n .

Theorem 14 shows that the constraint of LP (12) can always be fulfilled only considering
mmT ∈ E(2)

n . Similar to Eq. (10) we define the restricted linear operator V [j] : Rs
≥0 → Sym0(Rn) :

λ 7→
∑

m λmmmT for all mmT ∈ E [j]
n with h = |E [j]

n |, represented by a matrix V [j] ∈ {−1, +1}((n
2))×h.

We define the restricted LPj to be

minimize 1T λ

subject to V [j]λ = v(M),
λ ∈ Rh

≥0 .

(41)

Algorithm 3 summarizes the steps to construct E [j]
n and therefore the matrix representation of the

restricted linear operator V [j]. In practice, Algorithm 3 has to be executed only once per number
of qubits n since the constraints of LP (41) can be fulfilled for all M ∈ Sym0(Rn). This is due
to the fact that E(2)

n ⊆ E [j]
n for any 2 ≤ j ≤ n and cone(E(2)

n ) = Sym0(Rn) (Theorem 14). The
time and space complexity of Algorithm 3 scales polynomially in n as shown in Proposition 13.
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Therefore, the restricted LPj is also of polynomial size for a fixed j. Increasing j leads to better
approximations due to the enlarged search space for the optimal solution. Note, that the runtime
of the mixed integer program (MIP) defined in [6, Section 2.2.2] also benefits from using E [j]

n .
As mentioned in Section 5 the dimension of the Hadamard matrices in Eq. (34) can be reduced

to d = 4⌈(n − 1)/4⌉ ≤ n − 5 if we assume that the Hadamard conjecture holds. Therefore, the
runtime of the restricted LPj is reduced as well if such Hadamard matrices are used. In Section 8
we numerically benchmark the heuristic algorithm with and without the reduced runtime of the
restricted LPj .

Algorithm 3 Constructing E [j]
n .

Input: n, j

Initialize E [j]
n = ∅

for i = 2, . . . , j do
Initialize E(i)

n = ∅
Let Hd×d be a Hadamard matrix ▷ With d = 2⌈log2(n−i+1)⌉

Hd×(n−i+1) ← n− i + 1 columns of Hd×d ▷ It does not matter which columns
for all r such that 1 ≤ r1 < · · · < ri ≤ n do ▷ There are

(
n
i

)
such r

Hd×n
r ← duplicate one column of Hd×(n−i+1) i− 1 times to indices r1, . . . , ri

E(i)
n ← E(i)

n ∪
{

mmT
∣∣ m is a row of Hd×n

r

}
E [j]

n ← E [j]
n ∪ E(i)

n

Output: E [j]
n

7 Bounds on the total GZZ time
Our main analytic result (Theorem 15) is that the optimal total GZZ time 1T λ∗ is lower and upper
bounded by the norms ∥M∥ℓ∞ and ∥M∥ℓ1 , respectively. Note, that for a dense matrix M , its norm
∥M∥ℓ1 scales quadratic with the number of qubits n. We conjecture an improved upper bound
on the total GZZ time for dense M that scales at most linear with the number of qubits n. We
support this conjecture with explicit solutions for the LP (12) reaching this bound for any n and
numerical results validating the conjecture for n ≤ 8.

Theorem 15. The optimal total gate time of GZZ(A) with A ∈ Sym0(Rn) is lower and upper
bounded by

∥M∥ℓ∞ ≤ 1T λ∗ ≤ ∥M∥ℓ1 , (42)

where M := A ⊘ J . Equality holds for the lower bound for all matrices M = CmmT for any
m ∈ {−1, +1}n and C ≥ 0.

