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Recent constructions of quantum low-density parity-check (QLDPC) codes
provide optimal scaling of the number of logical qubits and the minimum dis-
tance in terms of the code length, thereby opening the door to fault-tolerant
quantum systems with minimal resource overhead. However, the hardware
path from nearest-neighbor-connection-based topological codes to long-range-
interaction-demanding QLDPC codes is likely a challenging one. Given the
practical difficulty in building a monolithic architecture for quantum systems,
such as computers, based on optimal QLDPC codes, it is worth considering
a distributed implementation of such codes over a network of interconnected
medium-sized quantum processors. In such a setting, all syndrome measure-
ments and logical operations must be performed through the use of high-fidelity
shared entangled states between the processing nodes. Since probabilistic
many-to-1 distillation schemes for purifying entanglement are inefficient, we
investigate quantum error correction based entanglement purification in this
work. Specifically, we employ QLDPC codes to distill GHZ states, as the
resulting high-fidelity logical GHZ states can interact directly with the code
used to perform distributed quantum computing (DQC), e.g. for fault-tolerant
Steane syndrome extraction. This protocol is applicable beyond the applica-
tion of DQC since entanglement distribution and purification is a quintessen-
tial task of any quantum network. We use the min-sum algorithm (MSA)
based iterative decoder with a sequential schedule for distilling 3-qubit GHZ
states using a rate 0.118 family of lifted product QLDPC codes and obtain
an input threshold of ≈ 0.7974 under i.i.d. single-qubit depolarizing noise.
This represents the best threshold for a yield of 0.118 for any GHZ purifi-
cation protocol. Our results apply to larger size GHZ states as well, where
we extend our technical result about a measurement property of 3-qubit GHZ
states to construct a scalable GHZ purification protocol. Our software is avail-
able at: https://github.com/nrenga/ghz_distillation_qec/tree/main/
qldpc-ghz_protocol_II and https://zenodo.org/record/8284903.
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1 Introduction

ADVANCES in quantum technologies are happening at a breathtaking pace and these
will lead to exciting applications in quantum computing, networking, sensing, secu-

rity, and more. Quantum networking is a common theme in all these applications, such as
for employing quantum key distribution to enhance digital security, for connecting quan-
tum sensors together to enable a quadratic gain in sensing precision, and for distributing
quantum computation among multiple quantum processors to relax the burden of building
enormous monolithic quantum computers. This work is primarily motivated by the latter
role of quantum networking. Indeed, for fault-tolerant quantum computing (FTQC), the
best codes for scalability are the recently proposed constructions of quantum low-density
parity-check (QLDPC) codes [1, 2, 3, 4, 5, 6]. They provide optimal scaling of the code
parameters, i.e., the number of logical qubits and the minimum distance, with respect to
the length of the code, and thereby form promising candidates for FTQC with minimal
resource overhead. While topological codes such as the surface code are also QLDPC
codes, they encode only a fixed number of logical qubits even with diverging code size and
have suboptimal scaling of the minimum distance. However, they just require nearest-
neighbor connections to build in hardware, whereas these optimal QLDPC codes require
many long-range connections. Even though the LDPC property means that each stabi-
lizer check involves only a fixed number of qubits and similarly each qubit is only involved
in a fixed number of checks, both irrespective of the code size, there are a large number
of connections between checks and qubits that are non-local geometrically [7]. Thus, it
becomes very challenging to build such codes in practice for several technologies such as
superconducting qubits.

Given such practical constraints, it becomes very relevant and interesting to explore
Distributed Quantum Computing (DQC): a distributed realization of these QLDPC codes
where multiple interconnected medium-sized quantum processors each store a subset of
qubits and coordinate processing through the means of a classical compute node. Naturally,
this means that all the logical operations and syndrome measurements on the coded qubits
are now non-local, i.e., must involve multiple nodes. Such an architecture was explored by
Nickerson et al. [8] even a decade ago, but in the context of the surface code. The solution
to perform non-local operations is to share high-fidelity entangled Bell and GHZ states
among the nodes, perform local gates between code qubits and these ancillary entangled
qubits, and pool the classical measurement results across nodes to assess the state of the
qubits. For example, in the case of the surface code with each node possessing only one
code qubit, each 4-qubit syndrome measurement will involve one CNOT per node between
the code qubit and one of the 4 qubits of an ancillary GHZ state shared between the
nodes; this is followed by a single-qubit Pauli measurement on the ancillary qubit and
classical communication of the result with other nodes. The authors proposed to produce
high-fidelity 4-qubit GHZ states by generating Bell pairs between pairs of nodes and then
“fusing” them to form the GHZ state. The process involved multiple rounds of simple
probabilistic purification of the entangled state, which is in general inefficient since the
number of consumed Bell pairs can be very large (and uncertain). While their hand-
designed purification schemes have been extended by algorithmic procedures recently [9,
10], the approach still suffers from this inefficiency arising from the heralded nature of the
protocol. We will discuss comparisons to past work on GHZ purification after we present
our results in the next section.

Our goal in this paper is to investigate a principled and systematic procedure to purify
(or distill) GHZ states using quantum error correcting codes (QECCs). If one can use the
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same QLDPC codes that DQC will employ for FTQC (“compute code”) to also store logical
GHZ ancillary states, then these can potentially be directly interacted with the compute
code for performing fault-tolerant (e.g., Steane) syndrome extraction and measurement-
based methods for logical operations. Thus, it is very pertinent to develop a scalable GHZ
purification protocol using these optimal QLDPC codes (“purification code”). While DQC
is a key motivation, such a protocol serves a much wider purpose, since entanglement
generation, distribution and purification form the cornerstone of quantum networking. For
efficient and scalable quantum networks, one must necessarily deploy quantum repeaters
whose primary function is to help entangle different subsets of parties in the network. In
the long-run, third generation quantum repeaters will use quantum error correction for
entanglement purification [11]. Such repeater nodes, and other nodes of the network that
are not quantum computers, will still need to possess a fault-tolerant quantum memory
to generate and store (shares of) high-fidelity entangled states. Therefore, if the compute
nodes will deploy QLDPC codes, then QLDPC purification codes could potentially unify
the functioning of different parts of the network and enable seamless integration.

2 Main Results and Discussion
Entanglement purification is a well-studied problem in quantum information, where one
typically starts with n copies of a noisy Bell pair, or a general mixed state, and distills k
Bell pairs of higher fidelity [12]. Several teams of researchers have worked on this problem,
and the contributions range from fundamental limits [12, 13, 14, 15, 16, 17] to simple and
practical protocols [9, 13, 18, 19]. Of course, if one can distill Bell pairs, then these can
be “fused” in sequence to entangle multiple parties, but direct distillation of an entangled
resource between all parties can be more efficient [20]. Some purification schemes involve
two-way communications between the involved parties while others only need one-way
communication. We focus on one-way schemes in this paper. The connection between
one-way entanglement purification protocols (1-EPPs) and QECCs was established by
Bennett et al. in 1996 [13]. They showed that any QECC can be converted into a 1-EPP
(and vice-versa). This framework enables systematic n-to-k protocols where the rate and
average output fidelity are directly a function of the QECC rate and decoding performance,
respectively. Since the recently constructed QLDPC codes have asymptotically constant
rate and linear distance scaling with code size [1, 2, 3, 4, 5, 6], our work paves the way for
high-rate high-fidelity entanglement distillation.

2.1 Purifying Bell Pairs with QLDPC Codes
In 2007, Wilde et al. [18] showed that any classical convolutional code can be used to
distill Bell pairs via their entanglement assisted 1-EPP scheme. In the development of
this scheme, they mention a potentially different method to use a QECC for performing
1-EPP [18, Section II-D] (without entanglement assistance), compared to the protocol by
Bennett et al. Initially, Alice generates n perfect Bell pairs locally, marks one qubit of each
pair as ‘A’ and the other as ‘B’, and measures the stabilizers of her chosen [[n, k]] code
on qubits ‘A’. Due to the “transpose” property of Bell states, this simultaneously projects
qubits ‘B’ onto an equivalent code (see Appendix A.4). Then, she performs a local Pauli
operation on qubits ‘A’ to fix her obtained syndrome, shares her code stabilizers and
syndrome with Bob through a noiseless classical channel, and sends qubits ‘B’ to Bob
over a noisy Pauli channel. Using the transpose property, Bob measures the appropriate
code stabilizers on qubits ‘B’, and corrects channel errors by combining his syndrome with
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Figure 1: (top) The performance of a family of lifted product QLDPC codes with asymptotic rate
0.118 using the sequential schedule of the min-sum algorithm (MSA) based decoder. Each data point
is obtained by counting 100 logical errors. (bottom) The threshold is about 10.6-10.7%. These results
apply to Bell pair purification, up to a rescaling of the depolarizing probabilities.
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Alice’s syndrome. Finally, Alice and Bob decode their respective qubits, i.e., invert the
encoding unitary (see Appendix A.2), to convert the k logical Bell pairs into k physical
Bell pairs. Since the code corrects some errors, on average the output Bell pairs are of
higher fidelity than the initial n noisy ones.

As our first contribution, we elucidate this protocol for general stabilizer codes [21, 22]
through the lens of the stabilizer formalism [23], using the 5-qubit perfect code [21, 24]
as an example. This approach clarifies many details of the protocol, especially from an
error correction standpoint, and helps adapt it to different scenarios. For the performance
of the protocol, note that any error on Alice’s qubits can be mapped into an equivalent
error on Bob’s qubits using the transpose property, in effect increasing the error rate on
Bob’s qubits. Therefore, since only Bob corrects errors in this protocol, the failure rate of
the protocol is the same as the logical error rate (LER) of the code on the depolarizing
channel, with an effective channel error rate that accounts for errors on Alice’s qubits as
well as Bob’s qubits (as long as they do not amount to a Bell state stabilizer together).
If errors only happen on Bob’s qubits, then the failure rate of the protocol is identical to
the logical error rate of the code. For all simulations in this work, we consider a rate 0.118
family of lifted product (LP118) QLDPC codes decoded using the sequential schedule of
the min-sum algorithm (MSA) based iterative decoder with normalization factor 0.8 and
maximum number of iterations set to 100 [25, 26]. The LER of this code-decoder pair is
shown in Fig. 1, where we see that the threshold is about 10.6-10.7%. Since the fidelity
is one minus the depolarizing probability, this translates to an input fidelity threshold
of about 89.3-89.4%. Also, even with n = 544, the LER is ≈ 10−6 at depolarizing rate
10−2. Again, note that these curves can be interpreted as the performance of Bell pair
purification when only Bob’s qubits are affected by errors.

2.2 New Protocols to Purify GHZ States with QLDPC Codes
Protocol I: Given these insights, we proceed to investigate the purification of GHZ states.
As in the Wilde et al. protocol, we consider only local operations and one-way classical
communications (LOCC), and assume that these are noiseless. The key technical insight
necessary to construct the protocol is the GHZ-equivalent of the transpose property of
Bell pairs. Given n copies of the GHZ state, whose three subsystems are marked ‘A’,
‘B’ and ‘C’, we find that applying a matrix on qubits ‘A’ is equivalent to applying a
“stretched” version of the matrix on qubits ‘B’ and ‘C’ together (see Lemma 3). We call this
mapping to the stretched version of the matrix the GHZ-map, and prove that it is an algebra
homomorphism [27], i.e., linear, multiplicative, and hence projector-preserving. Recollect
from the Bell pair purification setting that we are interested in measuring stabilizers on
qubits ‘A’ and understanding their effect on the remaining qubits. Using the properties of
the GHZ-map, we show that it suffices to consider only the simple case of a single stabilizer.
With this great simplification, we prove that imposing a given [[n, k, d]] stabilizer code on
qubits ‘A’ simultaneously imposes a certain [[2n, k, d′]] stabilizer code jointly on qubits ‘B’
and ‘C’. By performing diagonal Clifford operations on qubits ‘C’, which commutes with
any operations on the other qubits, one can vary the distance d′ of the induced ‘BC’ code.
Then, we use this core technical result to devise a natural protocol that purifies GHZ states
using any stabilizer code (“Protocol I”, see Fig. 2 and Algorithm 2).

We perform simulations on the [[5, 1, 3]] perfect code and compare the protocol failure
rate to the LER of the code on the depolarizing channel, both using a maximum-likelihood
decoder. In terms of error exponents, we show that it is always better for Bob to perform
a local diagonal Clifford operation on Charlie’s qubits, rather than Alice doing the same.
We support the empirical observation with an analytical argument on the induced BC code
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and Charlie’s code. Finally, we finish by showing that the average output k-qubit density
matrix of the protocol is diagonal in the GHZ-basis, and its fidelity is directly dictated
by the protocol’s failure rate. While the scheme is suited for a linear network of three
parties, it is obvious that there is an asymmetrically larger burden on Bob, which makes
the protocol less scalable to larger GHZ states. Nevertheless, we think that this protocol
still has pedagogical value in understanding the implications of the new insight on GHZ
states.

Protocol II: Motivated by this drawback, we devise an improved protocol that avoids
the additional 2n-qubit measurements of Protocol I. The new scheme is depicted in Fig. 3
and described in Algorithm 4 for CSS codes. The protocol can be extended to general
stabilizer codes through additional diagonal Clifford operations as in Protocol I but, for
simplicity, we focus on CSS (QLDPC) codes here. It will also be interesting to investigate
if there are any potential gains from employing non-CSS stabilizer codes in entanglement
purification, because CSS codes are known to be optimal for certain aspects of fault-tolerant
quantum computing [28]. When Alice measures stabilizers on qubits ‘A’, the new GHZ
property still implies that there is a 2n-qubit code automatically induced on qubits ‘B’ and
‘C’ together. In order to split that code into individual codes on qubits ‘B’ and ‘C’, Alice
performs a second round of the same (n-qubit) stabilizer measurements but this time on
qubits ‘B’. This enables Bob and Charlie to measure the same stabilizers on their respective
qubits and correct errors induced by the channel on qubits ‘B’ and ‘C’, respectively. The
flow of the protocol is naturally applicable when Alice is connected to both Bob and Charlie
but those two parties are not connected directly. But we emphasize that the protocol is
scalable and we summarize its extension to larger GHZ states with larger number of parties
connected by any network topology; the key requirement is that the qubits of a recipient
over a network edge have already been measured and projected to the code subspace before
those qubits are sent over the edge.

In Fig. 4 we report simulation results for Protocol II on 3-qubit GHZ states using
the same LP118 code family and MSA decoder as in Fig. 1. All data points except the
first one on each curve (for depolarizing rate 0.09) were computed by collecting close to
104 logical errors. We observe that the threshold (≈ 10.7%) is very close to the single
decoder case in Fig. 1, which is reassuring since the GHZ protocol needs both Bob and
Charlie to run decoders. In terms of fidelity, unlike the Bell pair case, two qubits of each
GHZ state (i.e., those marked ‘B’ and ‘C’) undergo depolarizing noise, so the input fidelity
threshold is (1 − p)2 ≈ 0.7974 where p ≈ 10.7%. Note that this is for a yield of 0.118,
which is the asymptotic rate of the LP118 QLDPC code family. Technically, one must
multiply the code rate with one minus the protocol failure rate to get the exact yield, but
we assume that in practice we operate well away from the threshold where failure rates are
orders of magnitude smaller (see Fig. 1 for reference). However, the logical error rates are
significantly higher than those in Fig. 1. This is likely due to the fact that both decoders
must succeed for the protocol to not fail. Note that there can be situations where an error
on Alice’s qubit cancels the errors on Bob’s and Charlie’s due to the new GHZ property.
But it is unclear whether these have a significant effect on the protocol performance. We
plan to study this carefully in future work because it is undesirable for failure rates to
increase as we scale the protocol to larger number of parties.

The implementation of our protocol is available on GitHub and archived on Zenodo [29].
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2.3 Discussion and Connections to Existing GHZ Purification Protocols
We are interested in comparing our protocols to past work on GHZ purification to judge
the effectiveness of our work. However, based on our knowledge of the literature and the
differences in the settings of purification protocols, this appears to be challenging and
is likely a work on its own. Nevertheless, let us address this in some detail here. In the
process, we will make comparisons and show that our protocol has the best fidelity threshold
for 3-GHZ purification at a yield of 0.118.

1. Most protocols in the literature with numerical results perform heralded purification
where both the protocol success probability and the output fidelity are not ideal. In
our error correction based protocol, as long as the decoder succeeds in correcting the
error, we always obtain k perfect entangled states as the output (assuming perfect
local operations and classical communication). It then seems natural to model this
setting as another probabilistic protocol, conditioned on the probability of successful
decoding, but with unit output fidelity, ignoring for now the additional fact that
k ≫ 1 in our case whereas k = 1 in most of the literature. However, this is not
quite true since (iterative) decoder success does not come with a heralding signal.
In general, there are three possible scenarios: the decoder succeeds in correcting the
error, the decoder miscorrects the error (i.e., causes a logical error), or the decoder
reaches the maximum number of iterations and returns a failure. In the first two
cases, the decoder does find an estimated error pattern that matches the syndrome
obtained from stabilizer measurements, whereas in the last case, the decoder is unable
to even find an error pattern matching the syndrome. It is clear that this last case
heralds a failure, but there is no way to distinguish the first two scenarios. Let us
mention here that in the particular case of the Lifted Product family of codes that we
consider, most of the protocol failure events are due to the decoder declaring a failure
(i.e., the third case above) and not due to miscorrections. However, this is only a
preliminary observation that we are investigating in more detail. If we are able to
design good codes for this iterative decoder where decoding success can be heralded,
then we can model the protocol similar to other existing non-error-correction-based
protocols. Currently, this is an important bottleneck that hinders making a fair and
useful comparison with existing protocols.

