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Variational quantum algorithms use
non-convex optimization methods to find
the optimal parameters for a parametrized
quantum circuit in order to solve a com-
putational problem. The choice of the
circuit ansatz, which consists of parame-
terized gates, is crucial to the success of
these algorithms. Here, we propose a gate
which fully parameterizes the special uni-
tary group SU(N). This gate is generated
by a sum of non-commuting operators, and
we provide a method for calculating its
gradient on quantum hardware. In addi-
tion, we provide a theorem for the com-
putational complexity of calculating these
gradients by using results from Lie alge-
bra theory. In doing so, we further gen-
eralize previous parameter-shift methods.
We show that the proposed gate and its
optimization satisfy the quantum speed
limit, resulting in geodesics on the unitary
group. Finally, we give numerical evidence
to support the feasibility of our approach
and show the advantage of our gate over
a standard gate decomposition scheme. In
doing so, we show that not only the ex-
pressibility of an ansatz matters, but also
how it’s explicitly parameterized.

1 Introduction

Variational quantum computing is a paradigm of
quantum computing that uses optimization algo-
rithms to find the optimal parameters for a pa-
rameterized quantum circuit [1, 2|. Crucial for
the success of such algorithms is the choice of
circuit ansatz, which usually consists of multiple
parameterized one and two-qubit gates. Typi-

cally, these gates are parameterized unitary ma-
trices generated by single Pauli-string operators
that can locally rotate a state around some axis:
U(t) = exp{itG}, where ¢ is a gate parameter
and G a Pauli string. For a specific family of cost
functions, there exist a variety of methods that
allow one to obtain the gradient with respect to
t[3,4,5,6,7, 8, 9] on quantum hardware. With
these gradients, the cost function can be mini-
mized via any gradient-descent-based algorithm.

Instead of considering a gate generated by a
single Pauli string, one can construct more gen-
eral parameterized gates that can perform an ar-
bitrary rotation in SU(N), the special unitary
group. These general SU(N) rotations are used in
a variety of quantum algorithms [10, 11, 12, 13].
In practice, rotations in SU(N) can be imple-
mented by composing several simple parame-
terized gates together into a more complicated
one. For example, for single and two-qubit
gates (where N = 2,4, respectively), there ex-
ist several general decomposition schemes of such
gates into products of single-qubit gates and
CNOTs [14, 15, 16, 17, 18, 19]. In practice, this
compilation comes with hardware-specific chal-
lenges, since quantum hardware usually has a set
of native gates into which all others have to be
decomposed [20, 21].

Choosing the right parameterization for a func-
tion is important because it can significantly af-
fect the properties of its gradients. Reparam-
eterizing functions to obtain more useful gradi-
ents is a well-known method in statistics and ma-
chine learning. For example, in restricted maxi-
mum likelihood methods one can ensure numer-
ical stability of quasi-Newton methods by de-
composing covariance matrices into Cholesky fac-
tors [22]. In addition, methods like auxiliary lin-
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ear transformations [23|, batch normalization [24]
and weight normalization [25] are used to im-
prove the gradients in neural networks. In varia-
tional inference, the reparameterization trick [26]
is at the core of variational autoencoder ap-
proaches and allows for gradients for stochastic
back-propagation |27, 28|. In light of this, it may
be worthwhile to investigate alternative parame-
terizations of quantum gates for variational quan-
tum algorithms.

In this work, we propose a family of parame-
terized unitaries called SU(V) gates and provide
a method to evaluate their gradients on quan-
tum hardware. In doing so, we generalize the
prior literature one step further, since many past
schemes can be understood as special cases of our
proposal [3, 4, 5, 6, 7, 8, 9]. We provide numeri-
cal results to support the validity of our approach
and give several examples to illustrate the capa-
bilities of the SU(N) gate. We show that this
gate satisfies the quantum speed limit and that it
is easier to optimize compared to SU(N) param-
eterizations that consist of products of gates. We
argue that this is the case because the product of
unitaries creates a “bias” in the Lie algebra that
deforms the cost landscape. In addition, we high-
light the connections between our formalism and
the properties of semisimple Lie algebras and es-
tablish a bound on the computational complexity
of the gradient estimation using tools from repre-
sentation theory.

2 SU(N) gates

A quantum gate is a unitary operation U that
acts on a quantum state p in a complex Hilbert
space. If we ignore a global phase, then a gate U
acting on Ngubits qubits is an element of the spe-
cial unitary group SU(N) (see App. A), where
N = 2Nawits . Note that all of the following works
for any N > 1, but here we restrict ourselves to
the qubit case. We are interested in constructing
a quantum gate that parameterizes all of SU(V).
To achieve this, we make use of the theory of Lie
algebras. We will not be concerned with the for-
mal treatment of this topic, which can be found
in many excellent textbooks [29, 30, 31].

To construct our gate, we realize that SU(N)
is a (semisimple) Lie group and so there exists
a unique connection between its elements and
the Lie algebra su(/N) via the so-called Lie corre-

spondence, or Lie’s third theorem [32, 31]. In
particular, each g € SU(N) can be identified
with an A € su(N) via the exponential map
g = exp{A}. For our purposes, we can under-
stand the Lie algebra su(/N) as a vector space
of dimension N? — 1 that is closed under the
commutator, [A,B] = AB — BA € su(N) for
A,B € su(N). For su(N), we choose as a basis
the tensor products of Pauli matrices multiplied
by the imaginary unit ¢:

P Naubits) — {i(o’l R...Q JNqubits)} \ {INqubits}’
(1)

where 0; € {I,X,Y, Z} and Iy, = il®Nawits,
We choose the following parameterization of

SU(N):

U(0) = exp{A(0)}, A0) =Y 0,Grm, (2)

where 8 = (61,62,...,0n2_1) € RN~1 and
{Gn} € PWawits)  To distinguish between the
group and the gate, we call the parameterization
in Eq. (2) a SU(N) gate. The coordinates 6 are
called the canonical coordinates, which uniquely
parameterize U through the Lie algebra su(N).
Since we typically cannot implement the above
gate in hardware, we will have to be decompose
it via a standard unitary decomposition algo-
rithm [14, 15, 16, 17, 18, 19]. We emphasize here
that even though the gate will be decomposed, it
is parameterized as an exponential map. Hence
we can understand Eq. (2) as a change of coordi-
nates from the SU(V) gate decomposition.

If we do not want to parameterize all of SU(V),
we can instead parameterize a more restricted
Hamiltonian by setting some of the parameters
0, to zero. This makes Eq. (2) a natural pa-
rameterization of several Hamiltonians available
on modern quantum hardware platforms. These
Hamiltonians often have multiple independently
tunable fields which can be active at the same
time and do not necessarily commute. One typ-
ically has local control on each qubit and access
to an interacting Hamiltonian between pairs of
qubits, depending on the topology of the quan-
tum device [33]. The interacting pair can for
example be a ZZ interaction for Josephson flux
qubits [34], a Heisenberg interaction for nuclear
spins in doped silicon [35] or an XY interaction
in quantum dots interacting with a cavity [36].
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To use this gate in a gradient-based variational
quantum algorithm, we have to be able to ob-
tain partial derivatives of U(@) with respect to
each parameter 6;. Although there exist a vari-
ety of works that provide analytical expressions
for gradients through quantum circuits via the
parameter-shift rule [3, 4, 5, 6, 7, 8, 9, 37|, these
works almost uniformly assume that the gate is
of the form U(f) = exp{ifP}, where P is a
Hermitian operator. As far as we are aware,
the only methods to obtain gradients of Eq. (2)
with respect to 8 are the stochastic and Nyquist
parameter-shift rules of [6] and [10], respectively.
The first approach relies on an integral iden-
tity for bounded operators that is estimated via
Monte Carlo [38], whereas the latter is based on
a theorem in Fourier analysis [39].

