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We propose a systematic and efficient quantum circuit composed solely of
Clifford gates for simulating the ground state of the surface code model. This
approach yields the ground state of the toric code in ⌈2L+2+log2(d)+ L

2d⌉ time
steps, where L refers to the system size and d represents the maximum distance
to constrain the application of the CNOT gates. Our algorithm reformulates
the problem into a purely geometric one, facilitating its extension to attain the
ground state of certain 3D topological phases, such as the 3D toric model in
3L + 8 steps and the X-cube fracton model in 12L + 11 steps. Furthermore, we
introduce a gluing method involving measurements, enabling our technique to
attain the ground state of the 2D toric code on an arbitrary planar lattice and
paving the way to more intricate 3D topological phases.

1 Introduction
The subject of topological phases of matter (TPMs) has been under extensive study for the
past few decades. Topological phases are gapped spin liquids at low temperatures which
are not described by the conventional Landau theory of spontaneous symmetry breaking
and local order parameters; instead, they are characterized by a new order, topological
order. The ground states of a topological phase have stable degeneracy and robust long
range entanglement. Topological phases in 2D also support quasi-particle excitations with
anyonic exchange statistics which make them an appealing platform to fault-tolerantly
store and process quantum information. Two peculiar features among others are that
the ground state degeneracy is a topological invariant of the underlying system, and that
the quasi-particles can freely move without costing energy. A large class of topological
phases is realized by exactly solvable spin lattice models with bosonic degrees of freedom.
A paradigmatic example in 2D is the toric code, and more generally Kitaev’s quantum
double model based on finite groups [6, 10], and yet even more generally the Levin-Wen
string-net model based on fusion categories [11]. Examples of 3D topological phases include
3D toric model and the Walker-Wang model based on premodular categories [23].

In recent years, more exotic phases in 3D, called fracton phases, have been discovered
[8, 21, 22]. Fractons also possess stable ground state degeneracy and long range entangle-
ment. However, the ground state degeneracy of fractons depends on the system size, and
hence is not a topological invariant. Moreover, the mobility of excitations is constrained.
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The excitations can only move in certain subsystems or cannot move at all. Well known
examples of fractons include the Haah code [8] and the X-cube model [22]. While regular
topological phases are described by topological quantum field theories, it is still an open
question what theories mathematically characterize fractons. Since fractons also satisfy
the topological order conditions in the sense of [2], we call the ground states of a fracton
topologically ordered states, in the same way as those of regular topological phases.

Realizing topological phases in physical systems remains an extremely challenging task.
On the other hand, there now exist quantum processors based on a number of platforms
such as superconducting qubits [14], Rydberg atomic arrays [7], etc. These devices can
host physical qubits at the scale of 102, and this number is expected to increase signifi-
cantly in the near future. Hence, it is both feasible and interesting to simulate topological
phases in quantum processors. Thanks to the intrinsic robustness of topological phases,
the simulation is relatively less sensitive to the noises in the current quantum processors.
We may also gain more insight in topological phases by engineering them in processors.

The toric code ground states were realized in the superconducting-qubit-based systems
[14] and the Rydberg-atom systems [19]. In [14], the authors gave a quantum circuit
consisting of Clifford gates to realize the ground states of the planar toric code (a.k.a.
surface code [5]). Quantum circuits realizing non-Abelian topological orders such as Levin-
Wen string-net model and Kitaev quantum double model have also been studied. See for
instance [12, 18, 20, 4, 16, 17], though in these cases, the gates utilized are no longer in
the Clifford group and measurements are required.

In this paper, we develop quantum circuits realizing the ground states for a number of
topological phases. In [14], only planar toric code is considered where the lattice is defined
on a planar surface. Here we generalize their method to apply to a large class of surfaces
with or without boundary. The quantum circuit consists of only Clifford gates. In toric
code, the Hamiltonian consists of two types of operators, the term Av for each vertex v
and the term Bp for each plaquette p. See Figure 2. The key idea of constructing the
ground state in [14] is as follows. Start with the product state |ϕ0⟩ = |00...0⟩ (also written
as |0⟩⊗) which is the +1 eigenstate for all vertex terms. The ground state is then obtained
by projecting |ϕ0⟩ to the +1 eigenstate of all plaquette operators,

|GS⟩ ∼
∏
p

1 + Bp

2 |ϕ0⟩. (1)

The effect of 1+Bp

2 acting on certain states can be simulated by an appropriate combination
of the Hadamard gate and the CNOT gate. For this method to work, the control qubit
for CNOT has to be in the |0⟩ state prior to applying the Hadamard and CNOT. Hence,
it is critical to choose the right sequence for the plaquettes so that, immediately before
simulating the term corresponding to each plaquette p, there is always at least one edge
on the boundary of p with the state |0⟩. When the lattice is a simple planar lattice, the
problem can be easily solved by dividing the lattice into several parts and applying the
CNOT gates in a specific order. In this paper, since we consider lattices on arbitrary
surfaces, this question is much subtler.

Here we provide an explicit algorithm to determine the sequence in which the plaquette
operators are simulated. We show that this is always possible for a large class of lattices
with or without boundary. The result of the algorithm is a quantum circuit consisting of
Clifford gates realizing the ground state of the toric code. Moreover, we also adapt this
method to 3D phases including the 3D toric model and the X-cube fracton model. For
the X-cube model, we again initialize the state to the product of |0⟩ state and simulate
the projectors corresponding to cube terms. A similar issue arises that we need to choose
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the correct sequence to simulate the cube terms. We note that the circuit we provide here
realizes an exact ground state of the X-cube model. By comparison, using cluster states
and measurements, the authors in [20] gave an approximate realization of the model.

In addition to the above method using only quantum gates, we also provide a different
way of realizing the same states. The alternative way, called gluing method, combines
Clifford gates and measurement of the Pauli X gate. The resulting circuit has a shorter
depth than the first one. Of course, for the toric code or X-cube model, it is possible to only
use measurement to obtain the ground state. Considering that frequent measurements in
near-term quantum processors are costly, our method is a trade-off between circuit depth
and degree of measurements.