2. Note that if the middle case (i.e., miscorrections) happens with non-negligible prob-
ability, then there are two ways to model the protocol: either the output fidelity is
always unity and the success probability is dictated by the decoding success rate, or
the protocol always succeeds whenever decoder doesn’t declare failure (i.e., the third
case) but the output fidelity is non-trivial and dictated by a mixed state account-
ing for all possible logical errors arising out of miscorrections. The former seems
more straightforward and especially appropriate if miscorrections hardly occur, but
this is another modeling decision that we must make when using error correction for
purification.

It is interesting to note that Chau and Ho [30] have thought about the case of an
iterative decoding failure for quantum LDPC codes. The paper is about purifying Bell
pairs by concatenating recurrence with an outer QLDPC code rather than hashing,
since it is more practical. The authors use the final bitwise posterior probabilities of
the iterative decoder to find an appropriate unencoding circuit, at the end of which
they can throw away some Bell pairs with confidence that the decoding failure most
likely only affected them. They only provide one QLDPC code as an example, but

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 10



the method seems quite computationally challenging because this must happen in
runtime. Since they do not consider a code family, there is no relevant threshold for
their protocol and their work is restricted to Bell pairs.

3. Hashing was introduced by Bennett et al. in their seminal paper [13] and it has
become the go-to tool for obtaining finite yield (i.e., ratio of number of purified output
states to noisy input states) from a mixture of imperfect noisy entangled states. The
threshold input fidelity for purifying Werner (Bell) states through hashing is about
0.8107. By first performing recurrence and then feeding the output into hashing
brings the threshold down to 0.5. However, recurrence needs two-way communication
and has zero yield by itself, whereas hashing needs one-way communication but
infinite copies to produce finite yield. Since hashing effectively depends on random
codes, it is impractical because decoding random linear codes is NP-complete [31, 32].

4. Nevertheless, hashing has been extended to multipartite states such as GHZ states,
first by Maneva and Smolin [33]. They extract entropy from the bits representing the
signs of the different stabilizers of multiple copies of the multipartite entangled state.
For Werner-type 3-qubit GHZ states, their threshold is effectively about 0.8075. If we
equate their yield to the rate of the Lifted Product quantum LDPC code family that
we use in our simulations, which is about 0.118 asymptotically, then the threshold
fidelity of the Maneva-Smolin protocol is 0.8401. In our setting, where each ‘B’
and ‘C’ qubit of each GHZ state goes through an i.i.d. depolarizing noise channel,
the resulting state is diagonal in the GHZ basis but not exactly of Werner type.
Nevertheless, the fidelity for the noisy state is simply given by the probability that
both qubits are not affected by noise, i.e., (1 − p)2 if p is the depolarizing rate.
Using this, our threshold of 10.7% for 3-qubit GHZ purification maps to a fidelity
threshold of about 0.7974, which is very encouraging. Note that both hashing and our
protocol assume ideal LOCC. In fact, the Maneva-Smolin protocol appears to need
several rounds of hashing-style broadcast, whereas our protocol only needs one-way
communication, devoid of randomness.

5. In [34], Ho and Chau generalize the Maneva-Smolin protocol for multipartite entan-
glement purification and produce three new protocols, based on concatenating inner
repetition codes with outer random hashing codes. For the case of three-qubit GHZ
states, their best protocol has a fidelity threshold of 0.7074 (assuming an inner rep-
etition code of length 15). If we look at Figure 4 of this paper, which plots fidelity
against yield for different size GHZ states for their best protocol, the curve for rep-
etition length 7 (the maximum that they consider in the plot) produces a yield of
0.118 (the asymptotic rate of our QLDPC code family) only far above input fidelity
of 0.95. These are the best thresholds that we could find for purifying GHZ states. A
recent paper on GHZ purification [35] also uses the Maneva-Smolin protocol as their
reference, so our judgment appears to be justified.

It is encouraging to see that the same authors, Ho and Chau, were the ones who
showed the use of a degenerate quantum (LDPC) code to purify Bell pairs as men-
tioned in point 2) above. Besides, such hashing based methods are not resilient to
noise unless implemented in a measurement-based way [36], which itself needs prepa-
rations of highly entangled cluster states. Therefore, our new protocol with good
QLDPC codes serves as the state-of-the-art for purifying GHZ states.
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6. Most existing protocols based on recurrence or hashing or other related methods
involve deep circuits that appear to require interactions between arbitrary pairs of
qubits. This is extremely challenging in a fault-tolerant setting. However, when
our protocol is used in conjunction with good quantum LDPC codes, the circuits
are deterministic as they only involve stabilizer measurements, and stabilizers are
low-weight due to the LDPC property. Therefore, these are much more conducive to
fault-tolerant entanglement purification in quantum networks.

7. In recent protocols on purifying GHZ states, such as in [10], the setting is to use Bell
pairs that are purified and fused to form one GHZ state. The performance curves plot
input fidelity of each Bell pair versus output fidelity of the single purified GHZ state.
We think that our setting is quite different, once again because our output fidelity
is ideal conditioned on decoder success, but also because we do not use Bell pairs as
inputs. Even this particular work only compares their results with that of a single
past work, which is that of Nickerson et al. [8] where they adopt a similar approach.
Other works, such as [9], consider Bell pair purification using optimized protocols
under the practical setting where the purification circuits are imperfect and noisy. We
emphasize that our error correction based approach potentially offers fault tolerance
but our current setting introduces noise only in the quantum communication channel
and assumes perfect local operations. We leave the investigation of a fully fault-
tolerant setting for our protocol to future work.

2.4 Decoding QLDPC Codes under Realistic Noise Models
While our main results are relevant to the “code capacity” error model, where there are
only qubit errors and all operations are assumed noiseless, in a separate work a subset of
the authors considered decoding this family of QLDPC codes under a “phenomenological”
noise model, i.e., with an additional (classical) error model on the syndromes [26]. In that
setting, motivated by practical situations, the syndromes extracted from a measurement
circuit are assumed to have an additional random Gaussian noise, thereby yielding “soft”
syndromes. It was shown then that the MSA decoder can be modified appropriately such
that the decoding performance is almost as good as the above ideal syndrome scenario.
Therefore, by reinterpreting that work in the context of entanglement purification, we
highlight that the protocol can be applied to more realistic settings as well.

Since we are constructing a new GHZ purification protocol based on this new insight
about GHZ states, we have considered this simple model of noiseless LOCC and noisy
qubit communications. We emphasize here that, to the best of our knowledge, this is the
first protocol to use quantum error correction for purifying GHZ states, and we also report
simulation results of state-of-the-art QLDPC codes with an efficient iterative decoder.
Moreover, by comparison to past works, we have shown that our scheme has the best fidelity
threshold of 0.7974 for i.i.d. single-qubit depolarizing noise, at a yield of 0.118. While the
problem of noisy local operations is important and has received attention [8, 9, 15, 37], we
leave this to future work.

2.5 Purification-Inspired Algorithm to Generate Logical Pauli Operators
In the process, inspired by stabilizer measurements on Bell/GHZ states, we have developed
a new algorithm to generate logical Pauli operators for any stabilizer code (see Algorithm 3
and its explanation in Appendix D.2). The core idea is to first simulate the generation on
n Bell/GHZ states by creating a table of their 2n stabilizers. It turns out that we only
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need the ZZI- and XXX-type stabilizers for the GHZ case, which is why we ignore the n
IZZ-type stabilizers. Then we simulate the measurement of each code stabilizer on qubits
‘A’ using the stabilizer formalism. At the end of this process, it can be shown that the
non-code-stabilizer rows in the table must be a combination of logical Pauli operators on
multiple subsystems. Finally, we carefully identify the logical Pauli operators on qubits
‘A’ and return those as the desired operators on the given code.

3 Notation and Background
The Pauli group on n qubits is denoted by Pn. We denote Pauli matrices I,X, Y, Z and
their tensor products using the notation E(a, b), where a, b ∈ {0, 1}n denote respectively
the X- and Z-components of the n-qubit Pauli operator. The weight of a Pauli operator
is the number of qubits on which it acts nontrivially (i.e., does not apply I). For example,
E([0, 1, 0, 1], [0, 0, 1, 1]) = I ⊗ X ⊗ Z ⊗ Y ≡ IXZY has weight 3 and we dropped the
tensor product symbol ⊗ for brevity. Two Pauli operators E(a, b), E(c, d) either commute
or anticommute, and this is dictated by the symplectic inner product in the binary vector
space. If ⟨[a, b], [c, d]⟩s := adT + bcT = 0 (resp. 1) (mod 2), then they commute (resp.
anticommute).

A stabilizer group S is generated by commuting Pauli operators εiE(ai, bi), i = 1, 2, . . . , r,
where εi ∈ {±1} and −I2n /∈ S. The [[n, k, d]] stabilizer code defined by S is given by
Q(S) = {|ψ⟩ ∈ C2n : g |ψ⟩ = |ψ⟩ ∀ g ∈ S}, where k = n− r. The logical Pauli operators of
the code commute with all stabilizers but do not belong to S, and their minimum weight
is d. The code is completely defined by its stabilizers and logical operators, or equiva-
lently by an encoding circuit UEnc(S). The projector onto the code subspace is given by
ΠS =

∏r
i=1

1
2 [I2n + εiE(ai, bi)].

A CSS (Calderbank-Shor-Steane) code is a special type of stabilizer code for which
there exists a set of stabilizer generators such that each generator is purely X-type, i.e., of
the form E(ai, 0), or purely Z-type, i.e., of the form E(0, bj). Such a code can be described
by a pair of classical binary linear codes CX and CZ , where the rows of the parity-check
matrix HX (resp. HZ) for CX (resp. CZ) are ai ∈ {0, 1}n (resp. bj ∈ {0, 1}n). Since
E(ai, 0) and E(0, bj) must commute, the symplectic inner product constraint leads to the
condition aib

T
j = 0 for all i, j or, equivalently, HXH

T
Z = 0.

A quantum (CSS) low-density parity-check (QLDPC) code is described by a pair
(CX , CZ) of classical LDPC codes, which implies that HX and HZ are sparse, i.e., each
stabilizer involves few qubits and each qubit is involved in few stabilizers. It is very chal-
lenging to construct good QLDPC codes due to the constraint HXH

T
Z = 0 on two sparse

matrices, but recent exciting work has developed optimal QLDPC codes where k and d
scale linearly with n [1, 2, 3, 4, 5, 6]. For our simulations, we chose a specific family of
lifted product QLDPC codes from [25, Table II] that have asymptotic rate k/n = 0.118.
To decode these codes, we use the computationally efficient min-sum algorithm (MSA)
based iterative decoder under the sequential schedule [38, 39], with a normalization factor
of 0.8 and maximum number of iterations set to 100 (also see the description in [25]).

A stabilizer state corresponds to a code with dimension k = 0, and can equivalently be
represented by a maximal stabilizer group, i.e., with r = n. Any Pauli measurement on
the state can be simulated by a well-defined set of rules to update this stabilizer group.
These rules are given by the stabilizer formalism for measurements [23, 40].

For any matrix M , the Bell state |Φ⟩AB = |00⟩AB+|11⟩AB√
2 satisfies the property (MA ⊗

IB) |Φ⟩AB = (IA ⊗ MT
B ) |Φ⟩AB. This property extends to n copies of the Bell state as

well. When M is a projector, which is the case when we perform stabilizer measurements
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Figure 5: The QEC-based entanglement distillation protocol of Wilde et al. [18]. Figure adapted
from [18].

on qubits ‘A’, i.e., M = ΠS , using the fact that M2 = M we conclude from the above
property that projecting qubits ‘A’ automatically projects qubits ‘B’ as well according to
MT . Therefore, imposing a code on qubits ‘A’ simultaneously imposes the “transpose”
code on qubits ‘B’.

A more detailed discussion of these background concepts can be found in Appendix A.

4 Revisiting the Bell Pair Distillation Protocol
In Ref. [18], Wilde et al. described a protocol to distill Bell pairs using an arbitrary quantum
stabilizer code. We reiterate this protocol here and provide more clarity on the reasons
behind its working. Then, in the next section, we will generalize this protocol to distill
GHZ states, i.e., the ℓ-qubit entangled state

∣∣∣GHZℓ
〉

= 1√
2 (|00 · · · 0⟩ + |11 · · · 1⟩).

Initially, Alice generates n copies of the Bell state
∣∣Φ+〉

(n “ebits”), rearranges the qubits
as described above, and sends Bob’s set of n qubits to him over a noisy channel. It is not
necessary that Alice must prepare Bell pairs locally and then transmit half the qubits to
Bob. Indeed, the protocol is applicable as long as Alice and Bob share some initial (noisy)
Bell pairs. Then, Alice measures the stabilizers of a quantum stabilizer code defined by
S = ⟨εiE(ai, bi); i = 1, . . . , r⟩ on her qubits, with εi = ±1. Let her measurement results
be (−1)mi ,mi ∈ {0, 1}. This projects her qubits onto the codespace fixed by the stabilizers
S′ = ⟨(−1)miεiE(ai, bi); i = 1, . . . , r⟩. Alice applies some suitable Pauli “correction” to
bring her qubits back to the code subspace Q(S) (rather than Q(S′)), if that is the code she
desires to use. She classically communicates the chosen stabilizers, S, the measurements
{mi}r

i=1, and the Pauli correction to Bob.
Although we use the term “correction”, there is really no error on Alice’s qubits. Instead,

the terminology is used to indicate that Alice brings the qubits to her desired code space.
Furthermore, even if there is some error on Alice’s qubits, one can map it to an equivalent
error on Bob’s qubits using the Bell state matrix identity.

Note that the authors of Ref. [18] do not explicitly mention that the Pauli correction
needs to be communicated, but it could be necessary in situations where Alice’s and Bob’s
decoders are not identical or have some randomness embedded in them. For the code,
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Algorithm 1: Algorithm to convert n Bell pairs into k Bell pairs of higher quality,
using an [[n, k, d]] stabilizer code

Result: Alice and Bob share k perfect Bell pairs or at least one of the k pairs has
an unknown Pauli error

Input : n Bell pairs |Φ+⟩⊗n at Alice, [[n, k, d]] stabilizer code Q(S) defined by a
stabilizer group S

Output: k Bell pairs of higher quality shared between Alice and Bob if channel
introduces a correctable error

1 Initialization: Rearrange the 2n qubits in |Φ+⟩⊗n to obtain |Φ+
n ⟩ (60) for

processing by Alice and Bob respectively
2
3 Alice
4 (a) measures all the stabilizer generators {εiE(ai, bi) ; i = 1, 2, . . . , r = n− k} on

her n qubits, obtains syndrome,
5 (b) sends the remaining n qubits to Bob over a noisy quantum channel,
6 (c) sends the stabilizers and syndrome (which together define Q(S)) to Bob over a

noiseless classical channel.
7
8 Bob
9 (a) measures all the stabilizer generators {εiE(ai, bi) ; i = 1, 2, . . . , r = n− k} on

his n qubits,
10 (b) combines the syndrome information from Alice as well as his measurements

and interprets using Section A.4,
11 (c) performs necessary Pauli corrections on his qubits to bring them to the code

space of Q(S).
12
13 If the channel error was correctable, pairs of logical qubits of Alice’s and Bob’s

codes form k Bell states
14 // If channel error was NOT correctable, some pair of logical qubits form a Bell

state with an unknown Pauli error
15 Alice and Bob respectively apply the inverse of the encoding unitary for their

code on their n qubits
16 // The encoding unitary is determined by the logical Pauli operators for Q(S)

obtained from Algorithm 3

though any appropriate definition of logical Pauli generators works with the protocol, we
employ Algorithm 3 to obtain generators that are “compatible” with our way of analyzing
the protocol (using the stabilizer formalism). This phenomenon will become more clear
after the [[5, 1, 3]] code example in this section. While the algorithm simulates measurements
on GHZ states to define logical Paulis, an equivalent algorithm can be constructed that
only simulates Bell measurements.

Remark 1. In this protocol, whenever the syndrome of Alice is non-trivial, i.e., at least
one mi equals 1, she can either perform a Pauli correction or just define her code to be
Q(S′) and not perform any correction. If the protocol is defined so that she always does
the latter, as depicted in Fig. 5 where there is no ‘Recovery’ block on Alice’s qubits, then
Bob can adjust his processing accordingly based on the syndrome information from Alice.

Without loss of generality, we can assume that Alice sends Bob’s qubits to him only after
performing her measurements and any Pauli correction. So, the channel applies a Pauli
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error only after Bob’s qubits got projected according to S′′ = ⟨(−1)mi+aib
T
i εiE(ai, bi); i =

1, . . . , r⟩. Now, Bob measures the stabilizers εiE(ai, bi) and applies corrections on his
qubits using his syndromes as well as Alice’s syndromes (and the Bell matrix identity,
which in particular involves the transpose). This projects his qubits to the same codespace
as Alice. Finally, Alice and Bob locally apply the inverse of the encoding unitary for their
code, UEnc(S)†. If Bob’s correction was successful, this converts the k logical Bell pairs
into k physical Bell pairs that are, on average, of higher quality than the n noisy Bell
pairs initially shared between them. This protocol is shown in Figure 5 and summarized
in Algorithm 1.