3 Obtaining the gradient

Here, we provide a new approach to obtain the
gradient of Eq. (2) that makes use of differen-
tiable programming, which is efficient for gates
acting on a small number of qubits. To start, we
note that the partial derivative with respect to a
parameter 6; is given by

0 0
55:U(0) = 5 exp{4(0))
Vi 0
~UO Y T o) 5 AG)
(3)

Here, adx denotes the adjoint action of the Lie
algebra given by the commutator adx (Y) =
[X,Y] [31]. Furthermore, we write (adx )P(Y) =
[X,[X,...[X,Y]]], hence (adx )P’ denotes a
nested commutator of p terms. For more details,
see App. B. Note that the term on the right of
U(0) in Eq. (3) is an element of the Lie algebra,
since 0/00;A(60) = G; € su(N) and so the com-
mutator keeps the entire sum in the algebra. For
notational clarity we define

06) = Y- (U adao g AO), (0
p=0 ’

where ©;(0) € su(N) is a skew-Hermitian oper-
ator that generates a unitary, which we call the
effective generator. Given that Eq. (4) is an in-
finite series of nested commutators it is not clear

how ;(6) € su(N) can be calculated in practice
without truncating the sum.

We can think of U as a function U : RN*~1 —
SU(N) that we evaluate at the point 6. Since
SU(N) is a differentiable manifold, we can define
a set of local coordinates on the group and rep-
resent U(x) as a matrix described by N2 — 1 real
numbers. Hence, we can think of our gate as a
coordinate transformation between the parame-
ters & and the entries of the matrix represent-
ing the unitary. Since U(x) depends smoothly
on z; via the matrix exponential, this coordi-
nate transformation comes with a correspond-
ing Jacobian gor more accurately, pushforward)
dU(z) : TeRY ™! — Ty SU(N) that maps vec-
tors tangential to RN*~1 o vectors tangential to
SU(N). We can obtain this Jacobian by differen-
tiating the elements Uy, (x) with respect to x;:

0

a—xlUnm(m) = Oy, Re|Upm ()] + 10, IM[Up ()]

()

To obtain the above matrix function numerically,
we rely on the fact that the matrix exponential
and its derivative are implemented in differen-
tiable programming frameworks such as JAX [40],
PyTorch [41] and Tensorflow [42] through auto-
matic differentiation. Here we make use of the
JAX implementation, which provides the matrix
exponential through a differentiable Padé approx-
imation [43, 44].

Continuing, we mnote that evaluating
OU(x)/0x; at a point @ produces an ele-
ment of the tangent space Ty;(g)SU(N). We can
move from the tangent space to the Lie algebra
by left multiplying the elementwise derivative of

Eq. (5) in Eq. (3) with UT(8) (see App. A),

ox;

U'(e) <8U(a:) ;

) =UT(0)U(0)(0) = 2(0),
(6)

which allows us to obtain €2;(0) exactly, up to ma-
chine precision. We emphasize that these steps
can be performed on a classical computer, with
a cost that is only dependent on the number of
qubits the gate acts on, not the number of qubits
in the circuit.

We now make the following observation: €2;(8)
corresponds to a tangent vector on SU(N) and
generates the one-parameter subgroup V() =
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exp{t£2;(0)} such that
2(0) = S op(u@),_,
and

aaelU(O) = U(O)% eXp{th(e)Ht:o- (8)

We sketch this procedure schematically in Fig. 1.

Figure 1: Schematic depiction of our approach. We
move to the Lie algebra from the tangent space by left
multiplication with UT(8) and obtain ;(8). The orbit
generated by Q;(0) corresponds to the gate we have to
insert in the circuit to compute the gradient.

We now consider a typical variational setting,
where we are interested in minimizing the follow-
ing cost function:

C(0) = {U(0)pU' (0)H }, (9)

where H is some Hermitian operator and p the
initial state of the system. For simplicity we con-
sider a circuit consisting of a single SU(N) gate.
Differentiating the cost function with respect to
0; gives

889[0(9) - Tr{ (%U(G)) pUT(e))H} +hee.

(10)

Then, plugging in Eq. (8) we find,

0

26,0 =
d 0(0)  —t,(0) 71t
aTr{(U(G)el pe U(G))H}

9

t=0

(11)

where we used the skew-Hermitian property of
the tangent vector QZT(B) = —(0). Note
that Eq. (11) corresponds to a new circuit with
the gate exp{t€;(0)} inserted before U(0) (see
Fig. 2).

3—9l: Ue) - —> s 20 U(0) |-
. = — — —1t=0

Figure 2: The partial derivative with respect to the gate
parameter 6; can be obtained by adding a gate to the cir-
cuit that is generated by 2;(6). Calculating the deriva-
tive with respect to t and evaluating at t = 0 then pro-
vides one with the correct gradient.

The gradient of this new circuit can be com-
puted on quantum hardware with a generalized
parameter-shift rule (GPSR) [8, 7, 9]. In Al-
gorithm 1, we outline the entire algorithm for
our gradient estimation and we denote the GPSR
subroutine with gpsr. An alternative to the
generalized shift rule is to decompose the ef-
fective generators and apply the original two-
term parameter-shift rule to the constituents (see
App. 3 for details). In [45], the authors proposed
the so-called stochastic parameter-shift rule for
multivariate gates, which is based on the Monte
Carlo approximation of an operator identity.

In Fig. 3 we consider a toy example using
a random Hamiltonian on a single qubit and
compare the exact derivative of an SU(2) gate
with our generalized parameter-shift method (Al-
gorithm 1), the stochastic parameter-shift rule
and the central finite difference derivative with
shifts :I:%. In particular, we consider the gate
U(0) = exp(iaX + ibY') with @ = (a,b) and com-
pute the partial derivative with respect to a over
the range a € [0, 7] for three fixed values of b on a
state vector simulator (without shot noise). For
the finite difference recipe we use § = 0.75, which
we found to be a reasonable choice for a shot bud-
get of 100 shots per cost function evaluation (see
App. 2). We observe that the generalized SU(V)
derivative reproduces the exact value while the
finite difference derivative is slightly biased. This
is to be expected because the latter is an approx-
imate method. While decreasing the shift size 0
reduces the deterministic approximation error, it
leads to larger overall estimation errors in shot-
based computations like on quantum computers
(see App. 2 and e.g., [46]). Finally, the stochastic
parameter-shift rule yields an unbiased estimator
for the exact derivative but has a finite variance,
which we estimated using 100 samples (see App.
1). We stress that this variance is a property of
the differentiation method itself and not due to
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sampling on the quantum computer. All meth-
ods require two unique circuits per derivative but
the stochastic shift rule needs additional circuits
in order to suppress the variance. We provide the
code for all our numerical experiments at [47].

—— Exact value
===+ SU(N) parameter-shift
=== Finite difference

—— Stochastic parameter-shift

Figure 3: Gradients of C(0) for a single SU(2) gate
and a random single-qubit Hamiltonian, in the limit of
infinitely many shots on quantum hardware. We take
A(0) = iaX + ibY where 8 = (a,b) and consider the
fixed values b = 0.5,1.0,2.0 together with a € [0, ].
Our generalized shift rule (dotted) reproduces the ex-
act value (solid), whereas the central finite difference
(dashed) is biased and the stochastic shift rule (solid,
shaded) comes with a finite statistical error even with-
out shot noise from the quantum measurements. Since
we look at a single-qubit operation, Q,(6) has a single
spectral gap, so we require two shifted circuits to cal-
culate the gradient entry (see App. D for details). The
finite difference and the stochastic shift rule require two
circuits as well, but additional executions are need for
the latter to reduce the shown single-sample error.

In addition, we compare the three methods in
the presence of shot noise in Fig. 4. We show
the means and single-shot errors estimated with
1000 shots, which we split over 100 samples for
the stochastic shift rule. We observe that the
generalized SU(N) shift rule systematically per-
forms best. It is not only unbiased but also has
the smallest variance. Note that for smaller pa-
rameters b, the SU(N) shift rule and the stochas-
tic shift rule show very similar variances. This
is because U(@) approaches the gate Rx(a) =
exp(iaX), which can be differentiated with the
original parameter-shift rule, and both rules in-

deed reduce to the two-term shift rule for Rx.

—— Exact value
—— SU(N) parameter-shift
—— Finite difference

—— Stochastic parameter-shift
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Figure 4: Gradients of C(0) as in Fig. 3 but for

finitely many shots on quantum hardware. We show the
single-shot error for each method, estimated with 1000
shots, which varies with the gate parameters as noted
e.g., in [9]. Our generalized SU(N) shift rule systemat-
ically outperforms the other methods. For small b, the
SU(N) and the stochastic shift rule approach the single-
parameter shift rule and hence behave similarly. The fi-
nite difference shift § = 0.75 is chosen such that the bias
and variance are traded off reasonably for 100 shots (see
App. 1 and e.g., [46]). For other shot numbers, ¢ needs
to be optimized anew, whereas the parameter-shift rules
are known to perform optimally at fixed shifts.