2 Realizing ground state of 2D toric code
2.1 Toric code
It is well known that for any Hamiltonian of the form

H = −
∑

i

Pi, (2)

where all elements in Pi are projectors and mutually commuting, |GS⟩ as defined below is
a ground state as long as it is non-zero:

|GS⟩ =
∏

i

Pi|ϕ⟩, (3)

where |ϕ⟩ stands for an arbitrary state. Specifically, in a given connected lattice Γ, V refers
to the set of vertices, P refers to the set of plaquettes and E refers to the set of edges. We
define Bo(p) ⊆ E, p ∈ P to be the set of boundary edges of the plaquette p, τ(e) ⊆ P, e ∈ E
to be the set of plaquettes for which e is a boundary edge, and σ(e) ∈ V, e ∈ E to be the set
of vertices attached with the edge e. When each edge is associated with a Hilbert space,
we may abuse the notation and use e to represent both an edge and the Hilbert space
associated to the edge. As an example, if an edge e appears as a subscript of an operator,
it means the operator acts on the Hilbert space attached to the edge e.

z-boundary

x-boundary

direct string

x-boundary
z-boundary

dual string

Figure 1: The black solid net on the left represents the lattice Γ and the black dashed net on the right
represents the dual of Γ induced by the gray net.

As shown in Figure 1, an edge e is a z-boundary when τ(e) contains only one element,
and it is an x-boundary if σ(e) contains only one element (see [5] for details). On the
lattice Γ, a direct string S is a series of edges ei, i = 1 · · · n such that τ(ei)

⋂
τ(ei+1) ̸= ⊘

for 1 ≤ i < n. A direct string operator F (S) is one operator applies X on all edges along
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the string S, thereby generating two electric charges at both ends. Likewise, the concept
of a dual string S′ can be introduced, representing a direct string in the dual lattice of
Γ. A dual ribbon operator F (S′) applies Z to all edges intersected by the dual string S′,
resulting in the creation of two magnetic charges at its endpoints. It is worth noting that
dual string operators that encounter a z-boundary at one end will generate (or annihilate)
a magnetic charge at the other end.

Z

Z

ZZ

Av

X

X

XX
Bp

Figure 2: Definitions of Av and Bp operators in toric code.

The toric code Hamiltonian H is composed of operators defined in Figure 2:

H = −
∑
v∈V

Av −
∑
p∈P

Bp. (4)

The action of Av (vertex term) is to apply Pauli matrix Z over edges e if v ∈ σ(e), and
Bp (plaquette term) acts to apply Pauli matrix X over edges e if p ∈ Bo(e). Given that
A2

v = B2
p = 1 and [Av, Bp] = 0 for all v ∈ V and p ∈ P , it can be easily verified that 1+Av

2
and 1+Bp

2 function as projectors. By substituting Av with 1+Av
2 and Bp with 1+Bp

2 in the
Hamiltonian, we achieve a equivalent form that matches the form of Equation 2. This is
due to a natural one-to-one correspondence between their spectra. So we get a ground
state 1 by Equation 3:

|GS⟩ =
∏
p∈P

1 + Bp

2 |ϕ0⟩, (5)

where |ϕ0⟩ = |00...0⟩ represents a product state where each qubit is in the |0⟩ state, and we
drop all 1+Av

2 s due to its trivial action on |ϕ0⟩. This state is non-zero due to the presence
of positive coefficients of each components.

2.2 Single plaquette
To systematically introduce our ground state simulation method, we initiate with the most
elementary scenario: applying 1+Bp

2 on a single plaquette, which is the basic structure in
2D toric code. A Hadamard gate H is naturally described by X+Z√

2 , and CNOT gate Ci→j

is defined as
Ci→j |ij⟩ = (1 − Zi

2 Xj + 1 + Zi

2 )|ij⟩, (6)

where i is the control qubit and j is the target qubit.
In the single plaquette shown in Figure 3, four qubits labeled 1, 2, 3, and 4 are initialized

to the state |0⟩. Subsequently, we will systematically implement Hadamard and CNOT

1The ground state degeneracy of the 2D toric code on a torus is four, and the state |GS⟩ corresponds
to |00⟩. A comprehensive explanation can be found in Section 2.5.
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H1

1
2

3
4

C1→2

|0⟩+|1⟩
2

|0⟩

|00⟩+|11⟩
2 |0000⟩+|1111⟩

2

Figure 3: Initially, a qubit in the state |0⟩ is situated at each gray dot. As quantum gates are applied
to these qubits, their color changes to black. A circle positioned on a dot signifies the application of a
Hadamard gate to the corresponding qubit, while an arrow indicates a CNOT gate, with the arrowhead
pointing from the control qubit to the target qubit.

gates in a specific sequence, as outlined in the figure. After the application of H1 and
C1→2, we have

C1→2H1|0000⟩ = (1 − Z1
2 X2 + 1 + Z1

2 )X1 + Z1√
2

|0000⟩ = X1X2 + 1√
2

|0000⟩. (7)

Explicitly, we can insert a 1+Z
2 into the equation as 1+Z

2 |0⟩ = |0⟩:

(1 − Z1
2 X2 + 1 + Z1

2 )X1 + Z1√
2

1 + Z1
2 (8)

= 1√
2

{(X1
1 + Z1

2 X2 + X1
1 − Z1

2 ) + (1 − Z1
2 X2 + 1 + Z1

2 )}1 + Z1
2 (9)

= 1√
2

(X1X2 + 1)1 + Z1
2 (10)

Notice 1+Z1
2 survives within { } in Equation 9. After reverting to the original expression

and substituting 1+Z1
2 with 1, we verified the accuracy of Equation 7. Importantly, this

equation holds for any quantum state |ϕ⟩:

C1→2H1|0⟩ ⊗ |ϕ⟩ = X1X2 + 1√
2

|0⟩ ⊗ |ϕ⟩, (11)

since the key step only requires that the initial state must be the eigenstate of Z1 with an
eigenvalue +1. Finally, applying the other CNOT gates results in

4∏
i=2

C1→iH1|0000⟩ = X1X2X3X4 + 1√
2

|0000⟩ = 1 + Bp√
2

|0000⟩, (12)

which is the desired ground state. It is important to observe that this procedure remains
effective as long as a qubit from Bo(p) is initially in the state |0⟩. We term such qubits
as free qubits, and their presence is pivotal when considering scenarios involving multiple
plaquettes.

2.3 Developing to a surface with boundary
Given a complicated lattice Γ in the state |ϕ0⟩, we need to find a path (termed permissible
order in [12]) through all plaquettes pi, such that

⋃
i pi = P , using a sequence of edges

ei ∈ Bo(pi) where ei /∈
⋃i−1

j=1 pj . Each ei is then utilized as a free qubit to apply the

introduced basic structure, resulting in the accumulation of
∏

i
1+Bpi√

2 over |0 · · · 0⟩, which
represents the ground state of the toric code on lattice Γ. To illustrate the procedure, we
take four plaquettes as an example depicted in Figure 4. A path featuring four free qubits
e1 to e4 has been chosen, where ei starts in the state |0⟩ at the onset of every step. Upon
completing the path, the desired ground state is eventually obtained.
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e1 e2

e3e4

e1 e2

e3e4

e1 e2

e3e4

e1 e2

e3e4

Figure 4: The procedure on the basics structure is applying Hadamard gate on any qubit at |0⟩ first
and CNOT gates to other qubits in any order.