While the steps of the protocol are clear, it is worth considering why the logical qubits
of Alice and Bob must be k copies of the Bell pair, assuming all errors were corrected
successfully. To get some intuition, let us quickly consider the example of the 3-qubit
bit-flip code defined by S = ⟨ZZI, IZZ⟩. According to (58), the projector onto Q(S) is
ΠS = (I8+ZZI)

2
(I8+IZZ)

2 . The encoding unitary, as described in Appendix A.2, is UEnc =
CNOT1→2 CNOT1→3. Since ZT = Z, Alice’s measurements will project Bob’s qubits onto
the same code subspace as her’s. For convenience, assume that Alice obtains the trivial
syndrome (+1,+1) and that the channel does not introduce any error. Then, according
to (65), the resulting (unnormalized) state after Alice’s measurements is (ΠS ⊗ ΠS)

∣∣∣Φ+
3

〉
.

Consider the action of (I8 + ZZI) on a computational basis state |x⟩ , x = [x1, x2, x3]:

(I8 + ZZI) |x⟩ = |x⟩ + E(000, 110) |x⟩ = |x⟩ + (−1)[1,1,0]xT |x⟩ =
{

2 |x⟩ if x1 ⊕ x2 = 0,
0 otherwise.

(1)
Hence, after the action of (ΠS ⊗ ΠS) and inversion of the encoding unitary by Alice and
Bob, we obtain

(ΠS ⊗ ΠS)
∣∣∣Φ+

3

〉
= 1

16 ·
√

23

∑
x∈{000,111}

4 |x⟩A ⊗ 4 |x⟩B (2)

∝ |000⟩A |000⟩B + |111⟩A |111⟩B (3)
(U†

Enc)A⊗(U†
Enc)B−−−−−−−−−−−→ |000⟩A |000⟩B + |100⟩A |100⟩B (4)

= |00⟩AB ⊗ |00⟩AB ⊗ |00⟩AB + |11⟩AB ⊗ |00⟩AB ⊗ |00⟩AB (5)
= (|00⟩AB + |11⟩AB) ⊗ |00⟩AB ⊗ |00⟩AB . (6)

Thus, the output is a single Bell pair and ancillary qubits on Alice and Bob. In Appendix B,
we show this phenomenon for arbitrary CSS codes by generalizing the state vector approach
used above.

4.1 Bell Pair Distillation using the 5-Qubit Code
In the remainder of this section, with the [[5, 1, 3]] code [13, 24] as an example, we use the
stabilizer formalism to show that the above phenomenon is true for any stabilizer code.
Recall that this code is defined by

S = ⟨XZZXI, IXZZX, XIXZZ, ZXIXZ⟩. (7)

As described in Appendix A.2, the corresponding binary stabilizer matrix is given by

GS =


1 0 0 1 0 0 1 1 0 0 +1
0 1 0 0 1 0 0 1 1 0 +1
1 0 1 0 0 0 0 0 1 1 +1
0 1 0 1 0 1 0 0 0 1 +1

 . (8)
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Initially, Alice starts with 5 copies of the standard Bell state
∣∣Φ+〉⊗5, and marks one qubit

of each copy as Bob’s. She does not yet send Bob’s qubits to him. The stabilizer group
for this joint state of 5 “ebits” (or “EPR pairs”) is

E5 = ⟨XA1XB1 , ZA1ZB1 , XA2XB2 , ZA2ZB2 , XA3XB3 , ZA3ZB3 , XA4XB4 , ZA4ZB4 ,

XA5XB5 , ZA5ZB5⟩ (9)
= ⟨XAiXBi = E([eAi , eBi ], [0A, 0B]), ZAiZBi = E([0A, 0B], [eAi , eBi ]) ; i = 1, . . . , 5⟩, (10)

where ei ∈ F5
2 is the standard basis vector with a 1 in position i and zeros elsewhere,

0 ∈ F5
2 is the all-zeros vector, and the X- and Z- components in the E(a, b) notation have

been split into Alice’s qubits and Bob’s qubits. Observe that this is a maximal stabilizer
group on 10 qubits and hence, there are no non-trivial logical operators associated with
this group, i.e., the normalizer of E5 in P10 is itself.

It will be convenient to adopt a tabular format for these generators, where the first
column of each row gives the sign of the generator, the next two columns give the X-
components of Alice and Bob in that generator, the subsequent two columns give the
Z-components of Alice and Bob in that generator, and the last column gives the Pauli
representation of that generator for clarity. Hence, the above generators are written as
follows.

Sign X-Components Z-Components Pauli Representation
A B A B

+1 ei ei 0 0 XAiXBi = E([eAi , eBi ], [0A, 0B])

+1 0 0 ei ei ZAiZBi = E([0A, 0B], [eAi , eBi ])

Table 1: Steps of the Bell-pair distillation protocol based on the [[5, 1, 3]] code. Any ‘0’ that is not part
of a string represents 00000, and ei ∈ F5

2 is the standard basis vector with a 1 in the i-th position and
zeros elsewhere. Code stabilizers are typeset in boldface. An additional left arrow indicates which row
is being replaced with a code stabilizer, i.e., the first row that anticommutes with the stabilizer. Other
updated rows are highlighted in gray. Classical communications: A → B.

Step Sign X-Components Z-Components Pauli Representation
A B A B

(0) +1 e1 e1 0 0 XA1 XB1

+1 e2 e2 0 0 XA2 XB2

+1 e3 e3 0 0 XA3 XB3

+1 e4 e4 0 0 XA4 XB4

+1 e5 e5 0 0 XA5 XB5

+1 0 0 e1 e1 ZA1 ZB1

+1 0 0 e2 e2 ZA2 ZB2

+1 0 0 e3 e3 ZA3 ZB3

+1 0 0 e4 e4 ZA4 ZB4

+1 0 0 e5 e5 ZA5 ZB5

(1) +1 e1 e1 0 0 XA1 XB1
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+1 e2 e2 e4 e4 XA2 XB2 ZA4 ZB4

+1 e3 e3 e4 e4 XA3 XB3 ZA4 ZB4

+1 e4 e4 0 0 XA4 XB4

+1 e5 e5 0 0 XA5 XB5

+1 0 0 e1 + e4 e1 + e4 ZA1 ZB1 ZA4 ZB4

+1 0 0 e2 e2 ZA2 ZB2

+1 0 0 e3 e3 ZA3 ZB3

ε1 10010 00000 01100 00000 ε1 XA1 ZA2 ZA3 XA4 ←−
+1 0 0 e5 e5 ZA5 ZB5

(2) +1 e1 e1 0 0 XA1 XB1

+1 e2 e2 e4 e4 XA2 XB2 ZA4 ZB4

+1 e3 e3 e4 + e5 e4 + e5 XA3 XB3 ZA4 ZB4 ZA5 ZB5

+1 e4 e4 e5 e5 XA4 XB4 ZA5 ZB5

+1 e5 e5 0 0 XA5 XB5

+1 0 0 e1 + e4 e1 + e4 ZA1 ZB1 ZA4 ZB4

+1 0 0 e2 + e5 e2 + e5 ZA2 ZB2 ZA5 ZB5

+1 0 0 e3 e3 ZA3 ZB3

ε1 10010 00000 01100 00000 ε1 XA1 ZA2 ZA3 XA4
ε2 01001 00000 00110 00000 ε2 XA2 ZA3 ZA4 XA5 ←−

(3) +1 e1 e1 0 0 XA1 XB1

+1 e2 e2 e4 e4 XA2 XB2 ZA4 ZB4

+1 e3 e3 e4 + e5 e4 + e5 XA3 XB3 ZA4 ZB4 ZA5 ZB5

−1 e4 + e5 e4 + e5 e5 e5 − XA4 XB4 ZA5 ZB5 XA5 XB5

ε3 10100 00000 00011 00000 ε3 XA1 XA3 ZA4 ZA5 ←−

+1 e5 e5 e1 + e4 e1 + e4 ZA1 ZB1 ZA4 ZB4 XA5 XB5

+1 0 0 e2 + e5 e2 + e5 ZA2 ZB2 ZA5 ZB5

+1 e5 e5 e3 e3 ZA3 ZB3 XA5 XB5

ε1 10010 00000 01100 00000 ε1 XA1 ZA2 ZA3 XA4
ε2 01001 00000 00110 00000 ε2 XA2 ZA3 ZA4 XA5

(4) ε4 01010 00000 10001 00000 ε4 ZA1 XA2 XA4 ZA5 ←−
+1 e1 + e2 e1 + e2 e4 e4 XA2 XB2 ZA4 ZB4 XA1 XB1

+1 e1 + e3 e1 + e3 e4 + e5 e4 + e5 XA3 XB3 ZA4 ZB4 ZA5 ZB5 XA1 XB1

−1 e1 + e4 + e5 e1 + e4 + e5 e5 e5 − XA4 XB4 ZA5 ZB5 XA5 XB5 XA1 XB1

ε3 10100 00000 00011 00000 ε3 XA1 XA3 ZA4 ZA5

+1 e5 e5 e1 + e4 e1 + e4 ZA1 ZB1 ZA4 ZB4 XA5 XB5

+1 e1 e1 e2 + e5 e2 + e5 ZA2 ZB2 ZA5 ZB5 XA1 XB1

+1 e1 + e5 e1 + e5 e3 e3 ZA3 ZB3 XA5 XB5 XA1 XB1

ε1 10010 00000 01100 00000 ε1 XA1 ZA2 ZA3 XA4
ε2 01001 00000 00110 00000 ε2 XA2 ZA3 ZA4 XA5

Given this “initialization”, let us track these 10 stabilizers through each step of the
protocol, as shown in Table 1.

(1) Alice measures the first stabilizer generator XA1ZA2ZA3XA4 , and assume that the
measurement result is ε1 ∈ {±1}. We apply the stabilizer formalism for measure-
ments from Section A.3 to update E5. Since there are several elements of E5 that an-
ticommute with this generator, we choose to remove1 ZA4ZB4 = E([0A, 0B], [eA4 , eB4 ])

1Later, in the GHZ protocol, we restrict this choice to be the first element in the table that anticommutes
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and replace all other anticommuting elements by their product with ZA4ZB4 . Let
this updated group in Step (1) of Table 1 be denoted as E(1)

5 . For visual clarity, code
stabilizer rows are boldfaced and binary vectors are written out in full.

Now, we observe that if Bob measures the same generator XB1ZB2ZB3XB4 on his
qubits, then it is trivial because it commutes with all elements in E(1)

5 and hence is
already contained in E(1)

5 . This is a manifestation of the Bell state matrix identity
discussed in Section A.4. Indeed, Bob’s generator can be obtained by multiplying
XA1XB1 , XA4XB4 , ZA2ZB2 , ZA3ZB3 , and XA1ZA2ZA3XA4 in Step (1) of Table 1.

(2) Alice measures the second stabilizer generator XA2ZA3ZA4XA5 , and assume that the
measurement result is ε2 ∈ {±1}. Then, the new joint stabilizer group, E(2)

5 , is given
in Step (2) of Table 1. This stabilizer generator anticommutes with the third row of
the top block and the second and fifth rows of the bottom block. We have replaced
ZA5ZB5 (fifth row of the bottom block) with this generator and multiplied the other
anticommuting elements with ZA5ZB5 . It can be verified that the second stabilizer
generator of Bob is already in E(2)

5 .

(3) Alice measures the third stabilizer generator XA1XA3ZA4ZA5 , and assume that the
measurement result is ε3 ∈ {±1}. Then, the new joint stabilizer group, E(3)

5 , is given
in Step (3) of Table 1. Once again, it can be verified that the third stabilizer genera-
tor of Bob is already in E(3)

5 . The minus sign in the fourth row of the top block gets
introduced when we apply the multiplication rule for E(a, b) from Lemma 9(b).

(4) Alice measures the final stabilizer generator ZA1XA2XA4ZA5 , and assume that the
measurement result is ε4 ∈ {±1}. Then, the new joint stabilizer group, E(4)

5 , is given
in Step (4) of Table 1. As before, it can be verified that the final stabilizer generator
of Bob is already in E(4)

5 . This completes all measurements of Alice, and she now
sends Bob’s qubits over the channel. To understand the working of the protocol in
the ideal scenario, assume that no errors occur.

Since we know that all stabilizer generators of Bob are in E(4)
5 , we conveniently perform

the following replacements:

E([eA1 , eB1 ], [(e2 + e5)A, (e2 + e5)B]) 7→ XB1ZB2ZB3XB4 ,

E([(e1 + e2)A, (e1 + e2)B], [eA4 , eB4 ]) 7→ XB2ZB3ZB4XB5 ,

E([(e1 + e3)A, (e1 + e3)B], [(e4 + e5)A, (e4 + e5)B]) 7→ XB1XB3ZB4ZB5 ,

E([eA5 , eB5 ], [(e1 + e4)A, (e1 + e4)B]) 7→ ZB1XB2XB4ZB5 . (11)

Recollect that for the [[5, 1, 3]] code, the logical Pauli operators are X = X1X2X3X4X5 =
E([11111, 00000]) and Z = Z1Z2Z3Z4Z5 = E([00000, 11111]). If we used Algorithm 3, we

with the measured stabilizer.
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would obtain the same Z and X = −Y1Z3Z4. Then, by grouping Alice’s code stabilizers
and Bob’s code stabilizers, the group E(4)

5 can be rewritten as

E(4)
5 = ⟨ε1XA1ZA2ZA3XA4 , ε2XA2ZA3ZA4XA5 , ε3XA1XA3ZA4ZA5 , ε4 ZA1XA2XA4ZA5 ,

E([(e1 + e5)A, (e1 + e5)B], [eA3 , eB3 ]), −E([(e1 + e4 + e5)A, (e1 + e4 + e5)B], [eA5 , eB5 ]),
ε1XB1ZB2ZB3XB4 , ε2XB2ZB3ZB4XB5 , ε3XB1XB3ZB4ZB5 , ε4 ZB1XB2XB4ZB5⟩. (12)

Using some manipulations, we see that the two operators on the second line in E(4)
5 are

E([(e1 + e5)A, (e1 + e5)B], [eA3 , eB3 ]) = (XA1ZA3XA5)(XB1ZB3XB5) ≡ ZAZB,

−E([(e1 + e4 + e5)A, (e1 + e4 + e5)B], [eA5 , eB5 ]) = (ıXA1XA4YA5)(ıXB1XB4YB5) ≡ XAXB.
(13)

Thus, E(4)
5 can be interpreted as having 8 stabilizer generators (Alice and Bob combined)

and a pair of logical XAXB and logical ZAZB operators, which implies that the pair of
logical qubits shared between Alice and Bob forms a Bell pair. This can be converted into
a physical Bell pair by performing the inverse of the encoding unitary on both Alice’s and
Bob’s qubits locally. Note that this encoding unitary must be compatible with the above
definition of the logical Paulis for the [[5, 1, 3]] code, i.e., when the physical X and Z on
the input (logical) qubit to the encoder is conjugated by the chosen encoding unitary, the
result must be the above logical Paulis X and Z, respectively, potentially multiplied by
some stabilizer element.

Remark 2. In this example, we have assumed that Bob’s qubits do not suffer any error,
so that we can clearly show the existence of the correct logical Bell stabilizers. If, however,
the channel introduced an error, then Alice and Bob can jointly deduce the error by
measuring the signs of all generators of E(1)

5 and applying the necessary Pauli correction.
Since there are no non-trivial logical Pauli operators, any syndrome-matched correction
can differ from the true error only by a stabilizer, so any error is correctable by the joint
action of Alice and Bob. But, since we prohibit non-local measurements between Alice
and Bob, our error correction capability is limited to that of the code (on Bob’s side). If the
channel introduces a correctable Pauli error for the chosen code and Bob’s decoder, then
the protocol will output k perfect Bell pairs. However, if the Pauli error is miscorrected
by Bob’s decoder, then there will be a logical error on the code, and hence at least one of
the k output Bell pairs will suffer from an unknown Pauli error.

We can arrive at the above conclusion without knowing the specific logical operators for
the code. After Alice measures all her stabilizer generators, we know that Bob’s stabilizer
generators will also be present in the group, simply based on the Bell state matrix identity
from Section A.4. For this example, the transpose in that identity did not make a difference,
but for other codes this can only introduce an additional minus sign since Y T = −Y . For
an [[n, k, d]] code, we now have a 2n-qubit stabilizer group E(n−k)

n where 2(n−k) generating
elements are Alice’s and Bob’s stabilizer generators. We are left with 2n− 2(n− k) = 2k
elements in the generators, each of which must jointly involve Alice’s and Bob’s qubits.
These commute with each other and with the 2(n − k) stabilizer generators of Alice and
Bob, and are independent, so we can rename them as the logical XAjXBj and logical
ZAjZBj for j = 1, 2, . . . , k. Thus, by definition, the k pairs of logical qubits form k logical
Bell pairs. Alice and Bob can produce physical Bell pairs by simultaneously inverting the
(same) encoding unitary for the code locally. This is the key idea behind the working of
the Bell pair distillation protocol employed by Wilde et al. in [18].