Finally, we note that Eq. (11) is closely related
to the Riemannian gradient on SU(N) [48, 49].
However, instead of a gradient flow on a Lie
group, we have defined a flow on the Lie algebra
su(N), which we retract back to the manifold via
the exponential map. This subtle difference in-
duces a different flow from the SU(N) one, as we
illustrate in App. C.

Accepted in {Yuantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 5



Algorithm 1: SU(N) gradients.
Input: U(x), p, H, 0
Obtain the Jacobian function:
forl € (1,...,N?>—1)do
| Oy, Ui(x) = Oy, Re[U ()] + 105, Im[U ()]
end
For each gradient step:
forl e (1,...,N?>~1)do
Ql(a) — UT(H)dUl(w)‘g
C(t) +
Tr{U (0)¢" @ pe 2Ot (9) H }
25:C(0) < gpsT((9))
end

4 Comparison with decomposed uni-
taries

Previous parameterizations of SU(N) unitaries
consist of products of single-qubit gates and
CNOTs 14, 15, 16, 17, 18, 19]. We refer to this
parameterization as decomposed SU(N) gates.
On the other hand, Eq. (2) describes a general
SU(N) unitary by exponentiating a parameteri-
zation of the Lie algebra su(N). Here, we investi-
gate the effects of this alternative parameteriza-
tion.

4.1 Gate speed limit

First, we investigate a speed limit in terms of
the gate time. We slightly modify the definition
of Eq. (2) for a unitary evolution of the system,
U(0;t) € SU(N), to include a time ¢t € RT,

U(0;t) = exp{;x(e)t}, (12)

where A() = A(0)/\/Tr{A(B)IA0)} is a
normalized time-independent Hamiltonian (the
imaginary unit ¢ is included in A(@)). The nor-
malization of A(6) is equivalent to the normal-
ization of @ in Euclidean norm, see Lemma 3 in
App. F. The normalization of the Hamiltonian
(or, equivalently, @) means that the total path
length covered by the evolution is directly pro-
portional to the evolution time t, since we are
effectively setting the speed of the evolution to 1.

The Lie group SU(N) can be turned into
a Riemannian manifold by equipping it with
the Hilbert-Schmidt inner product g(z,y) =

Tr{:va}. The unitary evolution U(0;t), param-
eterized by t, is a one-parameter subgroup that
gives the geodesic [48, Theorem III.6| from the
identity element at time ¢ = 0. Geodesics can
be defined as generalizations of straight lines in
Euclidean geometry. Using Lemma 4 (App. F),
the length of the path after time ¢ is constant for
time-independent normalized Hamiltonians with
0= 1,

L[U(6;t),t] = VNt (13)

In general, there is more than one geodesic be-
tween two points on the manifold. For example,
two points on the Bloch sphere can be connected
by rotations about the same axis moving in oppo-
site directions. Using Lemma 5 (App. F), one of
these geodesics must be the curve of the minimal
path length. Hence, the minimum time to gener-
ate the evolution U(0;1,) is t, along the geodesic
of the minimal path. For an initial state p and
final state py, the Fubini-Study metric is used to
find a minimum evolution time

tg = \/1N arccos(W), (14)

giving the Mandelstam-Tamm bound for time-
independent normalized Hamiltonians.

In practice, we may only have access to a re-
stricted family of gates within SU(N), for exam-
ple due to hardware limitations, in which case
we require a decomposition of a desired gate in
SU(N) into gates from this family. Here we want
to compute the additional evolution time required
by such a decomposition. The simplest gate
decomposition is to break the unitary into two
terms, U(0;t,) = U(¢p;t2)U(¢™M);t1). The pa-
rameters (1) and ¢ are also normalized Hamil-
tonians, i.e., they have the norm |¢M| = |¢p(3)| =
1. The following theorem shows that using a de-
composed circuit over an SU(N) gate gives an
additional evolution time, which corresponds to
longer circuit run times.

Theorem 1. For unitary gates generated by
normalized time-independent Hamiltonians, con-
sider a general circuit decomposition of two gates
U(pP:t)U(pV:ty).  There exists an equiva-
lent evolution with an SU(N) gate U(0;ty) =
U(p@; 1)U (M ty), with evolution time t,,
such that

lg <11+ 1o,
with equality if o) + ¢ = 0.
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The proof of the theorem is in App. F. As ex-
pected, a decomposition into two gates gives a
longer total evolution time than is possible with
an SU(N) gate due to the normalizations of ¢,
¢? and 0. A decomposition into more gates
would generally lead to an even greater evolution
time. A corollary of Theorem 1 is that any cir-
cuit with multiple non-commuting layers of gates
cannot be optimal in total time.

4.2 Unbiased cost landscapes

An additional advantage of the SU(IV) gate is
that it weighs all optimization directions equally.
In contrast, a parameterization of SU(N) in
terms of a product of gates will create a bias in the
parameter space. We illustrate this point with
the following example. Consider the decomposed
SU(2) gate V(0) = Rz(63)Ry (02)Rz(01) where
RA(0) = exp{ifA} and A = XY, Z. This is the
7ZYZ decomposition. Using similar techniques as
in App. F, we can rewrite V() to be parameter-
ized in terms of the Lie algebra:

V(0) = exp{i¢ - o}, (15)
where o = (X, Y, Z) and
arccos(cos(fz) cos(6y + 03))
V1 — cos?(6y) cos?(6y + 03)
sin(f2) sin(fy — 03)

x | sin(62) cos(0; — 63) | . (16)
cos(62) sin(6y + 03)

b=

If we look at the components of ¢, we see that
the different directions in the Lie algebra are
stretched or compressed as a result of the particu-
lar choice of parameterization. Consider the nor-
malization |01|+|02|+|03| = 1 for the ZYZ decom-
position and @] = 1 for the SU(NNV) gate. With
each Hamiltonian term normalized to 1, the pref-
actor gives the evolution time. These choices of
norm give equal total evolution times for the ZYZ
decomposition and SU(2) gate, Tzyz = Tgu(n) =
/2, irrespective of the specific parameters chosen.
In Fig. 5, we graphically illustrate the Lie algebra
deformation by showing the ¢ surface for both
the ZYZ decomposition and SU(2) gate. Note
that we have not considered any cost function
here; the bias occurs at the level of the parame-
terization of a specific unitary.

The effect of this bias is demonstrated in Fig. 6
for the simplest case of a single-qubit system with

B ZYZ decomposition [] SU(2) (unbiased)

Figure 5: The total unitary evolution for the ZYZ de-
composition (red) and the SU(2) gate (blue) can be
expressed in the form exp{i¢-o}. The components
¢ = (P1, P2, ¢3) give the magnitude of the respective
basis generators o = (X,Y,Z). The original parame-
terization in @ with norm |61] + |02| + |03] = 1 gives
a surface of possible values of ¢ and therefore possible
unitary evolutions. The SU(2) gate (blue) is unbiased
because its parameterization gives the correspondence
0 = ¢ with normalization ¢? + @3 + ¢3 = 1. The uni-
tary evolution for the ZYZ decomposition (red) is biased
because the surface in the ¢ coordinates does not main-
tain an equal magnitude in all directions.

an SU(2) gate. The optimal parameters of the cir-
cuit are those that produce the state that gives
the minimum of the cost function C'(0) = —(Y")
(green star). We consider various initial param-
eters acting on the reference state p = |0)(0].
The corresponding training paths are shown for
each initial parameter vector. The training paths
for the decomposed ZYZ circuit are depicted in
Fig. 6(a). As the initial parameter 6y acting on
the reference state p (purple dots) moves closer to
an unstable equilibrium point (orange diamond)
the training path becomes increasingly subopti-
mal. At the unstable equilibrium the only gradi-
ent information is directly away from the instabil-
ity rather than providing information about the
direction towards the global minimum. This be-
havior is further illustrated by the gradient vec-
tor field on the Bloch sphere in Fig. 6(c). For the
SU(N) gate, we see in Fig. 6(b) that the opti-
mization trajectories follow a direct path to the
minimum.
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Figure 6: Comparison of the update of circuit parameters from various initial parameters acting on the initial state
p =10)(0|. The training paths are depicted on the Bloch sphere for: (a) parameterized single-qubit rotations for the
ZYZ ansatz; and (b) using the SU(N) gate. The purple dots represent initial states generated by applying U(6y) with
6o = (0,a,0) where a € {5, %, 4,32, 21} to p. Note that for this choice of initial parameters, U(6y) = V (6y).
The objective function is C(0) = —(Y'), giving the target final state at the green star—the state that gives the global
minimum of C(@). The unstable equilibrium points are given by orange diamonds, at (0,0,1) and (0,0, —1), and the
black point is at the maximum of the cost function, (0,1,0). (c) shows the gradient vector field of the decomposed

ZYZ ansatz. The vector field for the SU(2) gate, shown in (d), coincides with the geodesic flow towards the target

final state at all points which satisfies the gate speed limit.