Proof. The lower bound has been shown in Lemma 7. Equality in the lower bound holds for
M = CmmT by setting λm = C = ∥M∥ℓ∞ and λm′ = 0 for all m′ ̸= m. We use the explicit
construction of the standard basis elements for symmetric matrices from the proof of Theorem 14
to show the upper bound. To be precise, we have

|Mij |
d

(Hd×n
r )T Hd×n

r − d1n = Mije(i,j) , (43)

where r = (i, j) if Mij ≥ 0 or r = (̃i, j̃) if Mij < 0 as in Eqs. (38) and (39), respectively. We
define λ(i,j) with the entries λ

(i,j)
m := |Mij |

d [m ∈ rows(Hd
r )]. According to Lemma 8 we have

1T λ(i,j) = |Mij |. Adding λ(i,j) for all i < j yields the upper bound ∥M∥ℓ1 .

These bounds get tighter the sparser M is. If M has only one non-zero value, then clearly
∥M∥ℓ∞ = 1T λ∗ = ∥M∥ℓ1 . Furthermore, these bounds also hold for the heuristic, which we
presented in Section 6.

Next, we state our conjecture that the optimal gate time of GZZ(A) scales at most linear with
the number of qubits.
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Conjecture 16. The optimal gate time of GZZ(A) with A ∈ Sym0(Rn) is tightly upper bounded
by

1T λ∗ ≤ ∥M∥ℓ∞ ·

{
n , for odd n ,

n− 1 , for even n .
(44)

Hence, it provides a tighter bound for dense M than Theorem 15. To support the claim of
Conjecture 16 we first construct explicit dual and primal feasible solutions for the case M = −En for
the LP’s (12) and (13), respectively. Then optimality is given by showing equality of the objective
function values of the primal and dual problem. We further show that the case M = −En leads
to the same objective function value as M = −mmT for any m ∈ {−1, 1}n. Finally, we provide
numerical evidence that the conjecture holds for n ≤ 8.

For practical purposes it is important to keep in mind that the platform given J matrix might
also scale with the number of qubits resulting in a qubit dependent constant ∥A⊘Jn∥ℓ∞ = ∥Mn∥ℓ∞ .

7.1 Explicit solutions for M = −mmT

The following lemma will be used in the proof of the explicit feasible solution of the dual problem
for M being of the form M = −mmT . We can identify m ∈ {−1, 1}n with b ∈ Fn

2 via m = (−1)b

as explained in Section 2.

Lemma 17. It holds that

Pb :=
n∑

i<j

(−1)bi⊕bj =
(

n

2

)
− 2|b|(n− |b|) , (45)

for any binary vector b ∈ Fn
2 . We denote the Hamming weight by |b|.

Proof. Let m = (−1)b. If the Hamming weight |b| vanishes, then m = (+1, . . . , +1) and Pb =
(

n
2
)

which is the maximal value. If |b| ≠ 0, m contains |b| entries −1, such that the upper triangular
part of mmT contains a rectangle of −1’s with length |b| and width n − |b| so the total amount
of −1’s is |b|(n− |b|). Therefore,

Pb =
(

n

2

)
− 2|b|(n− |b|) . (46)

Lemma 18 (explicit dual feasible solution). Let M = −En, then there is an explicit feasible
solution y to the dual LP (13) with

⟨−En, y⟩ =
{

n , for odd n ,

n− 1 , for even n .
(47)

Proof. We assume that y = y1 = y2 = . . . . Therefore, it suffices to show that

y

n∑
i<j

(−1)bi⊕bj ≤ 1 . (48)

From Lemma 17 we know that y = 1/ min(Pb)1 satisfies the constraint in Eq. (48). The minimum
min(Pb) = −⌊n/2⌋ is reached for |b| = ⌈n/2⌉ or |b| = ⌊n/2⌋ which can be verified from the
expression of Pb in Lemma 17. Thus, we obtain y = −1/⌊n/2⌋1. The objective function evaluates
to

⟨−En, y⟩ = −1T y =
(

n
2
)

⌊n/2⌋ =
{

n , for odd n ,

n− 1 , for even n .
(49)

For the construction of a feasible solution to the primal problem we first require the following
result.
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Lemma 19. Let k < n be natural numbers. Then∑
b∈Fn

2 :|b|=k

|bi ⊕ bj | = 2
(

n− 2
k − 1

)
(50)

for all i, j ∈ [n] with i ̸= j.