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 20



5 Distillation of Greenberger-Horne-Zeilinger (GHZ) States
In this section, we extend the above Bell pair distillation protocol to distill GHZ states,∣∣∣GHZℓ

〉
= (|00···0⟩+|11···1⟩)√

2 . For clarity, we will specifically discuss the standard case of
ℓ = 3, but the results and analysis extend to larger ℓ as well. Let n GHZ states be shared
between Alice, Bob, and Charlie. We rearrange all the qubits to keep Alice’s, Bob’s and
Charlie’s qubits together respectively. Hence, this joint state can be expressed as

|GHZn⟩ABC =
( |000⟩ABC + |111⟩ABC√

2

)⊗n

= 1√
2n

∑
x∈Fn

2

|x⟩A |x⟩B |x⟩C . (14)

Since the GHZ state has stabilizers SGHZ = ⟨ZAZBIC, IAZBZC, XAXBXC⟩, the stabilizers
for |GHZn⟩ABC are

S⊗n
GHZ = ⟨ ZAiZBiICi , IAiZBiZCi , XAiXBiXCi ; i = 1, 2, . . . , n ⟩. (15)

Thus, we have identified the GHZ version of the basic properties of Bell states that was
needed in the Bell pair distillation protocol. However, the critical part of the Wilde et
al. protocol was the transpose trick that formed the Bell matrix identity in Appendix A.4.
When applied to stabilizer codes, this implied that each stabilizer generator εE(a, b) of
Alice is transformed into the generator εE(a, b)T = ε(−1)abT

E(a, b) (using Lemma 9(a))
for Bob. Naturally, we need to determine the equivalent phenomenon for GHZ states before
we can proceed to constructing a distillation protocol.

5.1 GHZ State Matrix Identity
In the following lemma, we generalize the Bell state matrix identity in Appendix A.4 to
the GHZ state.

Lemma 3. Let M =
∑

x,y∈Fn
2
Mxy |x⟩ ⟨y| ∈ C2n×2n be any matrix acting on Alice’s qubits.

Then,

(MA ⊗ IBC) |GHZn⟩ABC =
(
IA ⊗

(
M̂T

)
BC

)
|GHZn⟩ABC ;

‘GHZ-map’ : M 7→ M̂ :=
∑

x,y∈Fn
2

Mxy |x, x⟩ ⟨y, y| ∈ C22n×22n
.

Proof: Similar to the Bell case, we calculate

(MA ⊗ IBC) |GHZn⟩ABC = 1√
2n

∑
x,y∈Fn

2

Mxy |x⟩A |y⟩B |y⟩C (16)

= 1√
2n

∑
x,y∈Fn

2

|x⟩A (MT )yx |y⟩B |y⟩C (17)

=
(
IA ⊗

(
M̂T

)
BC

)
|GHZn⟩ABC . (18)

This completes the proof and establishes the identity.
The above property generalizes naturally to larger ℓ-qubit GHZ states,

∣∣∣GHZℓ
〉

=
(|00···0⟩+|11···1⟩)√

2 .
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Lemma 4. Let M =
∑

x,y∈Fn
2
Mxy |x⟩ ⟨y| ∈ C2n×2n be any matrix acting on qubits ‘A’.

Then,

(MA1 ⊗ I)
∣∣∣GHZℓ

n

〉
A1···Aℓ

=
(
IA1 ⊗

(
M̂T

)) ∣∣∣GHZℓ
n

〉
A1···Aℓ

;

‘GHZ-map’ : M 7→ M̂ :=
∑

x,y∈Fn
2

Mxy |x⟩ ⟨y|⊗(ℓ−1) .

As our next result, we prove some properties of the GHZ-map defined in the above
lemma.

Lemma 5. The GHZ-map M ∈ C2n×2n 7→ M̂ ∈ C22n×22n in Lemma 3 is an algebra
homomorphism [27]:

(a) Linear: If M = αA+ βB, where α, β ∈ C, then M̂ = αÂ+ βB̂.

(b) Multiplicative: If M = AB, then M̂ = ÂB̂.

(c) Projector-preserving: If M is a projector, then M̂ is also a projector.

Proof: We prove these properties via the definition of the mapping.

(a) SinceMxy = ⟨x|M |y⟩ = α ⟨x|A |y⟩+β ⟨x|B |y⟩ = αAxy+βBxy, the property follows.

(b) We observe that

ÂB̂ =
∑

x,y∈Fn
2

Axy |x, x⟩ ⟨y, y| ·
∑

x′,y′∈Fn
2

Bx′y′
∣∣x′, x′〉 〈

y′, y′∣∣ (19)

=
∑

x,y′∈Fn
2

 ∑
y∈Fn

2

AxyByy′

 |x, x⟩
〈
y′, y′∣∣ (20)

=
∑

x,y′∈Fn
2

(AB)xy′ |x, x⟩
〈
y′, y′∣∣ (21)

= ÂB = M̂. (22)

(c) This simply follows from the multiplicative property via the special case A = B = M .

This completes the proof and establishes the said properties of the GHZ-map.
We are interested in performing stabilizer measurements at Alice and deducing the

effect on Bob’s and Charlie’s qubits. The above properties greatly simplify the analysis,
given that the code projector for a stabilizer code (58) is a product of sums. Due to
the multiplicativity of the GHZ-map M 7→ M̂ , we only have to analyze the case where
Alice’s code has a single stabilizer generator εE(a, b), i.e., her code projector is simply
M = IN +εE(a,b)

2 , where N = 2n. Now, using linearity, we just need to determine ÎN and
Ê(a, b). Then, due to Lemma 9(a), we have M̂T = 1

2

(
ÎN + (−1)abT

Ê(a, b)
)
.

Theorem 6. Given n copies of the GHZ state shared between Alice, Bob and Charlie,
measuring E(a, b) on Alice’s n qubits and obtaining the result ε ∈ {±1} is equivalent to
measuring the following with results +1 on the qubits of Bob and Charlie:

εE(a, b)T
B ⊗ E(a, 0)C = ε(−1)abT

E(a, b)B ⊗ E(a, 0)C and
{ZBiZCi = E(0, ei)B ⊗ E(0, ei)C ; i = 1, 2, . . . , n},

where ZBi (resp. ZCi) refers to Z on i-th qubit of Bob (resp. Charlie), and ei has a 1 in
the i-th position and zeros elsewhere.
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Proof: Using the discussion before the statement of the theorem, we will calculate
ÎN and Ê(a, b) to establish the result. Recollect that |0⟩ ⟨0|n=1 = I+Z

2 and hence |0⟩ ⟨0|⊗n =
1

2n

∑
v∈Fn

2
E(0, v). Then, using Lemma 9, we have

ÎN =
∑

x∈Fn
2

|x⟩ ⟨x| ⊗ |x⟩ ⟨x| (23)

=
∑

x∈Fn
2

[
E(x, 0) |0⟩ ⟨0|⊗nE(x, 0)

]⊗2
(24)

=
∑

x∈Fn
2

E(x, 0) · 1
2n

∑
v∈Fn

2

E(0, v) · E(x, 0)

⊗2

(25)

= 1
22n

∑
x∈Fn

2

 ∑
v∈Fn

2

(−1)xvT
E(0, v)

 ⊗

 ∑
w∈Fn

2

(−1)xwT
E(0, w)

 (26)

= 1
22n

∑
x∈Fn

2

∑
z∈F2n

2

(−1)[x,x]zT
E(0, z) (where z = [v, w]) (27)

= 1
22n

∑
z∈F2n

2

E(0, z) ·

 ∑
x∈Fn

2

(−1)[x,x]zT

 (28)

= 1
22n

∑
z∈F2n

2

E(0, z) · 2nI (z ⊥ [x, x] ∀ x ∈ Fn
2 ) (29)

= 1
2n

∑
z′∈Fn

2

E([0, 0], [z′, z′]) (30)

=
n⊗

i=1

(IN + E([0, 0], [ei, ei]))
2 , (31)

where ei ∈ Fn
2 is the standard basis vector with 1 in the i-th position and zeros elsewhere.

Note that E([0, 0], [ei, ei])BC = ZBi ⊗ ZCi is the GHZ stabilizer IAZBZC on the i-th triple
of qubits between A, B and C (15). Next, we proceed to calculate Ê(a, b) using a similar
approach.

Ê(a, b) =
∑

x,y∈Fn
2

⟨x|E(a, b) |y⟩ |x, x⟩ ⟨y, y| (32)

=
∑

x,y∈Fn
2

⟨x| ıabT (−1)byT |y ⊕ a⟩ |x, x⟩ ⟨y, y| (33)

=
∑

x∈Fn
2

ıabT (−1)b(x⊕a)T |x, x⟩ ⟨x⊕ a, x⊕ a| (34)

=
∑

x∈Fn
2

ı−abT (−1)bxT
[
E(x, 0) · |0⟩ ⟨0|⊗n · E(x⊕ a, 0)

]⊗2
(35)

=
∑

x∈Fn
2

ı−abT (−1)bxT

E(x, 0) · 1
2n

∑
v∈Fn

2

E(0, v) · E(x⊕ a, 0)

⊗2

(36)

= 1
22n

∑
x∈Fn

2

ı−abT (−1)bxT

E(a, 0) ·
∑

v∈Fn
2

(−1)xvT +avT
E(0, v)

⊗2

(Lemma 9(c))

(37)
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= E(a, 0)⊗2 · 1
22n

∑
x∈Fn

2

ı−abT (−1)bxT ∑
z∈F2n

2

(−1)[x⊕a,x⊕a]zT
E(0, z) (38)

= E([a, a], [0, 0])
∑

z∈F2n
2

ı−abT (−1)[a,a]zT
E(0, z) ·

 1
22n

∑
x∈Fn

2

(−1)[x,x](z+[b,0])T

 (39)

= E([a, a], [0, 0]) · 1
2n

∑
z′∈Fn

2

ı−abT (−1)z′aT +z′aT +abT
E([0, 0], [z′ ⊕ b, z′]) (40)

= E([a, a], [0, 0]) · ı
abT

2n

∑
z′∈Fn

2

E([0, 0], [b, 0])E([0, 0], [z′, z′]) (41)

= ı−abT
E([a, a], [b, 0]) · ıabT · ÎN (Lemma 9(b)) (42)

= (E(a, b) ⊗ E(a, 0)) · ÎN . (43)

Thus, when Alice’s measurement applies the projector M = IN +εE(a,b)
2 , Bob’s and Charlie’s

qubits experience the projector

M̂T = ÎN + ε(−1)abT
Ê(a, b)

2 (44)

= (IN ⊗ IN ) · ÎN + ε(−1)abT (E(a, b) ⊗ E(a, 0)) · ÎN

2 (45)

=

(
IN ⊗ IN + ε(−1)abT

E(a, b) ⊗ E(a, 0)
)

2 ·
n⊗

i=1

(IN + E([0, 0], [ei, ei]))
2 . (46)

Since the second term, ÎN , only corresponds to already existing stabilizers ZBi ⊗ ZCi for
n copies of the GHZ state, the only new measurement corresponds to the Pauli operator
ε(−1)abT

E(a, b) ⊗ E(a, 0).

Example 1. Consider n = 1 and the case when Alice applies M = I+Z
2 = I+E(0,1)

2 , with
a = 0, b = 1. Then Î = I⊗I+Z⊗Z

2 and ̂E(0, 1)T = (E(0, 1)T ⊗ E(0, 0)) · Î = (Z ⊗ I) · Î.
Therefore, the stabilizers for BC are ⟨Z ⊗ I, Z ⊗ Z⟩.

If we had an X-measurement for Alice, where a = 1, b = 0, then E(a, b)T ⊗ E(a, 0) =
X ⊗ X. Combined with the Z ⊗ Z from Î, the qubits on BC are projected to the Bell
state.

More interestingly, if we consider a Y -measurement for Alice, where a = b = 1, then
E(a, b)T ⊗ E(a, 0) = Y T ⊗X = −Y ⊗X. Thus, assuming the measurement result is +1,
the new BC stabilizers are ⟨−Y ⊗X,Z⊗Z⟩. It can be verified that the post-measurement
state for this case will be (|0⟩+ı|1⟩)√

2 ⊗ (|00⟩−ı|11⟩)√
2 , which is fixed by the above stabilizer.

Naturally, this insight can be generalized to larger GHZ states as well.

Theorem 7. Given n copies of the ℓ-qubit GHZ state with subsystems A1,A2, . . . ,Aℓ,
measuring E(a, b) on the n qubits of subsystem A1 and obtaining the result ε ∈ {±1} is
equivalent to measuring the following with results +1 on the qubits of the remaining (ℓ−1)
subsystems:

ε(−1)
(∑ℓ−2

i=1

∑ℓ−1
j>i

bi∗bj

)
aT ℓ⊗

t=2
E(a, bt−1)T

At
= ε(−1)

(
b+

∑ℓ−2
i=1

∑ℓ−1
j>i

bi∗bj

)
aT ℓ⊗

t=2
E(a, bt−1)At ,

{ZA2,iZA3,i = E(0, ei)A2 ⊗ E(0, ei)A3 ,

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 24



ZA3,iZA4,i = E(0, ei)A3 ⊗ E(0, ei)A4 , . . . ,

ZAℓ−1,iZAℓ,i = E(0, ei)Aℓ−1 ⊗ E(0, ei)Aℓ
; i = 1, 2, . . . , n},

where b1, b2, . . . , bℓ−1 ∈ Fn
2 satisfy b1 ⊕ b2 ⊕ · · · ⊕ bℓ−1 = b, x ∗ y denotes the element-

wise product of two vectors, ZAt,i refers to Z on i-th qubit of subsystem At, and ei is the
standard basis vector with a 1 in the i-th position and zeros elsewhere.

Remark 8. There are two special cases that eliminate the sign in the new joint stabilizer.
One can set b1 = b and b2 = b3 = · · · = bℓ−1 = 0, in which case bi ∗ bj = 0 always. More
generally, one can define {bi : bi ̸= 0} such that bi ∗ bj = 0 while b1 ⊕ b2 ⊕ · · · ⊕ bℓ−1 = b
still holds, i.e., splitting the entries of b into (ℓ− 1) disjoint groups.

As we desired, the above result shows how a Pauli measurement on one subsystem,
A1, of (multiple copies of) the GHZ state affects the remaining subsystems. All the GHZ
stabilizers involving subsystems A2,A3, . . . ,Aℓ are retained. Hence, the post-measurement
state is “GHZ-like” on these (ℓ− 1) subsystems but with an additional globally entangling
stabilizer. This is akin to the globally entangling all-X stabilizer for the standard GHZ
state, but it depends on the Pauli operator being measured on A1. Note that, since the
Pauli measurement randomly projects onto a subspace, the induced stabilizers given by the
theorem do not uniquely determine the post-measurement state on the (ℓ− 1) subsystems.
The degrees of freedom for the state will be quantified shortly in a more general setting. One
might argue that this theorem can be obtained by directly applying the stabilizer formalism
to SGHZ. However, some thought clarifies that arriving at the conclusions rigorously takes
at least an equal amount of effort.

In the context of measuring a set of (n − k) stabilizer generators of a code (on qubits
A1), the above result confirms that this induces a joint stabilizer code on the remaining
(ℓ − 1) subsystems. There are n(ℓ − 1) qubits on these subsystems and each code stabi-
lizer generator contributes a stabilizer generator for this induced code. Besides, as stated
in the theorem, there are n(ℓ − 2) GHZ stabilizers on all pairs of adjacent subsystems,
{AjAj+1 ; j = 2, . . . , ℓ − 1}, independent of the code stabilizers being measured. Hence,
the induced code has (n−k)+n(ℓ−2) stabilizer generators, which means it is an [[n(ℓ−1), k]]
code and the post-measurement state has k logical degrees of freedom. The minimum dis-
tance of the induced code will depend on the minimum distance of the A1-code as well as
the new GHZ stabilizers and the choice of {bi}.

5.2 Protocol I
We now have all the tools to investigate a natural stabilizer code based GHZ distillation
protocol that attempts to generalize the Bell pair distillation protocol discussed in Sec-
tion 4. The block diagram of this protocol was shown earlier in Fig. 2 and the protocol is
summarized as an algorithm in Algorithm 2. Let us consider the 3-qubit code with sta-
bilizers S = ⟨Y Y I, IY Y ⟩ to understand the subtleties in the steps of the protocol. First,
similar to the Bell pair scenario, we have the following stabilizer group for 3 copies of the
GHZ state:

G3 = ⟨ ZAiZBiICi , IAiZBiZCi , XAiXBiXCi ; i = 1, 2, 3 ⟩ (47)
= ⟨ E([0A, 0B, 0C], [eAi , eBi , 0C]), E([0A, 0B, 0C], [0A, eBi , e

C
i ]),

E([eAi , eBi , eCi ], [0A, 0B, 0C]) ; i = 1, 2, 3 ⟩ (48)
= ⟨ E([0A, 0B, 0C], [eAi , eBi , 0C]), E([0A, 0B, 0C], [0A, eBi , e

C
i ]),

− E([eAi , eBi , eCi ], [eAi , eBi , 0C]) ; i = 1, 2, 3 ⟩ (49)
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= ⟨ ZAiZBiICi , IAiZBiZCi , −YAiYBiXCi ; i = 1, 2, 3 ⟩. (50)

Next, like the example for the Bell pair distillation protocol, we can evolve these stabilizers
through the proposed steps of the protocol to understand its working. In Appendix C, we
use such a tabular approach to elucidate the steps of this protocol. This serves as an
instructive example to understand how the GHZ property influences the construction of
a purification protocol for GHZ states. In particular, since the property implies that the
Z-component of any non-purely-X-type stabilizer is lost in the induced code on qubits ‘B’
and ‘C’, we discuss how one can perform diagonal Clifford operations to ensure that all
three subsystems obtain the same code. The placement of these operations is critical and
we detail its effects by simulating the protocol performance for the 5-qubit code.

