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Quantum metrology allows for measuring properties of a quantum sys-
tem at the optimal Heisenberg limit. However, when the relevant quantum
states are prepared using digital Hamiltonian simulation, the accrued al-
gorithmic errors will cause deviations from this fundamental limit. In this
work, we show how algorithmic errors due to Trotterized time evolution can
be mitigated through the use of standard polynomial interpolation tech-
niques. Our approach is to extrapolate to zero Trotter step size, akin to
zero-noise extrapolation techniques for mitigating hardware errors. We per-
form a rigorous error analysis of the interpolation approach for estimating
eigenvalues and time-evolved expectation values, and show that the Heisen-
berg limit is achieved up to polylogarithmic factors in the error. Our work
suggests that accuracies approaching those of state-of-the-art simulation al-
gorithms may be achieved using Trotter and classical resources alone for a
number of relevant algorithmic tasks.

1 Introduction
Quantum simulation has become, arguably, the most promising application of quantum
computing in the near-term [1, 2], with the potential to provide exponential speedups
for a host of problems ranging from the electronic structure [2, 3, 4, 5] to simulation
of scattering dynamics within quantum field theories [6, 7, 8]. The central challenge of
digital Hamiltonian simulation is, given a fixed Hamiltonian, simulation time, and error
tolerance, provide a minimal-length sequence of quantum gates that approximates the
unitary dynamics within that error tolerance.
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Major strides have been made in the last several years towards this goal. Several
classes of methods, such as Linear Combinations of Unitaries (LCU) methods [9, 10,
11, 12, 13], qubitization [14, 15] and Trotter-based methods [16, 17, 18, 19, 20, 21]
have emerged as leading approaches for simulating quantum dynamics. Unlike the
other aforementioned methods, Trotter methods yield a complexity that scales with the
commutators of the Hamiltonian terms [18], which can lead to substantial performance
improvements for simulations of local Hamiltonian [19]. However, Trotter methods scale
super-polynomially worse with the error tolerance than other existing methods [22, 11].
This makes such methods inferior to other strategies in cases where high accuracy is
required.

It would be interesting if the gap in simulation accuracy between Trotter and
other approaches could be bridged in a minimal way, such as classical post process-
ing. Richardson extrapolation has been proposed as a method to mitigate algorithmic
and hardware errors for simulation and linear systems [23, 24]. Recently, the approach
been demonstrated on quantum hardware [25] and yielded improvements compared to
Trotter simulation alone. However, there remains a gap in the theoretical understand-
ing of the errors, though one may be able to adapt existing results from the theory of
multiproduct formulas.

The present work takes a different approach to the problem, achieving improved ac-
curacy using polynomial interpolation, hereafter referred to simply as "interpolation."
In this scheme, we take Trotter simulation data at various time step sizes, then inter-
polate this data with a polynomial. Our estimator is then the value of this polynomial
at the desired ideal of zero step size. By choosing our nodes so that the interpolation
is well-conditioned, we show that a Heisenberg-limited 1/ϵ scaling can be attained for
estimating observables up to logarithmic factors. This is in contrast to the 1/ϵ1+1/p

scaling obtained with a single Trotter estimate alone, where p is the order of the Trot-
ter formula. Interestingly, our result also holds in cases where only the lowest order
Trotter formula is used, providing the first poly-logarithmic scaling method with the
error that uses a constant number of ancillary qubits. We study this method in two
cases. The first case uses phase estimation to extract eigenvalues of the Hamiltonian;
whereas the second method uses dynamical simulation and amplitude estimation to
learn expectation values of observables. We further validate these methods numerically
using a newly proposed unbiased phase estimation method that we call Gaussian phase
estimation.

Similar to the aforementioned Richardson extrapolation, our approach is best thought
of as algorithmic error mitigation. The particular error we are mitigating is imperfect
Hamiltonian evolution due to the use of product formulas. Rather than being a new
approach to eigenvalue or expectation value estimation, our proposed protocol relies on
existing methods for, say, phase or amplitude estimation as a subroutine. We will make
use of the known performance of these subroutines as we quantify the effectiveness of
our full procedure.

The layout of the paper is as follows. In Section 2, we go over the basic setup of our
work, including assumptions and notation. We review Suzuki-Trotter (ST) formulas and

2



polynomial interpolation, state an important lemma, and present the well-conditioned
interpolation formulas that we use to enable our approach. Section 3 contains our anal-
ysis and applications of interpolation to eigenvalue estimation. Specifically, Section 3.1
takes a perturbative approach to deriving error bounds and complexity, and applies the
results to the problem of estimating Trotter error on a quantum computer. Section 3.2
approaches the problem through complex analysis and the Bernstein ellipse, and applies
the analysis to the newly proposed Gaussian phase estimation. In Section 4, we present
our main results involving extrapolation of expectation values of time-evolved observ-
ables. This case is conceptually distinct from the case of phase estimation, because here
the time evolutions are generally long. In Section 5 we validate our claims numerically
for small instances of transverse Ising models. Finally, we conclude in Section 6 and
discuss future avenues of research.

2 Setup and Notation
The algorithms presented in this paper are simply an application of standard polyno-
mial interpolation to data obtained from Trotter simulations. These two pieces are, in
many respects, disjoint, and the interpolation can be thought of as a form of classical
post processing. Thus, we will begin this section with a review of the quantum part,
Trotterization, then move to interpolation.

2.1 Trotter
Consider a Hamiltonian H on a collection of n qubits, decomposed in a specified way
into a sum of m terms.

H =
m∑

j=1
Hj (2.1)

Notice that both the Hamiltonian and decomposition are specified, as the decomposition
is not unique and can have implications for algorithmic performance. Questions about
optimal decompositions are entirely neglected in this work, as well as questions of how
one maps a quantum system of interest (such as a molecule or crystal) onto a set of n
qubits appropriately.

In our results, as a proxy for the true simulation cost, we will quote the number of
exponentials Uj = e−iHjt used to approximate e−iHt. Of course, this is only indicates
the true cost when each Uj is computationally cheap. In a number of relevant situa-
tions, the Hamiltonian is k-local or sparse, and it is possible to identify decompositions
such that each Uj has constant cost and m grows polynomially with respect to the
number of qubits n. For such Hamiltonians, there exist efficient quantum algorithms
to approximate the time evolution operator U(t) = e−iHt to some desired precision ϵ,
many of which rely on Trotter formulas. Standard examples of Trotter formulas include
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the first-order formula

S1(t) :=
m∏

j=1
e−iHjt, (2.2)

the second-order symmetric formula

S2(t) := e−iH1t/2 . . . e−iHmt/2e−iHmt/2 . . . e−iH1t/2, (2.3)

and more generally, the order 2k symmetric ST formula, defined recursively as

S2k(t) := [S2k−2(ukt)]2S2k−2 ((1 − 4uk)t) [S2k−2(ukt)]2 (2.4)

for every k ∈ Z+ \{1}, where uk := (4−41/(2k−1))−1 [26]. Though many kinds of Trotter
formulas exist, the ST formulas (2.4) will be our primary tool in this work for several
reasons. First, they are symmetric under naive1 time reversal

S2k(−t) = S2k(t)† (2.5)

which will allow us to effectively double the number of interpolation points. Second,
the order of the formula 2k can be taken arbitrarily large, and therefore our results
will apply to quite a general class. Finally, the lowest order k = 1 symmetric formula
is actually practical, having small constant factors, and therefore our bounds will have
something to say about actual simulations.

Trotter formulas approximate U(t) only in a neighborhood around t = 0. Thus,
the standard trick is to divide the time interval [0, t] into r subintervals, such that each
interval is sufficiently small that the Trotter approximation is valid, then string together
these simulations. For the simple case of a uniform mesh of r subintervals, this becomes

S2k(t/r)r = U(t) +O(t2k+1/r2k) (2.6)

where big O is understood as taking r large. Clearly, we have that limr→∞ S2k(t/r)r =
U(t).

Rather than thinking about the number of steps r tending to infinity, it is simpler
for our subsequent analysis to consider s = 1/r as a "dimensionless step size," and
instead think about s → 0. In terms of s, we define

Ũs(t) := S2k(st)1/s. (2.7)

as the approximate evolution operator for s ̸= 0. The discontinuity at s = 0 in (2.7)
may be filled by the exact evolution Ũ0(t) := U(t). Though we defined s as a reciprocal
integer, definition (2.7) together with Ũ0(t) suggests an extension to allow s to be real-
valued. In fact, the resulting function Ũs is smooth on a neighborhood of s = 0, a fact
that will allow us to precisely characterize the interpolation error. For our purposes,

1Not to be confused with actual time reversal, which is an antilinear operator.
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we will only consider |s| ≤ 1. When 1/s is not an integer, we may implement Ũs using
fractional queries [27] by splitting 1/s into integer and fractional parts.

1/s = r + f (2.8)

Here, r = rnd(1/s) ∈ Z is 1/s rounded to the nearest integer, and f ∈ [−1/2, 1/2].
Finally, we note that Ũs is an even function of s, which we will make use of to cut the
number of interpolation points in half by reflecting across s = 0.

Prior work has demonstrated the value of considering the effective Trotter Hamil-
tonian in the analysis of Trotter formulas [28]. This approach is also helps us calculate
high order derivatives of Ũs as needed for our error bounds. We thus define an effective
Hamiltonian

H̃s := i

st
logS2k (st) (2.9)

so that

Ũs(t) = e−iH̃st. (2.10)

Note that H̃s depends on t as well, though this dependence will be left implicit. For
the purposes of bounding the interpolation error, we require a bound on the norm of
H̃s. This is supplied by the following lemma.

Lemma 1. In the notation introduced above, let s be chosen such that

k(5/3)km max
l∈[1,m]

∥Hl∥ |s| t ≤ π/20. (2.11)

Then the following bound on the derivatives of H̃s with respect to s holds.

∥∂n
s H̃s∥ ≤ 2t−1nn(e2k(5/3)km max

l∈[1,m]
∥Hl∥t)n+1.

The proof of this lemma is technical, so it is relegated to Appendix A. Note that our
bounds are uniformly worse for larger k, i.e., higher order ST formulas. Assuming that
this is not an artifact of our mathematical treatment, this suggests low order formulas
are unconditionally preferred over high order ones for interpolation. Numerical studies
could help determine the true impact of higher order formulas on the interpolation
procedure.

2.2 Polynomial Interpolation
Having introduced ST formulas and stated a needed lemma, we turn our attention to
interpolation. Essentially, our goal is to use interpolation to "extrapolate" to the ideal
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of s = 0.2 There are many quantities that we could be interested in extrapolating,
including the eigenvalues λi(s) of the effective Hamiltonian,

H̃s |λi(s)⟩ = λi(s) |λi(s)⟩ (2.12)

and expectation values of time-evolved observables.

⟨Os(t)⟩ = Tr (ρOs(t))
Os(t) := Ũs(t)†OŨs(t)

(2.13)

These will be the primary focus of the present work. No matter what quantity we are
interested in, we’ll assume it was obtained from ST on a quantum computer for the
purposes of subsequent cost analysis. However, in principle our approach should work
for any Trotter scheme, not just ST.

While the interpolation is classical and independent of the method in which the
data is generated, we will assume a quantum simulation was used when considering
the computational cost. We assume all quantum operations are executed perfectly,
including the exponentials exp(−iHjt) for simulation. Thus, the primary sources of
error are the interpolation error and error in the calculation of the data points (e.g.
the Hamiltonian energies or expectation values at various points si). Error in the data
points may arise from hardware noise, but even in its absence, a measurement protocol
such as phase estimation induces a systematic error that cannot be removed. In this
work, we only account for the latter: algorithmic errors. This is not to say that the
interpolation method could not be applied to noisy quantum systems, but rather that
our cost analysis does not account for it.

We now describe the interpolation framework. Let f ∈ C∞([−a, a]) be a smooth,
real-valued function of a single variable s ∈ [−a, a] and suppose we have calculated
f for n distinct points s1, s2 . . . sn ∈ [−a, a]. That is, we have data in the form of a
set of tuples D = {(si, fi)}n

i=1, where fi = f(si). Let Pn−1f be the unique (n − 1)-
degree polynomial interpolating D, i.e. Pfn−1(si) = fi for each i = 1, . . . , n. For any
s ∈ [−a, a], standard results in polynomial interpolation [29] tell us that the signed
error is given by

En−1(s) := f(s) − Pn−1f(s) = f (n)(ξ)
n! ωn(s) (2.14)

for some ξ ∈ Is, where Is ⊂ [−a, a] is the smallest interval containing s and the
interpolation points {si}. Throughout this work, superscripts such as in f (n) will refer
to nth-order derivatives. The nth degree nodal polynomial ωn(s) is defined as the
unique monic polynomial with zeros at the interpolation points.

ωn(s) :=
n∏

i=1
(s− si) (2.15)

2We occassionally interchange between the terminology "extra-" and "interpolation." We view our
method as an extrapolation beyond the data using a numerical technique commonly known as poly-
nomial interpolation.
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Our estimate for f(0) is Pn−1f(0). Since we are interested in s = 0, ωn becomes
a (signed) product of the interpolation points. We can bound the interpolation error
En(0) in a way that is independent of the precise value of ξ (which is unknown and
difficult to find) by maximizing over ξ ∈ Is.

|En−1(0)| ≤ max
s∈Is

∣∣∣f (n)(s)
∣∣∣

n!

n∏
i=1

|si| (2.16)

Much of the technical work in this paper involves finding suitable bounds on the size
of the derivatives f (n) for different forms of f . For example, in the eigenvalue setting3

of equation (2.12), f(s) = λ(s) while for the expectation values of equation (2.13),
f(s) = ⟨Os(t)⟩.

For reasons which we discuss in the next subsection, we choose the Chebyshev nodes
on [−a, a] as our interpolation points.

si = a cos
(2i− 1

2n π
)

(2.17)

This allows us to specialize our interpolation error in the manner described in the
following lemma.

Lemma 2. Let si, i = 1, 2, . . . , n be the collection of Chebyshev interpolation points on
the interval [−a, a]. In the notation above, we have

|En−1(0)| ≤ max
s∈[−a,a]

∣∣∣f (n)(s)
∣∣∣ ( a

2n

)n

. (2.18)

Proof. For n odd, s = 0 is one of the interpolation points, so the error is zero and the
bound holds automatically. Hereafter, we only consider n even (which will be the case
of practical interest).

Using the generic bound (2.16) with the Chebyshev nodes,

|En−1(0)| ≤ max
ξ∈[−a,a]

∣∣∣f (n)(ξ)
∣∣∣ 1
n!a

n
n∏

i=1

∣∣∣∣cos
(2i− 1

2n π
)∣∣∣∣ . (2.19)

To obtain the lemma, we just need to appropriately bound the product of cosines. Since
n is even, n = 2m for some m ∈ Z+. Moreover, we have a reflectional symmetry about
m, in the sense that ∣∣∣∣cos

(2i− 1
2n π

)∣∣∣∣ =
∣∣∣∣∣cos

(
2(n− i+ 1) − 1

2n π

)∣∣∣∣∣ . (2.20)

3Smoothness assumptions can be violated by eigenvalue "level crossings." Our results will require a
minimum gap as s → 0 to this and other technical problems.
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Hence, we only need to take the product over i = 1, . . . ,m and square it.

n∏
i=1

∣∣∣∣cos
(2i− 1

2n π
)∣∣∣∣ =

(
m∏

i=1
cos

(2i− 1
4m π

))2

(2.21)

To proceed further, let’s reindex the remaining product by i → m− i+ 1. This gives
m∏

i=1
cos

(2i− 1
4m π

)
=

m∏
i=1

cos
(
π

2 − 2i− 1
4m π

)

=
m∏

i=1
sin

(2i− 1
4m

)

≤
m∏

i=1

2i− 1
4m

(2.22)

where we used the fact that sin(x) ≤ x for all x ≥ 0. Factoring out the denominator
from the product, the remaining terms become a double factorial.

m∏
i=1

2i− 1
4m = (2m− 1)!!

(4m)m
(2.23)

The double factorial can be bounded as follows.

(2m− 1)!!2 ≤ (2m− 1)!!(2m)!! = 2m! (2.24)

so that (2m− 1)!! ≤
√

(2m)!. Returning to the original product of equation (2.21), and
reintroducing n = 2m, the resulting bound is

n∏
i=1

∣∣∣∣cos
(2i− 1

2n π
)∣∣∣∣ ≤

( √
n!

(2n)n/2

)2

= n!
(2n)n

(2.25)

Reinserting this result into the last line of equation (2.19) gives the bound stated in
the lemma.