4.3  Numerical experiment

To investigate the effect on the performance of
a typical optimization, we study how an SU(V)
gate compares with a decomposed gate in a larger
circuit. In Fig. 7 we provide a non-trivial ex-
ample, where we incorporate our gates into a
circuit and show that it performs better than
a decomposed SU(4) gate on a set of random
problem instances. We show the individual op-
timization trajectories in Fig. 8 which illustrate
the faster optimization of SU(NN) gates compared
to decomposed gates. Like for the examples in
Fig. 3 and Fig. 4, we assume that there is no
gate or measurement noise. Additionally, we as-
sume that we can always implement the gate
generated by (@), and have control over all
Pauli operators G,,. In practice, we typically
only have access to a fixed set of generators
span({G,,}) < span(su(N)). If this is the case,
then we require a decomposition of exp{t£2;(0)}
in terms of the available operations on the de-
vice |14, 19]|. All numerical results were obtained
with PennyLane [50], and the SU(/V) gates can
be accessed via the qml.SpecialUnitary class.
Although we do not explore this here, one could
make use of sparse optimization methods such as
stochastic optimization [51, 52| and frugal opti-
mization [53] for the GPSR subroutine in our al-
gorithm.

5 Resource estimation

To obtain the partial derivative in Eq. (11) in
practice we need to estimate the gradient of a
circuit that contains a gate generated by €2;(6).
As noted in recent works on GPSR rules [8, 7, 9],
the computational cost of estimating this gradi-
ent is related to the spectral gaps of €;(6). In
particular, if {)\;} is the set of (possibly degen-
erate) eigenvalues of €2;(6), we define the set of
unique spectral gaps as I' = {|\; — A\j/|} where
j' > j. Note that for d distinct eigenvalues,
the number of unique spectral gaps R is at most
R < d(d—1)/2. The total number of parameter-
shifted circuits is then 2R for a single partial
derivative 9y, C(0)

Depending on the generator ;(0), this com-
plexity can be improved. For instance, in [7],
a Cartan decomposition is used to improve the
number of circuits required from polynomial to
linear or even logarithmic in N. Additionally,
in [8], the different costs for first- and second-
order gradients are determined for specific vara-
tional quantum algorithms like QAOA [54] and
RotoSolve |55, 56, 57, 58|. Finally, in [9], the
computational cost of a variety of different gates
is investigated in detail and the variance across
the parameter regime is studied.

Instead of focusing on specific instances of the
generator (;(6), we make a more general ob-
servation about the computational complexity of
parameter-shift gradient rules. In general, €;(0)
has full support on su(N), since the consecutive
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Figure 7: Comparison of decomposed gates versus

SU(N) gates in brick-layer circuits for random 10-qubit
Hamiltonians and various depths. We consider the brick-
layer circuit indicated with ¢ = 2 in the inset, with gen-
eral two-qubit gates acting on the even and odd qubits
in each layer. The decomposed gate is the SU(4) pa-
rameterization of [16], which is optimal in the number
of CNOTs required. For each instance, we sample a
Hamiltonian from the Gaussian unitary ensemble and
minimize the cost in Eq. (9) via standard gradient de-
scent. We show the difference of the relative errors
in energy E = (E — Ewin)/(Fmax — Fmin) between
the decomposed gates and the SU(N) gates, that is
AE = Esy(n) — Ebecomp. The plotted lines are the
mean F, averaged over 50 random Hamiltonians for each
circuit depth £. We see that for all depths AE < 0 at
all points during the optimization, hence the brick-layer
circuit with the SU(N) gates outperforms the circuit
where the two-qubit interactions are parametrized as a
gate composition.

applications of ad () in Eq. (3) typically gener-
ate all of su(NV) [59]. However, for specific choices
of A(@), the application of adsgy to 0 A(0)
closes to form a subalgebra, called the dynamical
Lie algebra of A(@), that is contained in su(N).
These algebras are well-known in the context of
quantum optimal control [60, 61], and have re-
cently been studied in the context of variational
quantum algorithms [62, 63]. We define the dy-
namical Lie algebra (DLA) L£(A(0)) as the sub-
algebra formed under the closure of the non-zero
terms in A(€) under the commutator. Ignoring
global phases, this will always result in a sub-
algebra L£(A(0)) C su(N). For example, given
A(0) = i(aX+bY), Va,b € R, we have L(A(0)) =
span{iX,iY,iZ}, since adx (V) = [X,Y] = iZ
and successive commutators generate no new con-
tributions. Note that for this example the DLA

0.5F

4000 6000 8000 10000

Step

0 2000

Figure 8: Trajectories from the optimizations in Fig. 7
for 50 random 10-qubit Hamiltonians sampled from the
Gaussian unitary ensemble and an ¢ = 5 brick-layer cir-
cuit of 2-qubit building blocks. We compare the rel-
ative error energy (see Fig. 7 for the definition of E)
when using a standard gate composition to that when
using SU(4) gates as building blocks. The optimiza-
tion is performed with vanilla gradient descent using a
learning rate of = 1073, The SU(4) gate consistently
leads to faster optimization and better approximations
of the ground state energy throughout all 10° optimiza-
tion steps.

equals the full Lie algebra su(2). Explicit con-
structions of DLAs that span so(/N) and sp(V)
are given in [64]. In a more recent work, the DLAs
of several typical quantum many-body Hamilto-
nians are studied and their properties are used to
prepare efficient time-evolution circuits [65]. In
one dimension, the DLAs that are generated by
Pauli strings have recently been classified [66].

Interestingly, if the DLA is maximal, i.e., there
exists no smaller non-trivial subalgebra within
L(A(0)), then the roots of the Lie algebra can
be related directly to the computational cost of
estimating the gradients in Eq. (11). We formally
establish this connection with the following the-
orem:

Theorem 2. The number of unique spectral gaps
R of 0(0) is upper bounded by the number of
roots |®| of any maximal semi-simple DLA,

R < |®|/2. (17)

We provide the proof of Theorem 2 in App.
G. We make use of the fact that any semisim-
ple Lie algebra can be written as a direct sum
of its weight spaces, which can be identified with
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its root system [67]. The number of roots |®|
can then be used to bound the total number
of unique spectral gaps of €;(0). We can thus
use Theorem 2 to assess the run time of Algo-
rithm 1. We give several examples of SU(V) gates
in App. G together with the corresponding val-
ues of R. Depending on the physical system or
hardware that we are working with, we have to
choose a representation for su(/N'), which is a map
su(N) — gl(NV,C). In Eq. (1) we chose this rep-
resentation to be the tensor product of the fun-
damental representation, i.e., Pauli monomials.
Note however, that Eq. (11) and Theorem 2 hold
for any irreducible representation of su(V).

Additionally, by connecting the spectral gaps
to the root system of the DLA, we can make use
of a beautiful result in representation theory: the
classification of all maximal subalgebras of the
classical Lie algebras [68]. Each root system can
be uniquely identified with a particular subalge-
bra of a Lie algebra and it can be shown that
there exist a finite number of root systems. Since
a DLA is a subalgebra of su(N), we can identify
all possible DLAs and by extension all possible
families of SU(IV) gates. We provide examples of
this procedure in App. G.

6 Conclusion

We have proposed an alternative parameteriza-
tion of general SU(N) gates and a method of op-
timizing these gates in prototypical variational
quantum algorithms. We have shown that our
gates are more powerful in toy example settings,
and motivated why we believe this is the case
based on quantum speed-limit arguments. A nat-
ural extension of our work would be to test our
method in experimental settings, both on gate-
based quantum computers or quantum simula-
tors [69, 70, 71]. With regards to the latter, sev-
eral methods have been investigated that could
provide pulse-level optimization of energy cost
functions |72, 73]. This would obviate the need
for a gate-based model of quantum computing
to prepare specific states on quantum hardware.
Instead, we work on the Hamiltonian level and
control the system directly. Our algorithm could
be applied to this setting as well, since we're ef-
fectively learning the parameters of some fixed
Hamiltonian.