2.4 Developing to a surface without boundary
The scenario shifts when dealing with a surface without boundary. While the initial state
remains |ϕ0⟩, it becomes impossible to locate a path with sufficient free qubits to cover the
entire lattice. Fortunately, as every edge sides two plaquettes, the equation holds:∏

p∈P

Bp = 1, (13)

which implies that we can intentionally choose a specific Bp as redundant. Consequently,
we can select the final plaquette as the redundant one, effectively terminating the path.
To illustrate, consider the lattices on a torus shown in Figure 5, there is no need to apply
Hadamard and CNOT gates to the bottom left plaquette, as we have previously simulated
the toric code’s ground state.

e1 e2

e3

e1 e2

e3

e1 e2

e3

Figure 5: Boundaries with the same color are identified to represent a torus.

This method remains applicable to more intricate 2D surfaces with or without bound-
ary, provided a suitable path can be identified. Additional examples are provided in Ap-
pendices A and B. Furthermore, the gluing method described in Section 3 empowers us to
simulate ground states on arbitrary planar lattices.

2.5 Simulate arbitrary ground state
As stated in [10], the degeneracy of ground states for 2D toric code on torus is four: |00⟩,
|01⟩, |10⟩ and |11⟩. The ground state |00⟩, presented in Section 2.4, is simulated from the
initial state ϕ0. Due to the properties of logical operators, which can interchange ground
states and commute with Bp, it is feasible to apply them to ϕ0 to obtain the remaining
ground states.
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ϕ0 ϕ01 ϕ10 ϕ11

Figure 6: A qubit |0⟩ is placed at each gray dot and the color changes to black when operator X flips
the qubit from |0⟩ to |1⟩.

Illustrated in Figure 6, a vertical loop and a horizontal loop of X represent the two
logical operators. They are capable of transforming ϕ0 into ϕ01, ϕ10 and ϕ11, which corre-
spond to the initial states of |01⟩, |10⟩ and |11⟩, respectively. Subsequently, we can repeat
the same procedure detailed in Section 2.4, but with a modification: utilize XiCi→jXi

instead of Ci→j when encountering a flipped qubit ei.
One step further, in order to obtain an arbitrary ground state Φ = aeiθa |00⟩+beiθb |01⟩+

ceiθc |10⟩ + deiθd |11⟩, we can implement the unitary operator U outlined in Equation 14
on an adjacent pair of vertical and horizontal edges of ϕ0 and subsequently utilize CNOT
gates to transmit vertically and horizontally to get ϕ. From there, we can proceed by
repeating the aforementioned method and we must avoid qubits that have already been
utilized, opting instead for free qubits.

U1 =


a√

a2+b2
−b√

a2+b2 0 0
b√

a2+b2
a√

a2+b2 0 0

0 0 c√
c2+d2

−d√
c2+d2

0 0 d√
c2+d2

c√
c2+d2




√
a2+b2 0 −

√
c2+d2 0

0
√

a2+b2 0 −
√

c2+d2
√

c2+d2 0
√

a2+b2 0
0

√
c2+d2 0

√
a2+b2

 ,

U2 =
(

eiθa 0 0 0
0 eiθb 0 0
0 0 eiθc 0
0 0 0 eiθd

)
and U = U2U1. (14)

2.6 Quantum circuit depth
To simulate a toric code with length L, using local unitary gates requires at least linear
size O(L) depth circuits [3], and constant depth is achievable if measurement operations
are allowed [4]. A recent work provided a systematic method to simulate an unknown toric
code in 3L + 2 depth [9, 1]. In comparison, on a L × L square lattice over a torus, we can
simulate a known toric code state like |00⟩ in 2L + 2 depth and an unknown toric code Φ
in ⌈2L + 2 + log2(d) + L

2d⌉ depth. Here, the quantum circuit is local and the CNOT gate
is restricted to be applied on two qubits with a distance d.

To simulate the state |00⟩, we initiate the process with ϕ0 and designate the plaquette
at the bottom right corner as redundant. Subsequently, we proceed the quantum gates
step by step, following the instructions outlined on the left side of Figure 7. On the other
hand, as elaborated upon in Section 2.5, an unknown toric code state Φ can be attained
by substituting ϕ0 with ϕ, which is obtained from two logical qubits through a sequence
of CNOT gates. This procedure demands ⌈log2(d) + L

2d⌉ steps 2, where d represents the

2For detailed discussion on the local CNOT gate, see Section C.
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|00⟩

1

1

1

2

2

2
3 4

3 5

Φ

2

2

2

1

1

1

3 4

3 5

Figure 7: Opposite boundaries are identified and the case of L=3 is provided as an example. In both
figures, the prescribed order for gate application is as follows: 1 Apply Hadamard gates to the qubits
encircled by circles; 2 Execute CNOT gates, indicated by green arrows, followed by those with blue
arrows; 3 Implement CNOT gates denoted by red arrows, following their numerical order. In the right
figure, orange dots signify qubits that hold the information of Φ.

maximum distance between the two qubits that CNOT gate could apply without breaking
locality. Additionally, a slight variation in the order, as demonstrated on the right side of
Figure 7, is essential to initiate with ϕ.

3 Gluing method for 2D toric code
3.1 Gluing method for two single plaquettes
The method introduced in the preceding sections is efficient; however, it hinges on the
selection of a suitable path. This choice could prove challenging for intricate surfaces. To
address this concern, we propose a gluing method designed to overcome this complexity.
To exemplify the essence of the gluing approach, we will commence with a straightforward
example. To simulate the ground state of toric code on the two plaquettes in Figure 8,
we can employ an ancilla qubit to partition it into two independent plaquettes p1 and p2.
The edges within Bo(p1) are denoted by 1, 2, 3, 4, while those within Bo(p2) are denoted
by 5, 6, 7, 8. We initiate the process with ϕ0 and ignore the overall normalization constant
to simplify subsequent calculations.

p1 p2
4 52

1

3

7

8

6

p1 p2
C4→5

Figure 8: The lattice of two plaquettes is divided into two independent plaquettes by introducing the
ancilla qubit in red.