Though Chebyshev interpolation enjoys nice mathematical properties, it presents
a challenge for Trotter simulation because of the need for noninteger time steps in
equation (2.7). In the face of this, there are several options one could take: restricting
to integer time steps, or perform fractional queries using, say the Quantum Singular
Value Transformation (QSVT).

First, consider restricting to integer time steps, by gathering data at the nearest
reciprocal integer 1/r̃ to the Chebyshev node s. For symmetrical interval [−a, a], this
distance goes as O(a2) as a → 0. From here, one could either (a) take the estimate for
f(1/r̃) as the estimate for f(s), accruing some error in the process, or (b) perform the
interpolation at the approximate Chebyshev nodes given by the collection of points 1/ri.
Unfortunately, for our purposes, option (a) leads to unacceptable errors of order O(a) in
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the data, eliminating accuracy gains. As for option (b), it is possible to use robustness
results on Chebyshev interpolation [30] to argue that almost-Chebyshev nodes should
be almost as well-conditioned. Again, however, we find that our scaling of the number
of nodes is such that the node displacements must be quite small, leading again to poor
scaling.

Because of this, for most of this work we choose to invoke access to fractional queries
using the QSVT [27]. A notable exception to this is in application to Gaussian phase
estimation in Section 3.2.3, where the error in the fractional part can be mitigated in
that context. While fractional queries increase the overhead compared to Trotter alone,
this overhead is a constant.

2.3 Stability Analysis and Interpolation
Polynomial interpolation is a valuable numerical tool, but some implementations can
lead to numerical instability [31]. However, the situation is not as bad as often presented
in textbooks [32]. While linear algebraic approaches involving Vandermonde matrices
suffer instability for high degree polynomials [33], methods such as barycentric formulas
are provably stable with respect to floating point arithmetic [34].

A particularly important consideration is the choice of interpolation nodes. It is well
known that equally spaced nodes can lead to the Runge phenomenon: rapid oscillations
near the ends of the interval that grow with polynomial degree [29]. These oscillations
can be overcome with a superior choice of nodes, such as the zeros of the Chebyshev
polynomials. Interpolations done with this set of nodes are guaranteed to converge to
functions that are Lipschitz continuous as n → ∞. Moreover, they are well-conditioned
in the sense of small errors in the data values. Finally, because they anti-cluster around
s = 0, they are relatively cheap to compute with Trotter formulas. In this work, we will
always interpolate at the nth-degree Chebyshev nodes, or approximations thereof, on a
symmetric interval [−a, a] about the origin, defined in (2.17). We choose even n so as
to avoid the origin (which has infinite cost to compute), and also utilize the reflectional
symmetry of f(s).

To compute the interpolant Pn−1f linear algebraically, we overcome the limitations
of the standard Vandemonde approach by expanding in terms of orthonormal Cheby-
shev polynomials rather than monomials xj.

Pn−1f(s) =
n−1∑
j=0

cjpj(s). (2.26)

Here, pj is defined by

pj(s) :=


√

1
n
T0(s), j = 0√

2
n
Tj(s), j = 1, 2, . . .

(2.27)

where Tj is the standard jth Chebyshev polynomial.

Tj(x) := cos(j cos−1 x) (2.28)
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By orthonormality, we are referring to the condition [35]

n∑
k=1

pi(sk)pj(sk) = δij (2.29)

for all 0 ≤ i, j < n, with sk being the zeros of Tn given in (2.17). This immediately
implies the matrix

V :=


p0(s1) p1(s1) . . . pn−1(s1)
p0(s2) p1(s2) . . . pn−1(s2)

...
... . . . ...

p0(sn) p1(sn) . . . pn−1(sn)

 (2.30)

is orthogonal, and therefore has condition number κ(V) := ∥V∥ ∥V−1∥ equal to one.
This is the source of well-conditioning in our approach. The coefficients c = (c0, c1, . . . , cn−1)
in equation (2.26) satisfy

y = Vc (2.31)

for the vector of values y = (f(s1), f(s2), . . . , f(sn)), since Pn−1f is an interpolant.
Hence, c = VTy gives the vector of coefficients.

We now develop our argument for well-conditioning. Unless otherwise subscripted,
all logarithms are natural.

Lemma 3. Let s1, s2, . . . , sn be the standard Chebyshev nodes on [−a, a] (2.17) with n
even. Then the nodes satisfy

n∑
k=1

1
|sk|

≤ 4n
πa

(γ + log(2n+ 2)) ,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

Proof. We focus on the case a = 1, since the general result follows by a simple rescaling.
Because sine and cosine are phase shifted by π/2,

n∑
k=1

1
|sk|

=
n∑

k=1

1∣∣∣cos
(

2k−1
2n

π
)∣∣∣ =

n∑
k=1

1∣∣∣sin (n−2k+1
2n

π
)∣∣∣ . (2.32)

Taking advantage of the symmetry about s = 0,

n∑
k=1

1∣∣∣sin (n−2k+1
2n

π
)∣∣∣ = 2

n/2∑
k=1

1
sin

(
2k−1

2n
π
) . (2.33)

Next, we use the lower bound

sin x ≥ x/2 (0 ≤ x ≤ π/2) (2.34)
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in order to bound the terms of the sum.

2
n/2∑
k=1

1
sin

(
2k−1

2n
π
) ≤ 8n

π

n/2∑
k=1

1
2k − 1

= 8n
π

(
Hn − 1

2Hn/2

) (2.35)

Here, Hn denotes the nth harmonic number. From the relation Hn = γ + ψ(n + 1),
where ψ is the digamma function,

Hn − 1
2Hn/2 = γ/2 + ψ(n+ 1) − 1

2ψ(n/2 + 1). (2.36)

Moreover, since ψ(x) ∈ (log
(
x− 1

2

)
, log x) for any x > 1/2, this is upper bounded by

Hn − 1
2Hn/2 < γ/2 + log(n+ 1) − 1

2 log(n+ 1
2 ) = γ + log 2

2 + log(n+ 1)
2 . (2.37)

Reinserting this into (2.35), one obtains the bound
n∑

k=1

1
|sk|

≤ 4n
π

(γ + log(2n+ 2)) (2.38)

The general lemma follows from a rescaling by 1/a.

Remark. Observe that 1/ |sk| is essentially the number of Trotter steps to compute the
kth interpolation point. Thus, Lemma 3 amounts to a bound on the total number of
Trotter steps, and we see this grows as O(a−1n log n).

Lemma 4. Let p(s) = (p0(s), p1(s), . . . , pn−1(s)) be a vector of (normalized) Chebyshev
polynomials on [−a, a]. Then,

∥Vp(0)∥1 <
2
π

log (n+ 1) + 1

where ∥·∥1 denotes the vector 1-norm.

Proof. Let d(s) = Vp(s). For each k = 1, 2, . . . n we have

dk(s) =
n−1∑
j=0

Vkjpj(s) =
n−1∑
j=0

pj(sk)pj(s)

= 1
n

+ 2
n

n−1∑
j=1

cos
(
j

(
2k − 1

2n π

))
cos(j cos−1(s)).

(2.39)
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At s = 0, cos(j cos−1(0)) = cos(jπ/2), which is zero for odd j. Hence,

dk(0) = 1
n

+ 2
n

n−2∑
j=2,even

cos
(
j

(
2k − 1

2n π

))
(−1)j/2

= 1
n

+ 2
n

n/2−1∑
j′=1

(−1)j′ cos
(
πj′

2k − 1
n

)
.

(2.40)

The sum can be evaluated exactly (the authors used Mathematica), yielding

dk(0) = 1
n

− 2
n

(
1 − cos((k + n/2)π) tan(π 2k−1

2n
)

2

)
(2.41)

= 1
n

− 1
n

(
1 − (−1)k+n/2 tan(2k − 1

2n π)
)

(2.42)

= 1
n

(−1)k+n/2 tan
(

2k − 1
2n π

)
. (2.43)

With coefficients in hand, we now compute the one norm of d(0).

∥d(0)∥1 = 1
n

n∑
k=1

∣∣∣∣∣tan
(

2k − 1
2n

)∣∣∣∣∣ (2.44)

We have a reflectional symmetry about k → n − k + 1, allowing us to cut the sum in
half and remove the absolute value sign.

∥d(0)∥1 = 2
n

n/2∑
k=1

tan
(

2k − 1
2n π

)

= 1
m

m∑
k=1

tan
(

2k − 1
2m

π

2

) (2.45)

Here, m ≡ n/2. We observe that the sum increases as k approaches m due to the first
order pole at π/2. We can upper bound tan(x), and therefore the sum above, as follows.

1
m

m∑
k=1

tan
(

2k − 1
2m

π

2

)
≤ 1
m

m∑
k=1

1
π
2 − π

2

(
2k−1
2m

) = 4
π

m∑
k=1

1
2(m− k) + 1

= 4
π

m∑
j=1

1
2j − 1

(2.46)

In the last line, we reindexed by j = m−k+1. Borrowing the reasoning from the prior
lemma,

4
π

m∑
j=1

1
2j − 1 <

2
π

(γ + log(2n+ 2)). (2.47)
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Tracing back, this is an upper bound on ∥d(0)∥1. Hence,

∥d(0)∥1 <
2
π

log(n+ 1) + 2(γ + log(2))
π

<
2
π

log(n+ 1) + 1 (2.48)

The benefit of well-conditioning comes from relaxing the need to have exquisitely
precise data to achieve good interpolations. This property is captured by the following
theorem.

Theorem 5. Let y = (f(s1), f(s2), . . . , f(sn))T , and let ỹ ∈ Rn be an approximation of
y in the sense that, for all 1 ≤ j ≤ n, |f(sj)−ỹj| ≤ ϵ/( 2

π
log(n+1)+1) with probability at

least 1 − δ/n. Let p(s) = (p0(s), . . . , pn−1(s))T be the vector of orthonormal Chebyshev
polynomials. Then ỹT Vp(s) is an estimate of the interpolant Pn−1f(s) at s = 0 to
precision ∣∣∣Pn−1f(0) − ỹT Vp(0)

∣∣∣ ≤ ϵ

with probability at least 1 − δ.

Proof. First, observe that Pn−1f(s) = p(s)T c = p(s)T VTy by the discussion surround-
ing (2.31). Hence, ∣∣∣Pn−1f(0) − p(0)T VT ỹ

∣∣∣ =
∣∣∣(Vp(0))T (y − ỹ)

∣∣∣ . (2.49)

By Hölder’s inequality,∣∣∣(Vp(0))T (y − ỹ)
∣∣∣ ≤ ∥Vp(0)∥1 ∥y − ỹ∥∞ . (2.50)

From Lemma 4, and from the assumptions on the distance between y and ỹ,

∥Vp(s)∥1 ∥y − ỹ∥∞ ≤
( 2
π

log(n+ 1) + 1
)

ϵ
2
π

log(n+ 1) + 1
= ϵ (2.51)

with probability Pr = (1 − δ/n)n. In fact, since the probability of each component
ỹ exceeding the specified distance is δ/n, by the union bound the total probability of
at least one component exceeding this distance is less than n × (δ/n) = δ. Thus, the
inequality is satisfied with probability Pr ≥ 1 − δ. This completes the proof.

Theorem 5 is what suggests that our interpolation approach may have the poten-
tial to achieve accuracy improvements without increasing costs compared to standard
Trotter. It tells us that the error in Trotter data can be as large as the error of the
final estimate up to a factor which is logarithmically small in the number of interpo-
lation points, and therefore these data ỹi can be computed "cheaply enough." Thus,
Theorem 5 is plays an important role in the proofs of Appendices B and E, and in the
corresponding results presented below.

In the applications to Gaussian phase estimation we consider in Section 3.2.3, we will
need a probabilistic statement of well-conditioning that takes into account confidence
intervals for the data. This is supplied by the following lemma.
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Lemma 6. Let {Yj} be normally distributed random variables for the n Chebyshev
interpolation points, with central values µj = f(sj) and variances σj. Then the ran-
dom variable Rn−1(s) associated with the polynomial interpolant at value s is normally
distributed with mean Pn−1(s) and variance σ2

R bounded as

σ2
R(s) ≤ 2 max

j

(
σ2

j

)
. (2.52)

Proof. The variable Rn−1(s) is given by p(s)T VY , with Y = (Y1, Y2, . . . , Yn). By linear-
ity, the expectation value E(Rn−1(s)) = p(s)T VE(Y ) = p(s)T Vy = Pn−1(s) as claimed,
where y = (f(s1), . . . , f(sn)).

To bound the variance, observe that

σ2
R(s) = Var (Rn−1(s)) ≡ Cov (Rn−1(s), Rn−1(s))

=
∑

i,j,k,l

Cov
(
pi(s)

(
V−1

)
ij
Yj, pl(s)

(
V−1

)
lk
Yk

)
= pT (s)V−1Σ2Vp(s) (2.53)
= ∥ΣVp(s)∥2

2 , (2.54)

where Σ = diag (σ1, σ2, . . . , σn), and the last inner product was identified as a squared
two norm. We can bound this using the spectral norm.

σ2
R(s) ≤ ∥Σ∥2∥p(s)∥2

2 ≤ 2 max
j
σ2

j (2.55)

At first, it may seem that the results of this lemma are quite restrictive, only applying
to unbiased, normally distributed estimates of the function values f(si). However, we
will find occasion to apply this lemma in the context of the Gaussian phase estimation
considered in Section 3.2.3.

3 Interpolation for Eigenvalues
3.1 Approach 1: Error Analysis through Perturbation Theory
Having laid the groundwork for well-conditioned polynomial interpolation, we apply
our framework to the task of phase estimation. The idea is to perform logarithmically
many phase estimation experiments evaluated at the Chebyshev nodes 2.17. We then
bound the error using the interpolation theory of the previous section. The following
theorem bounds the performance of such an algorithm.

Theorem 7. Let H : R 7→ C2n×2n be a Hamiltonian of the form H(t) = ∑m
j=1 aj(t)Hj

for all t ∈ R, where each Hj is a Hermitian matrix and aj(t) is real valued and in Cn

for positive integer n. For each t ∈ R, let |ℓ(t)⟩ be an eigenstate of H(t) with eigenvalue

14



|0⟩ H H

1/2n U −V

Figure 1: Quantum circuit for computing a normalized Frobenius distance d(U, V ) between uni-
taries U, V , where the probability of measuring zero on the first qubit is d(U, V )2. By taking U
as a single Trotter step and V as the s-dependent product formula of equation (2.7), polynomial
extrapolation can be performed to estimate the true Trotter error.

λℓ(t), and assume oracular preparation of |ℓ(t)⟩. Further, assume that there exists a
minimum gap γ(t) > 0 such that for all ℓ′ ̸= ℓ and t > 0, |λℓ(t)−λℓ′(t)| ≥ γ(t). Finally,
that t is sufficiently small such that the assumption (2.11) of Lemma 1 holds. It is then
possible to use an n-point polynomial interpolation formula over the 2k-th order Suzuki
Trotter formula to estimate λℓ(0), within error ϵ and failure probability at most 1/3,
using a number of operator exponentials and queries that is bounded above by

Õ

(
m2(25/3)k max ∥Hi∥(1 + Γ)

ϵ

)
,

where

Γ := max
t, p=1,...,n

(
p

n

)(
ke2(5/3)kmmaxl∈[1,m] ∥Hl∥

γ(t)

)1/p

and n ∈ Õ
(
log

(
mk(5/3)k maxi ∥Hi∥(1 + Γ)

)
+ log 1/ϵ

)
.

The proof of this theorem is technical and relegated to Appendix B. As a brief
sketch, the proof proceeds by using perturbation theory to evaluate the derivatives of
the eigenvalues and eigenvectors of the effective Hamiltonian H̃s, as well as multiple
applications of the triangle inequality and similar linearizing approximations.

The above result applies generically to any piecewise analytic Hamiltonian H(t).
To give a better intuition for how it could be used, let us focus our attention on a
phase estimation protocol. There are multiple phase estimation procedures that can
be employed, but the shared basic idea is that one provides a quantum state |ψ⟩ =∑

j cj(t) |j(t)⟩ and performs a series of evolutions of the form e−iH(t)t to this state to
yield an estimate of one of the eigenvalues, exp(−iλl(t)t). Each eigenvalue is randomly
sampled with probability |cj(t)|2. We will usually demand that the variance of this
estimate is bounded above by t2 and that the expected error is at most ϵ for such a
procedure, but it is also common for the accuracy guarantees to be given in terms of a
probability of failure.