We have shown that the SU(N) gate in a circuit

outperforms a decomposed gate. The number of
parameters in our proposed gate equals 4Nq“bit5,
hence SU(N) gates acting on a large number of
qubits will be impractical. Additionally, it is not
clear for which problems one would rather have
a deeper circuit with simple gates as opposed to
a shallow circuit with more powerful gates. This
also begs another question: will our gates suffer
from barren plateaus [74]7 It is likely that a cir-
cuit of 2-qubit SU(N) gates that has linear depth
in NV will lead to a circuit that forms an approx-
imate 2-design, which will suffer from vanishing
gradients. However, appropriate choices of the
generators A(0) of our gate could keep the cir-
cuit in a polynomially scaling DLA of the entire
circuit, which can avoid barren plateaus [62, 63].
Additionally, we can consider parameter initial-
ization strategies that can improve the optimiza-
tion [75, 76].

Finally, we believe that the connections be-
tween variational quantum circuits and represen-
tation theory merit further investigation. We
connected the classification of all SU(N) gates
with the classification of semisimple Lie algebras.
However, this could possibly be extended to a
classification of all variational quantum circuits
based on the DLA of an ansatz. It seems that the
tools to provide such a classification are available
and could provide one with a method to assess
the trainability and expressivity of variational cir-
cuits without explicitly referring to specific an-
satze.
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A SU(N) and its Lie algebra

Consider the special unitary Lie group SU(N):
SUN)={X e CV*N|XTX =11 det{X} =1}. (A1)

In general, quantum gates belong to the unitary group U(N), which drops the determinant 1 condition
and thus allows for an additional global phase. Restricting ourselves to SU(N) therefore is physically
equivalent. Consider a curve X (¢) : R — SU(N), t € (—1,1) such that X (0) = I and d/dtX (t)|t=0 =
X (0) = Q. If we differentiate the unitarity condition with respect to ¢, we obtain

d
STOX ()], = 0, (42)
XT6X () + X)X (t)]1=0 = 0 (A3)
Qf+a=o, (A4)
and so we find that QF = —Q, i.e., Q is a skew-Hermitian matrix. The matrices  from all such curves
are elements of the Lie algebra
su(N) = {Q e CVNQf = —Q, Tr{Q} = 0}. (A5)

The second condition, Tr{2} = 0, can be found by realizing that the Lie algebra is connected to a Lie
group via the exponential map: e!* € SU(N), Vt € R and X € su(N) and so 1 = det{eX} = Tr{X},
Instead of considering a curve going through the identity at ¢ = 0, we can consider a curve going
through a point U with directional derivative 2. All curves X (¢) with directional derivative Q at the
point U form an equivalence class. The set of these equivalence classes forms a vector space called the
tangent space Ty SU(IV) at the point U, and in particular we may identify 77SU(N) = su(N). The
group product Ly, i.e., left multiplication by an element U, is a local homeomorphism, which induces a
linear map between two tangent spaces: d(Ly) |v : Ty SU(N) — Tr, vy SU(N) where U,V € SU(N).
d(Ly) is called the differential of Ly, If we take V' = I to be the identity, then we see that we can move
from the tangent space at the identity to the tangent space at any point in SU(N) by left multiplication
of the group d(Ly)|r : su(N) — TyySU(N). Hence the tangent space at U is given by

Ty SU(N) = {UQ|Q € su(N)}. (A6)

The above derivation can provide us with a different understanding of a what the Lie algebra is.
Starting from the group SU(N), we can consider all left-invariant vector fields X on SU(N),

d(Lv)lv(Xv) = X[v.v (A7)

where X € X(SU(XV)), which is the space of vector fields on SU(N). The left-invariant vector fields
form a vector and since they are closed under the Lie bracket [X, Y], they define a Lie algebra.

B The exponential map and its gradient

The following is due to [31, Chapter 1, Theorem 5|. Let G be a matrix Lie group G € GL(V, C) with a
corresponding Lie algebra g. Define conjugation by h € G to be the transformation ¢ : G — G given
by cn(g) = hgh™!. Note that c is an (inner) automorphism of G, since it is a isomorphism from G onto
itself. Let exp : g — G be the exponential map from the Lie algebra to the group. Taking X € g and
t € R, the differential of the conjugation map at the identity is

d(ep)(X) = %(hetxh_l) = hXh™, (B1)
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which maps an element of the Lie algebra to another element of the Lie algebra. This map is called
the adjoint representation Ady, : g — g and takes X — hXh~!. Given X,Y € g, we compute

iAdetX y| = Lexyeoix (B2)
dt =0 At t=0
= XY -YX (B3)
= [X,Y] (B4)
—adyY. (B5)

The operator ad : g x g — g is the Lie bracket on g, which for our purposes will be the standard
commutator. It now follows that

d _ d tX —tX

SAdax Y = = (e yet) (B6)
= XeXye ™ 4 M ye N (—X) (BT7)
= adX (Adetx Y) (BS)

With the boundary condition Ad,:x ;=9 = Id we find that the above differential equation is solved by
Ad,x = edx (B9)

at t = 1. Consider now the following parameterized matrix function ¥ : R x R — G,

Y (s,t) = e X <t)§tesx ®, (B10)

where X (t) is a curve on g. We then find

Y (s,t s 0 s 0 s
6(8 ). X(t)(—X(t))—ate X e X(t)a(X(t)e X)) (B11)
_ 0 _ 0 _ dX(t)
_ _—sX(@®) sX(t) sX(t) sX(t) sX(t) sX(t)
e X(t) 5:¢ +e X(t) 5:¢ +e T (B12)
_ dX(t)
_ —sX(t) sX(t) B1
e e (B13)
dX(t
= Ad,—.x) dt( ) (B14)
Then with equation Eq. (B9), we find
Y (s,t) Cad, gy AX ()
= sX(t) —~ 2
95 e T (B15)

Using that Y (0,¢) = 0, we find by integration
1 Y (s,t
Y(1,8) = / ds Y58 (B16)
0 s

Estimating the above integral forms the basis of the stochastic parameter-shift rule (see App. 1).
Continuing,

Y(1,8) = /01 isy (_n),n‘gﬁ(adx )”‘U;ft) (B17)
n=0 '
© (gl 1T gxg
LZO(W)H)' (adx ) LO dt() (B18)
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Hence we see that

4 X0 _ X0y (1) = X0 (i (E;Ll):)' (adx )”) d);ft), (B20)
n=0 :

which gives Eq. (3).
Note that at this point the Baker-Campbell-Hausdorff formula can be derived with Eq. (B20) by
considering the derivative of

eZ(t) — etXetY’ (B21)

and subsequent integration of the derivative of Z(t) [77].

C Connection between Riemannian and standard gradient flow on SU(N)

Here, we highlight the connection between a Riemannian gradient flow on SU(V) with respect and
Eq. (11) [48, 49]. We take the Hilbert-Schmidt inner product (A, B) = Tr{ATB } as a Riemannian
metric on SU(N) and write the cost as

c) =1{vputu}. (C1)

The differential of the cost dC(U) : TySU(N) — R, evaluated at the point US2, where Q € su(N) and
U € SU(N), is then

dC(UY(UQ) = d(Tr)(UpUTH) o d(UpUTH)(UQ) (C2)
= To{d(U)pU H + Upd(U) H } (UQ) (C3)
= T{UQpU H + Up'U i | (C4)
= Tn{pUTHUQ ~ UTHU p2 | (C5)
= Tr{ [p, UTHU]Q} (C6)
= (-Ul|p,utHU|,UQ) (C7)

via the chain rule and using that (A4, B) = (UA,UB). The compatibility condition for the Riemannian
gradient tells us that

dC(U)(UR) = (grad C(U),UQ). (C8)
Hence we can identify
grad C(U) = ~U |p,UTHU] (C9)
with the corresponding gradient flow
U = grad C(U). (C10)
Next, we follow the results of |78] in our notation. Consider the cost function

C(X)= Tr{eXpe_XH} (C11)

where X € su(N). Note that although the minimum of the function is unchanged, the parameterization
of a unitary via the Lie algebra changes the resulting gradient flow. To see this, we consider again the
differential,

d(C oexp X)(A) = d(Tr)(eXpe X H) o d(e® pe =X H)(A) (C12)
= Tr{d(e™)pUtH + Upd(e ) H }(A), (C13)
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where now d(Coexp X) : su(N) — R and A € su(N). We can now make use of the result in Eq. (B20),

dX)(Y) = X (5:0 (7(:)17;! (adx )n> ) (C14)
=X Dx(Y) (C15)

to obtain
d(C o exp X)(A) = Tr{eXOx(A)pe™ H + ¥ pdl (A)e™* H }. (C16)

Using that (I)} (A) = —Px(A) and @}((I)X (A)) = A, we then have

d(Coexp X)(A) = Tr{ | p,e ¥ HeX|@x(4)} (C17)
= (~[p.e ¥ He], 0x(4)) (C18)
- <(I>X([p, e—XHeX]),A>. (C19)

Hence the gradient on su(N) is
grad C'(X) zéx([p,e*XHeX}). (C20)

We therefore see that only when ®x = I do we obtain the Riemannian gradient on SU(N); hence
only if X € g where g is abelian. The optimization path followed by optimizing the parameters of an
SU(N) gate is thus different from the one following a Riemannian gradient descent on SU(N).