Proof. Consider the case n = 4 and k = 2. We get
(4

2
)

= 6 binary vectors with |b| = 2. It can be
easily verified that

∑
|b|=2 |bi ⊕ bj | = 4 = 2

(2
1
)
. Now, we assume that for a given n and k < n the

Eq. (50) holds. It suffices to verify Eq. (50) for i ≤ n and j = n + 1. We fix k, define n′ := n + 1
and take a b ∈ Fn′

2 . We have
(

n+1
k

)
binary vectors with |b| = k.

For the case bn+1 = 0 we have
(

n
k

)
such vectors and

∑
|b|=k

bn+1=0

|bi ⊕ bn+1| =
∑

|b|=k

|bi| =
(

n− 1
k − 1

)
, (51)

for all i ≤ n. There are
(

n−1
k−1

)
different ways in placing k − 1 1’s.

For the case bn+1 = 1 we have
(

n
k−1

)
such vectors and

∑
|b|=k

bn+1=1

|bi ⊕ bn+1| =
∑

|b|=k

|bi ⊕ 1| =
(

n− 1
k − 1

)
, (52)

for all i ≤ n. There are
(

n−1
k−1

)
different ways in placing k − 1 0’s.

Combining the two cases bn+1 = 0 and bn+1 = 1 we obtain∑
|b|=k

|bi ⊕ 0|+ |bi ⊕ 1| = 2
(

n− 1
k − 1

)
= 2

(
n′ − 2
k − 1

)
, (53)

for all i ≤ n.

We motivate the next lemma with the result of the explicit dual feasible solution for M =
−En from Lemma 18 and the complementary slackness condition. The complementary slackness
condition for a linear program states that if the i-th inequality of the dual problem is a strict
inequality for a feasible solution y, then the i-th component of a feasible solution of the primal
problem λ is zero:

(V T y)i < 1⇒ λi = 0 . (54)

We use this in the following lemma to construct a feasible solution for the primal LP (12).

Lemma 20 (explicit primal feasible solution). Let M = −En, then there is an explicit feasible
solution λ to the primal LP (12) with

1T λ =
{

n , for odd n ,

n− 1 , for even n .
(55)

Proof. For this proof we define

k :=
{

n , for odd n ,

n− 1 , for even n .
(56)

We only consider binary vectors of the set S := {b ∈ Fn
2 | |b| = ⌈n/2⌉, ⌊n/2⌋ and bn = 0}. This set

is motivated by the complementary slackness condition and Lemma 18. It can be calculated that
|S| =

(
k

⌊k/2⌋
)

using the recurrence relation(
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
(57)
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for the binomial coefficients. We show that∑
b∈S

(−1)bi⊕bj = −Dn , (58)

for a constant Dn > 0, which we calculate later. If not explicitly stated, all equations in this proof
containing i, j hold for all i, j ∈ [n], i ̸= j. We denote λS by all λm = λb corresponding to the
encoding m = (−1)b with b ∈ S. If Eq. (58) holds, we can choose a λS = 1/Dn1 resulting in∑

b∈S

λb(−1)bi⊕bj = −1 , (59)

which implies feasibility for M = −En. It is left to show Eq. (58) and determine Dn.
First, we consider odd n. By definition of S we have that bn = 0 for all b. Therefore, we

obtain
(

n−1
⌊n/2⌋

)
+

(
n−1

⌈n/2⌉
)

binary vectors with |b| = ⌈n/2⌉ or |b| = ⌊n/2⌋ respectively. Counting the
occurrences of “−1” in the sum of Eq. (58) is equivalent to counting the occurrences of “1” in the
sum ∑

b∈S

|bi ⊕ bj | = 2
((

n− 3
⌊n

2 ⌋ − 1

)
+

(
n− 3
⌈n

2 ⌉ − 1

))
= 2

(
n− 2
⌊n

2 ⌋

)
,

(60)