3.1.1 Application: Estimation of Trotter Error

One important capability of our method is the estimation of error in ST formulas. This
is important because existing error bounds are typically not tight, and leading order
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expansions for the error are prohibitively expensive even for short evolutions [18]. We
address this via a method for computing a distance metric d between two unitaries
U, V . This metric is related to the Frobenius distance ∥U − V ∥F , where

∥A∥F :=
√

TrA†A (3.1)

is the Frobenius norm. Specifically, we fix an ST order k and let Ũs be as in equa-
tion (2.7). Our method applies to any product formula, but our theoretical analysis
restricts us to consider ST formulas. To estimate the Trotter error, we compute

d(Ũ1(t), Ũs(t)) := 1√
2n

∥∥∥∥∥ Ũ1(t) − Ũs(t)
2

∥∥∥∥∥
F

(3.2)

using the circuit of Figure 1. Observe that Ũ1 = S2k is a single Trotter step, while

lim
s→0

Ũs(t) = U(t) (3.3)

is the exact time evolution operator. Therefore, by estimating

d(S2k(t), e−iHt) = lim
s→0

d(Ũs(t), Ũ1(t)), (3.4)

we obtain a metric of the Trotter error. This metric d ≡ d(Ũ1(t), Ũs(t)) corresponds to
a root mean square of the singular values of S2k(t) − Ũs(t). That is,

d(U, V ) =

√√√√ 1
2n

2n∑
j=1

(σj/2)2 (3.5)

for singular values σj ∈ [0, 2] of U − V . It has the following relation with the spectral
distance.

1√
2n

∥∥∥∥U − V

2

∥∥∥∥ ≤ d(U, V ) ≤
∥∥∥∥U − V

2

∥∥∥∥ (3.6)

Both the lower and upper bounds are tight generically. The upper bound is tight in
the case that all singular values are equal. The normalized Frobenius norm is best
interpreted as an average error over all "principal directions." Thus, though not a
worst-case error, d still provides a useful characterization of the Trotter error.

Per usual, we consider an extrapolation of the normalized Frobenius distance d to
s = 0.

Corollary 8. Under the assumptions of Theorem 7, there exists a quantum algorithm
that can compute the quantity d(S2k(t), e−iHt) for H = ∑m

j=1 Hj with ϵ error and failure
probability (also) ϵ using a number of operator exponentials Nexp of the Hj satisfying

Nexp ∈ Õ

(
m2(25/3)k max ∥Hi∥

ϵ

)
.
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Proof. Consider the circuit of Figure 1, with U = Ũs and V = Ũ1. Let SELECT
refer to the control operations in this LCU-type circuit. We first demonstrate that the
probability of measuring the first qubit to be zero is ∥S2k(t) − Ũs(t)∥2

F/(2n+2). This
fact follows from the analysis of the LCU lemma [9]; however, that analysis is typically
performed for pure states, so we generalize it here. Let |0⟩⟨0| ⊗ ρ be the input state of
the circuit. Then the gate operations proceed as follows.

|0⟩⟨0| ⊗ ρ 7→H

∑
ij

|i⟩ ⟨j|
2 ⊗ ρ

7→SELECT
∑
ij

|i⟩ ⟨j|
2 ⊗ (Ũs(t)i(−Ũ1(t))1−i)ρ(Ũs(t)j(−Ũ1(t))1−j)†

7→H

∑
ijkℓ

(−1)ik+jℓ |k⟩ ⟨ℓ|
4 ⊗ (Ũs(t)i(−Ũ1(t))1−i)ρ(Ũs(t)j(−Ũ1(t))1−j)† := σ

(3.7)

We then have that the probability of measuring the first qubit to be zero is

Tr((|0⟩⟨0| ⊗ ρ)σ) = 1
4Tr

(
(Ũs(t) − Ũ1(t))ρ(Ũs(t) − Ũ1(t))†

)
. (3.8)

Taking ρ = 1/2n in particular yields

1
4Tr

(
(Ũs(t) − Ũ1(t))ρ(Ũs(t) − Ũ1(t))†

)
=

Tr
(
(Ũs(t) − Ũ1(t))(Ũs(t) − Ũ1(t))†

)
2n+2

= ∥Ũs(t) − Ũ1(t)∥2
F

2n+2 (3.9)

Thus, the probability of measuring 0 on the first qubit gives a normalized Frobenius
distance between the two operators. The cost of doing this is O(1) queries to the
underlying ST formulas, each of which boils down to O(m5k) operator exponentials.

Using Amplitude Estimation on the target, we can construct an operator W such
that the eigenvalues of W within the subspace supporting the initial state are of the
form

λ(W ) = exp

±i sin−1

√
∥Ũs(t) − Ũ1(t)∥2

F

2n+2

 . (3.10)

We then can invoke Theorem 7 to show that the number of exponentials needed to
learn the extrapolated phase, within error ϵ′ with probability greater than 2/3, satisfies

Nexp ∈ Õ

(
m2(25/3)k max ∥Hi∥ log5/2(maxi ∥Hi∥/ϵ′)

ϵ′

)
. (3.11)

The remaining question is how small ϵ′ must be to guarantee that the error in the
normalized Frobenius distance is at most ϵ. Let ϕ̂ denote the estimate of the phase
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returned by our protocol, which has error at most ϵ′. Our estimate d̂ of the distance
metric is then related to the phase in equation (3.10) as

d̂ = sin(ϕ̂). (3.12)

Thus we have that ∣∣∣d̂− d
∣∣∣ =

∣∣∣sin θ̂ − sin θ
∣∣∣ ≤

∣∣∣θ̂ − θ
∣∣∣ ≤ ϵ′. (3.13)

Choosing ϵ′ = ϵ, then, is sufficient to ensure the desired tolerance as given in the
lemma.

As mentioned, d is not a worst-case simulation error, but it may be a good approx-
imation in typical situations. To get a true upper bound, we could employ the relation
∥A∥ ≤ ∥A∥F , but estimating ∥U − V ∥F directly from d requires precision exponential
in n. Moreover, the upper bound would not be very tight unless d were already quite
close to ∥U − V ∥.

In summary, our estimates should be better when the spread of the eigenvalues in
the error operator is not too large. We formalize this in the following theorem.

Corollary 9. Let δU2 = |Ũs(t) − Ũ1(t)|2, and suppose that

σ2(δU2) = Tr(δU4)/2n − Tr(δU2/2n)2 ≤ ξ

for some ξ > 0. Then each eigenvalue λ2 of δU2 satisfies

Pr
(∣∣∣∣∣λ2 − ∥Ũs(t) − Ũ1(t)∥2

F

2n

∣∣∣∣∣ ≥ k
√
ξ

)
≤ 1
k2 . (3.14)

for all k > 0. Further, even with no such promise about the variance, the following
weaker bound holds.

Pr
(∣∣∣∣∣λ2 − ∥Ũs(t) − Ũ1(t)∥2

F

2n

∣∣∣∣∣ ≥ k
∥Ũs(t) − Ũ1(t)∥2

F

2n

)
≤ 1/k (3.15)

Proof. The result follows from the Chebyshev and Markov inequalities.

Corollary 8 and Corollary 9 show that we can use our interpolation procedure to
the estimate largest eigenvalue of the error operator. In particular, let the probability
of an eigenvalue being greater than the estimate be O(1/2n). Then the Chebyshev
bound (3.14) implies that it suffices to take k ∈ O(

√
2n). Thus, with high probability,

all of the eigenvalues for the square of the error operator will be at most 4d̂2 +O(
√
ξ2n).

Thus if ξ ∈ o(d̂4/2n) then the estimate yielded by this procedure will also estimate the
spectral norm.
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3.2 Approach 2: Error Analysis through Bernstein Ellipses and Analyticity
In this section, we propose an alternative analysis for eigenvalue estimation, as well as a
specific approach to phase estimation. We first prepare each effective eigenstate through
the procedure in [36], except using one single qubit the semi-classical QFT, summarized
in Theorem 15. Then we perform a new Gaussian phase estimation (Theorem 16) on
said eigenstate and then interpolate the estimates. The main result is summarized
in Theorem 17.

To analyze the error and complexity of this approach, we use a different formalism
that relies on complex analyticity [37], which allows us to estimate the convergence rate
of the interpolation in terms of range of analyticity rather than and not derivatives of
the effective Hamiltonian. This is beneficial since the bounds using derivatives might
become unmanageable near level crossings (See Appendix B).

3.2.1 Ancillary Lemmas

To begin, we need to introduce some notions from complex analysis. For each ρ > 1,
let Bρ ⊂ C be the Bernstein ellipse, which is an ellipse with foci at ±1 and semimajor
axis (ρ + ρ−1)/2. The following lemma bounds the Chebyshev interpolation error for
analytic functions on Bρ.

Lemma 10. Let f(z) ∈ C be an analytic function on Bρ, and suppose C ∈ R+ is an
upper bound such that |f(z)| ≤ C, for all z ∈ Bρ. Then the Chebyshev interpolation
error on [−1, 1] satisfies

∥f − Pnf∥∞ ≤ 4Cρ−n

ρ− 1
for each degree n > 0 of the interpolant through the n+ 1 Chebyshev nodes.

Proof. Theorem 8.2 of Ref. [37].

Lemma 10 shows that the interpolation error shrinks exponentially in n. We would
like to apply this lemma to analyze the eigenvalues λ(z) of the effective Hamiltonian H̃z,
which is a continuation of H̃s to the complex plane. However, we need to understand
the domain under which λ(z) is analytic, i.e. free of level-crossings.

To characterize this domain, we first utilize a result from Bauer and Fike [38] which
bounds the shift in the eigenvalues under a shift in the operator.

Lemma 11. Let A be a normal matrix with eigenvalues {λi}. Then, if λ is an eigen-
value of a matrix B, there exists an eigenvalue λk of A such that

|λ− λk| ≤ ∥B − A∥ (3.16)

for at least one eigenvalue λk of A, where ∥·∥ is the spectral norm.

In order to determine the radius of analyticity, we assume a specific form for the
upper bound on ∥H − H̃z∥, where H̃z is the analytic continuation of H̃s to the complex
plane. Here is the resulting theorem
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Lemma 12. Let λ(τ) be an eigenvalue of H̃z, where τ = zt for z ∈ C and t ∈ R+, and
γ0 be a lower bound on the spectral gap of H̃0 = H. Let α, β ∈ R+ be constants such
that

∥H − H̃z∥ ≤ α|τ |p

(p+ 1)!e
β|τ |. (3.17)

Then λ(τ) is analytic on any origin-centered disc of radius r provided that r ≤ rmax,
with

rmax := p

β
W0

β
p

(
γ0(p+ 1)!

2α

)1/p
 . (3.18)

Here W0 is principal branch of the Lambert W function.
Proof. See Appendix D.1

The above lemma gives an upper bound rmax on the radius of analyticity. From this,
assuming rmax > 1, we can calculate the largest possible Bρ by equating the semimajor
axis with the maximum radius

(ρmax + ρ−1
max)/2 = rmax (3.19)

which has solution

ρmax = rmax +
√
r2

max − 1. (3.20)

The following lemmas give a clue as to what α and β should look like in terms
of commutators between the terms of H and also with respect to its overall spectral
norm. However, first, we introduce a bound on the error on the effective total Hamilto-
nian evolution in terms of the "instantaneous" Hamiltonian error, E , which is defined
through the complex-time Schrödinger equation. Let Sp(τ) be a pth order product
formula approximating exp(iHτ), such that

d
dτ Sp(τ) = i(H + E (τ))Sp(τ). (3.21)

For this purpose, we also introduce the "accumulated" error

E(τ) = logSp(τ) − iτH, (3.22)

where logSp(τ) can be defined through the complex-time Magnus expansion (See [39]
for compilation of proofs, complex-time extension is straight-forward)

logSp(τ) = Ω = i
∫
P

∞∑
n=0

Bn

n! adn
Ω(H + E (τ1))dτ1

(3.23)

where P is a path going from τ1 = 0 to τ1 = τ . This, like the real-time Magnus
expansion, converges provided ∥Ω∥ ≤ π. With this, we obtain an upper bound on
∥E(τ)∥ stated through the following lemma:
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Lemma 13. Given the error definition

E(τ) = logSp(τ) − iτH

for complex τ , we can bound its norm through

∥E(τ)∥ ≤ 5
2

∫ |τ |
0

∥E (sτ/ |τ |)∥ds,

provided that max|τ̃ |≤|τ | ∥E(τ̃)∥ ≤ 15/8, |τ | ≤ 1/8, and
∫ |τ |

0 ∥E (sτ/ |τ |)∥ds ≤ 1/8.

Proof. See Appendix D.2

Now, we bound the norm for E (τ) in Appendix D.3 and make use of
∥∥∥H − H̃z

∥∥∥ ≤
∥E(τ)∥ /|τ |.

Lemma 14. Let H̃z be the effective Hamiltonian associated with a complex-time pth
order product formula Sp(τ) , where τ = zt with z ∈ C and t ∈ R+, which is analytically
continued to an open neighborhood containing [−1, 1]. The norm of operator error can
upper bounded as

∥∥∥H − H̃z

∥∥∥ ≤ 5
2
∑

(υ,m)
αcomm

(
a(Υ,m)HπΥ(m), . . . , a(υ,m+1)Hπυ(m+1), a(υ,m)Hπυ(m)

)

· |τ |p

(p+ 1)!e
2|τ |

∑m

j
∥Hj∥

provided that |τ |
∥∥∥H − H̃z

∥∥∥ ≤ 15/8, |τ | ≤ 1/8, and

∑
(υ,m)

αcomm
(
a(Υ,m)HπΥ(m), . . . , a(υ,m+1)Hπυ(m+1), a(υ,m)Hπυ(m)

) |τ |p

(p+ 1)!e
2|τ |

∑m

j
∥Hj∥ ≤ 1

20 .

Here, αcomm
(
As, . . . , A1, B

)
:= ∑

q1+···+qs=p

(
p

q1 ··· qs

) ∥∥∥adqs

As
· · · adq1

A1(B)
∥∥∥.

While the above theorem is a useful theoretical bound, a problem arises because
bounding the commutators is often impractical computationally. In such cases, αcomm
can be upper bounded through the triangle inequality and submultiplicativity of the
norm.

αcomm
(
As, . . . , A1, B

)
≤ ∥B∥2p(

s∑
j=1

∥Aj∥)p. (3.24)

With these set of lemmas at our disposal, we can now provide a cost estimate for
state preparation for all the ground states of H̃sk

.
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∣∣∣0⊗(q−m)
〉

Z(a, b) QFT z∣∣∣p(m,µ=0,σ)
G

〉

|ψ⟩ Ũ
′20
sk

Ũ
′21
sk

Ũ
′2m−2
sk

Ũ
′2m−1
sk

∼
∣∣∣p(q,µ=θ0,σf )

G

〉

Figure 2: Circuit to implement a Gaussian m-qubit phase estimation algorithm with (m−q)-qubits
for spectral interpolation. The Ũ ′sk

operator is evolved by an effective Hamiltonian H̃sk
, with a

Trotter step size tsk (See Theorem 15) and corresponding evolution time T ′k = e′k × dt = Θ(ts1).

3.2.2 State Preparation Cost

Theorem 15 (State preparation cost). Let H = ∑m
j=1 Hj satisfy ∑m

j=1 ∥Hj∥ ≤ 1, and
let γ ∈ R+ be a lower bound on the spectral gap of H. Let s1, . . . , sn be the nth degree
Chebyshev nodes on [−1, 1] for even n. Then there exists an algorithm to prepare the
ground state of H̃sk

to precision ϵ using controlled queries of Ũ ′sk
= (Sp (tsk))e′

k , where
t ∈ Θ(γ1/p) and e′k = sgn sk ⌈s1/|sk|⌉, with a total gate count

Cprep ∈ O

(
log(1/ϵ) log log(1/ϵ)

γ 1+1/p

)

and a single auxiliary qubit.

Proof. See Appendix D.5.

Now that the cost of state preparation is covered, we assume an exact state prepara-
tion for our next gate count upper bound for eigenvalue estimation. However, first, we
will introduce a new phase estimation algorithm as one of our methods for eigenvalue
estimation.

3.2.3 Interlude: Gaussian Quantum Phase Estimation

The first step in the phase estimation protocol involves preparing a Gaussian distribu-
tion in the ancillary register of m qubits. Let p(w;σ) be the probability density function
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for a Gaussian distribution with zero mean (µ = 0) and variance σ2.

p(w;σ) := 1
σ

√
2π
e−w2/(2σ2) (3.25)

Define

|pG(σ, T,m)⟩ :=
2m−1−1∑

x=−(2m−1−1)

√√√√ p(xT ;σ)
N (σ, T,m) |x⟩ (3.26)

where T > 0 plays the role of a sampling rate, and N (σ, T,m) > 0 is the normalization
constant for the discrete, truncated Gaussian.