D The generalized parameter-shift rule

When using our SU(N) gate in an application that involves gradient-based optimization, like demon-
strated in the numerical experiments in this work, we require calculating the partial derivatives in
Eq. (11). Here we provide the details for how this can be achieved in practice via the generalized
parameter-shift rule (GPSR) [8, 7, 9]. Without loss of generality, we rewrite the cost function in
Eq. (9) as

C(t) = Te{ B g}, (D1)

where we absorbed the rest of the circuit into g, H and fixed any other parameters in the circuit.
Computing the derivative of Eq. (D1) with respect to ¢ is equivalent to the problem of finding the
gradient in Eq. (11) at ¢ = 0. For the numerical experiments in this paper we make use of the
particular implementation of the GPSR in [9] as well as the alternative method outlined in App. 3.

The skew-Hermitian operator 2 in Eq. (D1) has (possibly degenerate) eigenvalues {i\;}. We define
the set of unique spectral gaps as I' = {|)\j — Aj/‘} where 5/ > j. Note that for d distinct eigenvalues,
the number of unique spectral gaps R is bounded via R < d(d—1)/2. We relabel every unique spectral
gap with an integer, i.e. we write A, € I', and define the corresponding vector A = (Ay,...,AR).
We pick a set of parameter shifts that are equidistant and create a vector of R shifts § = (d1,...,dR)
where

(2n — 1)m

5n:T’ n=1,...,R. (D2)
Next, we create the length R cost vector ¢ and the R x R matrix M
C(61) —C(—61) 2sin(614A1) ... 2sin(01AgR)
. C(62) —‘C(—ég) M) - 2sin(§2A1) - 2 sin(égAR) (D3)
C(63) — C(—6p) 2sin(GpA1) ... 2sin(0rAR)
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We then calculate the coefficient vector as

which finally gives the gradient

=A-r. (D5)
Since the final gradient is exact, finite shot estimates of all ¢(d,)’s will produce an unbiased estimate
of dC(z)/dt,

dC(x)
dt

L =A(M@) Bl (D6)

where we pulled out A and (M(8))~! since they are constant. The difficulty of obtaining an accurate
estimate of the gradient is determined by the variance of this estimator, which is given by

Var ldC(x)

7t t:0‘| = (A - (M(8)) 12 (E [Cez} _E [c]@2) 7 (D7)

where we used ©2 to emphasize that the squares are taken elementwise. We assume that the estimates
for each shifted circuit obey normal statistics and so since these are independent, we can write

02(81) + o?(—61)
1 0°(02) + 0°(—02)

: ; (D8)
o*(0R) + 0*(—0R)

where 02?(+4,,) is the variance of the cost for each shifted circuit. If we assume that the dependence
of o on the shifts is mild, i.e., 0(J) &~ o then the total variance will only depend on the prefactor.

Setting the estimate E [¢®?] — E [¢]®? = (0,03, ...,03) then finally gives
dC(x) ?
~ 952 -1
Varl i to] ~ 20 (gn AnMnm(6)> . (D9)

One can minimize this quantity with respect to & to find the optimal set of shifts for the gradient
estimation [9].

E Alternative differentiation of SU(V) gates

In this section we summarize a number of alternative differentiation techniques that may be applied
to the presented SU(NNV) gates. In particular, we discuss the stochastic parameter-shift rule, which
was created for multi-parameter gates, finite differences as a standard tool in numerical differentiation,
as well as an alternative to the general parameter-shift rule above which also exploits the notion of
effective generators.

1 The Stochastic parameter-shift rule

The stochastic parameter-shift rule [6] relies on the following operator identity [38]

/ dse )52 ?) 1-9)7(@), (F1)
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for any bounded operator Z(x). We now fix all parameters 6,,, for m # [ and rewrite the cost in Eq. (9)
as

o) = Tr{Hei(a:GerA/)pe*i(wGHrA/)}7 A=Y 0,G (E2)
m#l

Then, if we take Z(x) to be the operator Z(z) = i(xG;+ A’) we can construct the gradient of Eq. (E2)
as

1
Oclz) _ / ds (Co(z, ) — C_(x, 5)), (E3)
ox 0
where
Cy(x,s) = Tl“{HVi(ZL'),OV:l(SL')} (E4)
Vi (l‘) _ 6is(a:Gl+A’)e:t§Gl ei(l—s)(mGl—f—A/)' (E5)

Hence, similar to our method, the gradient evaluation requires adding gates to the circuit and evaluating
the new circuit. However, the stochastic parameter-shift rule comes at a significant cost: the evaluation
of the integral in Eq. (E3). In practice, one approximates this integral by sampling values of s uniformly
in the interval (0,1) and then calculating the costs Cy(z, s) with a finite-shot estimate. Although this
produces an unbiased estimator, we find that the variance of this estimator is larger than ours, see
Fig. 4. In addition, this method leads to a bigger number of unique circuits to compute the derivative,
increasing the compilation overhead for both hardware and simulator implementations.

2 Finite differences

Finite differences are widely used to differentiate functions numerically. We briefly discuss this method
in the context of variational quantum computation (VQC) and refer the reader to recent works com-
paring and optimizing differentiation techniques for VQC [79, 46].

In particular, we consider the central difference recipe

Drpg, C(8) = % [0 <9 + gej) _c (9 - gejﬂ , (E6)
where ¢ is a freely chosen shift parameter and e; is the jth canonical basis vector. This recipe is an
approximation of ang’(H), making the corresponding estimator on a shot-based quantum computer
biased. This bias, which depends on ¢, has to be traded off against the variance of the estimator, which
grows approximately with 672,

In classical computations, the numerical precision cutoff plays the role of the variance. Due to the
high precision in classical computers, this leads to optimal shifts § < 1, which allows treating the bias
to leading order in § and thus enables rough estimates of the optimal §* in advance. On a quantum
computer, however, the variance typically is more than ten orders of magnitude larger, leading to a
very different §*, which furthermore depends on the function and derivative values. As a consequence,
shifts of O(1) become a reasonable choice, highlighting the similarity of the central difference recipe to
the two-term parameter-shift rule [79].

As a demonstration of the above, and in preparation for the numerical experiments shown in Figs. 3
and 4, we compute the central difference gradient for a random single-qubit Hamiltonian, a single SU(2)
gate U(0) = exp(iaX +ibY) and § € {0.5,0.75,1.0}. For this, we evaluate the mean and standard
error 50 times and show the difference to the exact derivative in Fig. E1. As expected, we observe that
the bias increases with § and that the variance is suppressed with larger 6. We determine § = 0.75 to
be a reasonable choice for the purpose of the demonstration in Figs. 3 and 4, but stress that for any
other circuit, qubit count, Hamiltonian, and even for a different parameter position @ for this circuit,
the optimal shift size needs to be determined anew.
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Figure E1: Error of the central difference gradients with § = 0.5,0.75, 1.0 for the single-qubit example from Figs. 3
and 4. The value of the second parameter again is fixed to b = 0.5,1.0,2.0 in the panels (from left to right). The
shift parameter ¢ influences the strengths of bias and variance, leading to a trade-off. For smaller §, the variance is
enhanced due to the coefficients in Eq. (E6) that scale with 6=1. For larger §, the bias based on the approximate
nature of Eq. (E6) is increased. We find 6 = 0.75 to be a reasonable choice for this particular circuit, Hamiltonian
and parameter position 6.