In this protocol, Alice starts by preparing n GHZ states and measuring the n-qubit
stabilizers of her code on qubits ‘A’. Then, using Theorem 6, Bob proceeds by measuring
the 2n-qubit stabilizers of the code induced on qubits ‘B’ and ‘C’ by Alice’s choice of code
on qubits ‘A’. Subsequently, he also measures the same n-qubit stabilizers as Alice but
on qubits ‘B’, so that there is a code induced just on qubits ‘C’ and Charlie can use that
code to correct errors from the channel. If we imagine the three parties being on a linear
network topology, then this protocol seems reasonable since each party retains his/her
qubits and passes on all remaining qubits to the next hop in the chain. However, there is
an asymmetry in the operations since Bob needs to perform two rounds of measurements
and one involves twice the number of qubits. Furthermore, the protocol is (potentially)
not scalable to larger number of parties with varied network topologies.

5.3 Distillation-Inspired Algorithm to Generate Logical Pauli Operators
While constructing and analyzing the protocol using the tabular approach, we realized
that the evolution of the table under stabilizer measurements automatically reveals the
logical Pauli operators of the code in an explicit manner in certain rows. Indeed, each
stabilizer measurement replaces one row and alters several others that anticommute with
it using the rules of the stabilizer formalism for measurements (Section A.3). After all
stabilizers are measured on qubits ‘A’, one realizes that the non-replaced (but altered)
rows in the top section of the table, i.e., the ZZI-type rows, are of the form Z

A
i Z

B
i I

C
i

where Zi denotes the logical Z operator on the i-th logical qubit of the code. Therefore,
one can easily read off these logical operators (up to some subtleties that can be taken
care of). A similar approach is applied to the bottom section of the table, i.e., the XXX-
type rows, to obtain the logical X operators of the code. The details of the algorithm are
discussed in Appendix D.2 and the algorithm itself is summarized in Algorithm 3.

5.4 Output Fidelity of GHZ Distillation Protocol
During the protocol, if error correction at Bob and/or Charlie miscorrects and introduces
a logical error, then the final effect is a change in the signs of some of the logical GHZ
stabilizers. This in turn means that after the decoding step, some of the k triples will be
the standard GHZ state corrupted by an unknown Pauli operation. Hence, the output of
the protocol is correct with probability (1−Pf ), and produces at least one Pauli corrupted
GHZ state with probability Pf , using the notation in Fig. 6. To make this precise, denote
by |GHZ0⟩ , |GHZ1⟩ , . . . , |GHZ7⟩ the eight possible variants of the GHZ state under Pauli
operations, i.e., each variant has the stabilizer group ⟨α1 ZZI, α2 IZZ, α3XXX⟩ with
α1, α2, α3 ∈ {±1}. Then, assuming all variants are equally likely conditioned on a failure
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Algorithm 2: Protocol I to convert n GHZ states into k GHZ states of higher
quality, using an [[n, k, d]] stabilizer code

Input : n GHZ states |GHZ⟩⊗n at Alice, [[n, k, d]] stabilizer code Q(S) defined
by a stabilizer group S

Output: k GHZ states of higher quality shared between Alice and Bob if channel
introduces a correctable error

1 Initialization: Rearrange the 3n qubits in |GHZ⟩⊗n to obtain |GHZn⟩ (14) for
processing by Alice and Bob, respectively

2
3 Alice
4 (a) measures the stabilizer generators {E(ai, bi) ; i = 1, 2, . . . , r = n− k} on her n

qubits and obtains syndrome {εA
i },

5 (b) sends the remaining 2n qubits to Bob over a noisy quantum channel,
6 (c) sends the stabilizers, syndrome and logical Pauli operators to Bob over a

perfect classical channel.
7
8 Bob
9 (a) uses Theorem 6 to define the 2n-qubit joint BC code and measures all the

(2n− k) stabilizer generators

{εA
i E(ai, bi)T

B ⊗ E(ai, 0)C , ZBjZCj = E(0, ej)B ⊗ E(0, ej)C},

for i = 1, 2, . . . , r = n− k and j = 1, 2, . . . , n, on the received 2n qubits,
10 (b) performs necessary Pauli corrections on all qubits to bring them to the code

space of the joint BC code,
11 (c) measures the stabilizer generators {E(ai, bi) ; i = 1, 2, . . . , r = n− k} on the n

qubits of subsystem B and obtains syndrome {εB
i }; for purely Z-type stabilizers

E(0, bi) the sign is εA
i , so we set εB

i := +1 for them,
12 (d) sends the stabilizers, syndrome and logical Pauli operators to Charlie over a

perfect classical channel,
13 (e) performs appropriate (see Appendix D.1) local diagonal Clifford on qubits C,
14 (f) sends qubits C to Charlie over a noisy Pauli channel.
15
16 Charlie
17 (a) uses Q(S), Theorem 6, and Bob’s syndrome to determine the signs

εA
i ε

B
i (−1)aib

T
i of his stabilizers, and then measures the generators

{εA
i ε

B
i (−1)aib

T
i E(ai, bi) ; i = 1, 2, . . . , r = n− k} on his n qubits,

18 (b) performs the necessary Pauli corrections on all qubits to bring them to the
code space of his code.

19
20 // If the channel error was correctable, triples of logical qubits of Alice’s, Bob’s

and Charlie’s codes form k GHZ states
21 // If channel error was NOT correctable, some triple of logical qubits form a GHZ

state with an unknown Pauli error
22 Alice, Bob, and Charlie respectively apply the inverse of the encoding unitary for

their code on their n qubits
23 // The encoding unitary is determined by the logical Pauli operators obtained

from Algorithm 3
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Algorithm 3: Algorithm to generate logical Paulis of a stabilizer code through
GHZ measurements (see Appendix D.2)
1

Input : An [[n, k, d]] stabilizer code defined by its stabilizer generators
{εiE(ai, bi) ; i = 1, 2, . . . , r = n− k}

2
Output: The logical X generators {νjE(cj , dj) ; j = 1, . . . , k} and logical Z

generators {E(0, fj) ; j = 1, . . . , k}
3
4 Initialization: Form a r × (2n+ 1) binary parity-check matrix H for the code,

whose rows are [ai, bi, εi]. Preprocess the matrix so that its first 2n columns
take the form H1:2n =

[
0 HZ

H1 H2

]
, where HZ is a rZ × n matrix of full rank, and

H1 is a rX × n matrix of full rank (rX + rZ = r = n− k). The rows of HZ

provide the generators for all purely Z-type stabilizers of the code. While
performing row operations on H1:2n, care must be taken to adhere to Pauli
multiplication arithmetic (Lemma 9(b)).

5
6 Simulate the creation of n copies of the GHZ state as follows. Create a

2n× (6n+ 1) GHZ stabilizer matrix SGHZ whose first n rows take the form
[0, 0, 0, ei, ei, 0, +1] and the second n rows take the form [ei, ei, ei, 0, 0, 0, +1],
where i = 1, 2, . . . , n. This matrix is almost the same as Step (0) in Table 2, but
we have omitted the middle section.

7
8 for p = 1 to r do
9 Simulate the measurement of H(p), the p-th row of H, on subsystem A of the

GHZ states, using Section A.3:
10 Replace the first anticommuting row of SGHZ with H(p) and multiply

subsequent anticommuting rows by H(p), using Lemma 9(b)
11 end
12
13 for q in the set of non-replaced rows of SGHZ with (row) index at most n do
14 if S(q)

GHZ (only the 2n columns of subsystem A) is linearly independent from all
rows of H then

15 Define a new logical Z generator E(0, fj) from the A-columns of S(q)
GHZ,

with sign +1
16 Append [0, fj , +1] as a new row to H
17 else
18 continue
19 end
20 end
21 // Now, H has n rows where the last k rows correspond to the logical Z

generators E(0, fj)
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22
23 for q′ in the set of non-replaced rows of SGHZ with (row) index at least (n+ 1) do
24 if S(q′)

GHZ (only the 2n columns of subsystem A) is linearly independent from all
rows of H then

25 Define a new logical X generator νjE(cj , dj) from the A-columns of S(q′)
GHZ,

with sign νj (last column of S(q′)
GHZ)

26 Append [cj , dj , νj ] as a new row to H
27 else
28 continue
29 end
30 end
31 // Now, we have k logical Z and logical X generators, but they might not pair up

appropriately
32
33 Compute the k × k symplectic inner product matrix T with entries

Tij = ⟨[0, fi], [cj , dj ]⟩s for i, j ∈ {1, . . . , k}
34 if T is not the k × k identity matrix then
35 Compute the binary inverse T−1 of T
36 Form a k × n matrix F whose rows are fj

37 Define the new fj ’s as the rows of T−1F

38 else
39 Retain the definitions of logical Z generators E(0, fj) and logical X generators

νjE(cj , dj)
40 end
41
42 return {Zj = E(0, fj) , Xj = νjE(cj , dj) ; j = 1, 2, . . . , k}

event, the density matrix representing the output of the protocol is

ρout = (1 − Pf ) |GHZ00···0⟩ ⟨GHZ00···0| + Pf

8k−1∑
i=1

1
8k − 1 |GHZi1i2···ik

⟩ ⟨GHZi1i2···ik
| , (51)

where |GHZ00···0⟩ ⟨GHZ00···0| = |GHZ⟩ ⟨GHZ|⊗k, (i1i2 · · · ik) is the base-8 expansion of i,
and |GHZi1i2···ik

⟩ ⟨GHZi1i2···ik
| = |GHZi1⟩ ⟨GHZi1 |⊗|GHZi2⟩ ⟨GHZi2 |⊗· · ·⊗|GHZik

⟩ ⟨GHZik
|.

Similar to the case of triorthogonal codes in magic state distillation [41], it is likely
useful to consider the reduced density matrix for one of the k output triples, and relate its
fidelity (with respect to |GHZ⟩ ⟨GHZ|) to properties of the code and decoder. In Ref. [41],
the authors adopted exactly such a strategy for distillation of T -states, under a purely
Z-error model and relying on post-selection where non-trivial syndromes are discarded.
In recent work [42], it has been shown that performing error correction rather than just
detection (and post-selection) leads to better performance of triorthogonal codes. For our
scenario of GHZ distillation, it is an interesting problem to construct codes and decoders
for this protocol where we can relate the output fidelity to code properties and arrive at
analytical scaling arguments with increasing code size. This would be useful for comparing
with fundamental limits of entanglement distillation [17] and assessing the optimality of
this protocol.
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5.5 Protocol II
To address the drawbacks of Protocol I, the protocol can be modified so that Alice starts by
measuring qubits ‘A’ and qubits ‘B’ separately. Though this does not circumvent the issue
of performing twice the number of measurements at one of the nodes, this avoids the need
of 2n-qubit measurements. Since the GHZ property implies the inducement of a 2n-qubit
code on qubits ‘B’ and ‘C’, it appears that this extra round of n-qubit measurements on
qubits ‘B’ is inevitable. So, even now, when Alice measures {εiE(ai, bi)} on qubits ‘A’,
Theorem 6 still dictates that there is a 2n-qubit code {εiE(ai, bi)T

B ⊗E(ai, 0)C} jointly on
qubits ‘B’ and ‘C’. But, when she measures the same stabilizers {εiE(ai, bi)} on qubits ‘B’,
one can multiply with the corresponding 2n-qubit stabilizer to see that the joint stabilizers
can be broken into purely ‘B’ and purely ‘C’ stabilizers. Therefore, once Alice performs
the two rounds of measurements, she can send qubits ‘B’ to Bob and qubits ‘C’ to Charlie,
along with the necessary classical information. As individual codes have been induced
separately on qubits ‘B’ and qubits ‘C’, Bob and Charlie can still perform local n-qubit
measurements to fix errors during qubit transmission. Finally, this scheme suits other
network topologies such as when Alice is connected to both Bob and Charlie but those
parties do not have a direct connection between them.

While Protocol II can be generalized to arbitrary stabilizer codes using the diagonal
Clifford correction discussed in Protocol I, Algorithm 4 describes Protocol II specifically
for CSS codes, just for simplicity. Note that for CSS codes, for any stabilizer generator
εiE(ai, bi), whenever ai ̸= 0 we have bi = 0. Hence, the induced code from Theorem 6 is
automatically CSS and we do not need any diagonal Clifford operation mentioned earlier
in Protocol I. Since Protocol II relies on the same intuitions from Theorem 6, we do not
elaborate further. We also note that there can be further variations based on other practical
considerations.

This simplified protocol was shown earlier in Fig. 3. We simulated the protocol by
following a tabular approach, as in Appendix C for Protocol I, using a state-of-the-art
family of lifted product QLDPC codes with asymptotic rate 0.118 and an efficient iterative
decoder based on the min-sum algorithm (MSA) with normalization factor 0.8. The results
were shown in Fig. 4, where we can see that the threshold under depolarizing noise is about
10.7%. Comparing the results to Fig. 1, it is apparent that the threshold matches that
of the underlying logical error rate of the code on this channel (i.e., no distillation but
standard quantum error correction simulation). This is important because it shows that
even when both Bob and Charlie run decoders to correct errors on their respective qubits,
the overall threshold is unchanged from the single channel setting. On the other hand,
the comparison also shows that the protocol failure rate is significantly worse for each
channel parameter compared to Fig. 1. This could be the effect of requiring both decoders
to succeed, but it is a cause for concern when we extend the protocol to GHZ states with
ℓ > 3. Indeed, we do not want the protocol failure rates to progressively get worse, albeit
with the same threshold. Therefore, we will study this phenomenon more carefully in
future work and identify the best way to scale this protocol for larger ℓ. For completeness,
we summarize the protocol for arbitrary ℓ.

5.6 Protocol II for Arbitrary ℓ

Initially, A1 generates n ideal copies of the ℓ-qubit GHZ state, names the qubits of each
copy A1 through Aℓ, chooses some [[n, k]] code Q(S) defined by a stabilizer S, and measures
the (n − k) generators of S on qubits A1. Then, A1 applies Theorem 6 to determine
the induced code Q

(
S(ℓ−1)

)
on the remaining subsystems. Let us consider ℓ = 4 for
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Algorithm 4: Protocol II to convert n GHZ states into k GHZ states of higher
quality, using an [[n, k, d]] CSS code

Input : n GHZ states |GHZ⟩⊗n at Alice, [[n, k, d]] CSS code Q(S) defined by a
stabilizer group S

Output: k GHZ states of higher quality shared between Alice and Bob if channel
introduces a correctable error

1 Initialization: Rearrange the 3n qubits in |GHZ⟩⊗n to obtain |GHZn⟩ (14) for
processing by Alice and Bob, respectively

2
3 Alice
4 (a) measures the stabilizer generators {E(ai, bi) ; i = 1, 2, . . . , r = n− k} on the n

qubits ‘A’, obtains syndrome {εA
i },

5 (b) measures the stabilizer generators {E(ai, bi) ; i = 1, 2, . . . , r = n− k} on the n
qubits‘B’, obtains syndrome {εB

i },
6 (c) sends the stabilizers, syndrome {εB

i } and logical Pauli operators to Bob over a
perfect classical channel,

7 (d) sends the stabilizers, syndrome {εA
i , ε

B
i } and logical Pauli operators to Charlie

over a perfect classical channel,
8 (e) sends qubits ‘B’ to Bob and qubits ‘C’ to Charlie over noisy quantum channel.
9 Bob

10 (a) measures the stabilizer generators {εB
i E(ai, bi) ; i = 1, 2, . . . , r = n− k} on the

n qubits of subsystem ‘B’ and obtains syndrome; for purely Z-type stabilizers
E(0, bi) the sign is εA

i

11 (b) uses the syndrome to run a decoder that estimates a Pauli error
12 (c) applies the estimate to qubits ‘B’ as the recovery operation
13
14 Charlie
15 (a) uses Q(S), Theorem 6, and syndrome to determine the signs εA

i ε
B
i of his

stabilizers, and then measures the generators
{εA

i ε
B
i E(ai, bi) ; i = 1, 2, . . . , r = n− k} on the n qubits ‘C’; for purely Z-type

stabilizers E(0, bi) the sign is εA
i ,

16 (b) uses the syndrome to run a decoder that estimates a Pauli error
17 (c) applies the estimate to qubits ‘C’ as the recovery operation
18
19 // If the channel error was correctable, triples of logical qubits of Alice’s, Bob’s

and Charlie’s codes form k GHZ states
20 // If channel error was NOT correctable, some triple of logical qubits form a GHZ

state with an unknown Pauli error
21 Alice, Bob, and Charlie respectively apply the inverse of the encoding unitary for

their code on their n qubits
22 // The encoding unitary is determined by the logical Pauli operators obtained

from Algorithm 3
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simplicity. For tracking the protocol, we initially create a table whose rows are the binary
representations of the generators of S⊗n

GHZ. Group the n ZAiZBiICiIDi generators in the first
part of the table, the n IAiZBiZCiIDi generators in the second part, the n IAiIBiZCiZDi

in the third part, and finally the n XAiXBiXCiXDi in the fourth part. If there is a purely
Z-type generator, E(0, b)A, for S, then it will commute with the first three parts and only
affect the last part based on the stabilizer formalism. Moreover, by an appropriate linear
combination of the rows of the first part, one can produce the element E(0, b)A ⊗E(0, b)B,
which when multiplied by the new code stabilizer produces the stabilizer E(0, b)B on purely
subsystem ‘B’. By a similar trick in the second part and subsequently in the third part, one
can produce single-subsystem stabilizers E(0, b)C and E(0, b)D as well. Hence, it suffices
to only consider non-purely-Z-type stabilizers E(a, b)A, a ̸= 0.