N (σ, T,m) :=
2m−1−1∑

x=−(2m−1−1)
p(nT ;σ). (3.27)

An exact preparation of |pG⟩ can be achieved through the methods proposed in
Ref. [40]. However, within a target error, we can prepare a coarser Gaussian distribu-
tion and then perform an upsampling through QFT, zero-padding, and then QFT−1.
This is an established method for upsampling/interpolation of discrete signals in clas-
sical discrete signal processing (DSP), and was introduced for quantum distribution
preparation in Ref [41]. In Figure 2 we illustrate the circuit used for this method. The
operator Z plays the role of zero-padding ubiquitous to classical DSP for interpolation
in the conjugate space. The errors introduced by truncation and finite sample rate
in the time domain are estimated in Appendix C, and can be summarized with the
following theorem.

Theorem 16. Let q,m be positive integers such that q ≥ m. Let T, σ > 0 be chosen
such that σ/T = Θ(

√
2m), and define the Fourier conjugates F := 1/(2qT ) and σf :=

1/(4πσ). Finally, let

X(f) := F{
√
p(· ;σ)}(f) :=

∫
R

√
p(t;σ)e−2πitfdt =

√√
2πσfp(f ;σf ) (3.28)

denote the Fourier transform of the (root of the) Gaussian p. Then the spectral norm
error of the prepared wave function in Fourier domain is∥∥∥∥∥∥

2q∑
k

X(kF )√
N (σf , F, q)

|k⟩ − QFT |pG(σ, T,m)⟩

∥∥∥∥∥∥ ∈ O

(
2m/2

eΩ(2m)

)
. (3.29)

Using these errors in the approximate state constructed in Fourier domain, we can
perform a sequence of unitaries controlled on the Gaussian window. This approach is
similar in spirit to the Kaiser-window approach taken in [42]. However, here we use a
Gaussian window, which by inverting the conjugate spaces labels in Theorem 16, we
know we can prepare efficiently with a cost O(polylog(1/ε)/σ), where ε is the vector
error on the window state.
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3.2.4 Phase Estimation Cost

Via the above theorem, we can now bound the cost for extrapolating eigenvalues ob-
tained using Gaussian phase estimation. Through Theorem 5 and Lemma 6, we estimate
the effects of uncertainty propagation that interpolation has on the final interpolant for
Gaussian and one-qubit phase estimation. The result goes as follows:

Theorem 17 (Phase estimation cost). The gate count of estimating the eigenvalues of
H̃sk

using Gaussian phase estimation is

Cest,gpe ∈ O

(
log(1/ϵ)
σP

)
,

where σP is the standard deviation on the interpolated observable at s = 0. The number
of auxiliary qubits required is O (log(1/σP )). Alternatively, using a single-ancillary-qubit
approach,

Cest,1−qubit ∈ O

(
log(1/ϵ) log log(1/ϵ)

ϵ

)
,

where ϵ > 0 is such that maxs |λ(s) −Pn−1λ̃(s)| ≤ ϵ and Pn−1λ̃ is the (unique) (n− 1)-
degree polynomial interpolating the data λ̃i at the n interpolation points si.

The bound for Cest,gpe can also be cast in terms of a confidence interval, ϵ = wσP ,
around the mean, which introduces an error rate that decreases super-exponentially
with w.

4 Interpolation for Expectation Values
We now consider the application of Chebyshev interpolation to estimate expectation
values, a fundamental task in quantum computation. The setting is as follows: given
a quantum state ρ and observable O, the expectation value is given by ⟨O⟩ = Tr (ρO).
We evolve our system according to a 2k-th order ST formula Ũs given by (2.7). The
time evolved expectation values of interest is captured by the function

f(s) := Tr (ρOs(t))
∥O∥

(4.1)

where Os(t) is given by equation (2.13). We’ve normalized the expectation values by
∥O∥ because the relative error is a useful and natural metric, and also the normalized
operators may be block encoded for amplitude estimation. Alternatively, we simply
restrict our attention to normalized observables with ∥O∥ = 1. The interpolation
algorithm we propose can be summarized as follows.
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1. Given Hamiltonian H, simulation time t, and tolerance ϵ for the estimate of
⟨O(t)⟩/ ∥O∥, choose the appropriate interpolation interval [−a, a] and an even
number n of Chebyshev nodes. We neglect the cost of this step. The error
analysis we will perform subsequently will inform the choices of a and n.

2. Compute estimates ỹi of the expectation values ⟨Osi
(t)⟩ for each si with i =

1, . . . , n/2, to an accuracy depending on ϵ and n. We will assume this step is done
with Iterative Quantum Amplitude Estimation (IQAE) [43], a recent approach
to amplitude estimation that exhibits low quantum overhead. Our metric of
cost is the number of Hj exponentials executed on a quantum circuit, where
H = ∑

j Hj. Note that by symmetry, we need not compute ỹi for i > n/2. We
have f(si) = f(sn−i+1) for all i ∈ {1, . . . , n}.

3. Perform the polynomial fit P̃n−1f through the points (si, ỹi) using a Chebyshev
expansion (2.26). Note that P̃n−1f will automatically be even. This fit is well-
conditioned, and we neglect the cost of this step.

4. Evaluate the P̃n−1f(0) to be our estimate of ⟨O(t)⟩.

To summarize, one performs amplitude estimation to acquire the time evolved expec-
tation value at each Chebyshev node, then performs a polynomial interpolation of the
data. The estimate is the value at s = 0.

Given an even set of Chebyshev nodes {s1, . . . , sn}, and making use of Lemma 2,
the interpolation error En−1 assuming perfect data points is given by

|En−1(0)| ≤ |Tr (ρ ∂n
sOs(t))|

∥O∥n!

n∏
i=1

|si| ≤ max
s∈[−a,a]

∥∂n
sOs(t)∥
∥O∥

(
a

2n

)n

. (4.2)

With a suitable bound on ∂n
sO(t), we can provide an upper bound on the interpolation

error at s = 0. This bound is provided by the following lemma. In what follows, it will
be helpful to define the parameter

c := k(5/3)km max
l∈[1,m]

∥Hl∥ t (4.3)

for ease of notation. This parameter is proportional to the the Hamiltonian size and
the "total Trotter time," meaning the sum of all the forward and backward time steps,
in absolute value, for a 2kth ST formula.

Lemma 18 (Error extrapolation for time-evolved observables). Under the conditions
of Lemma 1 (ca ≤ π/20), the following bounds holds on the Trotterized evolution Os(t)
with step parameter s ∈ (0, a]:

1. for c > n we have that

∥∂n
sOs(t)∥
∥O∥

<

(
c

√
e3(1 +

√
8/πe2)

)2n
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which gives an interpolation error

|En−1(0)| <
(

129c
2a

n

)n

.

2. For c ≤ n, we have

∥∂n
sOs(t)∥
∥O∥

≤
√

2n
π

(
e4c

2

)n

n!e4ce2
√

2/π

giving an interpolation error

|En−1(0)| ≤ 2
√

2n (6ca)n e24c.

The proof of this lemma is a tedious exercise in repeated in the combinatorics of
large derivatives and the triangle inequality, and is left to Appendix E. Note that
once the derivative bound holds, the interpolation error bound follows immediately
from Lemma 2.

One motivation for these bounds is deriving asymptotic expressions for the algorith-
mic complexity. The following theorem gives an asymptotic query complexity for the
number Nexp of Trotter exponentials exp(−iHjτ).

Theorem 19. Let O(t) = U †(t)OU(t) be a time-evolved observable under a Hamilto-
nian H = ∑m

l=1 Hl on n qubits, so that U(t) = e−iHt. Suppose there exists a γ ∈ R+ such
that O/γ can be block encoded via a unitary Uenc by a state |G⟩ on a set of L auxiliary
qubits. Let ρ be a quantum state on n qubits, and suppose γ/ ∥O∥ ∈ O(1). Then, the
number of exponentials Nexp required to estimate Tr (ρO(t)) / ∥O∥ to precision ϵ with
confidence 1 − δ using a 2k order Suzuki Trotter formula satisfies

Nexp ∈ Õ
(
cmax{c, log(1/ϵ)}ϵ−1 log(1/δ)

)
.

Here, Õ is big-O with multiplicative terms suppressed which are logarithmically smaller
in 1/ϵ and c. Moreover, the number of auxiliary qubits needed is O(L).

We give a sketch of the proof. Given a choice of interval [−a, a] and (even) number
of interpolation points n, we have from Lemma 3 that the number of exponentials to
perform evolutions for all Chebyshev nodes goes as

O

(
n log n
a

)
. (4.4)

However, this is not the total cost since these circuits need to be repeated to perform
the appropriate measurement protocols. Since O can be block encoded, the expectation
value can be obtained via an amplitude estimation protocol. By the well-conditioning
of Lemma 5, each data point needs to be within ϵ of the exact Trotter value, up to a
logarithmic factor in n. This robustness is why our result maintains a Õ(ϵ−1) scaling.
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In our proof, we assume the IQAE protocol is used, requiring only a single qubit
overhead. The fractional queries for the noninteger timestep also require O(1) overhead,
meaning the total overhead is O(L) due to the block encoding. To relate n and a to
the required precision ϵ, simulation time t and Hamiltonian H, Lemma 18 can be used.
Thus, we can relate Nexp to these basic parameters. We carry out the formal proof in
Appendix E.

As advertised, we see there is a "near-Heisenberg" scaling of 1/ϵ, up to logarithmic
factors. However, there is an unsavory quadratic scaling in the simulation time in cases
without high accuracy demands. We believe this can be improved, because our approach
us forces us to have n scale linearly in T . We believe this is overly pessimistic, and a
log(∥H∥T ) scaling is more likely. Finally, our results suggest the best performance for
using low order formulas, since our bounds are strictly worse for increasing ST order k.

5 Numerical Experiments
In the previous sections, we presented theorems, with proofs in the appendices, that
interpolation of Trotter data can lead to higher accuracies for eigenvalues and expec-
tation values than Trotter alone. This section provides numerical evidence backing up
our analytic claims, not only showing that improved scaling is possible, but also that
high-order Trotter formulas need not always provide better error scaling when used in
conjunction with interpolation. Specifically, we demonstrate this improved scaling for
phase estimation using interpolation for second-order and fourth-order ST formulas.
For our demonstration we consider the transverse Ising model of two spins.

H = −J (Z ⊗ Z + g(X ⊗ I + I ⊗X)) (5.1)

This is a minimal example with just two non-commuting terms, yielding a nonzero
Trotter error. Our aim will be to estimate the ground state energy of the effective
Hamiltonian H̃s in the limit s → 0, and seek numerical evidence of the improved
performance relative to low-order Trotter formulas that Theorems 15 and 17 suggest.

In order to avoid aliasing with our Fourier spectral methods, we must satisfy the
bound ∥∥∥H̃sk

∥∥∥ t

2π |e′ksk| + ∆pad ≤ 1, (5.2)

where

e′k = sgn sk

⌈
s1

|sk|

⌉
. (5.3)

The padding ∆pad is there to suppress the probability leakage wrapping around the
boundary. For simplicity, define a dimensionless effective Hamiltonian

h̃s := H̃s
te′ss

2π , (5.4)
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with e′s = sgn s ⌈s1/ |s|⌉, such that∥∥∥h̃sk

∥∥∥+ ∆pad ≤ 1. (5.5)

This way, the spectrum of h̃sk
lies within the domain [−1/2 + ∆pad/2, 1/2 − ∆pad/2]

and now is in line with the conventions of Fourier spectral methods in [36]. With this,
we now define the normalized Hamiltonian

h = h̃0. (5.6)

Here t is sufficiently small as to fulfill Equation (5.5). We must also make sure that s is
chosen according to the constraints of Section 3.2 such that there are no level crossings
throughout the interpolation interval.

We now describe the results. Figure 3 displays the results of Chebyshev interpolation
with second order Trotter formulas using various (even) numbers of points. For each
H̃ ′sk

, we numerically simulate the ground state preparation protocol to a state error,
ϵstate. This is efficient because the algorithm scales O(log 1/ϵstate). We then simulate
the Gaussian phase estimation on these states. Moreover, we have used zero-padding
as described in the Section 3.2.3 in order to upsample the spectrum and be able to
ignore digitization errors. The spectral upsampling through zero-padding is efficient
since the cost scales like O(q2), where q is the number of total qubits after padding.
The blue bands in these plots show an uncertainty equivalent to 0.01 ×σP (s). We have
down-scaled the statistical uncertainties by a factor of a 100 such that the interpolation
error changes are noticeable when we change the number of nodes.

Next, in Figure 4, we show the exact systematic error from our simulations as
well as the upper bounds of the Bernstein ellipse analysis of Lemmas 14, 12, and 10.
We see from this data that interpolation indeed improves the quality of the estimate
of the energy as anticipated, even when relatively low-precision estimates are used at
s = 1. As discussed previously, only positive values of sk are computed due to reflection
symmetry.

Finally, in Figure 5 we performed ground state energy estimation using second and
fourth order formulas without interpolation, in order to compare the costs when plotted
against the error. From the plots, we observe that beyond n = 2 the extrapolation
methods already outperform using second-order product formulas alone. Specifically,
we see clear indications from this data that the bias in the interpolated error (for
large 1/ϵ) scales logarithmically for these Gaussian phase estimation experiments. This
agrees with our expectations from Theorem 17 wherein the systematic errors from
interpolating phase estimation experiments are expected to scale as polylog(1/ϵ). In
contrast, the bias from a fixed experiment is expected to be O(1/ϵ3/2) and O(1/ϵ5/4)
respectively.

It is worth noting that this does not violate the Heisenberg limit as here we are only
showing the interpolation error, with data computed to machine precision. The expo-
nential reduction in the uncertainty with the number of interpolation points considered
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Figure 3: Estimation of the ground state energy of the two-spin transverse Ising model using
interpolation with Gaussian phase estimation. The four plots, left to right and top to bottom, have
n = 2, 4, 6, 8 interpolation points. In all, the second order Trotter formula was used for simulation.
The statistical uncertainties on the data and the interpolants shown here are equivalent to 0.01
times their standard deviation. They are scaled this way so that interpolation error changes are
noticeable.

is independently shown in Figure 4. Note that for this data we do not see an improve-
ment from transitioning to higher-order formulas, which is consistent with our prior
expectations. These results show that extrapolation tends to outperform transitioning
to a higher-order product formula does not necessarily lead to an improved scaling for
the problem of phase estimation.

6 Conclusion
In this work, we present a framework for achieving improved accuracy of Trotter sim-
ulations using polynomial interpolation. We apply our framework to the problems of
eigenvalue and expectation value estimation, and derive query complexities assuming
the Trotter data is computed quantumly. We find that our methods achieve a Heisen-
berg scaling of Õ(1/ϵ) up to polylogarithmic factors. This is an improvement relative
to a single Trotter calculation, which would yield Õ(1/ϵ1+1/p) for order p formulas. For
the low-order formulas used in practice, where p is not so large, this improvement may
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Figure 4: The systematic error coming from truncating the polynomial expansion. In blue we have
the exact result for the error and in orange are the upper bounds for the error. On the left, we
used a second-order formula and on the right a fourth-order one. As we can see from this log-log
plot, the convergence is exponential as expected.
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Figure 5: The gate cost from using second- (left) and fourth-order (right) formulas for ground
state estimation plotted against the systematic error on the eigenvalue estimation. In blue, we
have the cost of using single long-depth circuits using product formulas alone. In orange, we
have the gate cost of using multiple shallower circuits and then using the extrapolation methods
presented in this work.
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be significant.
An interesting feature of polynomial interpolation in this context is that it provides

a uniform approximation of the function f(s) on the interpolation interval, thereby
giving a characterization of the Trotter error for various step sizes. In contrast, similar
techniques such as Richardson extrapolation only attempt to estimate f(0). Whether
this global characterization of the Trotter error can be usefully employed is a question
we leave open.

There are several areas in which improvements in our analysis can likely be made.
First, in most of our claims, we resort to fractional queries in order to produce step
sizes at the values of the Chebyshev nodes. We suspect this machinery is not needed
in practice, and that improved analysis, coupled with mathematical results on the
robustness of the Lesbesgue constant to node perturbations, will show that interpolating
at nearby points will be sufficient. Second, the quadratic dependence in simulation time
that arises for expectation value interpolation in certain regimes is unsavory. The root
cause of this in the analysis appears to be a linear relation between the simulation time
and number of interpolation nodes, which seems overly cautious. Numerical studies
beyond our own, as well as implementations on quantum hardware, may reveal a rosier
picture than our naive bounds suggest. Third, our work does not consider the effects of
imperfect operations. We can reasonably expect quantum operational errors to be more
severe for the foreseeable future. In this case, the most salient effect is additional error
on the data values that, following any mitigation procedures, cannot be arbitrarily
diminished. We should expect that this will limit the interpolation accuracy to a
certain threshold given roughly by the product ϵphys × Λ, where ϵphys is the typical
error from imperfect operations and Λ is the Lesbesgue constant. Finally, our results
do not show commutator scaling, though the method itself almost certainly does. For
Hamiltonians with almost commuting terms, this would manifest in the data being
nearly flat, resulting in an approximately straight line fit to the correct answer. Our
difficulty in showing this expected relationship arises from the messy expressions for
high order derivatives of the effective Hamiltonian, but this should not be a fundamental
issue.