3 Decomposing effective generators for differentiation

In Algorithm 1 we suggest to use the generalized parameter-shift rule |7, 8, 9] in order to compute the
partial derivatives B%ZC’ (0) independently. In addition, Theorem 2 bounds the number of frequencies

occurring in the univariate auxiliary cost function C(t) = Tr{U(O)eth(a)pe*th(g)UT(O)H} and the
corresponding number of parameter shifts required during differentiation.

Realizing the shift rule requires us to implement not only U (6)—which is necessary to compute C(8)
itself—but also the gate et(®) for 2R shift values t, and each € separately. Alternatively, we may
follow the approach to decompose all effective generators §2; and compute the derivative as a linear
combination of the derivatives for simpler auxiliary gates, similar to [7]. In particular, we again choose
the Pauli basis of su(N) for this decomposition.

Decompose the effective generators 2;(0) as

UO) =3 wim(O@)GCm,  wim(6) = %Tr{Gle(H)}. (E7)

Note that the coefficients are purely imaginary due to the skew-Hermiticity of €2;(@). The partial
derivative we are interested in can then be written as

d
E)‘Zlcw) = Tr{HU(O) an_jl Wim (8)Gm, p] UT(O)} (E8)
=" wim(0) TH{ HU(8) (G, U1 (0) } (E9)
-¥ wlm(0)2i% Tr{HU(O) [exp {—i;Gm} ,p] UT(O)} g (E10)
= S (0) S g, (0.1)],_,. (E11)

dt

Here we abbreviated &y, (0) = 2iwy,, (0) and wrote Cg,, (0, t) for the cost function with a rotation gate
with parameter —t/2 about Gy, inserted before U (). This modified cost function can be differentiated
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with respect to t using the original two-term parameter-shift rule, as the inserted gate is generated by
(the multiple of) a Pauli string.

The above linear combination of Pauli rotation derivatives can be reused for all partial derivatives,
so that the full gradient for one SU(N) gate is given by

vO(6) = a(9) .dc, (E12)
CG1 9 t |t ~0

dc — . (E13)
CGd 9 t ‘t 0

So far we did not discuss the number of Pauli strings occurring in the decomposition of the generators
;. As can be seen from Eq. (6) and our definition of the DLA in Section 5, this number is bounded
by the size of the DLA, and we again remark that this bound will be saturated for most values of 6.
As two shifts are required for each Pauli rotation, the gradient VC(6) can thus be computed using
2dim L£L(A(8)) circuits, using Pauli rotations from the DLA and, e.g., shift angles £7.

As we only required a linear decomposition of €2;, any other basis for the DLA may be used as well,
potentially allowing for fewer shifted circuits or different inserted gates that may be more convenient
to realize on hardware.

F  Gate speed limit

The following Lemmas are used in Section 4.1.

Lemma 3. For Hamiltonians of the form H = ), 0,,Gy,, where Gy, are strings of logy N Pauli
operators, Tr{H*} = N, 02,

Proof. All Pauli strings G, are orthonormal with respect to the trace inner product, Tr (GInGn) =
On,m N . Using this gives

T {H?} = g; OO, Tr{ Gy G } (F1)
= NS 0006nm (F2)
=N> 6. (F3)

0

Lemma 4. The length of a smooth curve on the Riemannian manifold SU(N), with metric g(x,y) =
Tr{ﬂy}, for a time-independent Hamiltonian H after a fized time 7 only depends on the norm of H
and T .

Proof. The unitary evolution of U(8;t), parameterized by ¢, corresponds to a smooth curve on SU(N)
with length according to the Riemannian metric, g(z,y) = Tr{xTy} [80]. Integrating over the metric
norm through the tangent spaces from ¢t = 0 to final time 7 gives the path length,

T

LIU(6;t), 7] = - ds (F4)

_ /OT Vo(U(8;1),0(6;))dt (F5)

- /0 \/Tr {U'T(o; HU(0; t)}dt, (F6)
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where U = %. From Schrédinger evolution,

au(6;t)
dt

LU(6;t), 7] = 74/ Tr {H?}, (F8)

for time-independent Hamiltonians. Therefore for all Hamiltonians with fixed norm Tr{H 2}, the path
distance travelled after time 7 is the same regardless of the specific unitary evolution. O

= —iHU(6;1), (F7)

we find

Lemma 5. The minimal path between the identity element I and a point V on the Riemannian
manifold of SU(N), with metric g(x,y) = Tr{xTy}, is a geodesic curve y(t) = eX with X € su(N).

Proof. From Proposition 3.10 [81], the geodesics of SU(NN) are the one-parameter subgroups, given
by 7(t) = eX*. In general, multiple geodesics curves can give V from the identity. The minimal path
is the curve with the minimum length. Since geodesic curves are the extrema of the path length
functional [82, Lemma 9.3], there must exist a geodesic, which is of the form () = e, that is the
minimal path to V.

O

1 Proof of Theorem 1

We restate Theorem 1 again for convenience.

Theorem 1. For unitary gates generated by normalized time-independent Hamiltonians, consider a
general circuit decomposition of two gates U(¢(2);t2)U(qf)(1);t1). There exists an equivalent evolution
with an SU(N) gate U(0;t,) = U(pP;t2)U(¢W); 1), with evolution time t,, such that

lg <11+ 12,
with equality if ¢ + (M) = 0.

Proof. The product U(¢®);t2)U(¢™M);t;) corresponds to a specific point V on the manifold SU(N).
By Lemma 5, there exists a geodesic between the identity I and V, given by the curve eX’ that is
of minimal length. We can parameterize this geodesic as U(¢(?); ty) = exp{fl(@)tg}, which is always
possible since A(@) parameterizes an arbitrary point in su(N) and is an SU(N) gate. By Lemma 4,
the length of this path only depends on the norm of A(), which is 1, and on tg4, which gives

tg = LU (6;t),t4)]. (F9)

Since this path is minimal, we have
tg <t +to (F10)
with equality if ¢() + M) = 6. O

1.1 Special case of SU(2)

In the following we give the additional time for decomposing an optimal SU(2) gate into two gates.
By optimal, we refer to the geodesic along the minimal path length curve — see Lemma 5.

We consider the optimal SU(2) gate U(;t,) with geodesic evolution time ¢, together with a decom-
position U(¢®);t2)U(¢M;t1) = U(8;t,). The decomposed circuit is given by two unitary evolutions.
Each individual evolution U(¢p(*);t,) is a U(1) rotation such that only a single basis element is re-
quired. With two rotations, the overall evolution is an element of SU(2). The corresponding su(2)
algebra is spanned by three basis elements—the three Pauli matrices for example. The two rotations
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can be represented as lying on a Bloch sphere. A unitary transformation, K € SU(N), can therefore
be applied to the evolution such that U(¢®);t,) = KU (¢");t,)KT for

sin(a, ) cos(,)

(5(1/) = Sin(au) Sin(ﬂy) ) (Fll)
cos(ay)
where v = 1,2, with o, and (8, parameterizing the rotations. By construction ¢ - ¢(*) = 1 is

normalised for all parameters «,, and f,. The same transformation K defines U (6;t,) = KU(8;t,)K*
and gives the same relationship U(0;t,) = U(¢;12)U(p™M);t;). This is straightfoward to show

U(6;t,) = KU(8;t,)K' (F12)
= KU(¢; 1)U (¢ 12) KT (F13)
= KU(¢pP; 1) KTKU (W t5) K1 (F14)

; (F15)

U(@P;t2)U(¢W; 1)
We have

A(@™)) = sin(a) cos(8,)G1 + sin(ay ) sin(B,)Ga + cos(a, )G, (F16)

where we choose G = iX, Gy = Y, and G3 = iZ. These basis elements of su(2) generate the
group SU(2). We also define the basis vector G = (G1, G2, G3). Exponentiation therefore gives the
closed-form expression

exp{A(q.’;(”))t,,} = exp{ (é(”) : G) t,,} (F17)
= cos(t, ) [®Nawits 1 sin(t,)p™) - G. (F18)