First apply 1 + Bp1 and 1 + Bp2 independently to get

(1 + X1X2X3X4)(1 + X5X6X7X8)|00...0⟩. (15)

Accepted in Quantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 8



Then apply C4→5 and notice this operator commutes with 1 + Bp2 :

(1 − Z4
2 X5 + 1 + Z4

2 )(1 + X1X2X3X4)(1 + X5X6X7X8)|00...0⟩

= (1 + X1X2X3X4X5)(1 + X5X6X7X8)|00...0⟩. (16)

Finally, make a measurement over the ancilla qubit with basis |+⟩ = |0⟩+|1⟩√
2 and |−⟩ =

|0⟩−|1⟩√
2 . If we get +1, it is equivalent to applying 1+X4

2 and thus

1 + X4
2 (1 + X1X2X3X4X5)(1 + X5X6X7X8)|00...0⟩

= (1 + X4
2 )(1 + X1X2X3X5)(1 + X5X6X7X8)|00...0⟩. (17)

The ancilla qubit is disentangled, leaving us with the ground state of the two plaquettes.
Observing that, when two boundaries ei and ej are glued together, all plaquettes terms
commute with each other and Ci→j commutes with all plaquette terms except 1 + Bpk

where ei ∈ Bo(pk). This observation underscores that the resultant combination remains
a ground state even when multiple plaquettes are fused together concurrently.

On the other hand, if we get -1, it is equivalent to applying 1−X4
2 and thus

1 − X4
2 (1 + X1X2X3X4X5)(1 + X5X6X7X8)|00...0⟩

= (1 − X4
2 )(1 − X1X2X3X5)(1 + X5X6X7X8)|00...0⟩, (18)

which is not the expected ground state. It is worth noting that the resulting state is an
excited state if a magnetic charge exists at p1. Fortunately, we can correct it by applying
Z1, Z2 or Z3, each of which is a short dual ribbon operator. In the subsequent section,
we will establish a proof demonstrating that a correcting operator invariably exists for any
planar lattice.

Our method, can be naturally extended to more general scenarios where projectors only
involve tensor products of Pauli X (given that tensor products of Pauli Z operators are
automatically satisfied by the state |00...0⟩), such as 3D toric model or X cube model to be
addressed below. For instance, let us consider two edges from different lattices, labeled as
m and n (note that we abuse the notation referring to both edges and lattices). The state of
these two lattices can be expressed as

∏ 1+Hm
2 |0⟩m ⊗|0⟩resm or

∏ 1+Hn
2 |0⟩n ⊗|0⟩resn . Here,

resm(n) signifies the remaining system of lattice m(n), and Hm(n) denotes the projector
onto lattice m(n). Given that Cm→n only relies on |m⟩, expanding the product of Hm

yields

Cm→n

∑
i

(X ⊗ 1 ⊗ Ai + 1 ⊗ 1 ⊗ Bi)
∏ 1 + Hn

2 |0⟩m|0⟩n|0⟩resm |0⟩resn , (19)

where Ai and Bi acts only on resm, and we have not expanded Hn since it has a trivial
impact on m. Upon applying Cm→n, we obtain∑

i

(X ⊗ X ⊗ Ai + 1 ⊗ 1 ⊗ Bi)
∏ 1 + Hn

2 |0⟩m|0⟩n|0⟩resm |0⟩resn . (20)

Essentially, this signifies that the CNOT gate transfers all actions from m to n after disen-
tangling m. Akin to Equation 17 and 18, we count the excitations and employ correction
operators to obtain the ground state. Consequently, we can attain the expected ground
state of the glued lattice by gluing the edges correspondingly , as long as the projectors
consist of tensor products of Pauli X operators .
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3.2 Gluing method for an arbitrary lattice
When transitioning from the gluing method’s application on two single plaquettes to the
broader context of numerous arbitrary plaquettes, our focus should not be on the edges
measured +1, but rather on establishing a systematic method to correct address edges
measured -1.

In the instance presented in Figure 9, if we apply Ci→j to glue two boundaries and
get -1 after measuring qubit ei, the correcting operator must anti-commute with Bpi and
exhibit commutativity with everything else 3. One intuitive approach is to apply a dual
string operator starting at pi and ending crossing a z-boundary.

z-boundary

correcting operator

pi

pj
ei ej

Ci→j

Figure 9: Correcting procedure after gluing two arbitrary plaquettes.

Expanding upon this notion, let us consider a situation involving any connected planar
lattice γ =

⋃n
i=1 pi with z-boundary e0. For a series T = pi, Bo(pi)

⋂⋃i−1
j=1 Bo(pj) ̸= ⊘

for any i ∈ [2, n], we can insert ancilla qubits to separate T into multiple plaquettes and
subsequently glue them back. To illustrate this idea, let us delve into an example consist
of four plaquettes, as depicted in Figure 10.

e0 e1

e2

e3

e4

p1 p2

p3p4

p1 p2

p3p4

e0 e1e′
1

e′
3e3

e2

e′
2

e4

e′
4

Ce′
1→e1

p1 p2

p3p4

e0

e2

e′
2

e′
3e3

e4

e′
4

Ce′
2→e2

p1 p2

p3

p4

e0

e′
3

e3

e4

e′
4

Ce′
3→e3

Ce′
4→e4

Figure 10: e0 is a z-boundary and e′ in red represents an ancilla qubit.

First, we initiate by utilizing ancilla qubits to fragment the lattice into single plaquettes.

3It is worth noting that this correcting operator effortlessly commutes with all vertex terms.
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For τ(ek) containing pi and pj , where 1 ≤ i < j ≤ n according to the series T , insert an
ancilla edge e′

k into pi while retaining ek in pj . Then we apply 1 + Bp to every single
plaquette p ∈ P . Subsequently, glue them together piece by piece. For pi, 1 < i ≤ n, it
becomes necessary to apply Ce′→e to all pairs of e′ ∈

⋃i−1
j=1 Bo(pj) and e ∈ Bo(pi). Finally,

we measure and disentangle e′. If we get -1, apply a dual string operator connecting
pi and the z-boundary of p1 to correct it. It is noteworthy that all plaquettes can be
glued simultaneously, allowing a dual string operator to annihilate two magnetic charges
by connecting them. In this example, if we get -1 for e′

1 and e′
4 concurrently, the correcting

operator will effectively nullify their impact.
In the case of a lattice without boundary, we can choose a specific plaquette p to be

redundant, effectively transforming Bo(p) into z-boundaries. Subsequently,this situation
mirrors the scenario depicted in the lattice with boundaries, and further details are left
for readers to explore. If the lattice solely contains x-boundaries, a viable solution is to
consider the dual lattice of it. The process remains unchanged, except for the inversion
of plaquette and vertex operators. Thus we can confidently assert that our method is
universally capable of simulating the ground state of a toric code on any planar lattice
configuration.