Our work shows that polynomial interpolation can be a powerful supplement to
quantum subroutines using low-order Trotter simulations. Given that our results ame-
liorate the worst aspects of low order formulas, we believe that investigation of highly
efficient low-order formulas for simulation is likely to be an increasingly important topic.
Improvements that arise from the superior constant factors that low order formulas can
provide may lead to a new generation of more efficient algorithms for simulating chem-
istry and physics using quantum computers.
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A Proof of Lemma 1: derivatives of effective Hamiltonian
Proof. Recall the definition of the effective Hamiltonian

H̃s := i

st
logS2k(st) (A.1)

for s ∈ R \ {0}, with H̃0 := lims→0 H̃s = H. We will understand logS2k(st) through a
power series expansion about the identity.

logS2k(st) =
∞∑

j=0

(−1)j

j + 1 (S2k(st) − 1)j+1 (A.2)

This series converges precisely when

∥S2k(st) − 1∥ ≤ 1. (A.3)

Using the fundamental theorem of calculus, we can derive a suitable condition for
convergence as a neighborhood about s = 0. The condition above implies∥∥∥∥∫ st

0
S2k(x)dx

∥∥∥∥ ≤ 1 (A.4)

which is satisfied provided

|st| max
x∈[0,st]

∥∥∥∥∥ ddxS2k(x)
∥∥∥∥∥ ≤ 1. (A.5)

Writing out S2k(x) = ∏Nk
l=1 exp(−iHjl

τlx) where Hjl
is some Hamiltonian piece Hj

indexed by l, the derivative can be upper bounded as

max
x∈[0,st]

∥∥∥∥∥ ddxS2k(x)
∥∥∥∥∥ ≤

Nk∑
l=1

∥Hjl
∥ |τl|

≤ max
j

∥Hj∥ ∥τ∥1

(A.6)

where τ = (τl)Nk
l=1 is the vector of ST coefficients, and in going to the second line we

used a Hölder inequality. We have ∥τl∥1 ≤ Nk maxl |τl|, and from Appendix A of [44]
we have

max
l

|τl| ≤ 2k/3k. (A.7)

Thus, the requirement for convergence of the logarithm becomes

4
3k(5/3)k−1m |st| max

j
∥Hj∥ ≤ 1 (A.8)

where we used the expression Nk = (2m)5k−1 for the number of ST exponentials.
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We now assume s is within the symmetric interval defined by (A.8), such that (A.2)
is convergent. Since logS2k(0) = 0, s = 0 is a zero of order at least one. We want to
absorb the diverging 1/s term and better understanding the leading dependence in s.
To facilitate this, we write

H̃s = − 1
it

∞∑
j=0

(−1)j

j + 1 s
j∆S2k(st)j+1 (A.9)

where we defined

∆S2k(st) := S2k(st) − 1

s
. (A.10)

Note that ∆S2k is analytic in s, and is a finite difference around s = 0, such that

lim
s→0

∆S2k(st) = −iHt. (A.11)

Through the series expansion (A.9) we may bound derivatives of H̃s via bounds on
derivatives of ∆S2k. We first obtain a power series of ∆S2k by Taylor expanding every
term in the product formula S2k. Regrouping in powers of st, the result is

∆S2k(st) =
∞∑

j=1

sj−1(−it)j

j!
∑

J

(
j

j1 . . . jNk

)
Nk∏
l=1

(Hlτl)jl (A.12)

where the parenthetical symbol is the multinomial coefficient, and the sum ∑
J is over

all values of J = (j1, . . . , jNk
) such that ∑k jk = j. The derivatives with respect to s

are now easy to compute. Using the fact that

∂n
s s

j−1 = (j − 1)!
(j − 1 − n)!s

j−n−1 (A.13)

for j > n (and zero otherwise), we have

∂n
s ∆S2k(st) =

∞∑
j=n+1

sj−n−1(−it)j

j!
(j − 1)!

(j − 1 − n)!
∑

J

(
j

j1 . . . jNk

)
Nk∏
l=1

(Hlτl)jl

∥∂n
s ∆S2k(st)∥ ≤

∞∑
j=n+1

tj

(j − n− 1)!s
j−n−1(τmaxNkΛ)j

(A.14)

where Λ := maxj ∥Hj∥ and τmax = maxl |τl|. Factoring out powers of n + 1 and
reindexing, we are left with the following bound on derivatives of ∆S2k.

∥∂n
s ∆S2k(st)∥ ≤ (τmaxNkΛt)n+1esτmaxNkΛt (A.15)

This expression is quite elegant; it is as if we were taking n + 1 derivatives of the
exponential ecs with

c := τmaxNkΛt
≤ k(5/3)kmΛt

(A.16)
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Factors of c will occur frequently in what follows, so we find it convenient to adopt this
symbol as shorthand.

We return to bounding the derivatives of powers of ∆S2k(st) as in equation (A.9).

∂n
s

[
∆S2k(st)j+1

]
(A.17)

We reduce this to the previous case by performing a multinomial expansion.

∂n
s ∆S2k(st)j+1 =

∑
N

(
n

n0 . . . nj

) j∏
l=0

∂nl
s ∆S2k(st) (A.18)

As usual, the capital letter N denotes the set of all nonnegative indices n0, . . . , nj

summing to n. Applying the triangle inequality and submultiplicativity, and employing
the bound (A.15),

∥∥∥∂n
s ∆S2k(st)j+1

∥∥∥ ≤
∑
N

(
n

n0 . . . nj

) j∏
l=0

∥∂nl
s ∆S2k(st)∥

≤
∑
N

(
n

n0 . . . nj

) j∏
l=0

cnl+1ecs

= e(j+1)cscn+j+1∑
N

(
n

n0 . . . nj

)
,

(A.19)

where we’ve used the sum property of the nl where appropriate. The remaining sum
over the multinomial coefficient is given by (j + 1)n. Hence,∥∥∥∂n

s ∆S2k(st)j+1
∥∥∥ ≤ ((j + 1)c)n(cecs)j+1 (A.20)

Notice that, when j = 0, this is consistent with equation (A.15).
With result (A.20) in hand, we return to the power series (A.9). Differentiating

term by term

∂n
s H̃s = − 1

it

∞∑
j=0

(−1)j

j + 1 ∂
n
s

(
sj∆S2k(st)j+1

)
(A.21)

and performing a binomial expansion for each term

∂n
s

(
sj∆S2k(st)j+1

)
=

n∑
q=0

(
n

q

)(
∂q

ss
j
) (
∂n−q

s ∆S2k(st)j+1
)

(A.22)

will allow us to apply our previous results. It will be helpful to consider two cases
separately: j ≤ n and j > n. These regimes are somewhat qualitatively different, since
the derivatives of sj may or may not vanish depending on the number of derivatives.
Focusing on the case j ≤ n, we have

∂n
s

(
sj∆S2k(st)j+1

)
=

j∑
q=0

(
n

q

)
j!

(j − q)!s
j−q

(
∂n−q

s ∆S2k(st)j+1
)
. (A.23)
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Note that the sum runs only to j, not n. Taking a triangle inequality upper bound
using (A.20), we may upper bound (A.23) as

j∑
q=0

(
n

q

)
j!

(j − q)!s
j−q((j + 1)c)n−q(cecs)j+1

= (cecs)j+1
j∑

q=0

(
j

q

)
n!

(n− q)!s
j−q((j + 1)c)n−q

(A.24)

where we have factored out terms not involving q from the sum, and manipulated the
factorials for reasons which will be seen presently. Taking the upper bound n!/(n−q)! <
nq, and factoring out n−j powers of (j+1)c, we may upper bound the above expression
by

(cecs)j+1((j + 1)c)n−j
j∑

q=0

(
j

q

)
nq((j + 1)cs)j−q

= (cecs)j+1((j + 1)c)n−j(n+ (j + 1)cs)j

(A.25)

Thus, with some minor polishing, we may express the bound on (A.22) for j ≤ n as

∥∥∥∂n
s

(
sj∆S2k(st)j+1

)∥∥∥ ≤ e(j+1)cscn+1(j + 1)n

(
n

j + 1 + cs

)j

. (A.26)

Now let’s move on to the j > n case. Here, there are not enough derivatives to kill
off the sj term, so the binomial sum in (A.23) will run from q = 0 to n.

∂n
s

(
sj∆S2k(st)j+1

)
=

n∑
q=0

(
n

q

)
j!

(j − q)!s
j−q

(
∂n−q

s ∆S2k(st)j+1
)

(A.27)

Similar to before, we use the bound (A.20), to obtain
∥∥∥∂n

s

(
sj∆S2k(st)j+1

)∥∥∥ ≤
n∑

q=0

(
n

q

)
j!

(j − q)!s
j−q((j + 1)c)n−q(cecs)j+1

= (cecs)j+1sj−n
n∑

q=0

(
n

q

)
j!

(j − q)!((j + 1)cs)n−q.

(A.28)

Taking j!/(j − q)! < jq, a simpler upper bound is given by

(cecs)j+1sj−n
n∑

q=0

(
n

q

)
jq((j + 1)cs)n−q = (cecs)j+1sj−n(j + (j + 1)cs)n. (A.29)

With some minor rearrangements, this gives the following upper bound for j > n.
∥∥∥∂n

s

(
sj∆S2k(st)j+1

)∥∥∥ ≤ e(j+1)cscn+1(j + 1)n(cs)j−n

(
j

j + 1 + cs

)n

(A.30)
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With the bounds (A.26) and (A.30), we can return to bounding ∂n
s H̃s. Still sepa-

rating the two cases j ≤ n and j > n, we can write∥∥∥∂n
s H̃s

∥∥∥ t ≤
n∑

j=0

1
j + 1

∥∥∥∂n
s

(
sj∆S2k(st)j+1

)∥∥∥+
∞∑

j=n+1

1
j + 1

∥∥∥∂n
s

(
sj∆S2k(st)j+1

)∥∥∥
= Bl +Bh

(A.31)

where Bl and Bh refer to bounds on the “low” and “high” parts of the series. Employing
the bounds from equations (A.26) and (A.30), we have

Bl ≤
n∑

j=0

1
j + 1e

(j+1)cscn+1(j + 1)n

(
n

j + 1 + cs

)j

= cn+1
n∑

j=0
e(j+1)cs(j + 1)n−1

(
cs+ n

j + 1

)j
(A.32)

and

Bh ≤
∞∑

j=n+1

1
j + 1e

(j+1)cscn+1(j + 1)n(cs)j−n

(
j

j + 1 + cs

)n

≤ cn+1
∞∑

j=n+1
e(j+1)cs(j + 1)n−1(cs)j−n (1 + cs)n

= cn+1 (1 + cs)n
∞∑

j=n+1
e(j+1)cs(j + 1)n−1(cs)j−n.

(A.33)

Let’s begin by simplifying the bound on Bl. We will at this point make the assumption
that s is sufficiently small such that cs < 1. This will necessarily factor into the cost
later. This simplification yields

Bl ≤ cn+1
n∑

j=0
ej+1(j + 1)n−1

(
1 + n

j + 1

)j

≤ cn+1
n∑

j=0
ej+1(j + 1)n−1en

≤ 1
e

(e2c)n+1
n+1∑
j=1

jn−1

(A.34)

The remaining sum can be bounded by (n+ 1)n, hence,

Bl ≤ (e2(n+ 1)c)n+1

e(n+ 1) ≤ (e2c)n+1nn, (A.35)

where the definition that 00 = 1 handles the edge case. Let’s turn our attention to Bh.
We will start by reindexing so that the series begins at j = 0 in (A.33).

Bh ≤ cn+1(1 + cs)n
∞∑

j=0
e(j+n+2)cs(j + n+ 2)n−1(cs)j+1 (A.36)

40



= (cecs)n+1(1 + cs)n
∞∑

j=0
(csecs)j+1(j + n+ 2)n−1 (A.37)

The series converges if and only if

csecs < 1. (A.38)

This condition is slightly stronger than the condition (A.8) that we need for convergence
of the logarithm (A.2), and is equivalent to cs < W (1) ≈ 0.567, where W is the principal
brach of the Lambert W function. Returning to (A.36), we have the bound

(j + n+ 2)n−1 = (n+ 2)n−1
(

1 + j

n+ 2

)n−1
≤ (n+ 2)n−1ej. (A.39)

Thus, we have

Bh ≤ (cecs)n+1(1 + cs)n(n+ 2)n−1
∞∑

j=0
(ecsecs)j

= (cecs)n+1(1 + cs)n(n+ 2)n−1 1
1 − ecsecs

.

(A.40)

To be concrete, let’s take ecsecs < 1/2, which is implied by cs < π/20. Coupled with
the inequality in (A.16), this condition can be met provided that

k(5/3)kmΛst ≤ π/20, (A.41)

which is exactly the assumption of Lemma 1. This allows us to upper bound Bh further
as

Bh ≤ 2eπ/20(cs)n+1(3eπ/20/2)n(n+ 2)n−1 ≤ 4(cs)n+1(9/5)n(n+ 2)n−1. (A.42)

Since (n+ 2)n−1 ≤ e2nn/2 (using 00 := 1 for the edge case n = 0), we have

Bh ≤ 2e2(cs)n+1 (9/5)n nn. (A.43)

Altogether, using s ≤ 1 ∥∥∥∂n
s H̃s

∥∥∥ t ≤ nn(e2c)n+1
(
1 + 2(9/5e2)n

)
≤ 2nn(e2c)n+1

(A.44)

The final result then follows from substituting for c and noting that the duration of
each time step is at most 2k/3k−1 using the results of [17].
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B Proof of Theorem 7
In order to use the result of Lemma 1 in the proof of Theorem 7, we need to re-
express the derivatives of the eigenvalues in terms of the effective Hamiltonian H̃t (we
use t rather than s due to the extrapolation parameter taking the role of time). The
following lemma provides such a bound on the derivatives under the assumption that
the Hamiltonian is gapped.

Lemma 20. Let H̃t : R 7→ C2n×2n be a Hamiltonian on n qubits with p continuous
derivatives. Suppose H̃t has a minimum eigenvalue gap

γ(t) := min
k ̸=j

|λk(t) − λj(t)|

where λj(t) and λk(t) are eigenvalues of H̃t. Define

Λγ := max
p

sup
t

∥∂p
t H̃t∥1/(p+1),

(
∥∂p

t H̃t∥
γ(t)

)1/p
 ,

which has dimensions of 1/t. Then for all eigenvalues λk(t)

|∂p
t λk(t)| ≤ 8p−1(p− 1)!Λp+1

γ .

Proof. The essence of this proof is to examine the derivatives of λk(t) by expressing
them in terms of derivatives of H̃t via perturbation theory. Using the bound Lemma 1
on H̃t lets us bound the eigenvalues in turn. Let |k(t)⟩ be the eigenvector for eigenvalue
λk(t) and assume that the eigenvectors’ phases are chosen such that

〈
k(t)

∣∣∣k̇(t)
〉

= 0 for
all t. Such a choice is always possible. Standard results from perturbation theory [45]
show that

∂tλk(t) = ⟨k(t)| (∂tH̃t) |k(t)⟩

∂t |k(t)⟩ =
∑
j ̸=k

|j(t)⟩ ⟨j(t)| ∂tH̃t |k(t)⟩
λk(t) − λj(t)

.
(B.1)

Further, taking the Euclidean norm of the 2nd equation,

∥∂t |k(t)⟩ ∥2 ≤
∑
j ̸=k

∣∣∣∣∣⟨j(t)| ∂tH̃t |k(t)⟩
λk(t) − λj(t)

∣∣∣∣∣
2

≤ ∥∂tH̃t∥2

γ2(t) . (B.2)

where γ(t) is the minimum eigenvalue gap of the effective Hamiltonian at time t.
We now consider second- and higher-order derivatives of λk(t). By repeatedly taking

derivatives of λk(t) in the first line of (B.1), we obtain an expression of the general form

∂q
t λk(t) =

q∑
ℓ=1

∑
x,y

cx⃗,y⃗,ℓ ⟨x1(t)| ∂yµ

t H̃t |x2(t)⟩
ℓ∏

µ=2

⟨x2µ−1(t)| ∂yµ

t H̃t |x2µ(t)⟩
(λx2µ(t) − λx2µ−1(t)) . (B.3)
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Note that there is a pattern to this series. If there are m H(p) (for p ≥ 0) present in the
expansion there must be m − 1 powers of the gaps present in the terms. Before going
into more detail let us define the “degree” of a term to be the number of differentiable
factors (eigenvectors, Hamiltonians or inverse gaps) present in a product. For example
⟨x(t)| ∂tH̃t |x(t)⟩ is degree 3.