Such stabilizers transform into the multiple-subsystem stabilizers described by Theo-
rem 6. Now, qubits of ‘B’, ‘C’, and ‘D’ need to be transmitted over a noisy channel to the
respective nodes, based on the network topology. For those nodes to be able to correct
errors, a code needs to be imposed purely on each subsystem before transmission of the
respective qubits. Let (node) A be connected to (node) B. Then, based on the choice of
b1, b2, b3 in Theorem 6, A measures code stabilizers E(a, b1)B on qubits ‘B’. With some
thought, one sees that these stabilizers only affect the second part of the table. Now, since
±E(a, b1)B ⊗ E(a, b2)C ⊗ E(a, b3)D is already a stabilizer, by multiplying with E(a, b1)B
we obtain a code on ‘B’ and a residual code jointly on ‘C’ and ‘D’. The qubits of ‘B’ can
be transmitted to node B (along with necessary classical sign information of stabilizers),
which can perform error correction.

If A is not connected to C and D, then A has to send those qubits to B. Thus, it
appears that A has to perform stabilizer measurements as above not only on ‘B’ but on
‘C’ and ‘D’ as well. However, this can be relegated to subsequent nodes to reduce the
burden on A. Let A also send qubits ‘C’ and ‘D’ to node B along with qubits ‘B’. There
is some joint Pauli error on ‘B’, ‘C’, and ‘D’, and the error correction of B only fixes the
error part on ‘B’. If B measures code stabilizers on ‘C’, then the preexisting Pauli error
can be transformed into an effective Pauli error after the code was imposed on ‘C’. This
enables node C to correct this error as well as any error encountered while B sends qubits
‘C’. A similar statement holds for D as well. Thus, the protocol can be stated as follows:
for every edge connected to a node, the node performs stabilizer measurements on the
respective subsystem to impose a code on the qubits of the recipient on that edge. The
correctness of the protocol relies on carefully tracking signs of stabilizers based on such
measurements at each node. Once all qubits are distributed, each node uses the logical
Paulis of their respective codes to determine and invert the encoding unitary. This converts
the k logical GHZ states into k perfect physical GHZ states, provided all error corrections
were successful. The average output density matrix and average output fidelity still take
the form discussed in Section 5.4.

6 Conclusion and Future Work
In this work, we began by describing the Bell pair distillation protocol introduced in
Ref. [18], and used the stabilizer formalism to understand its working. We identified
that the Bell state matrix identity (Appendix A.4) plays a critical role in that protocol.
As our first result, we proved the equivalent matrix identity for GHZ states, where we
introduced the GHZ-map and showed that it is an algebra homomorphism. Using the
GHZ-map, we proved our main result (Theorem 6) that describes the effect of Alice’s
stabilizer measurements (on qubits ‘A’) on qubits ‘B’ and qubits ‘C’. Then, we constructed
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a natural GHZ distillation protocol whose steps were guided by the aforementioned main
result. We demonstrated that the placement of a certain local Clifford on qubits ‘C’ in
the protocol has an immense effect on the performance of the protocol. We described
the relation between the probability of failure of the protocol and the output fidelity of
the GHZ states. As part of our protocol, we also developed a new algorithm to generate
logical Pauli operators for an arbitrary stabilizer code. To circumvent some drawbacks of
the protocol, we described an alternate protocol and produced performance results using
state-of-the-art QLDPC codes and an efficient iterative decoder. Finally, we discussed the
scalability of the protocol for larger GHZ states involving more than 3 parties and arbitrary
network topologies.

In future work, we plan to study the scaling of the logical error rate with the increase in
number of parties. Since a key motivation for this work was distributed quantum computing
(DQC), we will investigate a complete architecture for a distributed implementation of the
recently proposed optimal families of QLDPC codes. As part of the architecture, we
envisage that the QLDPC-based GHZ purification scheme proposed in this paper will play
a critical role in supplying logical GHZ states encoded in the same QLDPC codes that are
used for DQC. We will study the implications for fault-tolerance of such an architecture.
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A Notation and Background
A.1 Pauli Matrices
We will use the standard Dirac notation to represent pure quantum states. An arbitrary
n-qubit state will be denoted as a ket |ψ⟩ =

∑
v∈Fn

2
αv |v⟩, where {αv ∈ C ; v ∈ Fn

2 } satisfy∑
v∈Fn

2
|αv|2 = 1 as required by the Born rule [43]. Here, |v⟩ = |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩

is a standard basis vector for v = [v1, v2, . . . , vn], with vi ∈ F2 = {0, 1}, and ⊗ denotes
the Kronecker (or tensor) product. Define ı :=

√
−1. Then, the well-known n-qubit Pauli

group Pn consists of tensor products of the single-qubit Pauli matrices

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y = ıXZ =

[
0 −ı
ı 0

]
, (52)

multiplied by scalars ıκ, κ ∈ {0, 1, 2, 3}, i.e.,

Pn := {ıκE1 ⊗ E2 ⊗ · · · ⊗ En, Ei ∈ {I,X,Z, Y }, κ ∈ Z4 = {0, 1, 2, 3}}. (53)

Given two binary row vectors a = [a1, a2, . . . , an], b = [b1, b2, . . . , bn] ∈ Fn
2 , we will write

E(a, b) to denote an arbitrary Hermitian (and unitary) Pauli matrix, where a represents
the “X-component” and b represents the “Z-component” [44]:

E(a, b) :=
(
ıa1b1Xa1Zb1

)
⊗

(
ıa2b2Xa2Zb2

)
⊗ · · · ⊗

(
ıanbnXanZbn

)
= ıabT

n⊗
i=1

(XaiZbi).

(54)

For example, E([1, 0, 1], [0, 1, 1]) = X⊗Z⊗Y . It can be verified that E(a, b)2 = IN = I⊗n,
where N := 2n. Hence,

Pn = {ıκE(a, b) : a, b ∈ Fn
2 , κ ∈ Z4 = {0, 1, 2, 3}}. (55)

Using the properties of the Kronecker product, primarily the identities (A⊗B)(C ⊗D) =
(AC)⊗(BD) and (A⊗B)T = AT ⊗BT , we can show the following. We represent standard
addition by “+” and modulo 2 addition by “⊕”.

Lemma 9. For any a, b ∈ Fn
2 , the Pauli matrix E(a, b) satisfies the following properties:

(a) E(a, b)T = (−1)abT
E(a, b);

(b) E(a, b) · E(c, d) = ıbcT −adT
E(a + c, b + d), where the exponent and the sums (a +

c), (b + d) are performed modulo 4 and the definition in (54) is directly extended to
a, b ∈ Zn

4 ;

(c) E(a, b) · E(c, d) = (−1)⟨[a,b],[c,d]⟩sE(c, d) · E(a, b), where

⟨[a, b], [c, d]⟩s := adT + bcT (mod 2) (56)

is the symplectic inner product between [a, b] and [c, d] in F2n
2 , as indicated by the

subscript ‘s’.
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Hence, the map γ : (Pn, ·) → (F2n
2 ,⊕) defined by E(a, b) 7→ [a, b] is a homomorphism

with kernel {ıκIN , κ ∈ Z4}. For details about extending the definition of E(a, b) to
Z4-valued arguments, see [44].

A.2 Stabilizer Codes and Encoding Unitaries
A stabilizer group S is a commutative subgroup of Pn that does not contain −IN . If
the group has r ≤ n independent generators εiE(ai, bi), where εi ∈ {±1}, then S =
⟨εiE(ai, bi); i = 1, . . . , r⟩ has size |S| = 2r. Since the generators are Hermitian and
unitary, they have eigenvalues ±1. Recollect that commuting matrices can be diagonalized
simultaneously. The stabilizer code defined by S is the common +1 eigenspace of all
generators, i.e., it is the 2k-dimensional subspace, k = n− r, fixed by all elements of S:

Q(S) := {|ψ⟩ ∈ CN : g |ψ⟩ = |ψ⟩ ∀ g ∈ S}. (57)

Using the homomorphism γ, we can write a r × (2n + 1) generator matrix GS for
the stabilizer group: the ith row of GS is [ai, bi, εi] ∈ F2n

2 × {±1}. Since S must be a
commutative group, the symplectic inner product between any pair of rows must be zero.
Hence, the subspace of binary mappings of all elements of S, denoted γ(S), is given by the
rowspace of GS .

A CSS (Calderbank-Shor-Steane) code is a special type of stabilizer code for which
there exists a set of generators where either bi = 0 or ai = 0 in each generator, i.e., the
generators are purely X-type and purely Z-type operators. Clearly, for such a code, GS

has a block diagonal form where we can express the X-type (resp. Z-type) operators as
the rowspace of a matrix [HX , 0] (resp. [0, HZ ]), and 0 represents the all-zeros matrix (of
appropriate size). In this case, the commutativity condition for stabilizers is equivalent to
the condition HXH

T
Z = 0. Therefore, HX and HZ can be thought of as generating two

classical linear codes CX and CZ .
The projector onto the +1 eigenspace of a Pauli matrix E(a, b) is IN +E(a,b)

2 . Therefore,
since Q(S) is the simultaneous +1 eigenspace of r commuting matrices εiE(ai, bi), the
projector onto the code subspace Q(S) is

ΠS =
r∏

i=1

(IN + εiE(ai, bi))
2 = 1

2r

∑
m=[m1,...,mr]∈Fr

2

r∏
i=1

(εiE(ai, bi))mi = 1
2r

∑
εE(a,b)∈S

εE(a, b).

(58)

While the stabilizer group S defines the code space, an encoding unitary UEnc(S) fully
specifies the mapping from logical k-qubit states to physical n-qubit code states in Q(S).
The n input qubits to UEnc(S) can be split into k logical qubits, whose joint state is
arbitrary, and r = n− k ancillary qubits, each of which is initialized in some specific state
such as |0⟩. If ancillas are initialized in the |0⟩ state, then the stabilizer group for these
n input qubits is generated by {Zi ; i = k + 1, k + 2, . . . , n}, since Z |0⟩ = |0⟩. If we
conjugate each of these r generators by the encoding unitary UEnc(S), then we will obtain
r generators UEnc(S)Zi UEnc(S)† of S. Similarly, if we conjugate the Xi and Zi operations
on the k logical qubits — which can be used to express arbitrary operations on them since
Pauli operators form a basis — by UEnc(S), then we will obtain the generators of logical
X and Z operators compatible with the chosen UEnc(S). Therefore, an alternative method
to specify UEnc(S) is to specify the generators of S as well as the generators of logical X
and Z operators. Since we are requiring UEnc(S) to map Paulis to Paulis, it is always
Clifford [23]. Note that UEnc(S) is still not unique since we are not specifying how Xi on
the ancillas must be mapped, but we do not care about these additional mappings.
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There are at least two algorithms provided in the literature for generating the logical
Pauli operators of stabilizer codes. One is by Gottesman [21, 45], where the idea is to
construct the normalizer of the stabilizer group inside the Pauli group, and then perform
suitable row operations on the generators of the normalizer. The other is by Wilde [46],
where he performs a symplectic Gram-Schmidt orthogonalization procedure to arrive at
the generators of logical X and logical Z operators. In this work, as part of our GHZ
distillation protocol, we provide a new algorithm to generate logical X and Z operators for
any stabilizer code (see Algorithm 3). The output of the algorithm is compatible with the
way logical Paulis must be defined for our analysis of the protocol. Additionally, the logical
Z operators from our algorithm are always guaranteed to be purely Z-type operators for
any stabilizer code. If the code is CSS, then the logical X operators are always purely
X-type.

A.3 Stabilizer Formalism
When a stabilizer group on n qubits has n independent generators, Q(S) is a 1-dimensional
subspace that corresponds to a unique quantum state |ψ(S)⟩ (up to an irrelevant global
phase), commonly referred to as a stabilizer state [21]. The actions of unitary operations
and measurements on |ψ(S)⟩ can be tracked by updating these n generators accordingly [23,
40]. For any element g of S, and an arbitrary unitary operation U on |ψ(S)⟩, we observe
that

U |ψ(S)⟩ = U · g · |ψ(S)⟩ = (UgU †) · U |ψ(S)⟩ , (59)

so the stabilizer element g has evolved into the element g′ = UgU † after the action of U .
Of course, only if U is a Clifford operation we have that g′ is also a Pauli matrix. Thus, in
this case the evolution of the state can be tracked efficiently by simply transforming GS

(and the associated signs) through binary operations (see “CHP” algorithm [40]).
The stabilizer formalism also provides a method to systematically update the stabilizers

under Pauli measurements of the state |ψ(S)⟩. Assume that we have n generators for the
stabilizer group, namely εiE(ai, bi), i = 1, . . . , n, and that we are measuring the Pauli
operator µE(u, v) to obtain the measurement (−1)m,m ∈ {0, 1}. Then, we have the
following cases.

1. If ⟨[u, v], [ai, bi]⟩s = 0 for all i, then either E(u, v) or −E(u, v) already belongs to S,
so there is nothing to update.

2. If ⟨[u, v], [aj , bj ]⟩s = 1 for exactly one j ∈ {1, . . . , n}, then we replace εjE(aj , bj) by
(−1)mµE(u, v).

3. If ⟨[u, v], [ai, bi]⟩s = 1 for i ∈ I ⊆ {1, . . . , n}, then we replace εjE(aj , bj) by the
operator (−1)mµE(u, v) for any one j ∈ I, and update εiE(ai, bi) 7→ εiE(ai, bi) ·
εjE(aj , bj) for all i ∈ I \ {j} (using Lemma 9(b)).

Example 2. Consider the standard Bell state
∣∣Φ+〉

= |00⟩+|11⟩√
2 , whose stabilizer group

is S = ⟨X ⊗ X,Z ⊗ Z⟩ = ⟨E(11, 00), E(00, 11)⟩. If we measure Z ⊗ I = E(00, 10),
and obtain the result −1, then the new stabilizers are S = ⟨−E(00, 10), E(00, 11)⟩ ≡
⟨−E(00, 10),−E(00, 01)⟩. This group perfectly stabilizes the post-measurement state |11⟩.

If we instead measure Y ⊗ I = E(10, 10), and obtain the result +1, then the new
stabilizers are S = ⟨E(10, 10),−E(11, 11)⟩ ≡ ⟨E(10, 10),−E(01, 01)⟩. This group perfectly
stabilizes the post-measurement state (|0⟩+ı|1⟩)√

2 ⊗ (|0⟩−ı|1⟩)√
2 .
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A.4 Bell State Matrix Identity
Let n standard Bell pairs be shared between Alice and Bob. We rearrange the 2n qubits
to keep Alice’s qubits together and Bob’s qubits together. We can write the joint state as

∣∣∣Φ+
n

〉
AB

=
( |00⟩AB + |11⟩AB√

2

)⊗n

= 1√
2n

∑
x∈Fn

2

|x⟩A |x⟩B . (60)

Let M =
∑

x,y∈Fn
2
Mxy |x⟩ ⟨y| ∈ C2n×2n be any matrix acting on Alice’s qubits. Then, it

has been observed that [13, 18]

(M ⊗ I) |Φ+
n ⟩ = 1√

2n

∑
x,y∈Fn

2

Mxy |x⟩A |y⟩B (61)

= 1√
2n

∑
x,y∈Fn

2

|x⟩A (MT )yx |y⟩B (62)

= (I ⊗MT ) |Φ+
n ⟩ . (63)

Example 3. As in Example 2, consider the standard Bell pair and measure Y ⊗ I. If the
measurement result is +1, then the projector PY = I2+Y

2 gets applied to the first qubit.
Then, according to the above identity, this is equivalent to applying P T

Y = I2−Y
2 on the

second qubit. This exactly agrees with the post-measurement state (|0⟩+ı|1⟩)√
2 ⊗ (|0⟩−ı|1⟩)√

2 .

If Alice measures the generators of a stabilizer group S = ⟨εiE(ai, bi); i = 1, . . . , r⟩,
and obtains results (−1)mi ,mi ∈ {0, 1}, then M = ΠS′ is the projector onto the subspace
Q(S′) of the stabilizer code defined by S′ = ⟨(−1)miεiE(ai, bi); i = 1, . . . , r⟩. According
to the above identity, this is equivalent to projecting Bob’s qubits onto the stabilizer code
defined by

S′′ = ⟨(−1)miεiE(ai, bi)T ; i = 1, . . . , r⟩ = ⟨(−1)mi+aib
T
i εiE(ai, bi); i = 1, . . . , r⟩, (64)

where we have applied Lemma 9(a). Note that, in such cases where M is a projector, we
can write

(M ⊗ I) |Φ+
n ⟩ = (M2 ⊗ I) |Φ+

n ⟩ = (M ⊗MT ) |Φ+
n ⟩ , (65)

so that the action of Alice can be interpreted as both Alice and Bob projecting their own
qubits simultaneously.