In the case of the 2D toric code, the gluing method might initially resemble a simple
measurement process, especially when we break down the lattice into pieces, attach ancilla
qubits, and then fuse them to obtain the ground state for the entire lattice. However, its
capabilities extend significantly when we consider scenarios like 3D models, as discussed
thoroughly in Section 4.3, or when we have two lattices in their ground states to be joined.
In such cases, a stabilizer measurement can not glue two lattice and get the ground state
of the glued lattice.

4 Simulate ground state for 3D models
4.1 3D toric model
The 3D toric model bears strong resemblance to the 2D toric code and is established on an
arbitrary 3D lattice. To enhance clarity, a cubic lattice is adopted, as depicted in Figure
11. Within this lattice, V represents the set of all vertices, while P corresponds to the
set of all plaquettes; each edge accommodates a single qubit. Moreover, for the sake of
convenience, we have affixed labels to each edge, denoting them as x, y, or z based on their
alignment with the respective axis (i.e., parallel to the x, y, or z axis). Notice this labeling
maintains consistency even when applied to a 3-dimensional torus. The Hamiltonian is
defined as

H = −
∑
v∈V

Av −
∑
p∈P

Bp, (21)

where Av pertains to the application of the Pauli operator X over six edges connected
to the vertex v, and Bp pertains to the application of the Pauli operator Z over the four
edges encompassing the plaquette p. It is straightforward to see these new-defined Av and
Bp operators also satisfy A2

v = B2
p = 1 and [Av, Bp] = 0. So this 3D toric Hamiltonian

is equivalent to the equation expressed as a summation of local projectors. We get the
ground state

|GS⟩ =
∏
v

1 + Av

2 |ϕ0⟩, (22)

where |ϕ0⟩ = |00...0⟩, and we drop 1+Bp

2 s since its action on |ϕ0⟩ is +1. It is important
to highlight that the constancy of ground state degeneracy endures with fluctuations in
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system size, a pivotal characteristic of topological phases of matter. Additionally, Figure
11 presents a comprehensive depiction of a pair of conjugate logical operators. Notice that,
the definition of logical operators only depends on the nontrivial loop or non-cotractable
planes. Consequently, we have three pairs of conjugate logical operators, each acting on
edges labeled by x, y, or z respectively.

Bp

x
y

z

Av

x
y

z

Figure 11: The left sub-figure illustrates the definitions of Av and Bp operators. Meanwhile, the right
sub-figure displays a pair of conjugate logical operators composed of edges labeled by x. The red string
is a nontrivial circle parallel to x axis, and a logical Z operator is to apply Pauli Z over edges along
the string. Conversely, the blue plane is a non-contractable plane perpendicular to x axis, and a logical
X operator is to apply Pauli X over edges within the plane.

We can extend the method of 2D toric code to 3D toric model with boundary directly
utilizing a plaquette as the basic structure. It is complicated yet straightforward, so its
details are outlined in Section D. However, applying this approach to the 3D toric model
without boundaries presents challenges, as the absence of free edges in the final step poses
an issue. To circumvent this challenge, we must adopt a basic structure, illustrated in
Figure 12. We still initiate the process with |ϕ0⟩. Then we execute the quantum circuits
as illustrated in the figure to achieve the action of 1+Av

2 .

1+Bp

2 1+Av
2

Figure 12: Comparison of two different basic structures: An example consisting of eight cubes with
boundary is shown in Section D and a similar example without boundary is shown in Section E.

Using this basic structure to develop the lattice vertex by vertex, we will end with a
redundant vertex as ∏

v∈V

Av = 1. (23)

In Section E, we present a straightforward example comprising eight cubes to illustrate the
method. To address the general case, we delineate the procedures required for constructing
a quantum circuit for the 3D toric model on an L × L × L lattice over a 3-dimensional
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torus in Figure 13. The process consists of several carefully orchestrated steps to efficiently
realize the circuit, amounting to a total of 3L + 8 steps. The quantum circuit is purely
local since all applied quantum gates are either acting on a single qubit or on nearest two
qubits. Certain non-interacting gates offer the potential for further parallelization, but this
would only result in a constant difference in circuit depth.

In a manner akin to the procedure detailed in Section 2.5, we employ certain qubits
to generate a particular initial state that encodes information about the logical qubits,
as depicted in Figure 14. However, it is important to note that these selected qubits are
unnecessary when we opt for free qubits during the ground state preparation. In conclusion,
our method can prepare an arbitrary ground state of the 3D toric model with linear depth.

x

y

z x
y

z

Figure 13: We initiate with slicing the 3D torus into layers along the x-direction and applying H
gates to all the colored dots. Subsequently, we apply all CNOT gates from red dots to non-red dots
simultaneously and between adjacent red dots layer by layer, which requires L + 3 steps. The last layer
needs special treatment, which simplifies into a 2D problem after applying 2 CNOT gates from all green
and blue dots. Further progression involves applying CNOT gates concurrently from green dots to non-
green dots and between adjacent green dots row by row, necessitating L + 1 steps. Similarly, another
L + 1 steps applying CNOT gates from blue dots completes the procedure and leaves a redundant
vertex in the yellow cube.
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x

y

z

x

y

z

Figure 14: The left sub-figure highlights the employed qubits (indicated by purple edges) that are
utilized for the specific initial state within the ground state preparation process. Meanwhile, the right
sub-figure sketches all employed edges within a cubic lattice of size L = 5. All edges labeled by z in the
back layer, x in the right layer, and y in the top layer are employed to encode arbitrary ground states.
Importantly, the procedure we introduced earlier remains uninterrupted since we do not designate any
of these edges as free qubits.

4.2 X-cube model
The X-cube model is a fracton model defined on a 3D cubic lattice, as visually depicted in
Figure 15. Within this lattice, V represents the set of all vertices, while C corresponds to
the set of all cubes; each edge accommodates a single qubit. For the sake of convenience,
we also affixed labels to each edge, denoting them as x, y, or z based on their alignment
with the respective axis. The Halmitonian is defined as

H = −
∑
v∈V

Ax
v + Ay

v + Az
v −

∑
c∈C

Bc, (24)

where Ai
v, i = x, y, z is defined to implement Pauli operator Z across the four edges oriented

vertically to the i axis and attached to vertex v, and Bc is designated to effectuate Pauli
operator X across the twelve edges associated with cube c. Again these Ai

vs and Bcs
operators satisfy (Ai

v)2 = B2
c = 1 and [Ai

v, Bc] = 0. We get the ground state

|GS⟩ =
∏

c

1 + Bc

2 |ϕ0⟩, (25)

where |ϕ0⟩ = |00...0⟩, and we drop 1+Ai
v

2 since its action on |ϕ0⟩ is +1. It is important
to emphasize, however, that the ground state degeneracy experiences exponential growth
alongside the system size. Additionally, Figure 15 presents a comprehensive depiction of a
pair of logical operators of type W and T 4. Similarly, we have three types of logical operator
pairs, each acting on edges labeled by x, y, or z respectively. Notably, distinct non-trivial
loops exhibit identical homotopy while differ in terms of logical operators. This distinction
is a crucial hallmark distinguishing the fracton model from conventional topological orders.