where we used Lemma 19, the recurrence relation for the binomial coefficients and ⌈n/2⌉ − 1 =
⌊n/2⌋. Counting the occurrences of “+1” in the sum of Eq. (58) yields(

n− 1
⌊n

2 ⌋

)
+

(
n− 1
⌈n

2 ⌉

)
− 2

(
n− 2
⌊n

2 ⌋

)
=

(
n

⌊n
2 ⌋

)
− 2

(
n− 2
⌊n

2 ⌋

)
. (61)

where we used
(

n
⌊n/2⌋+1

)
=

(
n

⌊n/2⌋
)

for odd n. We now evaluate Eq. (58) for odd n

−Dn =
∑
b∈S

(−1)bi⊕bj =
(

n

⌊n
2 ⌋

)
− 4

(
n− 2
⌊n

2 ⌋

)
=

(
n

⌊n
2 ⌋

)
− n + 1

n

(
n

⌊n
2 ⌋

)
= −1

n

(
n

⌊n
2 ⌋

)
.

(62)

The case for even n follows the same steps as for odd n, resulting in

−Dn =
∑

|b|= n
2

(−1)bi⊕bj =
(

n− 1
n
2

)
− n

n− 1

(
n− 1

n
2

)

= −1
n− 1

(
n− 1

n
2

)
.

(63)

Equations (62) and (63) show that Dn = 1/k
(

k
⌊k/2⌋

)
and that Eq. (58) holds. Since |S| =

(
k

⌊k/2⌋
)

the objective function value is

1T λS =
(

k

⌊k/2⌋

)
1

1
k

(
k

⌊k/2⌋
) = k . (64)

From the equality of the objective functions for the primal and dual problem from Lemma 20
and Lemma 18 respectively we know that the proposed dual/primal feasible solutions for M = −En

are in fact optimal solutions. Now, we show that the GZZ gate time with M = −mmT for any
m ∈ {−1, +1}n is the same as for the case M = −En.
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Theorem 21. If A⊘ J =: M = −C(mmT ) for any m ∈ {−1, +1}n and C ≥ 0, then the optimal
gate time of GZZ(A) is

1T λ∗ = ∥M∥ℓ∞

{
n , for odd n ,

n− 1 , for even n .
(65)

Proof. The statement has been shown for the case M = −En by constructing an explicit solution.
It is left to show that the cases M = −C(mmT ) for a constant C ≥ 0 yield the same objective
function value. Since the objective function and the constraints are linear we can w.l.o.g. assume
C = 1. It is clear, that sign(Mij) = sign(−mimj) = −(−1)ci⊕cj for all i < j, with m = (−1)c.
Let y = −y sign(v(M)) for a y ∈ R, then each constraint of V T y ≤ 1 of the dual LP (13) reads as

y
∑
i<j

(−1)bi⊕bj⊕ci⊕cj = y
∑
i<j

(−1)b̃i⊕b̃j ≤ 1 , (66)

with b̃ := b⊕ c element wise. Consider the ordered set of all b ∈ Fn
2 with bn = 0, then b̃ is just a

permutation of that set. Due to the permutation symmetry of the qubits the optimal value of the
LP (12) for any M = −(mmT ) is the same as for the case M = −En. Setting y = −y sign(v(M))
with y = 1/⌊n/2⌋ as in the proof of Lemma 18 yields an optimal solution to the dual LP (13) for
the case M = −(mmT ).

Note that, trivially, the lower bound 1T λ∗ = ∥M∥ℓ∞ is reached if M = C(mmT ) for any
m ∈ {−1, +1}n and C ≥ 0.