B Logical Bell Pairs for Arbitrary CSS Codes
In this appendix, we show that when n raw Bell pairs are projected onto the subspace of a
CSS code through stabilizer measurements, the induced logical state is that of k Bell pairs.
We take a meet-in-the-middle approach where we first consider k Bell pairs and show how
their encoded state looks like, and then we project n Bell pairs to prove that the resulting
state is the same as the aforesaid encoded state.

Let C1, C2 be two binary linear codes such that C2 ⊂ C1. For the [[n, k]] CSS code defined
by these codes, C2 produces the X-stabilizers, C1 produces the logical X operators, C⊥

1
produces the Z-stabilizers, and C⊥

2 produces the logical Z operators. Let GC1/C2 denote a
generator matrix for the quotient group C1/C2 that represents the “pure” logicalX operators
that do not have any X-stabilizer component. In other words, the rows of GC1/C2 give the
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generators of logical X operators for the CSS code. Let UEnc denote an encoding unitary
for the code. Then, the encoded state of k Bell pairs is [45, 47]

((UEnc)A ⊗ (UEnc)B)
(∣∣∣Φ+

k

〉
AB

⊗ |00⟩⊗(n−k)
AB

)
= 1√

2k

∑
x∈Fk

2

UEnc

(
|x⟩A |0⟩⊗(n−k)

A

)
⊗ UEnc

(
|x⟩B |0⟩⊗(n−k)

B

)
(66)

= 1√
2k

∑
x∈Fk

2

 1√
|C2|

∑
y∈C2

∣∣∣xGC1/C2 ⊕ y
〉

A

 ⊗

 1√
|C2|

∑
y′∈C2

∣∣∣xGC1/C2 ⊕ y′
〉

B

 . (67)

For the other direction, we start with
∣∣Φ+

n

〉
AB and then apply the projector ΠCSS for

the code on Alice’s qubits. By the Bell state matrix identity (Section A.4), this means that
we are effectively simultaneously applying ΠT

CSS = ΠCSS on Bob’s qubits as well. Here,
the transpose has no effect because the stabilizer generators for CSS codes are purely
X-type or purely Z-type, and only such operators appear in the expression for the code
projector (58). Let G2 and G⊥

1 represent generator matrices for the codes C2 and C⊥
1 ,

respectively. Then, we have

ΠCSS =
∏

u∈rows(G2)

IN + E(u, 0)
2 ·

∏
v∈rows(G⊥

1 )

IN + E(0, v)
2 =: ΠX · ΠZ . (68)

For any z ∈ Fn
2 , since E(0, v) |z⟩ = (−1)zvT |z⟩, we have (IN + E(0, v)) |z⟩ = 2 |z⟩ if

zvT = 0 and (IN + E(0, v)) |z⟩ = 0 otherwise. This implies that ΠZ |z⟩ = |z⟩ or 0
depending on whether z ∈ C1 or not, respectively. Similarly, it is easy to check that
ΠX |z⟩ = 1

|C2|
∑

y∈C2 |z ⊕ y⟩. Putting these together, we observe that

((ΠCSS)A ⊗ (ΠCSS)B)
∣∣∣Φ+

n

〉
= 1√

2n

∑
z∈Fn

2

ΠXΠZ |z⟩A ⊗ ΠXΠZ |z⟩B (69)

= 1√
2n

∑
z∈C1

ΠX |z⟩A ⊗ ΠX |z⟩B (70)

= 1√
2n

∑
z∈C1

1
|C2|

∑
y∈C2

|z ⊕ y⟩A ⊗ 1
|C2|

∑
y′∈C2

∣∣z ⊕ y′〉
B (71)

= 1√
2n

∑
x∈Fk

2

∑
y′′∈C2

1
|C2|

∑
y∈C2

∣∣∣(xGC1/C2 ⊕ y′′) ⊕ y
〉

A
⊗ 1

|C2|
∑

y′∈C2

∣∣∣(xGC1/C2 ⊕ y′′) ⊕ y′
〉

B

(72)

= 1√
2n

∑
x∈Fk

2

|C2| 1
|C2|

∑
y∈C2

∣∣∣xGC1/C2 ⊕ y
〉

A
⊗ 1

|C2|
∑

y′∈C2

∣∣∣xGC1/C2 ⊕ y′
〉

B
(73)

= 1√
2n

∑
x∈Fk

2

1√
|C2|

∑
y∈C2

∣∣∣xGC1/C2 ⊕ y
〉

A
⊗ 1√

|C2|
∑

y′∈C2

∣∣∣xGC1/C2 ⊕ y′
〉

B
. (74)

This state must be normalized by the square root of the probability that we get the all
+1 syndrome, which corresponds to the subspace of the considered CSS code. It can be
checked that all syndromes are equally likely, so the probability is 1/2n−k. Dividing (74)
by 1/

√
2n−k, we arrive at exactly the same state in (67). This establishes that when CSS

stabilizer measurements are performed on n Bell pairs, the resulting code state corresponds
to k logical Bell pairs.
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C Protocol I with the 3-Qubit Code

Table 2: Steps of the GHZ distillation protocol based on the [[3, 1, 1]] code defined by S = ⟨Y Y I, IY Y ⟩.
Each ‘0’ below represents 000, and ei ∈ F3

2 is the standard basis vector with a 1 in the i-th position
and zeros elsewhere. Code stabilizers are typeset in boldface. An additional left arrow indicates which
row is being replaced with a code stabilizer, i.e., the first row that anticommutes with the stabilizer.
Other updated rows are highlighted in gray. Classical communications: A → B, B → C.

Step Sign X-Components Z-Components Pauli Representation
(±1) A B C A B C

(0) +1 0 0 0 e1 e1 0 ZA1 ZB1
+1 0 0 0 e2 e2 0 ZA2 ZB2
+1 0 0 0 e3 e3 0 ZA3 ZB3

+1 0 0 0 0 e1 e1 ZB1 ZC1
+1 0 0 0 0 e2 e2 ZB2 ZC2
+1 0 0 0 0 e3 e3 ZB3 ZC3

−1 e1 e1 e1 e1 e1 0 −YA1 YB1 XC1
−1 e2 e2 e2 e2 e2 0 −YA2 YB2 XC2
−1 e3 e3 e3 e3 e3 0 −YA3 YB3 XC3

(1) εA
1 110 000 000 110 000 000 εA

1 YA1 YA2 IA3 ←−
+1 0 0 0 e1 + e2 e1 + e2 0 ZA2 ZB2 ZA1 ZB1
+1 0 0 0 e3 e3 0 ZA3 ZB3

+1 0 0 0 0 e1 e1 ZB1 ZC1
+1 0 0 0 0 e2 e2 ZB2 ZC2
+1 0 0 0 0 e3 e3 ZB3 ZC3

εA
1 0 e1 + e2 e1 + e2 0 e1 + e2 0 εA

1 (YB1 YB2 IB3 )
· (XC1 XC2 IC3 )

−1 e2 e2 e2 e2 e2 0 −YA2 YB2 XC2
−1 e3 e3 e3 e3 e3 0 −YA3 YB3 XC3

(2) εA
1 110 000 000 110 000 000 εA

1 YA1 YA2 IA3
εA

2 011 000 000 011 000 000 εA
2 IA1 YA2 YA3 ←−

+1 0 0 0 e1 + e2 + e3 e1 + e2 + e3 0
ZA3 ZB3 ZA2 ZB2

· ZA1 ZB1

+1 0 0 0 0 e1 e1 ZB1 ZC1
+1 0 0 0 0 e2 e2 ZB2 ZC2
+1 0 0 0 0 e3 e3 ZB3 ZC3

εA
1 0 e1 + e2 e1 + e2 0 e1 + e2 0 εA

1 (YB1 YB2 IB3 )
· (XC1 XC2 IC3 )

εA
2 0 e2 + e3 e2 + e3 0 e2 + e3 0 εA

2 (IB1 YB2 YB3 )
· (IC1 XC2 XC3 )

−1 e3 e3 e3 e3 e3 0 −YA3 YB3 XC3

(3) εA
1 110 000 000 110 000 000 εA

1 YA1 YA2 IA3
εA

2 011 000 000 011 000 000 εA
2 IA1 YA2 YA3

η 0 0 0 e1 + e2 + e3 e1 + e2 + e3 0
η ZA3 ZB3 ZA2 ZB2

· ZA1 ZB1

ν1 0 0 0 0 e1 e1 ν1 ZB1 ZC1
ν2 0 0 0 0 e2 e2 ν2 ZB2 ZC2
ν3 0 0 0 0 e3 e3 ν3 ZB3 ZC3

µ1εA
1 000 110 110 000 110 110 µ1εA

1 (YB1 YB2 IB3 )
· (YC1 YC2 IC3 )

µ2εA
2 000 011 011 000 011 011 µ2εA

2 (IB1 YB2 YB3 )
· (IC1 YC2 YC3 )

µ3 e3 e3 e3 e3 e3 e3 µ3 YA3 YB3 YC3

(4) εA
1 110 000 000 110 000 000 εA

1 YA1 YA2 IA3
εA

2 011 000 000 011 000 000 εA
2 IA1 YA2 YA3

+1 0 0 0 e1 + e2 + e3 e1 + e2 + e3 0 ZAZBIC (logical)

εB
1 000 110 000 000 110 000 εB

1 YB1 YB2 IB3 ←−
εB

2 000 011 000 000 011 000 εB
2 IB1 YB2 YB3 ←−

β 0 0 0 0 e1 + e2 + e3 e1 + e2 + e3 β IAZBZC (logical)

α1εA
1 εB

1 000 000 110 000 000 110 α1εA
1 εB

1 YC1 YC2 IC3
α2εA

2 εB
2 000 000 011 000 000 011 α2εA

2 εB
2 IC1 YC2 YC3

α3 e3 e3 e3 e3 e3 e3 α3 XAXBXC (logical)
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The steps of the protocol, with this particular [[3, 1, 1]] code as an example, are shown
in Table 2. Again, we use the stabilizer formalism for measurements from Section A.3. We
will explain each step below and discuss the potential subtleties that can arise. It could be
useful to imagine the three parties as being three nodes A — B — C on a linear network
chain.

(0) Alice locally prepares 3 copies of the perfect GHZ state and groups her qubits together
for further processing. She keeps aside the grouped qubits of Bob’s and Charlie’s but
does not send those to them yet. She also writes down the parity check matrix for
the 9 qubits, based on only GHZ stabilizers, along with signs, as shown in Step (0)
of Table 2.

(1) Alice measures the stabilizer YA1YA2IA3 = E([(e1 + e2)A, 0B, 0C], [(e1 + e2)A, 0B, 0C])
and the group G3 gets updated as shown in Step (1) of Table 2, assuming that the
measurement result is εA1 ∈ {±1}. Based on the stabilizer formalism (Section A.3),
the measured stabilizer replaces the first row (as indicated by the left arrow) and the
second row is multiplied with the previous first row. For visual clarity, code stabilizer
rows are boldfaced and binary vectors are written out in full. Furthermore, as per
Theorem 6, this measurement of E(e1 + e2, e1 + e2) by Alice should imply that

εA1 E(e1 + e2, e1 + e2)T
B ⊗ E(e1 + e2, 0)C = εA1 E(e1 + e2, e1 + e2)B ⊗ E(e1 + e2, 0)C

automatically belongs to the (new) stabilizer group. Indeed, this element can be
produced by multiplying the elements −E([eAi , eBi , eCi ], [eAi , eBi , 0C]) for i = 1, 2 along
with YA1YA2IA3 = E([(e1 +e2)A, 0B, 0C], [(e1 +e2)A, 0B, 0C]) using Lemma 9(b). This
is exactly how the seventh row gets updated.

(2) Alice measures IA1YA2YA3 = E([(e2 + e3)A, 0B, 0C], [(e2 + e3)A, 0B, 0C]), the second
stabilizer, and the group gets updated as shown in Step (2) of Table 2. The procedure
is very similar to that in Step (1).

Since Alice has measured all her stabilizer generators, and the stabilizer formalism
preserves the commutativity of the elements in the group, the third row in the first
block of 3 rows must necessarily commute with Alice’s stabilizers. Thus, the Alice
component of the third row must form a logical operator for Alice’s code, and we
define it to be the logical Z operator, i.e., ZA = ZZZ = E(0, e1 + e2 + e3). We will
see shortly that Bob’s qubits get the same code (possibly with sign changes for the
stabilizers), so this third row can be written as the logical GHZ stabilizer ZAZBIC.

This phenomenon also generalizes to any [[n, k, d]] stabilizer code, with some caveats
when the code has some purely Z-type stabilizers, and we determine the logical Z
operators either after Alice’s set of measurements or apriori using some linear alge-
braic arguments (see Appendix D.2 for details). Note that it is convenient to choose
the logical Z operators such that they respect the GHZ structure of our analysis,
e.g., Z = IIY will not be compatible here.

(3) If we consider the parity-check matrix after Step (2), we see that rows 4 through 8 are
the stabilizers promised by Theorem 6 that act only on B and C systems. However,
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due to the same result, the C parts of rows 7 and 8 only have X-s instead of Y -s. So,
to change them back to Y -s, Alice applies the inverse of the Phase (i.e.,

√
Z) gate

to all 3 qubits of the C system. She specifically applies the inverse, rather than
√
Z

itself, to get rid of the −1 sign for the last row.

For a general stabilizer code, the appropriate diagonal Clifford must be chosen as dis-
cussed in Appendix D.1. This operation converts εAi (−1)aib

T
i E(ai, bi)B ⊗ E(ai, 0)C,

the BC stabilizers, into εAi (−1)aib
T
i E(ai, bi)B ⊗E(ai, bi)C, which ensures that Charlie

gets the same code (up to signs of stabilizers) as Alice and Bob. Since the Clifford is
guaranteed to be diagonal, it leaves purely Z-type stabilizers unchanged. Later, in
Section C.1, we show that it is better for Bob to perform this Clifford on Charlie’s
qubits, rather than Alice.

Though we have used the −Y Y X GHZ stabilizer here for convenience, for a general
code we can simply continue to use XXX. After Alice has measured her stabilizer
generators, this last block of 3 rows could have changed but they still commute with
the generators. Since the middle block never gets affected by Alice’s measurements,
we can guarantee using Theorem 6 that two of the last 3 rows must be the joint BC
stabilizers induced by Alice’s two generators. Hence, the remaining row’s Alice com-
ponent must form a logical operator for Alice’s code, and will be distinct from the
previously defined logical Z operator. We define this to be the logical X operator,
i.e., XA = IIY = Y3 = E(e3, e3). As we will see shortly, both Bob and Charlie get
the same code, so this last row of the third block can be written as the logical GHZ
stabilizer XAXBXC. The generalization to arbitrary stabilizer codes is discussed in
Appendix D.2.

Then, she sends Bob both his qubits as well as Charlie’s qubits over a noisy Pauli
channel, which introduces the signs η, νi, µi ∈ {±1}, i = 1, 2, 3. She also classically
communicates the code stabilizers, her syndromes {εA1 , εA2 }, and the logical Z and X
operators to him.

(4) Now, based on Alice’s classical communication, Bob applies Theorem 6 to obtain the
stabilizer generators

εA1 (YB1YB2IB3) (YC1YC2IC3) = εA1 E(e1 + e2, e1 + e2)T
B ⊗ E(e1 + e2, e1 + e2)C,

εA2 (IB1YB2YB3) (IC1YC2YC3) = εA2 E(e2 + e3, e2 + e3)T
B ⊗ E(e2 + e3, e2 + e3)C

for the induced joint code on his as well as Charlie’s qubits. As per Theorem 6, he
also includes {ZBiZCi = E([0A, 0B, 0C], [0A, eBi , e

C
i ]) ; i = 1, 2, 3} i.e., the IZZ-type

GHZ stabilizers, as stabilizer generators for the [[6, 1]] joint code on BC systems. He
measures these 5 stabilizers to deduce and correct the error introduced by the chan-
nel on the 6 qubits sent by Alice. Assuming perfect error correction, the signs will
be back to the ones in Alice’s final parity-check matrix.

When Bob sends Charlie’s qubits to him, the channel might introduce errors on those
3 qubits. To deduce and correct these errors, there must have been a code induced
on Charlie’s qubits even before the transmission. Hence, after correcting errors on
the 6 qubits of BC systems, Bob measures the same stabilizers as Alice’s code but
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on his qubits. This produces rows 4 and 5 in Step (4) of Table 2, and row 6 gets
updated as per the stabilizer formalism. When looking at rows 7 and 8 of Step (3),
it is evident that one can correspondingly multiply them with these new rows 4 and
5 to produce the same code just on Charlie’s qubits.