To simulate the ground state for the X-cube model, we outline5 the procedures required

4The complete set of logical operators are given in [15], but we only use two types of them, which are
not conjugate to each other.

5We also present a straightforward example comprising eight cubes to illustrate the method, as elabo-
rated in Section F.
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Bc
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y

z

Figure 15: The left sub-figure illustrates the definitions of Av and Bp operators. Meanwhile, the right
sub-figure displays a pair of conjugate logical operators composed of edges labeled by x. The red string
is of type W , a nontrivial circle parallel to x axis, and we apply Pauli X over edges along the string.
Conversely, the blue string is of type T , a nontrivial circle perpendicular to x axis, and we apply Pauli
Z over edges along the string.

to construct a quantum circuit for the X-cube model on an L × L × L lattice, over a 3-
dimensional torus, in Figure 16. The initial state is |ϕ0⟩, and our target is to find quantum
circuit to implement

∏
c

1+Bc
2 . We identify the redundancy by specifically selecting certain

cubes, namely the three edges of the cubes in yellow, resulting from the requirement∏
Bc = 1 of the involved layer of cubes. Given that layers can be independently sliced

in three distinct directions, this selective arrangement of yellow-colored structures 6 is
achieved. To start, we strategically partition the cube into distinct components: a central
(L − 1) × (L − 1) × (L − 1) cube (colored gray), three (L − 1) × (L − 1) × 1 layers of cubes
(colored blue), and three rows of redundant cubes (colored yellow). Then we further slice
the central cube into (L − 1) × (L − 1) × 1 layers. Notice each gray and blue layer has the
same boundaries up to rotation. This occurs because those yellow cubes are redundant,
and the blue cubes are intended for the application of projectors in other layers. Neither
of them interferes with the preparation of the layer structure. Consequently, we treat each
layer of cubes as having the same structure, and their corresponding quantum circuits are
outlined in Figure 16.

After the initial 9 steps, we apply CNOT from (i, j) to (i − 1, j) in the (3k + 10)-th
step, apply CNOT from (i, j) to (i, j − 1) in the (3k + 11)-th step, and apply CNOT from
(i, j) to (i − 1, j − 1) in the (3k + 12)-th step, where i + j = k + 2. This allows us to
complete the layer structure in a total of 6L + 6 steps. These carefully orchestrated steps
efficiently realize the circuit, requiring a total of 12L + 11 steps and the quantum circuit is
purely local, similarly to the 3-dimensional toric code case. Certain non-interacting gates
offer the potential for further parallelization, reducing the circuit depth by 2⌊2L−3

2 ⌋. It is
worth noting that this method can be readily extended to the X-cube model on a lattice
of dimensions L1 × L2 × L3.

The ground state degeneracy can be resolved by the complete set of logical operators
[15]. We can readily attain all bases of the ground space of the X-cube model by replacing
the initial product state, as demonstrated in Section 2.5 and 4.1. However, it is not
straightforward to see whether our method can be applied to prepare arbitrary ground
states of the X-cube model. The comprehensive encoding of arbitrary ground states still
remains an open question and is left as a topic for future research directions.

6While there may exist more redundant cubes, our focus is solely on the chosen ones.
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x

y

z

x
y

z

(0, 0)

Figure 16: Treating each layer of cubes as the same structure with boundaries, we initiate H gates
along the edges in the z-direction of each cube and apply CNOT gates from these edges to the others
in the x and y directions, which requires 9 steps. Then we apply CNOT gates diagonally, row by row
in different colors, necessitating 6L − 3 steps. All gray layers are prepared simultaneously, followed by
blue layers, leaving behind redundant cubes.

4.3 Gluing method for 3D models
Similar to the scenario in 2D toric code case, we can simulate the ground state of 3D toric
model by breaking the lattice into basic structures, simulating on and gluing them back.
This results in one redundant vertex term and the excitations are quasi-particles that are
able to move freely. The situation is exactly the same as 2D toric code, so we can find
correcting operators to annihilate all of the excitations, which is left to readers.

x
y

z

Figure 17: Following the preparation of ground states on the individual lattices, we designate all qubits
on one side of the gluing plane as ancilla qubits (represented by red edges). Subsequently, we apply
CNOT gates in parallel from these ancilla qubits to the opposite side. This process allows us to obtain
the ground state of the fused lattice after appropriately disentangling the ancilla qubits.

Different methods for gluing in the X-cube model exist, and an intuitive one is shown
in Figure 17. In this method, the quantum circuits are applied to each of the individual
pieces to obtain their respective ground states. Subsequently, CNOT gates are employed
along the gluing plane to glue them together. It is essential to note that this process is
not a simple measurement, as each edge is influenced by two cube terms. Disentanglement
necessitates the implementation of measurements on all red edges and correction operators
to eliminate potential excitations based on the measurement outcomes. However, the X-
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cube model poses greater complexity as the excitations are fractons. A systematic approach
to find correcting operators is based on the following two facts:

1. There are three columns of redundant cubes as shown in Figure 16.
2. The excitation betraying cube terms is a fracton that are not able to move freely.

While a membrane operator (see [13] for details) creates fractons on four corners of a
rectangular.

x

y

z

(i, j, k)(1, j, k)

(1, j, 1) (i, j, 1)

(1, 1, 1)

(1, 1, k)

(i, 1, 1)

(i, j, k)

(i′, j′, k′)

Figure 18: A membrane operator consisting of Z operators on green edges creates fractons at four
corners; The correcting operator is a product of three membrane operators.

Illustrated in Figure 18, each cube in the n3 cubic lattice, underlying the 3D torus
topology, is assigned Cartesian coordinates (i, j, k), where 1 ≤ i, j, k ≤ n. Redundant cubes
are positioned along three columns, namely (i, 1, 1), (1, i, 1), and (1, 1, i) for i = 1 · · · n.
A membrane operator M[(i, j, k), (i′, j′, k′)], consists of Z operators in the rectangle from
(i, j, k) to (i′, j′, k′) creates excitations at the four corners. For instance, when addressing an
excitation at (i, j, 1), applying M[(1, 1, 1), (i, j, 1)] leads to the annihilation of the excitation
and the creation of excitations at redundant cubes, which are inconsequential. When
dealing with a general excitation at (i, j, k), with i, j, k ̸= 1, a multi-step procedure comes
into play. Initially, M[(1, j, 1), (i, j, k)] is applied to eliminate the excitation, generating
three additional excitations at (1, j, 1), (1, j, k), and (i, j, 1). Disregarding the one at the
redundant cube, the other two are subsequently eliminated by M[(1, 1, 1), (1, j, k)] and
M[(1, 1, 1), (i, j, 1)], respectively. In essence, the product operator M[(1, 1, 1), (1, j, k)]
M[(1, 1, 1), (i, j, 1)] M[(1, j, 1), (i, j, k)] is capable of annihilating general excitations.

