Incompatibility of quantum instruments

Leevi Leppäjärvi1 and Michal Sedlák1,2

1RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
2Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum instruments describe outcome probability as well as state change induced by measurement of a quantum system. Incompatibility of two instruments, i. e. the impossibility to realize them simultaneously on a given quantum system, generalizes incompatibility of channels and incompatibility of positive operator-valued measures (POVMs). We derive implications of instrument compatibility for the induced POVMs and channels. We also study relation of instrument compatibility to the concept of non-disturbance. Finally, we prove equivalence between instrument compatibility and postprocessing of certain instruments, which we term complementary instruments. We illustrate our findings on examples of various classes of instruments.

► BibTeX data

► References

[1] W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43, 172–198 (1927).

[2] N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121, 580–590 (1928).

[3] O. Gühne, E. Haapasalo, T. Kraft, J.-P. Pellonpää, and R. Uola, Colloquium: Incompatible measurements in quantum information science, Rev. Mod. Phys. 95, 011003 (2023).

[4] A. Fine, Hidden variables, joint probability, and the bell inequalities, Phys. Rev. Lett. 48, 291–295 (1982).

[5] M.M. Wolf, D. Perez-Garcia, and C. Fernandez, Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory, Phys. Rev. Lett. 103, 230402 (2009).

[6] Y.-C. Liang, R. W. Spekkens, and H. M. Wiseman, Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity, Phys. Rep. 506, 1–39 (2011).

[7] Z.-P. Xu and A. Cabello, Necessary and sufficient condition for contextuality from incompatibility, Phys. Rev. A 99, 020103(R) (2019).

[8] A. Tavakoli and R. Uola, Measurement incompatibility and steering are necessary and sufficient for operational contextuality, Phys. Rev. Research 2, 013011 (2020).

[9] M. T. Quintino, T. Vértesi, and N. Brunner, Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality, Phys. Rev. Lett. 113, 160402 (2014).

[10] P. Skrzypczyk, I. Šupić, and D. Cavalcanti, All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination, Phys. Rev. Lett. 122, 130403 (2019).

[11] C. Carmeli, T. Heinosaari, and A. Toigo, Quantum Incompatibility Witnesses, Phys. Rev. Lett. 122, 130402 (2019).

[12] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, Quantifying Quantum Resources with Conic Programming, Phys. Rev. Lett. 122, 130404 (2019).

[13] C. Carmeli, T. Heinosaari, and A. Toigo, Quantum random access codes and incompatibility of measurements, EPL 130, 50001 (2020).

[14] T. Heinosaari and L. Leppäjärvi, Random access test as an identifier of nonclassicality, J. Phys. A: Math. Theor. 55, 174003 (2022).

[15] M. Plávala, All measurements in a probabilistic theory are compatible if and only if the state space is a simplex, Phys. Rev. A 94, 042108 (2016).

[16] T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, J. Phys. A: Math. Theor. 49, 123001 (2016).

[17] T. Heinosaari and T. Miyadera, Incompatibility of quantum channels, J. Phys. A: Math. Theor. 50, 135302 (2017).

[18] E. Haapasalo, Compatibility of covariant quantum channels with emphasis on Weyl symmetry, Ann. Henri Poincaré 20, 3163–3195 (2019).

[19] Y. Kuramochi, Quantum incompatibility of channels with general outcome operator algebras, J. Math. Phys. 59, 042203 (2018).

[20] M. Girard, M. Plávala, and J. Sikora, Jordan products of quantum channels and their compatibility, Nat. Comm. 12, 2129 (2021).

[21] C. Carmeli, T. Heinosaari, T. Miyadera, A. Toigo, Witnessing incompatibility of quantum channels, J. Math. Phys. 60, 122202 (2019).

[22] A. Mitra and M. Farkas, Compatibility of quantum instruments, Phys. Rev. A 105, 052202 (2022).