One possibility to prove Conjecture 16 is to show, that the matrix M = −En maximizes the
value of the LP (12) among all matrices M ∈ Sym0([−1, +1]n). To this end, consider the LP

maximize ∥y∥ℓ1

subject to V T y ≤ 1,

y ∈ R(n
2) ,

(67)

which is independent of M ∈ Sym0([−1, +1]n). It holds that

max
V T y≤1

(
max

∥M∥ℓ∞ ≤1
⟨M, y⟩

)
= max

V T y≤1
∥y∥ℓ1 (68)

according to ∥x∥ℓ1 = max∥p∥ℓ∞ ≤1 pT x. Therefore, the optimal objective value of LP (67) is an
upper bound on all optimal objective values of LP (12). Clearly, the constructed solution in
Lemma 18 is feasible for LP (67). Unfortunately, proving that this constructed solution is optimal
is quite challenging, as we discuss in Appendix A.
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Figure 1: The optimal objective function value of the dual LP (13) over the number of qubits. Blue: The range
of optimal values for all binary M ∈ Sym0({−1, +1}n). Orange: The range of optimal values for all binary
M ∈ Sym0({−1, +1}n) without M = ±(mmT ) for any m ∈ {−1, +1}n.
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Figure 2: Comparing the performance of the original (optimal) LP (12) and the restricted LPj (41) for j = 2, 3, 4.
For each line we let the LP’s run for a fixed time. The black dashed line is the upper bound for the original
LP (12) from Conjecture 16. The reddish lines show the total GZZ times for the restricted LPj (41) for
j = 2, 3, 4. The blueish lines show the total GZZ times for the restricted LPj (41) using Hadamard matrices of
dimension d = 4 k to construct the restricted linear operator V [j]. Left: Average case scaling of the total GZZ
times. The data points and error bars show the mean and the standard deviation over 100 uniformly sampled
matrices Aij = Aji ∈ [−1, 1] for i < j. Right: Conjectured worst-case scaling of the total GZZ times. The
data points and error bars show the mean and the standard deviation over 100 binary matrices A = −mmT

with uniformly sampled encodings m ∈ {−1, 1}n.

8 Numerical results
8.1 Numeric validation of Conjecture 16 for small n

For the numeric validation of the conjecture for small n we solve the dual LP (13) for all binary
M ∈ Sym0({−1, +1}n) of which there are 2(n

2). For n = 3 there are only binary matrices of the form
M = ±(mmT ) and by Theorem 21 the conjecture holds. Figure 1 shows that Conjecture 16 holds
for n ≤ 8. For odd n ≤ 8 the cases M = −(mmT ) are in fact the only cases reaching the upper
bound. This can be seen in Fig. 1 by the blue area exceeding the orange area, which only consists
of the optimal values for all binary matrices without M = ±(mmT ) for any m ∈ {−1, +1}n.

8.2 Numerical benchmark for the heuristic
We compare the performance of the restricted LPj (41) to the original LP (12). To this end we
provide numerical results on the average-case and the conjectured worst-case scaling of the total
GZZ time. The left plot in Fig. 2 shows the average-case scaling of the total GZZ time. GZZ(A)
gates with uniformly sampled matrix elements Aij = Aji ∈ [−1, 1] for all i < j and i, j ∈ [n]
are synthesized. For the worst-case scaling of the right plot in Fig. 2, GZZ(A) gates with binary
matrices A = −mmT with uniformly sampled encodings m ∈ {−1, 1}n are synthesized. We note
that these are the matrices with the conjectured worst-case scaling for the LP and that the LPj

might have different worst-case matrices A. For convenience, we have set M = A, i.e. setting
J = En which omits the hardware specific time units given by the quantum platform. For realistic
J ’s and GZZ(A) gate times we refer to [6]. The Python package CVXPY [26, 27] with the GNU
linear program kit simplex solver [28] is used to solve the LP (12) and the restricted LPj (41).