We have that if A is a term of degree deg(A). Then it follows from (B.1) that

deg(∂tA) ≤ deg(A) + 4, (B.4)

since from the product rule the derivative of the product of the factors is the sum of
the distributed sum of the derivatives of the factors and that if |λk⟩ or (λj − λk)−1

are differentiated then the degree increases by at most 4. While the derivative of the
effective Hamiltonian does not increase the degree, the increase in the degree is still at
most 4 in this case thus in the worst case scenario the degree is increased by 4. As the
degree deg(∂tλk(t)) = 3 ≤ 4, it is straight forward to see that

deg(∂q
t λk(t)) = 4q (B.5)

Next, let us assume that B is a sum of Nterms(B) products of the above factors. We
then have from (B.1) that

Nterms(∂tB) ≤ 2Nterms(B)deg(B). (B.6)

Next we will show that the number of terms present in ∂q
t λk(t) obeys

Nterms(∂q
t λk(t)) ≤ 8q−1(q − 1)!. (B.7)

We prove this by induction. The number of terms present when q = 1 is 1. This
demonstrates the base case. Assume that for some value q′ that the induction hypothesis
holds. Then from (B.5) and (B.6) that

Nterms(∂q′+1
t λk(t)) ≤ 2(8q′−1(q′ − 1)!)(4q′) = 8q′

q′! (B.8)

which proves the relation by induction.
We then see that if any factor is differentiated ν times then its norm is bounded

above by Λν+1
γ where

Λγ := max
p

max

∥∂p
t H̃t∥1/(p+1),

(
∥∂p

t H̃t∥
γ(t)

)1/p

 . (B.9)

We therefore have that since the maximum value of the derivative is the number of
terms multiplied by the maximum norm of the product of all the factors that

|∂q
t λk(t)| ≤ 8q−1(q − 1)!Λq+1

γ . (B.10)

43



Proof of Theorem 7. First, from the Baker Campbell Hausdorff formula,

S2k(t) = exp
(
−iHt+O(t2k+1)

)
and thus log(S2k(t))/t ∈ O(1) as t → 0. Thus, an eigenvalue Eeff(t) exists for H̃t for all
t > 0, demonstrating the first claim.

Next, since H̃t has p continuous derivatives, ∂p
t λk(t) exists and is bounded above by

8p−1(p− 1)!Λp+1
γ because

∂tH̃t = 1
t
∂sH̃(st). (B.11)

The value of Λγ can then be bounded, using Lemma 1, by

Λγ ≤
(

2t−n−1nn(e2k(5/3)k−1m max
l∈[1,m]

∥Hl∥t)n+1
)1/(n+1)

+ max
p

(
2t−p−1pp(e2k(5/3)k−1mmaxl∈[1,m] ∥Hl∥t)p+1

γ

)1/p

≤ 4nke2(5/3)k−1m max
l∈[1,m]

∥Hl∥)
1 + max

p

(
p

n

)(
e2k(5/3)k−1mmaxl∈[1,m] ∥Hl∥

γ

)1/p


:= 4nke2(5/3)k−1m max
l∈[1,m]

∥Hl∥)(1 + Γ). (B.12)

This implies that

|∂q
t λk(t)| ≤ 8q−1(q − 1)!Λq+1

γ ≤ q!qq

64

(
32ke2(5/3)k−1m max

l∈[1,m]
∥Hl∥)(1 + Γ)

)q+1

. (B.13)

For all t ∈ [−a, a], we have from Lemma 2 that the interpolation error satisfies the
following upper bound.

|λk(0) − P (0)| ≤ n!
64

(
32ke2(5/3)k−1m max

l∈[1,m]
∥Hl∥)(1 + Γ)

)n+1 (
a

2

)n

(B.14)

We wish for this error to be at most ϵint. Using the inequality above, we can solve for
a value of a such that the error is within ϵint for all t ∈ [−a, a]. Doing so, we find the
following value of a.

a = 2(64ϵint)1/n

(n!)1/n

(
1

32ke2(5/3)k−1mmaxl∈[1,m] ∥Hl∥)(1 + Γ)

)1+1/n

(B.15)

We now count the number of exponentials needed for the degree n polynomial inter-
polation (where n is even) using (B.15). Using the fact that the error for time −t
is equal to the error for time t, that the jth Chebyshev node sj scales like a/j, and
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that the cost of phase estimation within error ϵPE with failure probability δPE scales as
O(log(1/δPE)/ϵPE), the number of exponentials scales as

Nexp ∈ O

n/2∑
j=1

m5k−1

ja


= O

(
n log(n)m5k−1 log(1/δPE)

aϵPE

)

= O

(
n log(n) log(1/δPE)(n!)1/nm2+1/n(5/3)2k+k/n(max ∥Hi∥(1 + Γ)k)1+1/n

ϵ
1/n
int ϵPE

)

= Õ

(
n2m2+1/n log(1/δPE)5k(5/3)k+k/n(max ∥Hi∥(1 + Γ)k)1+1/n

ϵ
1/n
int ϵPE

)
. (B.16)

There are two competing tendencies in the cost. The number of operator exponentials
increases polynomially with n, but the scaling with the error tolerance improves expo-
nentially with n. Setting these two equal to each other to estimate the optimal scaling
yields

n2 =
(
mk(5/3)k maxi ∥Hi∥(1 + Γ)

ϵint

)1/n

. (B.17)

Under the assumption that ϵint ≤ 5/3, the solution is of the form

n =
ln
(
mk(5/3)k maxi ∥Hi∥(1 + Γ)ϵ−1

int

)
2LambertW

(
ln
(
mk(5/3)k maxi ∥Hi∥(1 + Γ)ϵ−1

int

)
/2
)

∈ O
(

log
(
mk(5/3)k max

i
∥Hi∥(1 + Γ)ϵ−1

int

))
.

(B.18)

Finally, we have from Theorem 5 that the error in the interpolated eigenvalue is within
ϵ provided that the error in the data satisfies( 2

π
log(n+ 1) + 1

)
max

i
|λk(si) − λ̃k(si)| ≤

( 2
π

log(n+ 1) + 1
)
ϵPE ≤ ϵ. (B.19)

Taking ϵPE to satisfy this, the number of exponentials scales via equation (B.16) as

Nexp ∈ Õ

(
m2k(25/3)k max ∥Hi∥(1 + Γ)

ϵ

)
, (B.20)

where we’ve also implemented (B.17). By the union bound, the total probability of
failure is at most 1/3.
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C Proof of Theorem 16
Per the statement of the theorem, we would like to estimate the error between the Dis-
crete Fourier Transform (DFT) and corresponding samples of the Fourier transform of
the continuous Gaussian distribution. We split this analysis in three parts: calculating
time-domain truncation errors, estimating frequency-domain truncation errors (non-
zero sampling rate), and finally calculate the error coming from renormalization. Fig-
ure 6 gives an schematic representation of the analysis, including the resulting big-O
bounds.

X1/T ( k
2qT )√

2qN (σ,T,m)
X( k

2qT )
T
√

2qN (σ,T,m)

X( k
2qT )√

N (σf ,F,q)
X [k]

ϵalias ∈ O
(

2m/4

2q/2eΩ(2m)

)

ϵtrunc ∈ O
(

2m/4

2q/2eΩ(2m)

)
ϵrenorm ∈ O

(
2(m−q)/2

exp(Ω(2m))

)

ϵtotal ≤ ϵtrunc + ϵalias + ϵrenorm ∈ O
( √

2m

2q/2eΩ(2m)

)

Figure 6: Schematic representation of the error estimation between the DFT of x[n], X[k], and
the re-normalized samples of the Fourier transform X

(
k

2qT

)
. At the edges of the diagram, we

have noted the additive error between the expressions at the nodes.

For reference, here are some useful definitions which we will use in the proof to
follow.

p(w;σ) := 1
σ

√
2π
e−w2/(2σ2) (C.1)

x(w) :=
√
p(w;σ) (C.2)

X(f) := F{x}(f) =
∫
R
x(t)e−2πitfdt (C.3)

X1/T

(
k

2qT

)
:=

∞∑
n=−∞

x(nT ) · e−i2πkn/2q

k = −2q−1, . . . , 2q−1 − 1 (C.4)

N (σ, T,m) :=
2m−1−1∑

n=−(2m−1−1)
|x(nT )|2 (C.5)

x[n] :=


1

N (σ,T,m)1/2x(nT ) n = −2m−1 − 1, . . . , 2m−1 − 1
0 n = −2m−1 (C.6)

X[k] := 1
2q/2

2m−1−1∑
n=−(2m−1−1)

x[n] · e−i2πkn/2q (C.7)
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It will also be convenient to define the Fourier dual sampling rates and widths,
respectively.

F := (2qT )−1 (C.8)
σf := (4πσ)−1 (C.9)

C.1 Truncation Error
The error between the scaled Discrete-time Fourier Transform (DTFT)

X1/T

(
k

2qT

)
√

2qN (σ, T,m)
(C.10)

and the untruncated DFT X[k] of Equation (C.7) can be estimated to be

ϵtrunc = 1
2q/2N (σ, T,m)1/2

 ∞∑
n=2m−1

√
p(nT ;σ) +

−2m−1∑
n=−∞

√
p(nT ;σ)


= 2ϵ̃trunc

2q/2N (σ, T,m)1/2 , (C.11)

where

ϵ̃trunc :=
∞∑

n=2m−1

√
p(nT ;σ). (C.12)

We can upper bound ϵ̃trunc using a right-Riemann sum approximation of the error
function,

∞∑
n=2m/2

√
p(nT ;σ) ≤ 4

√
π

2

√
σ

T
erfc

(
T (2m/2 − 1)

2σ

)

and together with the simple bound [46]

erfcx ≤ e−x2 (x > 0) (C.13)

we have

ϵ̃trunc ≤ 4

√
π

2

√
σ

T
exp

−
(
T (2m−1 − 1)

2σ

)2
 . (C.14)

Finally, we can express the truncation error ϵtrunc, using (C.11) and the fact that
N (σ, T,m) ∈ O(1/T ).

ϵtrunc ≤
23/4π1/4

√
σ

T
e
−
(

T (2m−1−1)
2σ

)2

2q/2N (σ, T,m)1/2 ∈ O
(√

σ

2qT
e−Ω(2m/(σ/T ))

)
(C.15)

along
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C.2 Aliasing error
Now that we have estimated the error on the DTFT by time-domain truncation, we
would also like to estimate the aliasing error, that is, the difference between the DTFT
and the Fourier transform over a period 1/T . This is coming from having a finite
sampling rate of a function that is not bounded in the frequency domain. In order
to estimate the aliasing error, we must look at the Fourier transform of a Gaussian
distribution, which is another Gaussian.

X(f) =
√
p(f ;σf ) (C.16)

Now, the DTFT can be expressed in terms of a Fourier transform in the following way

X1/T (f) = 1
T

∞∑
k=−∞

X(f − k/T ). (C.17)

Therefore, we define the aliasing error as

ϵ̃alias := X1/T (f) − 1
T
X(f) = 1

T

−1∑
k=−∞

X(f − k/T ) + 1
T

∞∑
k=1

X(f − k/T ). (C.18)

The aliasing error has a critical point at f = 0 and its second derivative is strictly
positive throughout f = [−1/2T, 1/2T ] and thus we know that the error is largest at
the boundaries of the DTFT. That is, at f = −1/2T, 1/2T . The error at these two
points is expected to be the same so we just choose f = 1/2T in order to bound the
error from above. That means

ϵ̃alias ≤ 1
T

−1∑
k=−∞

X(1/2T − k/T ) + 1
T

∞∑
k=1

X(1/2T − k/T )

≤ 1
T

∞∑
k=−∞

X(1/2T − k/T )

= π1/423/4√σ 1
T
θ2(e−(2σπ/T )2)

= π1/423/4√σ 2
T
e−(πσ/T )2

∞∑
n=0

(e−4(2πσ/T )2)n(n+1), (C.19)

where θ2(q) ≡ θ2(0, q) is the 2nd Jacobi theta function [47]. For e−(2πσ/T )2 ≤ 1,

ϵ̃alias ≤ π1/423/4√σ 1
T

·
(

2e−π2(σ/T )2
∞∑

n=0
(e−4π2(σ/T )2)n

)

= π1/423/4√σ 1
T

·
(

2e−π2(σ/T )2 1
1 − e−4π2(σ/T )2

)
(C.20)
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For e−4π2(σ/T )2 ≤ 1/2

ϵ̃alias ≤ π1/423/4√σ 1
T

·
(

2e−π2(σ/T )2 1
1 − e−4π2(σ/T )2

)
≤ 4π1/423/4√σ 1

T
· e−π2(σ/T )2 (C.21)

Therefore, the error ϵalias between

X1/T (k/(2qT ))
2q/2N (σ, T,m)1/2 (C.22)

and

X (k/(2qT ))
T2q/2N (σ, T,m)1/2 (C.23)

can be estimated using (C.21) to be

ϵalias = ϵ̃alias

2q/2N (σ, T,m)1/2 ≤
(

4π1/423/4√σ 1
T

· e−π2(σ/T )2

2q/2N (σ, T,m)1/2

)
. (C.24)

Thus, with a choice of

σ

T
∼

√
2m, (C.25)

both sources of error can be bounded with

ϵtrunc = O

(
2m/4

2q/2eΩ(2m)

)

ϵalias = O

(
2m/4

2q/2eΩ(2m)

)
. (C.26)

This means that after the DFT, we know that we will have in the register the amplitude√
F

TN (σ, T,m)X (kF ) + ϵDFT, (C.27)

where ϵDFT is the total error from both truncation as well as aliasing. We then bound
the error by summing (C.21) and (C.10) to find

ϵDFT ≤ (8π)1/4√σ
T
√

2qN (σ, T,m)
e
−
(

T (2m−1−1)
2σ

)2

+ 4 (8π)1/4√σ
T
√

2qN (σ, T,m)
e−π2(σ/T )2

≤ 2 max (ϵalias, ϵtrunc) ∈ O

(
2m/4

2q/2eΩ(2m)

)
. (C.28)
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C.3 Renormalization error and ultimate additive error
We know that the signal after DFT has to be normalized, we also know that it is
locally ϵDFT close to Equation (C.23), which is not necessarily normalized. Therefore,
for the norm of samples of Equation (C.23) we obtain the following upper bound on
normalization ratios

F

TN (σ, T,m)
∑

k

|X (kF )|2 = FN (σf , F, q)
TN (σ, T,m)

= 1 − 2
(

F

TN (σ, T,m)

)1/2

ℜ
(
ϵ⃗DF T · X⃗

)
+ ∥ϵ⃗DFT∥2

≤ 1 + ∥ϵ⃗DFT∥2

≤ 1 + ∥ϵ⃗DFT∥
≤ 1 + ϵDFT2q/2, (C.29)

where we have used the assumption ∥ϵ⃗DF T ∥ ≤ 1. Similarly, the lower bound is

F

TN (σ, T,m)
∑

k

∣∣∣∣∣X
(

k

2qT

)∣∣∣∣∣
2

= FN (σf , F, q)
TN (σ, T,m)

≥ 1 − 2
(

F

TN (σ, T,m)

)1/2

ℜ
(
∥ϵ⃗DFT∥∥X⃗∥

)

≥ 1 − 2ϵDFT2q/2
(
FN (σf , F, q)
TN (σ, T,m)

)1/2

≥ 1 − 2ϵDFT2q/2
(
1 + ∥ϵ⃗DFT∥2

)
≥ 1 − 4ϵDFT2q/2.

(C.30)

Thus, if we take the full inequality

1 − 4ϵDFT2q/2 ≤
(
FN (σf , F, q)
TN (σ, T,m)

)
≤ 1 + ϵDFT2q/2 (C.31)

and take the square root, we obtain,

1 − 2ϵDFT2q/2 ≤
(
FN (σf , F, q)
TN (σ, T,m)

)1/2

≤ 1 + ϵDFT2q/2,

(C.32)

where we have used 1 +
√
x ≤ 1 + x and 1 −

√
x ≥ 1 − x/2 for x ≤ 1. We now divide

every side by N (σf , F, q) to obtain

1/N (σf , F, q)1/2 − 2ϵDFT2q/2/N (σf , F, q) ≤
(

F

TN (σ, T,m)

)1/2

≤
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1/N (σf , F, q)1/2 + ϵDFT
√

2q/N (σf , F, q)1/2.