[23] K. Ji and E. Chitambar, Incompatibility as a resource for programmable quantum instruments, arXiv:2112.03717 [quant-ph] (2021).

[24] G. M. D'Ariano, P. Perinotti, and A. Tosini, Incompatibility of observables, channels and instruments in information theories, J. Phys. A: Math. Theor. 55 394006 (2022).

[25] A. Mitra and M. Farkas, Characterizing and quantifying the incompatibility of quantum instruments, Phys. Rev. A 107, 032217 (2023).

[26] F. Buscemi, K. Kobayashi, S. Minagawa, P. Perinotti, and A. Tosini, Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication, Quantum 7, 1035 (2023).

[27] T. Heinosaari and M. M. Wolf, Nondisturbing quantum measurements, J. Math. Phys. 51, 092201 (2010).

[28] L. Leppäjärvi and M. Sedlák, Postprocessing of quantum instruments, Phys. Rev. A 103, 022615 (2021).

[29] K. Kraus, States, Effects, and Operations (Springer-Verlag, Berlin, 1983).

[30] W. F. Stinespring, Positive functions on $C^{∗}$-algebras, Proc. Amer. Math. Soc. 6, 211–216 (1955).

[31] M. Hayashi, Quantum Information (Springer-Verlag, Berlin, 2006). Translated from the 2003 Japanese original.

[32] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, Noncommuting mixed states cannot be broadcast, Phys. Rev. Lett. 76, 2818–21 (1996).

[33] W. Wootters and W. Zurek, A Single Quantum Cannot be Cloned, Nature 299, 802–803 (1982).

[34] T. Heinosaari, D. Reitzner, and P. Stano, Notes on Joint Measurability of Quantum Observables, Found. Phys. 38, 1133–1147 (2008).

[35] S. T. Ali, C. Carmeli, T. Heinosaari, and A. Toigo, Commutative POVMs and Fuzzy Observables, Found. Phys. 39, 593–612 (2009).

[36] L. Leppäjärvi, Measurement simulability and incompatibility in quantum theory and other operational theories, Annales Universitatis Turkuensis, Ser A I: 646 (PhD thesis, University of Turku, 2021).

[37] T. Heinosaari and T. Miyadera, Qualitative noise-disturbance relation for quantum measurements, Phys. Rev. A 88, 042117 (2013).

[38] A. Jencová, A general theory of comparison of quantum channels (and beyond), IEEE Trans. Inf. Theory 67, 3945–3964 (2021).

[39] C. Bény and O. Oreshkov, Approximate simulation of quantum channels, Phys. Rev. A 84, 022333 (2011).

[40] M. Raginsky, Radon–Nikodym derivatives of quantum operations, J. Math. Phys. 44, 5003–5020 (2003).

[41] T. Heinosaari and M. Ziman, The Mathematical Language of Quantum Theory (Cambridge University Press, Cambridge, 2012).

[42] M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25, 79–87 (1984).

[43] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Realization schemes for quantum instruments in finite dimensions, J. Math. Phys. 50, 042101 (2009).

[44] J.-P. Pellonpää, Quantum instruments: II. Measurement theory, J. Phys. A: Math. Theor. 46, 025303 (2013).

[45] M. Horodecki, P.W. Shor, and M.B. Ruskai, Entanglement breaking channels, Rev. Math. Phys. 15, 629–641 (2003).

[46] M. Choi, Completely positive linear maps on complex matrices, Linear Alg. Appl. 10, 285–290 (1975).

[47] H. Martens and W. de Muynck, Nonideal quantum measurements, Found. Phys. 20, 255–281 (1990).

Cited by

[1] Stan Gudder, "Multi-Observables and Multi-Instruments", arXiv:2307.11223, (2023).

[2] Stanley Gudder, "A Theory of Quantum Instruments", arXiv:2305.17584, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-02-27 14:36:31). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-02-27 14:36:29).