Figure 2 shows the total GZZ time over the number of qubits n for the restricted LPj (41) and
LP (12). We assigned a fixed runtime (20 minutes) for each LP to synthesize GZZ(A) gates for all
sample matrices A and as many n as possible. Clearly, the runtime of the heuristic algorithm is
much shorter than the runtime of the optimal LP (12). Increasing the hierarchy of the heuristic
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j > 2 reduces the total GZZ time significantly while still maintaining a short runtime. The total
GZZ time obtained from the heuristic also seems to scale linear with the number of qubits although
with a different scaling constant. As mentioned in Sections 5 and 6 the size of the restricted
LPj (41), and therefore the runtime, can be further reduced. This reduction is achieved by using
Hadamard matrices of dimension d = 4 k with k ∈ N instead of Sylvester-Hadamard matrices of
dimension d = 2k in the construction of the restricted linear operator V [j]. This is based on the
Hadamard conjecture, which is known to be true for d ≤ 668 [22, 23]. Surprisingly, using these
Hadamard matrices with d = 4 k not only yields shorter runtime of the heuristic algorithm but
also a significant reduction of the total GZZ time compared to the original restricted LPj (41).

Our numerical results show that the heuristic algorithm approximates well the optimal total
GZZ time, while maintaining a short runtime. This holds true for both, the average-case and the
conjectured worst-case scaling. Therefore, we hope that this heuristic will prove to be an important
tool to implement fast GZZ gates in practice.

9 Conclusion
We investigated the time-optimal multi-qubit gate synthesis introduced in Ref. [6]. We show that
synthesizing time-optimal multi-qubit gates in our setting is NP-hard. However, we also provide
explicit solutions for certain cases with constant gate time and a polynomial-time heuristics to
synthesize fast multi-qubit gates. Our numerical simulations suggest that these heuristics provide
good approximations to the optimal GZZ gate time. Furthermore, tight bounds on the scaling of
the optimal multi-qubit gate times were shown. More precisely, we showed that the optimal multi-
qubit gate time scales at most as ∥A⊘ J∥ℓ1 , the ℓ1-norm of the element-wise division of the total
and physical coupling matrices A and J , respectively. We also conjectured that the optimal GZZ
gate time scales at most linear with the number of qubits. Our results are practical to estimate
the execution time of a given circuit, where the entangling gates are implemented as GZZ gates.
The execution time is a crucial parameter, in particular, in the NISQ era since it is limiting the
length of a gate sequence due to finite coherence time.

It is our hope to proof the conjectured linear scaling of the optimal GZZ gate time in the
near future. Moreover, we would like to test and verify our proposed time-optimal multi-qubit
gate synthesis methods in an experiment. Depending on the quantum platform we would like
to develop adapted error mitigation schemes for the GZZ gates and investigate their robustness
against errors.
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Appendices

A Challenges in proving Conjecture 16
In this section, we want to discuss some obstacles encountered trying to proof Conjecture 16. Con-
jecture 16 holds, if we show that our constructed solutions from Section 7.1 are optimal solutions
for LP (67). Meaning that there is no other feasible solution resulting in a larger objective function
value compared to our constructed solution.

We tried an inductive proof which turned out to be intricate due to the additional degrees of
freedom in each induction step. Furthermore, we utilized the connection to graph theory from
Lemma 2 to transform the LP (67) to a LP over the cut polytope. There, the challenge is the
affine mapping between the elliptope and the cut polytope in Eq. (16) and Definition 1, which
alters the optimization problem crucially. In the following, we discuss another approach based on
showing the sufficiency of the Karush–Kuhn–Tucker (KKT) conditions in more detail.

A.1 Concave program
A convex linear program in standard form minimizes a convex objective function over a convex
set. But LP (67) maximizes a convex objective function over a convex set. Such optimizations are
called concave programs. It is known that the maximum is attained at the extreme points of the
polytope V T y ≤ 1 and therefore might have many local optima [29]. There are several equivalent
sufficient conditions for optimality [30]. Here, we investigate one in detail. First, we define the
conjugate function for a function f : Rn → R

f∗(x) := sup
{

xT y − f(y)
∣∣ y ∈ D(f)

}
, (69)

with D(f) the domain of f . Furthermore, we need the support function hA : Rn → R for a closed
convex set A

hA(x) := sup
{

xT y
∣∣ y ∈ A

}
. (70)