(C.33)

Subtract 1/N (σf , F, q), which gives

− 2ϵDFT

√
2q

N (σf , F, q)
≤
√

F

TN (σ, T,m) −
√

1
N (σf , F, q)

≤ ϵDFT

√
2q

N (σf , F, q)
.

(C.34)

We multiply these inequalities by max |X(k)|

− 2ϵDFT

√
2q

N (σf , F, q)

(
1

2πσ2
f

)1/4

≤
(√

F

TN (σ, T,m) −
√

1
N (σf , F, q)

)
max |X(k)|

≤ ϵDFT

√
2q

N (σf , F, q)

(
1

2πσ2
f

)1/4

. (C.35)

We take the absolute value to have a two-sided inequality, and use the definitions (C.8)
and (C.9). ∣∣∣∣∣

√
F

TN (σ, T,m) −
√

1
N (σf , F, q)

∣∣∣∣∣max |X(k)|

≤ 2ϵDFT

√
1

TFN (σf , F, q)

(
(4πσ)2

2π

)1/4

≤ 2 (8π)1/4√σ
T
√

2qN (σ, T,m)

√
1

TFN (σf , F, q)

(
(4πσ)2

2π

)1/4

max
4 exp

{
−π2(σ/T )2

}
, exp

−
(

2m−1 − 1
2σ/T

)2



≤ 4σ
T

√
2π

2qTN (σ, T,m)FN (σf , F, q)

max
4 exp

{
−π2(σ/T )2

}
, exp

−
(

2m−1 − 1
2σ/T

)2

 (C.36)

It is worth noting that, for the purpose of estimating (TN (σ, T,m))1/2, we can
increase 2q arbitrarily (or decrease F arbitrarily). Through this, we see that:

lim
F→0

FN (σf , F, q) = lim
F→0

erf
(

(2q−1 − 1/2)F√
2σf

)
= erf

(√
2πσ/T

)
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≥ 1 − 1
exp

(√
2πσ/T

)2 (C.37)

For our choice of σ
T

this would mean that

(TN (σ, T,m))1/2 = 1 −O

(
2m/4

exp (Ω(2m))

)
, (C.38)

and

T 1/2N (σ, T,m)1/2 = F 1/2N (σf , F, q)1/2

− T 1/2N (σ, T,m)1/2O

(
2m/4

exp (Ω(2m))

)

= F 1/2N (σf , F, q)1/2 −O

(
2m/4

exp (Ω(2m))

)
. (C.39)

Therefore, the amplitudes that we get on the ancillary register are

1√
N (σf , F, q)

X

(
k

2qT

)
+O

(
2(m−q)/2

exp (Ω(2m))

)
+ ϵDFT. (C.40)

D Proofs of State Preparation and Ground State Energy Extrap-
olation Costs

Here we prove results related to the costs of state preparation and phase estimation for
extrapolation of the ground state energy, from Theorem 15 and Theorem 17 respectively.

D.1 Proof of Lemma 12
Proof. Let λm−1, λm, and λm+1 be consecutive simple eigenvalues of H

λm−1 < λm < λm+1 (D.1)

such that |λm − λm−1| ≥ γ0, and |λm − λm+1| ≥ γ0. With λ(τ) as in the lemma
statement, we have λm(0) = λm for all indices m. By Lemma 11, there exist eigenvalues
λj(τ), λk(τ), and λl(τ) of H̃z such that

max
τ∈{τ :|τ |≤r}

|λm−1(0) − λj(τ)| ≤ max
τ∈{τ :|τ |≤r}

∥H − H̃z∥

max
τ∈{τ :|τ |≤r}

|λm(0) − λk(τ)| ≤ max
τ∈{τ :|τ |≤r}

∥H − H̃z∥

max
τ∈{τ :|τ |≤r}

|λm+1(0) − λl(τ)| ≤ max
τ∈{τ :|τ |≤r}

∥H − H̃z∥ (D.2)
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for some j, k, and l. We are guaranteed that j ̸= m, l ̸= m and k = m if

max
τ∈{τ :|τ |≤r}

∥H − H̃z∥ ≤ γ0/2. (D.3)

Assuming we have the upper bound

∥H − H̃z∥ ≤ α
|τ |p

(p+ 1)!e
β|τ |, (D.4)

this guarantee can be satisfied by the constraint

γ0/2 ≥ max
τ∈{τ :|τ |≤r}

(
α

|τ |p

(p+ 1)!e
β|τ |
)

= α
rp

(p+ 1)!e
βr. (D.5)

Solving for r on the last inequality gives us

r ≤ p

β
LambertW

β
p

(
γ0(p+ 1)!

2α

)1/p
 . (D.6)

If λm is the ground state or highest state of H, we just repeat a similar proof except
there is only one state above or below respectively.

D.2 Proof of Lemma 13
Proof. We take a look at the complex-time Schrödinger equation for Sp(τ).

S ′p(τ) =
A︷ ︸︸ ︷

i(H + E (τ))Sp(τ) (D.7)

We now recall that we can express

Ω(τ) = logSp(τ) (D.8)

through the Magnus expansion for the complex-time derivative,

Ω′(τ) =
∞∑

n=0

Bn

n! adn
Ω(A). (D.9)

We then re-express E(τ) and expand Ω′

E(τ) =
∫
P

Ω′(τ1)dτ1 −
∫
P
Hdτ1

=
∫
P

(Ω′(τ1) −H) dτ1

=
∫
P

(
E (τ1) +

∞∑
n=1

Bn

n! adn
Ω(τ1)(A(τ1))

)
dτ1. (D.10)
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Here, P is any path in the complex plane going from τ1 = 0 to τ1 = τ . We now
expand out the first application of adΩ on A and separate the n = 1 term from the sum
obtaining:

E(τ) =
∫
P

(
E (τ1) +B1[Ω(τ1), A(τ1)] +

∞∑
n=2

Bn

n! adn−1
Ω [Ω(τ1), A(τ1)]

)
dτ1. (D.11)

Following this, we make use of the estimation lemma (‘ML‘ inequality) to obtain

∥E(τ)∥ ≤
∫ S

0
|γP |

(
∥E ∥ + |B1| ∥[Ω, A]∥ +

∞∑
n=2

|Bn|
n!

∥∥∥adn−1
Ω

∥∥∥ ∥[Ω, A]∥
)

ds

(D.12)

where s parametrizes the path P and |γP | ds =
∣∣∣dτ1

ds

∣∣∣ ds is the arc-length differential.
Now, we make use of the bound ∥adΩ∥ ≤ 2∥Ω∥ to obtain:

≤
∫ S

0
|γP |

(
∥E ∥ + |B1| ∥[Ω, A]∥ +

∞∑
n=2

|Bn|
n! (2 ∥Ω∥)n−1 ∥[Ω, A]∥

)
ds

≤
∫ S

0
|γP |

(
∥E ∥ + |B1| ∥[Ω, A]∥ + ∥[Ω, A]∥

(2 ∥Ω∥)

∞∑
n=2

|Bn|
n! (2 ∥Ω∥)n

)
ds (D.13)

We now make use of

∞∑
n=2

|Bn| |t|n

n! =
∞∑

n=1
B∗n

|t|2n

(2n)! = 1 − |t|
2 cot |t|

2 for |t| ≤ 2π (D.14)

to obtain:

∥E(τ)∥ ≤
∫ S

0
|γP |

(
∥E ∥ + 1

2 ∥[Ω, A]∥ + ∥[Ω, A]∥
(2 ∥Ω∥) (1 − ∥Ω∥ cot ∥Ω∥)

)
ds

≤
∫ S

0
|γP |

(
∥E ∥ + 1

2 ∥[Ω, A]∥ + 1
2 ∥[Ω, A]∥

(
1

∥Ω∥
− cot ∥Ω∥

))
ds

(D.15)

We now assume that

|γP | =
∣∣∣∣∣dτds

∣∣∣∣∣ = 1, (D.16)

and

s = |τ1|, (D.17)
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thus

∥E(τ)∥ ≤
∫ |τ |

0

(
∥E ∥ + 1

2 ∥[Ω, A]∥ + 1
2 ∥[Ω, A]∥

(
1

∥Ω∥
− cot ∥Ω∥

))
ds. (D.18)

We assume (
1

∥Ω∥
− cot ∥Ω∥

)
≤ 1, (D.19)

which is fulfilled provided

∥E(τ)∥ ≤ 1. (D.20)

Now,

∥E(τ)∥ ≤
∫ |τ |

0
(∥E ∥ + ∥[Ω, A]∥) ds. (D.21)

Recalling that Ω(τ) = E(τ) + τH,

∥[Ω, A]∥ = ∥[E + τH,E +H]∥ ≤ 2∥E∥ (∥E ∥ + ∥H∥) + 2|τ |∥H∥∥E ∥. (D.22)

Plugging back into Equation (D.21) and using estimation lemma for ∥E∥ inside the
integral we obtain:

∥E(τ)∥ ≤
∫ |τ |

0
(∥E ∥ + 2s∥H∥∥E ∥) ds+ 2 max

|τ̃ |≤|τ |
∥E(τ̃)∥

∫ |τ |
0

(∥E ∥ + ∥H∥) ds. (D.23)

We now do the relabelling τ → τ2 and then take max|τ2|≤|τ | of both sides

max
|τ2|≤|τ |

∥E(τ2)∥ ≤ max
|τ2|≤|τ |

∫ |τ2|

0
(∥E ∥ + 2s∥H∥∥E ∥) ds+ 2 max

|τ2|≤|τ |
∥E(τ2)∥ max

|τ2|≤|τ |

∫ |τ2|

0
(∥E ∥ + ∥H∥) ds,

(D.24)

which becomes

max
|τ2|≤|τ |

∥E(τ2)∥ ≤
∫ |τ |

0
(∥E ∥ + 2s∥H∥∥E ∥) ds+ 2 max

|τ2|≤|τ |
∥E(τ2)∥

∫ |τ |
0

(∥E ∥ + ∥H∥) ds,

(D.25)

Solving for max|τ2|≤|τ | ∥E(τ2)∥

max
|τ2|≤|τ |

∥E(τ2)∥ ≤
∫ |τ |

0 (∥E ∥ + 2s∥H∥∥E ∥) ds
1 − 2|τ |∥H∥ − 2

∫ |τ |
0 ∥E ∥ds

≤ (1 + 2|τ |∥H∥)
∫ |τ |

0 (∥E ∥) ds
1 − 2|τ |∥H∥ − 2

∫ |τ |
0 ∥E ∥ds
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(D.26)

We now assume ∫ |τ |
0

∥E ∥ds ≤ 1/8 (D.27)

and

|τ | ≤ 1/8, (D.28)

thus,

∥E(τ)∥ ≤ max
|τ2|≤|τ |

∥E(τ2)∥ ≤ 5
2

∫ |τ |
0

∥E (τ1)∥ds. (D.29)

D.3 Proof of Lemma 14
Our task here is to show that a bound of the form shown (3.17) actually exists, and
for this we follow closely the work done in [18]. In order to make assertions over the
general complex plane we will extend their results to complex time. The extension will
be straightforward because

eiτA

has no singularities except for non-removable singularities at Im(τ) ∈ {−∞,∞} for
a Hermitian A and at Im(τ) = −∞ when it is positive semi-definite. Thus, we can
replace all the real-axis integrals ∫ t

0
f(t1)dt1

for the contour integrals ∫
C
f(τ1)dτ1,

where P is any path from 0 to a generally complex τ as long as that path does not
include Im(τ) ∈ {−∞,∞}. Our results are summarized by the following

Proof. First, we define a general product formula the following way

S (τ) :=
Υ∏

υ=1

m∏
m=1

eiτa(υ,m)Hπυ(m) , (D.30)

where the coefficients a(υ,m) are real numbers. The parameter Υ denotes the number
of stages of the product formula. For example, for the ST formula S2k(t), we have
Υ = 2 · 5k−1. The permutation πυ controls the ordering of operator summands within
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stage υ of the product formula. We then consider the error in the effective Hamiltonian
with the help of the definition of the path-ordered exponential:

S (τ) = expP
(
i
∫

dτ
(
H + E (τ)

))
. (D.31)

Using this definition and Lemma 13, we can write the operator error on the Hamiltonian
the following way: ∥∥∥H̃z(t) −H

∥∥∥ ≤ 5
2

(∫ |τ |
0

∥E (τ1)∥ ds
)
/|τ |. (D.32)

where s in this context is |τ1|. Let ⪰ be a lexicographic, or dictionary, ordering on
tuples (υ,m), i.e. (υ,m) ⪰ (υ′,m′) if υ > υ′, or if υ = υ′ and m ≥ m′. Let

S (τ) =
←−∏

(υ,m)
eiτa(υ,m)Hπυ(m) , (D.33)

be a product formula with ∏←−(υ,m) dictating that the operations are applied from right
to left in ascending order according to ⪰. Let ∏−→(υ,m) refer to descending order. After
differentiating the evolution operator, and some algebra, one obtains that E (τ) can be
expressed as

E (τ) =
∑

(υ,m)

←−∏
(υ′,m′)≻(υ,m)

e
iτa(υ′,m′)Hπυ′ (m′)

(
a(υ,m)Hπυ(m)

) −→∏
(υ′,m′)≻(υ,m)

e
−iτa(υ′,m′)Hπυ′ (m′) −H.

(D.34)
We can bound the norm of this term through the following Taylor expansion of the
term

eiτAs · · · eiτA2eiτA1Be−iτA1e−iτA2 · · · e−iτAs

= C0 + C1τ + · · · + Cp−1τ
p−1

+ ip
s∑

k=1

∑
q1+···+qk=p

qk ̸=0

eiτAs · · · eiτAk+1

·
∫

C
dτ2 e

iτ2Akadqk
Ak

· · · adq1
A1(B)e−iτ2Ak · (τ − τ2)qk−1τ q1+···+qk−1

(qk − 1)!qk−1! · · · q1!
· e−iτAk+1 · · · e−iτAs ,

(D.35)
where adA (B) := [A,B]. We can bound the norm of that last term in Equation (D.35)
through triangle inequality for contour integrals, and for sake of simplicity, we fix con-
tour C going straight from 0 to τ . We also assume for the moment that matrices Aj

are positive definite. Thus, the upper bound becomes:

s∑
k=1

∑
q1+···+qk=p

qk ̸=0

s∏
j=k+1

≤ e2|Im(τ)| ∥Aj ∥︷ ︸︸ ︷
∥eiτAj ∥∥e−iτAj ∥ |τ |q1+···+qk−1

(qk − 1)!qk−1! · · · q1!
∥∥∥adqk

Ak
· · · adq1

A1(B)
∥∥∥
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∫
C

dτ2|τ − τ2|qk−1

≤ e2|Im(τ2)| ∥Ak∥︷ ︸︸ ︷
∥eiτ2Ak∥∥e−iτ2Ak∥ (D.36)

≤
s∑

k=1

∑
q1+···+qk=p

qk ̸=0

(
p

q1 · · · qk

)
|τ |p

p!
∥∥∥adqk

Ak
· · · adq1

A1(B)
∥∥∥ e2|τ |

∑s

j=k
∥Aj∥ (D.37)

≤
∑

q1+···+qs=p

(
p

q1 · · · qs

)
|τ |p

p!
∥∥∥adqs

As
· · · adq1

A1(B)
∥∥∥ e2|τ |

∑s

j=1 ∥Aj∥ (D.38)

= αcomm
(
As, . . . , A1, B

) |τ |p

p! e
2|τ |

∑s

j=1 ∥Aj∥, (D.39)

where

αcomm
(
As, . . . , A1, B

)
:=

∑
q1+···+qs=p

(
p

q1 · · · qs

)∥∥∥adqs

As
· · · adq1

A1(B)
∥∥∥ . (D.40)

Thus, the upper bound on ∥E (τ)∥ is

∥E (τ)∥ ≤
∑

(υ,m)
αcomm

(
a(Υ,m)HπΥ(m), . . . , a(υ,m+1)Hπυ(m+1), a(υ,m)Hπυ(m)

)

· |τ |p

p! e
2|τ |

∑
(υ′,m′)≻(υ,m)

∥∥∥a(υ′,m′)Hπυ′ (m′)

∥∥∥
, (D.41)

where (υ,m+ 1) = (υ + 1, 1). With this, the upper bound in ∥H̃z(t) −H∥
∥∥∥H − H̃z

∥∥∥ ≤ 5
2
∑

(υ,m)
αcomm

(
a(Υ,m)HπΥ(m), . . . , a(υ,m+1)Hπυ(m+1), a(υ,m)Hπυ(m)

)

· |τ |p

(p+ 1)!e
2|τ |

∑
(υ′,m′)≻(υ,m)

∥∥∥a(υ′,m′)Hπυ′ (m′)

∥∥∥
≤ 5

2
∑

(υ,m)
αcomm

(
a(Υ,m)HπΥ(m), . . . , a(υ,m+1)Hπυ(m+1), a(υ,m)Hπυ(m)

)

· |τ |p

(p+ 1)!e
2|τ |

∑m

j
∥Hj∥ (D.42)

D.4 Avoiding fractional queries
For the Gaussian QPEA defined in Section 3.2.3, we must define the Ũsk

operator. A
first attempt looks the following way

Ũsk
= (Sp (tsk))ek =

(
exp

{
−itskH̃sk

})ek
, (D.43)
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where sk are the Chebyshev nodes with a = 1, and

ek = s1

sk

, (D.44)

such that the total simulation times

T = s1t, (D.45)

which is the same for each Ũsk
.