5 Conclusion and outlook
In this paper, we propose a method to prepare the ground state of a Hamiltonian consisting
of local commuting projectors composed solely of Pauli X and Pauli Z operators. Our
approach involves finding an appropriate initial state that serves as the ground state of
these projectors and applying a quantum circuit composed solely of Clifford gates to achieve
the Hamiltonian’s ground state. We demonstrate the effectiveness of our method on 2D
toric codes with various surface conditions, both with and without boundaries, as well as
on the 3D toric model and the X-cube model. Our method enables the preparation of
arbitrary ground states for 2D and 3D toric model with a linear-depth circuit, meeting the
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lower bound for preparing ground states in topological phases. It also works for any basis
of the ground state in the X-cube model using a linear-depth quantum circuit. We present
these results on specific lattices, such as the 2D square lattice or 3D cubic lattice, and
introduce a gluing method to facilitate ground state preparation on general 2D and 3D
lattices. This gluing method provides a trade-off between measurement usage and circuit
depth and can be applied to obtain the ground state of larger lattices by assembling ground
states of smaller components.

There are several future directions to proceed from this work. One natural progression
involves extending our method to other 3D models of interest. Furthermore, the applicabil-
ity of our approach to the non-abelian Kitaev model presents a straightforward extension,
offering the potential to broaden the scope of its application.

Acknowledgments.
The authors are partially supported by NSF CCF 2006667, Quantum Science Center

(led by ORNL), and ARO MURI.

References
[1] Miguel Aguado and Guifre Vidal. “Entanglement renormalization and topo-

logical order”. In: Physical review letters 100.7 (2008), p. 070404. doi:
https://doi.org/10.1103/PhysRevLett.100.070404.

[2] Sergey Bravyi, Matthew B Hastings, and Spyridon Michalakis. “Topological quan-
tum order: stability under local perturbations”. In: Journal of mathematical physics
51.9 (2010), p. 093512. doi: https://doi.org/10.1063/1.3490195.

[3] Sergey Bravyi, Matthew B Hastings, and Frank Verstraete. “Lieb-
Robinson bounds and the generation of correlations and topological
quantum order”. In: Physical review letters 97.5 (2006), p. 050401. doi:
https://doi.org/10.1103/PhysRevLett.97.050401.

[4] Sergey Bravyi et al. “Adaptive constant-depth circuits for ma-
nipulating non-Abelian anyons”. In: arXiv:2205.01933 (2022). doi:
https://doi.org/10.48550/arXiv.2205.01933.

[5] Sergey B Bravyi and A Yu Kitaev. “Quantum codes on a lattice
with boundary”. In: arXiv preprint quant-ph/9811052 (1998). doi:
https://doi.org/10.48550/arXiv.quant-ph/9811052.

[6] Eric Dennis et al. “Topological quantum memory”. In: Journal of Mathematical
Physics 43.9 (2002), pp. 4452–4505. doi: https://doi.org/10.1063/1.1499754.

[7] Sepehr Ebadi et al. “Quantum phases of matter on a 256-atom pro-
grammable quantum simulator”. In: Nature 595.7866 (2021), pp. 227–232. doi:
https://doi.org/10.1038/s41586-021-03582-4.

[8] Jeongwan Haah. “Local stabilizer codes in three dimensions without string
logical operators”. In: Physical Review A 83.4 (2011), p. 042330. doi:
https://doi.org/10.1103/PhysRevA.83.042330.

[9] Oscar Higgott et al. “Optimal local unitary encoding circuits for the surface code”.
In: Quantum 5 (2021), p. 517. doi: https://doi.org/10.22331/q-2021-08-05-517.

[10] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. In: Annals of
Physics 303.1 (2003), pp. 2–30. doi: https://doi.org/10.1016/S0003-4916(02)00018-
0.

Accepted in Quantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 18

https://doi.org/https://doi.org/10.1103/PhysRevLett.100.070404
https://doi.org/https://doi.org/10.1063/1.3490195
https://doi.org/https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/https://doi.org/10.48550/arXiv.2205.01933
https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/9811052
https://doi.org/https://doi.org/10.1063/1.1499754
https://doi.org/https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/https://doi.org/10.22331/q-2021-08-05-517
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0


[11] Michael A Levin and Xiao-Gang Wen. “String-net condensation: A physical mech-
anism for topological phases”. In: Physical Review B 71.4 (2005), p. 045110. doi:
https://doi.org/10.1103/PhysRevB.71.045110.

[12] Yu-Jie Liu et al. “Methods for simulating string-net states and anyons
on a digital quantum computer”. In: arXiv:2110.02020 (2021). doi:
https://doi.org/10.1103/PRXQuantum.3.040315.

[13] Abhinav Prem, Jeongwan Haah, and Rahul Nandkishore. “Glassy quantum dynam-
ics in translation invariant fracton models”. In: Physical Review B 95.15 (2017),
p. 155133. doi: https://doi.org/10.1103/PhysRevB.95.155133.

[14] KJ Satzinger et al. “Realizing topologically ordered states on a quan-
tum processor”. In: Science 374.6572 (2021), pp. 1237–1241. doi:
https://doi.org/10.1126/science.abi8378.

[15] Kevin Slagle and Yong Baek Kim. “Quantum field theory of X-cube fracton topo-
logical order and robust degeneracy from geometry”. In: Physical Review B 96.19
(2017), p. 195139. doi: https://doi.org/10.1103/PhysRevB.96.195139.

[16] Nathanan Tantivasadakarn, Ruben Verresen, and Ashvin Vishwanath. “The Short-
est Route to Non-Abelian Topological Order on a Quantum Processor”. In:
arXiv:2209.03964 (2022). doi: https://doi.org/10.1103/PhysRevLett.131.060405.

[17] Nathanan Tantivasadakarn, Ashvin Vishwanath, and Ruben Verresen. “A hierarchy
of topological order from finite-depth unitaries, measurement and feedforward”. In:
arXiv:2209.06202 (2022). doi: https://doi.org/10.1103/PRXQuantum.4.020339.