This phenomenon extends to general stabilizer codes as well, where the joint stabiliz-
ers εAi (−1)aib

T
i E(ai, bi)B⊗E(ai, bi)C are multiplied with Bob’s stabilizers εBi E(ai, bi)B

to obtain Charlie’s stabilizers εAi εBi (−1)aib
T
i E(ai, bi)C (see Algorithm 2). Any purely

Z-type stabilizer directly carries over to Charlie (without the above argument) as fol-
lows. At the beginning of the protocol, we can rewrite the E([0A, 0B, 0C], [eAi , eBi , 0C])
rows such that a subset of them correspond to E([0A, 0B, 0C], [zA, zB, 0C]), where
E(0, z)-s are the purely Z-type stabilizer generators of the code. This subset of
rows will never be replaced by stabilizer measurements since they commute with
other stabilizers. After Alice’s measurements, there will be rows corresponding to
εAz E(0, z)A, which can be multiplied respectively with the aforesaid subset of rows
to obtain εAz E(0, z)B. Just like we rewrote a subset of the first n rows, we can
rewrite a subset of the second n rows to obtain E([0A, 0B, 0C], [0A, zB, zC]), which
when multiplied with εAz E(0, z)B produces the desired εAz E(0, z)C for Charlie’s code.
See Appendix D.2 for some related discussion. In order to merge this phenomenon
for purely Z-type operators with the general signs εAi εBi (−1)aib

T
i for Charlie, we set

εBi := +1 whenever ai = 0, as mentioned in Algorithm 2.

Now, Bob has the parity-check matrix shown in Step (4) but without the new signs
β, α1, α2, α3, which will be introduced by the channel during transmission of Charlie’s
qubits. He sends Charlie his qubits (over a noisy Pauli channel), the code stabilizer
generators, along with the corresponding signs {εA1 εB1 , εA2 εB2 }, and the logical Z and
X operators.

Finally, Charlie measures these generators and fixes errors based on discrepancies in
signs with respect to {εA1 εB1 , εA2 εB2 } (the additional signs (−1)aib

T
i do not make a difference

for this example). In the matrix in Step (4) of Table 2, after excluding the three sets of
code stabilizers, we see that there are 3 rows left which exactly correspond to the logical
GHZ stabilizers, where we have defined the logical operators Z = ZZZ,X = IIY = Y3 for
the code. Therefore, we have shown that after all steps of the protocol, the logical qubits
of A, B, and C are in the GHZ state. Since the signs of the stabilizer generators can be
different for each of the three parties, although their logical X and Z operators are the
same, the encoding unitary can be slightly different. If they each perform the inverse of
their respective encoding unitaries on their qubits, then the logical GHZ state is converted
into a physical GHZ state.

It might seem like this last step requires coordination among all three of them, which
would require two-way communications between parties. However, this is not necessary as
Alice can perform the unitary on her qubits once she sends the 6 qubits to Bob, and Bob
can perform the unitary on his qubits once he sends the 3 qubits to Charlie. Subsequent
operations will necessarily commute with these local unitaries as those qubits are not
touched by the remaining parties in the protocol.

Hence, we have illustrated a complete GHZ distillation protocol, although much care
must be taken while executing the steps for an arbitrary code. For example, the local
Clifford on C must be determined by solving a set of linear equations and finding a bi-
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nary symmetric matrix that specifies the diagonal Clifford, via the connection to binary
symplectic matrices [48, 49]. This is discussed in detail in Appendix D.1. Similarly, the
logical operators of the code that are compatible with our analysis of the protocol must be
determined by simulating Alice’s part of the protocol and applying some linear algebraic
arguments. For a general [[n, k, d]] code, there will be 3k non-code-stabilizer rows at the
end, and one needs to identify k pairs of logical X and Z operators for the code from
these rows. Although any valid definition of logical Paulis would likely suffice, we use
Algorithm 3 to define them so that they naturally fit our analysis. The explanations for
the steps involved in this algorithm are given in Appendix D.2. In order to keep the main
paper accessible, we have moved the discussion on implementation details to Appendix D.

C.1 Placement of Local Clifford and Distillation Performance
In our description of the protocol above, we mentioned that Alice performs the local Clif-

ford
(√

Z
†)⊗3

on the qubits of system C in order to make Charlie’s code the same as Alice’s
and Bob’s. However, due to this operation, the joint BC code (in Step (4)) cannot distin-
guish between Bob’s qubits and Charlie’s qubits. Indeed, consider the two-qubit operator
XB1XC1 . This commutes with all 5 stabilizer generators of this code, although just XB1

or just XC1 would have anticommuted with the first generator (YB1YB2IB3) (YC1YC2IC3).
Therefore, if the true error is XC1 , then the maximum likelihood decoder will correct it
with XB1 , which results in a logical error. Of course, the 3-qubit code only has distance
1, but even if we consider the same 5-qubit code as in Section 4, the above phenomenon
will still occur. In effect, the induced joint BC code has distance dropping to 2 whenever
Alice’s code does not have any purely Z-type stabilizer. If we do not perform the diagonal
Clifford at all, then in such cases Charlie’s code will have only distance 1.

To mitigate this, we can instead make Bob perform the same diagonal Clifford operation
on Charlie’s qubits. This ensures that the stabilizers for the BC code induced by Alice’s
code are of the form E(a, b)B ⊗E(a, 0)C, or just E(0, b)B whenever the stabilizer is purely
Z-type. If Alice’s code has good distance properties, then this joint BC code will have
at least that much protection for Bob’s qubits. Although the C parts of the stabilizers
are purely X-type, the additional GHZ stabilizers ZBiZCi help in detecting X-errors on
system C as well. Alternatively, one could make Alice perform one type of diagonal Clifford
and Bob perform another diagonal Clifford, both on system C, to make both the BC code
as well as Charlie’s code as good as possible. In future work, we will investigate these
interesting degrees of freedom.

We developed a MATLAB simulation of this protocol2 and tested it using the [[5, 1, 3]]
perfect code defined by S = ⟨XZZXI, IXZZX, XIXZZ, ZXIXZ ⟩. The result is
shown as the green curve marked ‘purely X code for C’ in Fig. 6. When compared to
the standard QEC performance of this code on the depolarizing channel, we see that the
exponent is worse. This is because, by the arguments above, all non-purely Z-type stabi-
lizers of Q(S) get converted into a purely X-type stabilizer for Charlie’s code. To mitigate
this, we make Alice perform a local diagonal Clifford operation on qubits C to transform
E(ai, 0)C into E(ai, bi)C later. The performance of this is shown as the solid blue curve
marked ‘same code for all’, which is equally worse. This time the reason is that the BC code
Q(S′) has stabilizers of the form E(ai, bi)B ⊗E(ai, bi)C, which means that the code cannot
distinguish the i-th qubit of B and the i-th qubit of C. Finally, we make Bob perform the
aforesaid diagonal Clifford on qubits C, and this produces the solid dark red curve marked

2Implementation available online: https://github.com/nrenga/ghz_distillation_qec
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Figure 6: Performance of variations of the GHZ distillation protocol using the [[5, 1, 3]] perfect code, and
comparison with the standard QEC performance of the same code on the depolarizing channel. The
decoder employs a maximum likelihood decoding scheme that identifies a minimal weight error pattern
matching the syndrome.

‘local Clifford by B’. Clearly, the exponent now approaches the “fundamental limit” set by
standard QEC on the depolarizing channel.

D Implementation Details of Protocol I
In this appendix we provide additional details regarding the implementation of Protocol I,
which is also relevant for Protocol II. Specifically, we discuss how to identify the appropriate
diagonal Clifford to be applied on qubits C, and explain the reasoning behind Algorithm 3
that generates logical Pauli operators for any stabilizer code. The discussion related to
Algorithm 3 will also clarify some aspects of the distillation protocol.

D.1 Diagonal Clifford on qubits C
A diagonal Clifford unitary on n qubits can be described using an n×n binary symmetric
matrix R as [48, 49]

UR =
∑

v∈Fn
2

ıvRvT mod 4 |v⟩ ⟨v| = diag
(
{ıvRvT mod 4}v∈Fn

2

)
. (75)

Its action on a Pauli matrix E(a, b) is given by [44, 49]

UR E(a, b)U †
R = E(a, b+ aR) (76)

= E(a, (b⊕ aR) + 2(b ∗ aR)) (77)

= ı2a(b∗aR)T
E(a, b⊕ aR) (78)

= (−1)a(b∗aR)T
E(a, b⊕ aR), (79)
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where b ∗ aR is the entrywise product of the two binary vectors. It is well-known that any
diagonal Clifford operator can be formed using the phase gate, P , and the controlled-Z
gate, CZ, defined as

P =
[
1 0
0 ı

]
, CZ =

[
I2 0
0 Z

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (80)

Set n = 2. Then, the R matrices for P1 = (P ⊗ I), P2 = (I ⊗ P ), and CZ are respectively

RP1 =
[
1 0
0 0

]
, RP2 =

[
0 0
0 1

]
, and RCZ =

[
0 1
1 0

]
.

This generalizes naturally to more than 2 qubits. The diagonal entries of R describe which
qubits get acted upon by P , and the pairwise off-diagonal entries describe which pairs of
qubits get acted upon by CZ [49].

In our protocol, from Theorem 6 we observed that Alice’s stabilizers of the form
E(ai, bi), with ai ̸= 0, become the stabilizer E(ai, 0) for Charlie. This also means that
any logical X operator of the form E(cj , dj) would have transformed into E(cj , 0) (e.g.,
see last row of Step (2) in Table 2 and compare it to the last row of Step (3)). Therefore,
the purpose of the diagonal Clifford on qubits C is to convert the stabilizers E(ai, 0) back
into E(ai, bi) and the logical X operators E(cj , 0) back into E(cj , dj). Given the above
insight into diagonal Clifford operators, we want to find a binary symmetric matrix R such
that URE(ai, 0)U †

R = E(ai, bi) for all i = 1, 2, . . . , rX (using notation in Algorithm 3) and
URE(cj , 0)U †

R = E(cj , dj) for all j = 1, 2, . . . , k. Thus, we need a feasible solution R for
{aiR = bi, i = 1, 2, . . . , rX} and {cjR = dj , j = 1, 2, . . . , k}.

We solve this system of linear equations on a binary symmetric matrix as follows. First,
let A be the matrix whose rows are {ai} and {cj}, and let B be the matrix whose rows are
{bi} and {dj}. Then, we have the system AR = B. We recall the vectorization property
of matrices, which implies that

vec(QUV ) = (V T ⊗Q)vec(U). (81)

Here, vectorization of a matrix is the operation of reading the matrix entries columnwise,
top to bottom, and forming a vector (e.g., this is done through the command U(:) in
MATLAB). Setting Q = A,U = R, V = I, we get (I ⊗ A)vec(R) = vec(B), which is a
standard linear algebra problem for the unknown vector vec(R). However, we desire a
binary symmetric matrix R. We impose this constraint as (I − W )vec(R) = 0, where 0
denotes the all-zeros vector of length n2, and W is the permutation matrix which trans-
forms vec(Q) into vec(QT ) for any matrix Q. In summary, we obtain the desired R (or
equivalently the diagonal Clifford UR) by solving

find R s.t. (I ⊗A)vec(R) = vec(B),
(I −W )vec(R) = 0. (82)

Since R is symmetric, it has n(n+ 1)/2 degrees of freedom, which accounts for the second
constraint. The matrix A has rX + k < n rows and the Kronecker product with I results
in n(rX + k) constraints on n(n+ 1)/2 variables. It remains to be shown if there is always
a feasible solution for any valid A and B. Note that [A,B] represents a matrix whose rows
are stabilizers and logical X operators. This means any pair of rows must be orthogonal
with respect to the symplectic inner product, which implies that ABT +BAT = 0. Thus,
a given A and B is valid if and only if ABT is symmetric.
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D.2 Logical Paulis from GHZ Measurements
The procedure in Algorithm 3 to determine logical X and Z generators of a stabilizer code
is inspired by the stabilizer measurements on Bell or GHZ states, viewed through the lens
of the stabilizer formalism for measurements (Section A.3). Though the algorithm could
have been constructed just using measurements on Bell states, we preferred GHZ states
because there can be an additional non-trivial sign for the logical X operators due to an
odd number of subsystems in the GHZ state. Of course, logical operators obtained using
GHZ states will also apply to the Bell protocol since a negative sign on an even number
of subsystems (A and B in Bell states) leads to an overall positive sign for XAXB and
ZAZB.

We have a code Q(S) defined by its stabilizer group S = ⟨εiE(ai, bi) ; i = 1, 2, . . . , r =
n − k⟩. Define the r × (2n + 1) stabilizer (or parity-check) matrix H ′ whose i-th row is
[ai, bi, εi]. First, we bring the first 2n columns of the stabilizer (or parity-check) matrix of
the code to the following standard form:

H1:2n =
[

0 HZ

H1 H2

]
. (83)

Here, the rZ rows of HZ form all generators for the purely Z-type stabilizers of the code.
The bottom part of the matrix is such that the rX ×n matrix H1 has full rank (rX + rZ =
r = n−k). While performing row operations on the initial parity-check matrix H ′, one has
to account for the Pauli multiplication rule in Lemma 9(b), and not simply perform binary
sums of (the first 2n columns of the) rows, i.e., the last column of H must be updated to
reflect changes in signs.

Next, we simulate the creation of n GHZ states by creating a 2n × (6n + 1) GHZ
stabilizer matrix SGHZ, whose first n rows are [0, 0, 0, ei, ei, 0, +1] and the second n rows
are [ei, ei, ei, 0, 0, 0, +1]. This matrix is the same as Step (0) of Table 2, but we have
omitted the middle section since the measurements on subsystem A trivially commute with
entries IAZBZC of this section. Now, we use the stabilizer formalism for measurements
(Section A.3) to simulate measurements of the rows of H on subsystem A of SGHZ. Clearly,
the stabilizers from [0, HZ ] commute with the first n rows, so these will only replace rZ rows
in the bottom half of SGHZ. The stabilizers from [H1, H2] will necessarily anticommute
with at least one of the first n rows of SGHZ, and these rX rows get replaced. This can be
established by counting the dimension of purely Z-type operators with which each row of
[H1, H2] can commute, one after the other. Crucially, the stabilizer formalism guarantees
that all rows of the evolved SGHZ remain linearly independent and always commute.

The (n− rX) non-replaced rows within the first n rows can be divided into two types.
Before we simulate any stabilizer measurements, the first n rows have standard basis vectors
ei for the Z-parts of A and B. These can be rewritten such that we have rZ rows of the form
[0, 0, 0, z, z, 0, +1], where z corresponds to rows ofHZ , all of which are linearly independent
by assumption of the standard form. Since these correspond to code stabilizers (on A as well
as B), the measurement of rows of [H1, H2] will not replace these. After the measurements,
when rZ rows in the bottom half have been replaced by [0, 0, 0, z, 0, 0, εz], we can multiply
with the corresponding rows of the top half, i.e., [0, 0, 0, z, z, 0, +1], to produce purely
Z-type stabilizers on subsystem B, which later define Bob’s code. These Z-operators on
B in the top half form the first type of rZ rows. The remaining (n − rX) − rZ = k rows
form the second type, and they have to form logical ZAjZBj , for j = 1, 2, . . . , k, since they
commute with all code stabilizers and the columns of subsystem C remain zero. Thus, the
Z-component of subsystem A of these k rows produce the logical Z generators of the code,
and they always have sign +1.
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A similar argument applies to the bottom half of the evolved SGHZ matrix. The stabi-
lizer measurements from HZ replace rZ rows out of the n rows. The remaining (n − rZ)
rows can again be divided into two types. The first type of rows give operators that can
be rewritten as the BC stabilizers guaranteed by Theorem 6. Specifically, these can be
identified by the fact that their A-parts will be linearly dependent on the A-parts of the
other rows of the evolved SGHZ matrix. Indeed, this is how one can cancel the A-parts of
these rX rows to produce the rX BC stabilizers corresponding to [H1, H2]. The remaining
(n − rZ) − rX = k rows of the bottom half form the second type, and they have to form
logical X ′

Aj
X ′

Bj
, for j = 1, 2, . . . , k, since they commute with all code stabilizers and are

linearly independent from all other rows. The A-parts of these rows are used to define the
logical X ′ operators of the code. The primes on these logical operators indicate that they
might not exactly pair up with the corresponding logical Z operators defined earlier. This
is because they are only guaranteed to be logical operators independent of the logical Z
operators, but not to be the appropriate pairs {Xj} of the previously determined {Zj}.

Once these pseudo logical X operators are determined, we can easily find the necessary
pairs for the logical Z operators. Let the logical Z operators be E(0, fi), i = 1, 2, . . . , k,
and let these pseudo logical X operators be νjE(cj , dj), j = 1, 2, . . . , k. If they are the
correct pairs, then we would get ⟨[0, fi], [cj , dj ]⟩s = δij for all i, j ∈ {1, 2, . . . , k}, where
δij = 1 if i = j and 0 otherwise. The symplectic inner product can be expressed as

⟨[0, fi], [cj , dj ]⟩s = [0, fi] Ω [cj , dj ]T , where Ω =
[

0 In

In 0

]
.

Therefore, if F is the matrix whose rows are fi and [C,D] is the matrix whose rows are
[cj , dj ], then we need

[0, F ] Ω [C,D]T =: T = Ik.

If T ̸= Ik, then we can simply pre-multiply the equation by T−1 (mod 2) to achieve the
desired result. In this case, we redefine the logical Z operators to be given by the rows of
T−1 [0, F ]. This completes the reasoning behind Algorithm 3.
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