By the group composition law of SU(2), the product of two exponentials in SU(2) also gives a closed-
form expression,

exp{;l(&@))tg} eXp{A((Zf;(l))h} = ((:os(iig)j'@)]\ﬂl‘lbits + sin(t) @ - G) (cos(t1)1'@)]\7‘1‘“’“S + sin(t) ™ - G) .
(F19)
Collecting terms gives
exp{ A(¢@)ta} exp{ A(@W)t1 } = (cos(tr) cos(ta) — ¢ - P sin(t1) sin(ty) ) 1%Nawwrs
+ (cos(tg) sin(t1) ™M + cos(ty) sin(ta) @ + isin(t1) sin(tz) M x QB(2)> -G. (F20)

The total evolution is

exp{ A(¢@)ta } exp{ A(GW)t1 } = exp{ A(B)t, | (F21)
= cos(ty) I®Nauvits 4 sin(t,)0 - G. (F22)
By comparison of Egs. (F20) and (F22), we find

0 =

sin(t,) (COS(t2) sin(ty) @) + cos(tr) sin(tz) ) + isin(ty) sin(tz) M) x gﬁ(z)) 7 (F23)
g

and
cos(ty) = cos(t1) cos(ta) — dW - pP sin(ty) sin(ta). (F24)

The additional evolution time is At = t4 —t,4, with tq = t1 +t2 the total decomposed unitary evolution
time. Due to the invariance of the scalar product, ¢ -2 = p(1).¢»3) | the additional time At = ta—tg
required by the decomposition is then given by

At =ty — arccos (cos(t1) cos(t) — ¢V - @@ sin(t;) sin(ts)) > 0.

Accepted in {Yuantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 10



G Unique spectral gaps of Dynamical Lie Algebras
1 Proof of Theorem 2
We restate Theorem 2 here for convenience.

Theorem 2. The number of unique spectral gaps R of ;(0) is upper bounded by the number of roots
|®| of any mazimal semi-simple DLA,

R < |®|/2. (G1)

In the following we set g to be a semisimple Lie algebra. A subspace a C g is called a subalgebra if
it is closed under the Lie bracket, i.e., if [a1, a2] € a, Va1, a2 € a. Since g is a semisimple Lie algebra,
it always contains a subalgebra called a Cartan subalgebra [29] (Chapter 7, Definition 7.10).

Definition 1. A Cartan subalgebra b of g is a subalgebra that satisfies the following conditions:
1. For all hy,he € b, [hl,hg] =0.
2. Forallx € g, if [h,x] =0 for all h € b, then z € b.

The first condition tells us that b is a commutative subalgebra of g, while the second condition says
that b is maximal, i.e., there is no larger commutative subalgebra. The first step in proving Theorem 2
is to make use of the following result:

Theorem 3. [67, Chapter VI, Theorem 1]. If g is a semisimple Lie algebra, we can write g as a
direct sum of the root spaces gq:

g= @gav (GQ)

where
Gach = {2 € glady(z) = a(h)z, Vh € b}, (G3)

and o € h* are functionals on h. That is, a root space is a subspace of g on which the action of the
adjoint representation of § is described by a functional (and scalar multiplication).

The above decomposition is called a root space decomposition, which is an essential tool in classifi-
cations of Lie algebras [68, 67]. Since

go = {z € glady (z) = 0,Vh € b}, (G4)
we find that b = g¢ and hence
9=b P ga- (G5)
a0
We then immediately see that
dimg = dimb+ > dimgq. (G6)
a0

We can thus relate the dimensionality of a Lie algebra to the dimensionality of its Cartan subalgebra
and its weight spaces. The second step of the proof relies on identifying the unique spectral gaps of
Q;(0) with the weight spaces g,. To achieve this, we will construct the linear operator ad; and apply
it to the eigenbasis of ;(0) to show that the maps « can be identified with the spectral gaps of 2;(0).

Consider an element € € g, where g C su(N) is a non-trivial subalgebra and b is a Cartan subalgebra
of g. Since b is the Lie algebra of a maximally abelian group, we can represent elements of h by
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diagonal matrices. Since €2 is skew-Hermitian, there exists a unitary V € SU(N) that diagonalizes €2,
i.e., VIQV = h with h € h. Here, V is the matrix with columns equal to the eigenvectors vy, of Q with
corresponding eigenvalues A\;. We can thus always choose a basis for g such that €2 is diagonal. If Q
is non-degenerate, then it must be full rank, and therefore an element of . All Cartan algebras are
equivalent up to conjugacy, hence we can choose the matrix h to be the diagonal matrix containing
the eigenvalues of €2 to represent the Cartan subalgebra . We now take FE,,, to be the matrix with
entries (n,m) equal to 1 and all other entries to 0. Define the operator

and apply ady to it:

adp, (enm) = hepm — enmh (G8)
=VIQE,,V - VIE,,QV (G9)
= VI hEpmV — VIE,hV (G10)
= (A — Am)enm- (G11)

This means that ad;, has the eigenvectors ey, with corresponding eigenvalues aym (h) = Ay — A, [83],
and so we have identified the eigenvalue differences with the roots of the Lie algebra. We define the
set of all roots as

d={\,—A\p,n#m=1,...,N}. (G12)

Since the dimensionality of each weight space is one [67, Chapter VI, Theorem 2(a)], we can see that

> dimg, = |®|. (G13)
a#0
Therefore,
dimg = dim b + |P|. (G14)

We now set g = L(A(0)). If we take the absolute value of the elements of ®, we can identify R = |®|/2,
where the factor 1/2 is to account for double the counting of the spectral gaps. Since {2 can be
degenerate in general, we obtain the inequality R < |®|/2. With this, the proof of Theorem 2 is
completed.

2 Examples

Here, we give several examples of maximal DLAs and their corresponding value of |®|/2. Analogous
to the main text, we choose the Pauli representation but these results should hold for any irreducible
representation of su(N).

1. su(2): For a 1-qubit system, there are no non-trivial subalgebras, hence we can only look at the
full special unitary Lie algebra su(2). Any A(@) that consists of two Pauli operators will generate
this algebra, e.g.,

A(0) = i(6,X + 6,Y) (G15)

will give L(A(0)) = su(2). A Cartan subalgebra of su(2) is given by b = span ({Z}). We therefore
find that dimg = 3 and dimbh = 1 and so |®| = 2. Hence we have R < 1 and need 2R < 2 shifts.
This matches the result in [5], where the parameter-shift rule was generalized from single Pauli
matrices to Hermitian operators with two unique eigenvalues.
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2. TFIM: A DLA that has been studied before |62, 65| is the 1D transverse field Ising-Model (TFIM)
Hamiltonian:

AB)=i(h X T+ 01X +05Z2® 2), (G16)

with L(A(0)) = span({X@[,I®X,YQRY,ZZ,ZxY,Y®Z}). We can take h =
span ({X ® I, ® X}) as a Cartan subalgebra and so dimg = 6 and dimbh = 2, which gives
|®| = 4. Hence we need (at most) 4 shifts to obtain the gradient of an operator in the DLA of the
TFIM, which corresponds to so(4).

3. su(4): The full Lie algebra of su(4) is spanned by

A(0) = 0,0Gi, (G17)

where G, € P* are the tensor products as defined in Eq. (1). A Cartan subalgebra of su(4) is
given by h = {Z®I1,I ® Z,Z ® Z}. This means that dimg = 15 and dimbh = 3, which gives
|®| = 12. Hence we have R = 6 and need 12 shifts to obtain the gradient for a general operator
in su(4).

In the above examples, we have only been concerned with the dimensionality of the root system.
We could go one step further and look at the structure of the root systems. It turns out that there
exists only a finite set of root systems, which leads to the classification of all semisimple Lie algebras
(such a program was originally carried out by Dynkin [68] and is explained in most textbooks on
Lie algebras [31, 83, 29]). This allows us to make the following observation about DLAs and the
SU(N) gates in our work: there is a finite number of families of SU(/V) gates for each N, given by
the possible DLAs. Again, we emphasize that this is independent of the representation of the algebra.
We summarize the above results together with the identification of the corresponding classical group
in Table 1 [31] (Chapter 3, Table 3.4).

Name ‘ dim(g) ‘ dim(h) ‘ |D| ‘ Classical group

su(2) 3 1 2 Ay
50(4) 6 2 4 A1 X A1 = DQ
su(4) 15 3 12 Ay

Table 1: Examples of DLAs and the size of the root spaces. Each root system ® can be identified with a Lie algebra
of one of the classical groups A,,, By, Cy,, D,,. The classical group Dy corresponds to SO(4), with the corresponding
Lie algebra s0(4) which has dimension N(N —1)/2.
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