[18] Nathanan Tantivasadakarn et al. “Long-range entanglement from measur-
ing symmetry-protected topological phases”. In: arXiv:2112.01519 (2021). doi:
https://doi.org/10.48550/arXiv.2112.01519.

[19] Ruben Verresen, Mikhail D Lukin, and Ashvin Vishwanath. “Prediction of toric
code topological order from Rydberg blockade”. In: Physical Review X 11.3 (2021),
p. 031005. doi: https://doi.org/10.1103/PhysRevX.11.031005.

[20] Ruben Verresen, Nathanan Tantivasadakarn, and Ashvin Vishwanath.
“Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topo-
logical order in quantum devices”. In: arXiv:2112.03061 (2021). doi:
https://doi.org/10.48550/arXiv.2112.03061.

[21] Sagar Vijay, Jeongwan Haah, and Liang Fu. “A new kind of topologi-
cal quantum order: A dimensional hierarchy of quasiparticles built from sta-
tionary excitations”. In: Physical Review B 92.23 (2015), p. 235136. doi:
https://doi.org/10.1103/PhysRevB.92.235136.

[22] Sagar Vijay, Jeongwan Haah, and Liang Fu. “Fracton topological order, generalized
lattice gauge theory, and duality”. In: Physical Review B 94.23 (2016), p. 235157.
doi: https://doi.org/10.1103/PhysRevB.94.235157.

[23] Kevin Walker and Zhenghan Wang. “(3+ 1)-TQFTs and topological insulators”. In:
Frontiers of Physics 7.2 (2012), pp. 150–159. doi: https://doi.org/10.1007/s11467-
011-0194-z.

Accepted in Quantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 19

https://doi.org/https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/https://doi.org/10.1103/PRXQuantum.3.040315
https://doi.org/https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/https://doi.org/10.1126/science.abi8378
https://doi.org/https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/https://doi.org/10.1103/PhysRevLett.131.060405
https://doi.org/https://doi.org/10.1103/PRXQuantum.4.020339
https://doi.org/https://doi.org/10.48550/arXiv.2112.01519
https://doi.org/https://doi.org/10.1103/PhysRevX.11.031005
https://doi.org/https://doi.org/10.48550/arXiv.2112.03061
https://doi.org/https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/https://doi.org/10.1007/s11467-011-0194-z
https://doi.org/https://doi.org/10.1007/s11467-011-0194-z


A 2D toric code on sphere
Similar with the example of genus 1 torus, we identify different qubit pairs to change the
four plaquettes into a sphere as shown in Figure 19. The bottom right plaquette is chosen
to be redundant and two steps will complete the procedure.

Figure 19: Boundary edges are identified according to the double-headed arrows.

B 2D toric code on genus n surface
Figure 20 shows a genus n surface which is a disk enclosed by a ribbon with identified
edges. Beginning with |ϕ0⟩, we develop a disk from inside and leave the ribbon with all
identified edges undeveloped. Then we choose one edge in the ribbon to apply the method
of basic structure and repeat in clockwise direction. After 2n − 1 steps for a genus n torus,
we will get the ground state of the closed surface.

Figure 20: The shaded area represents the developed disk; Boundaries with the same color are identified
to change the plaquettes into a genus n torus.

C Local CNOT operation
In the preparation of arbitrary state of 2D toric code, we use CNOT to transmit the logical
states vertically and horizontally. If we employ non-local CNOT gates, as illustrated on the
left side of Figure 21, it takes ⌈log2(L)⌉ steps. However, when CNOT gates are constrained
to constant distances d, this procedure requires ⌈log2(d) + L

2d⌉ steps, as shown on the right
side of Figure 21. The distance d is defined such that two qubits are considered to be d
apart if the shortest path connecting them contains d − 1 qubits.
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Figure 21: For the case L = 16, we illustrate the utilization of CNOT gates to vertically transmit the
logical states in the sequence: black, red, green, blue, orange. On the left-hand side, there exists no
constraint on the distance d, permitting the use of non-local CNOT gates, resulting in log2(16) = 4
steps. On the right-hand side, with the restriction of d = 2, the process requires log2(2) + 16

4 = 5
steps.

D 3D toric model with boundary
The generation from 2D toric code to 3D toric model with boundary is complicated but
direct. We can continue to use a plaquette as the basic structure but consider four different
types of cubes. Let us take the eight cubes in Figure 22 as an example. We begin with the
red cube and develop it into pink cubes. Orange cubes are the next and the yellow cube
completes the model. In the following, we will divide the method into four steps, each step
describes one type of cubes.

To develop the qubits in the beginning red cube, we need to develop five rather than
six faces as the cube is a closed surface with one redundant face. As shown in Figure 23,
we develop a face first and choose the four qubits on the opposite face to repeat the basic
structure. After that, considering the pink cube shares a face with developed cube, we
only need to develop four more faces as the second cube is also a closed surface. We choose
the four qubits on the face opposite to the developed cube to repeat the basic structure.

Similarly, we need to develop three faces for the orange cubes and two faces for the
yellow cube as shown in Figure 24. The four steps complete the procedure to simulate the
ground state of toric model on the eight cubes lattices. And we are able to develop any
size cubes with boundary using the method described above.
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Figure 22: The beginning cube is colored red. The pink, orange and yellow cube represent the cubes
connected with one, two or three faces developed.

Figure 23: The left two cubes describe the first step to develop the red cube. The right cubes describes
the second step to develop the pink cube.

Figure 24: The left figure describes the step of orange cubes, and we need to develop the face in front
first. The right figure describes the final step to develop the yellow cube, and we need to develop the
face above first.
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E 3D toric model without boundary
In Figure 25, the opposite faces are identified together to represent the 3D torus. We
begin with |ϕ0⟩ and choose four free qubits in the lower layer to take the procedure in
basic structure. After this step and identification of opposite faces, we get the lattice with
the middle untouched. Finally, choose three more free qubits to repeat the basic structure
and leave a vertex redundant.

Figure 25: A qubit |0⟩ is placed at each gray dot at the beginning. The color changes to black when a
quantum gate is applied on the qubit.

F X-cube model simple example
To illustrate the method, we take the eight cubes case as a simple example shown in Figure
26. Considering the redundant cubes in yellow, we only need to develop four cubes left.
The initial state is |ϕ0⟩, and we begin with the cube at the right front higher corner to
apply the basic structure. After this step and identifying opposite faces, we get the result
on the right-hand side of Figure 26. Then we choose three more free qubits from each
cube connecting with the developed cube to repeat the procedure of basic structure and
the ground state is completed.

Figure 26: The left figure is an example of X-cube model with opposite faces identified. The right
figure shows the result after the first step and the free qubits for next step are circled.
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