This, however, will require fractional powers of (that is, a non-integer number of
queries of) Sp (tsk). Although this can be efficiently achieved through quantum signal
processing and one extra ancillary qubit, within this section we would like to stay as
rudimentary as possible, minimizing quantum overhead. Hence, we will instead use the
evolution operator

Ũ ′sk
= (Sp (tsk))e′

k = exp
{

−itsk sgnsk

⌈
s1

|sk|

⌉
H̃sk

}
. (D.46)

Here,

e′k = sgn sk

⌈
s1

|sk|

⌉
, (D.47)

is an integer by construction. For this new operator Ũ ′sk
, the Trotter step size remains

dt = tsk, (D.48)

but the total time evolution changes to

T ′k = e′k × dt = tsk sgnsk

⌈
s1

|sk|

⌉
= Θ(ts1). (D.49)

We note that now the equivalent evolution time T ′k varies for different k’s, but this has
a negligible effect in state preparation (See Theorem 15) or in eigen energy estimation
(See Theorem 17) with respect to the effective Hamiltonian H̃sk

.
When it comes to query cost, this has the effect of increasing the resolution and the

cost of QPEA by a factor of

|e′k|
|ek|

≤ 2. (D.50)

As a last step before jumping into the proof of Theorem 15 we will first discuss
some estimates for the coefficients of the terms in the extrapolation. The first such
result is given in In the framework we propose here, most algorithms’ cost will scale
proportionally to ∥e′∥1 ≤ 2∥e∥1.
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D.5 Proof of Theorem 15
Proof of Theorem 15. In the framework we propose here, most algorithms’ cost will
scale from Lemma 3

∥e′∥1 ≤ 2∥e∥1 = 2s1

n∑
k=1

1
|sk|

= O (n log n) . (D.51)

For example, the ground state preparation methods detailed in [36] would scale propor-
tionally to ∥e∥1. More precisely, the cost of state preparation scales with the minimum
eigenvalue gap as

Cprep = O

(
∥e′∥1

tmink (E1(sk) − E0(sk))

)
, (D.52)

where, from Lemma 11 and the fact that the spectral gap is bounded below by γ0, we
have that

min
k

(E1(sk) − E0(sk)) ≥ γ0 − max
t1≤t,s≤1

∥H − H̃s(t1)∥

≥ γ0 −O (tp) . (D.53)

Thus, for t = O(γ1/p
0 ),

min
k

(E1(sk) − E0(sk)) = Ω(γ0). (D.54)

From Lemma 12, we also have that

r = Ω
((p+ 1)!

2p+1

)1/p
γ

1/p
0
t

 (D.55)

Recalling Lemma 10 that the interpolation error

ϵ = O

(
1

ρM+1

)
(D.56)

Thus, solving for n we find:

n = O

(
log 1/ϵ
log ρ

)
(D.57)

We also have that the radius of the Bernstein elipse needed satisfies ρmax = Θ(rmax)
from Lemma 12; hence,

n = O

(
p log(1/ϵ)

log (γ0/tp) + log((p+ 1)!/2p+1 )
)
. (D.58)
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It is clear that a constraint is

t = Ω
(
γ

1/p
0

)
, (D.59)

since we need the radius to be a quantity greater than 1 and there is no advantage in
going to a much smaller t. Finally, the cost for state preparation is

Cprep = O

(
log(1/ϵ) log log(1/ϵ)

γ
1+1/p
0

)
. (D.60)

D.6 Proof of Theorem 17
Proof of Theorem 17. Now, the cost of estimating the energy through GPE would,
naively speaking, also scale like O (n log n). However, to get a tighter cost bound, we
will allow the variances of observables to vary across nodes and then minimize the cost
function:

L0 =
n/2∑
k=1

1
σk cos 2k−1

2n
π

(D.61)

with the constraint

2
n/2∑
k=1

c2
kσ

2
k − σ2

P = 0. (D.62)

Thus, we the cost function with Lagrange multiplier is:

L = L0 + λ

2
n/2∑
k=1

c2
kσ

2
k − σ2

P

 . (D.63)

Note that the terms in the cost function L0 go like 1/σk due to Fourier duality and
Theorem 16 and the other factor is from the cost of a single Uk implementation. After
doing the minimization we are left with:

L0 = 21/2

σP

n/2∑
k=1

|ck|2/3

cos2/3
(

2k−1
2n

π
)
3/2

σk = σP

21/2|ck|2/3 cos1/3
(

2k−1
2n

π
)(∑n/2

k=1
|ck|2/3

cos2/3( 2k−1
2n

π)

)1/2 . (D.64)

The optimal L0 goes as

L0 ∈ O
(
n

σP

)
. (D.65)
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Now, the cost for estimating the interpolant with a variance of σP and a bias ϵ using
Gaussian phase estimation is

Cest ∈ O

(
log 1/ϵ
σP

)
(D.66)

On the other hand, using Lemma 4, if one wishes to estimate the energy using a single
ancillar qubit approach, the cost of estimating the energy is

Cest,1−qubit ∈ O

(
log 1/ϵ log log 1/ϵ

ϵ

)
, (D.67)

where ϵ is the semi-deterministic error coming from the Heisenberg-limited estimation
algorithms like IQAE [43] or the one in Ref. [48], or non-Heisenberg-limited alternatives
like the semi-classical QPE [49, 50], the single-qubit version of the textbook QPE [51].

E Cost asymptotics for expectation values
Here we provide proofs for Lemma 18 and Theorem 19 as stated in Section 4 of the
main paper.

Proof of Lemma 18. For scalar functions f(s), derivatives of exp(f(s)) can be expressed
through the complete Bell polynomials via Faà di Bruno’s formula.

∂n
s e

f(s) = Yn(f ′(s), f ′′(s), . . . , f (n)(s))ef(s) (E.1)

For operator exponentials such as exp(−iH̃st), derivatives can be expressed via repeated
application of Duhamel’s formula. Yet these expressions are always upper bounded by
the commuting (scalar) case [52], so that∥∥∥∂n

s e
−iH̃st

∥∥∥ ≤ Yn

(
t
∥∥∥∂sH̃s

∥∥∥ , t ∥∥∥∂2
s H̃s

∥∥∥ , . . . , t ∥∥∥∂n
s H̃s

∥∥∥) . (E.2)

Note that the exponential disappeared in the bound since it has norm one. Applying
Lemma 1 and invoking the fact that Yn is monotonic in each argument, this is upper
bounded by

Yn

(
(2jj(e2c)j+1)n

j=1

)
. (E.3)

An explicit formula for this is given by

Yn

(
(2jj(e2c)j+1)n

j=1

)
=
∑
D

n!
d1! . . . dn!

n∏
j=1

(
2jj(e2c)j+1

j!

)dj

(E.4)
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where D is a sum over all indices (dj)n
j=1 such that dj ≥ 0 and
n∑

j=1
djj = n. (E.5)

Using a Stirling-type bound

1
j! ≤

(
e

j

)j 1√
2π

(E.6)

allows us to write

Yn

(
(2jj(e2c)j+1)n

j=1

)
≤
∑
D

n!
d1! . . . dn!

n∏
j=1

√ 2
π
ej(e2c)j+1

dj

= (e3c)n
∑
D

n!
d1! . . . dn!

n∏
j=1

√ 2
π
e2c

dj

= (e3c)nYn(
√

2/πe2c,
√

2/πe2c, . . . ,
√

2/πe2c)

= (e3c)nBn(
√

2/πe2c).

(E.7)

In the second line we brought out n factors of ec using the condition on the indices D,
and we identified Yn evaluated the same at every argument to be the single-variable
Bell (or Touchard) polynomial Bn. We can bound the size of Bn(

√
2/πe2c) [53] by

Bn(
√

2/πe2c) ≤

 n

log(1 +
√

π
2n/(e2c))

n

(E.8)

for all n > 0, with n = 0 defined by the limit (which is 1). With this,

∥∥∥∂n
s e
−iH̃st

∥∥∥ ≤

 e3cn

log(1 +
√

π
2n/(e2c))

n

≤
(
e3cn

2

)n
1 +

√
8
π

e2c

n

n

(E.9)

where we’ve used the bound 1/ log(1 + x) ≤ 1/2 + 1/x. Again, this inequality is valid
for n = 0 via the limit, which is always one.

With this bound on the ST formula derivatives, we now turn to bounding ∂n
sOs(t).

Applying the binomial theorem and triangle inequality to (2.13),

∥∂n
sOs(t)∥
∥O∥

≤
n∑

p=0

(
n

p

)∥∥∥∂p
se

itH̃s

∥∥∥ ∥∥∥∂n−p
s e−itH̃s

∥∥∥
≤
(
e3c

2

)n n∑
p=0

(
n

p

)
pp(n− p)n−p

1 +
√

8
π

e2c

p

p1 +
√

8
π

e2c

n− p

n−p

.

(E.10)
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At this point, it will be fruitful to consider two regimes. Recall that c encodes infor-
mation about the simulation time.

In the case where c > n, we have

∥∂n
sOs∥

∥O∥
≤
(
e3c

2

)n n∑
p=0

(
n

p

)
(c+

√
8/πe2c)p(c+

√
8/πe2c)n−p

≤
(
e3c

2

)n

cn
(

1 +
√

8/πe2
)n n∑

p=0

(
n

p

)

=
(
c

√
e3(1 +

√
8/πe2)

)2n

.

(E.11)

This implies a relative error in the polynomial fit bounded by

|En−1(0)| <
(

129c
2a

n

)n

. (E.12)

In the case where c ≤ n, the approximation1 + e2

√
8
π

c

p

p

< ece2
√

8/π (E.13)

holds and is not so crude. Applying this to (E.10),

∥∂n
sOs∥

∥O∥
≤
(
e3c

2

)n

n!
n∑

p=0

pp

p!
(n− p)n−p

(n− p)! e4ce2
√

2/π. (E.14)

Regrouping and employing a Stirling bound where appropriate,

∥∂n
sOs∥

∥O∥
≤ e4ce2

√
2/π

(
e3c

2

)n

n!
2 en

√
2πn

+ en

2π

n−1∑
p=1

1√
p(n− p)


≤ e4ce2

√
2/π

(
e4c

2

)n

n!
(

2√
2πn

+
√
n− 1
2π

)

≤ 1
2π (

√
8π +

√
n− 1)

(
e4c

2

)n

n!e4ce2
√

2/π

≤
√

2n
π

(
e4c

2

)n

n!e4ce2
√

2/π

(E.15)

After another Stirling bound, this gives a corresponding interpolation error of

En−1(0) < 2
√

2n (6ca)n e24c. (E.16)
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Proof of Theorem 19. Let f(s) = ⟨Os(t)⟩/ ∥O∥ be the normalized expectation value
under Trotter evolution. Our interpolation algorithm produces an estimate f̄ of f(0)
which we require to be accurate within ϵ.∣∣∣f(0) − f̄

∣∣∣ ≤ ϵ (E.17)

There is the interpolation error from the polynomial Pn−1f fitting f assuming per-
fect interpolation points (si, f(si)). But f(si) can only be estimated; let’s call ỹi this
estimate. The error in ỹi in our analysis comes from the statistical error inherent in
the estimation protocol as well as the error in the fractional query procedure for a 1/s
evolution. We can independently consider the interpolation error and the data error
via the triangle inequality.∣∣∣f(0) − f̄

∣∣∣ ≤ |f(0) − Pn−1f(0)| +
∣∣∣Pn−1f(0) − P̃n−1f(0)

∣∣∣
≤ ϵint + Lnϵdata

(E.18)

Here Ln is the Lebesgue constant of the interpolation, essentially a condition number,
and ϵdata is an upper bound on the error in the data. P̃n−1f is the fit to the imperfect
data and Pn−1f the fit to the perfect data (si, f(si)). For generic interpolation nodes,
Ln can grow rapidly; however, for the set of Chebyshev nodes we obtain a near-optimal
value [54].

Ln ≤ 2
π

log(n+ 1) + 1 (E.19)

Since we want the total error to be within a threshold ϵ, we can require

ϵdata ≤ ϵ

2Ln

, ϵint ≤ ϵ

2 . (E.20)

Given these error bounds, we can now turn to the cost of acquiring the data points.
Because O/γ can be block encoded, the expectation value calculation can be encoded
as an amplitude estimation problem. Specifically, a Hadamard test circuit gives the
amplitude

1 + ⟨Osi
(t)⟩/γ

2 . (E.21)

If we estimate this amplitude to within accuracy ϵdata ∥O∥ /2γ, we can estimate f(si)
within ϵdata. Using Iterative Quantum Amplitude Estimation [43], we can obtain this
estimate using a Grover iterate G constructed from two Hadamard test oracles. The
number of Grover oracles NG required is given by

NG ≤ 200γLn

∥O∥ ϵdata
log

(
2n
δ

log2

(
γLnπ

∥O∥ ϵdata

))
(E.22)
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to ensure probability 1−δ of all data being within ϵdata of the true value. EachG requires
two Hadamard tests, and each Hadamard oracle calls a (controlled) ST evolution once.
The number of controlled exponentials needed for a single data point at value si is in

O

(
Nk

|si|
log 1/ϵdata

)
(E.23)

where Nk = 2m5k−1, and where the logarithm comes from the need for fractional queries
with QSVT. There is also a O(1) overhead associated with the fractional queries and
IQAE. Altogether, the number of exponentials for a single data point is in

O

(
NG × 2 × Nk

|si|
log 1/ϵdata

)
. (E.24)

Therefore, the total number Nexp of generating all n/2 data points (we only need half
due to symmetry) is in

Nexp ∈ O

NGNk

n/2∑
i=1

1
si

log(1/ϵdata)
 . (E.25)

Plugging in (E.22) for NG above and summing over 1/si using Lemma 3,

Nexp ∈ O

(
γNkLnn

∥O∥ ϵa
(log n) log

(
2n
δ

log2

(
γLnπ

∥O∥ ϵ

))
log(1/ϵdata)

)

⊂ Õ
(
n

aϵ
log 1/δ

) (E.26)

where Õ suppresses factors logarithmic in n and ϵ. We also employed our assumption
that γ/ ∥O∥ ∈ O(1). The number of nodes n and the interpolation interval [−a, a]
will be determined by ϵint, the interpolation error assuming perfect data. To apply our
error bounds from the previous subsection, choose a to satisfy Lemma 1, i.e. ca < π/20,
while also taking 1/a ∈ O(c).

Choose n ≥ ⌈c⌉. Then the second bound of Lemma 18 holds. From the interpolation
error, we must satisfy

2
√

2n(6ca)ne24c < ϵ/2 (E.27)

which in turn can be satisfied provided that

4
√

2n
(
6e24ca

)n
< ϵ (E.28)

since n ≥ c. Choose a such that 6e24ca = 1/2, which is consistent with our previous
conditions on a. Then, to satisfy the error bound, n can satisfy

4
√

2n2−n < ϵ. (E.29)
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This can be solved using the −1 branch of the LambertW function.

n > −
LambertW−1

(
−ϵ log 2/(4

√
2))
)

log 2 . (E.30)

The appropriate asymptotics is n ∈ O(log(1/ϵ). By taking n = n∗ where

n∗ = max
{

⌈c⌉,
⌈
−LambertW−1(−ϵ log 2/(4

√
2)

log 2

⌉}
(E.31)

∈ O(max{c, log(1/ϵ)}) (E.32)

we satisfy all required constraints and arrive at our final asymptotic scaling.

Nexp ∈ Õ
(
max{c, log(1/ϵ)}cϵ−1 log(1/δ)

)
(E.33)

Remark. In the proof above, we set n > c from the beginning, in order to use the
second of the two bounds from Lemma 18. Together with 1/a ∈ O(c) this condemns us
to a suboptimal c2 scaling in the large c limit. However, using the first bound instead of
the second would not help us, since the nc2/a term in that bound must be order one.
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