Then the sufficient optimality condition in our case is

∥y∗∥ℓ1 = sup
{

hA(x)− (∥x∥ℓ1)∗
∣∣∣ y ∈ R(n

2)
}

, (71)

with A =
{

x ∈ R(n
2)

∣∣∣ V T x ≤ 1
}

. The conjugate function of ∥x∥ℓ1 is

(∥x∥ℓ1)∗ =
{

0 , if ∥x∥ℓ∞ ≤ 1 ,

∞ , otherwise .
(72)

Then we have
∥y∗∥ℓ1 = sup{hA(y) | ∥y∥ℓ∞ ≤ 1}

= sup
{

xT y
∣∣ ∥y∥ℓ∞ ≤ 1, V T x ≤ 1

}
= sup

{
∥x∥ℓ1

∣∣ V T x ≤ 1
}

,

(73)

which is the same formulation as the original LP (67).

A.2 Dualization
If we can formulate the dual LP to the primal LP (67) and find a feasible solution, then the dual
objective function value upper bounds the primal objective function value by weak duality [31].
The standard form of an optimization problem with only linear inequality constraints is

minimize f(y)

subject to Ay ≤ b.
(74)

Then, the Lagrange dual function is given by

g(λ) = −bT λ− f∗(−AT λ) , (75)
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where f∗ denotes the conjugate function [14]. For LP (67) we have f(y) = −∥y∥ℓ1 (minus sign
due to the minimization in the standard optimization form).

(−∥x∥ℓ1)∗ = sup
{

xT y + ∥x∥ℓ1

∣∣∣ y ∈ R(n
2)

}
= sup

{
xT y + xT z

∣∣∣ y ∈ R(n
2), ∥z∥ℓ∞ ≤ 1

}
= sup

{
xT y

∣∣∣ y ∈ R(n
2)

}
,

(76)

which clearly is unbounded if x ̸= 0. Therefore, we cannot formulate the dual to LP (67).

A.3 Invexity
The KKT conditions are optimality conditions for non-linear optimization problems. Invexity is a
generalization of convexity in the sense that the KKT conditions are necessary and sufficient for
optimality [32]. By invexity we mean that the objective and constraint functions of the optimization
problem are Type 1 invex functions.

Definition 22. Consider the standard form of an optimization problem

minimize f(y)

subject to g(y) ≤ 0,

y ∈ S,

(77)

where S ⊆ Rm is defined by g(y) ≤ 0. Then f and g are called Type 1 invex functions at point
y∗ ∈ S w.r.t. a common function η(y, y∗) ∈ Rm, if for all y ∈ S,

f(y)− f(y∗) ≥ η(y, y∗)T∇f(y∗),
−g(y∗) ≥ η(y, y∗)T∇g(y∗)

(78)

hold. It suffices to consider only the active constraints, i.e. the constraints, where equality holds
g(y∗) = 0. [32]

Let K be the scaling factor of the conjectured upper bound, i.e.

K :=
{

n , for odd n ,

n− 1 , for even n .
(79)

In the case of LP (67) we have S =
{

y ∈ R(n
2)

∣∣∣ V T y ≤ 1
}

and want to show that y∗ = −1/⌊n/2⌋
is a global optimum. Furthermore, we have

f(y) = −∥y∥ℓ1 , f(y∗) = −K , ∇f(y∗) = 1 ,

g(y) = V T y − 1 , g(y∗) = 0 , ∇g(y∗) = V |a ,
(80)

where V |a are the columns of V such that (V |a)T y∗ = 1, i.e. the active constraints. To show
invexity we have to find a common η(y, y∗) ∈ Rm such that

∥y∥ℓ1 ≤ K − ηT (y, y∗)1 and

(V T |a)η(y, y∗) ≤ 0 ,
(81)

for all y ∈ S. It is quite challenging to find a η(y, y∗) ∈ Rm satisfying both inequalities. In
particular, ansätze motivated from the geometry in small dimensions eventually fail for larger n.
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