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The Hidden Quantum Markov Model
(HQMM) has significant potential for
analyzing time-series data and studying
stochastic processes in the quantum do-
main as an upgrading option with poten-
tial advantages over classical Markov mod-
els. In this paper, we introduced the split
HQMM (SHQMM) for implementing the
hidden quantum Markov process, utilizing
the conditional master equation with a fine
balance condition to demonstrate the in-
terconnections among the internal states
of the quantum system. The experimen-
tal results suggest that our model outper-
forms previous models in terms of scope
of applications and robustness. Addition-
ally, we establish a new learning algorithm
to solve parameters in HQMM by relating
the quantum conditional master equation
to the HQMM. Finally, our study provides
clear evidence that the quantum transport
system can be considered a physical repre-
sentation of HQMM. The SHQMM with
accompanying algorithms present a novel
method to analyze quantum systems and
time series grounded in physical imple-
mentation.

1 Introduction
The significant increase of data and information
has emphasized that classical algorithms have dif-
Qin-Sheng Zhu†: Corresponding:zhuqinsheng@uestc.edu.cn

ficulties in meeting computation demands for ef-
ficiency and speed. Therefore, quantum com-
puting, capable of efficient computation, has be-
come a viable solution. Unlike classical comput-
ing, quantum computing employs quantum bits’
superposition for data storage, reading, and Ef-
ficient computing. As a result, quantum com-
puting promises to solve problems that are too
complex for classical computers.

Quantum computing has made great improve-
ments in hardware implementations [1, 2] and
algorithmic approaches [3, 4], propelled the
field of quantum computing into the "Noisy
intermediate-scale quantum (NISQ) algorithms"
era in the last decade. During that era, many hy-
brid framework [5] algorithms emerged that com-
bined quantum and classical approaches to cope
with suboptimal hardware conditions. Initial ap-
plications of quantum computing in chemistry [6],
Hamiltonian simulation [7], biology [8], pharma-
ceutical [9], finance [10], materials [11] and vari-
ous other fields demonstrate its potential advan-
tages over classical computing.

In the field of machine learning, the Hidden
Markov Model (HMM) algorithm plays a vitall
role and has been extensively and effectively uti-
lized in domains such as stock market forecasting
[12, 13], natural language processing [14, 15], pro-
tein sequencing [16, 17].

The classical HMM [18] has three main parts:
training, decoding, and learning. When the di-
mensionality of the hidden state is not large,
the Baum-Welch algorithm [19], the Viterbi al-
gorithm [20], and the EM algorithm [21] can be

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

30
7.

08
64

0v
6 

 [
qu

an
t-

ph
] 

 1
8 

Ja
n 

20
24

https://quantum-journal.org/?s=A%20new%20quantum%20machine%20learning%20algorithm:%20split%20hidden%20quantum%20Markov%20model%20inspired%20by%20quantum%20conditional%20master%20equation&reason=title-click
https://quantum-journal.org/?s=A%20new%20quantum%20machine%20learning%20algorithm:%20split%20hidden%20quantum%20Markov%20model%20inspired%20by%20quantum%20conditional%20master%20equation&reason=title-click
https://quantum-journal.org/?s=A%20new%20quantum%20machine%20learning%20algorithm:%20split%20hidden%20quantum%20Markov%20model%20inspired%20by%20quantum%20conditional%20master%20equation&reason=title-click


used to solve these problems efficiently. However,
when the dimensions of the hidden state and the
observation space increase simultaneously, the so-
lution speed and accuracy of the classical algo-
rithms become weak.

Quantum algorithms were introduced in re-
sponse to address such problems and find more
effective solutions. Monras et.al. [22] gave the
mathematical definition of the hidden quantum
Markov process in terms of Kraus operators. This
key work offers insight into HQMM and a method
for studying this model from the perspective of
quantum open systems, as well as creating heuris-
tic quantum computing algorithms. Compared
to the classical HMM, the quantum version also
functions as a stochastic probability graph model,
and it includes the same three main parts. Cru-
cially, the advantages of HQMM are gradually be-
coming apparent with the study of problem solv-
ing the model parameters.

Srinivasan et. al.[23] proposed an algorithm
based on the Norm Observable Operator Model’s
learning algorithm, originally presented by Jaeger
et.al.[24]. This study demonstrates that HQMM
offers advantages over traditional algorithms with
regard to model complexity and accuracy. Nev-
ertheless, this model is only suitable for situa-
tions where the hidden state dimension is rel-
atively small, and it is inclined to succumb to
local optimal solutions. Liu et.al. [25] analyti-
cally demonstrated the superiority of the quan-
tum stochastic model in comparison to the clas-
sical model, providing qualitative evidence of the
quantum advantage that HQMM possesses. In
further work [26], they also highlight that the
quantum implementation of the HMM could both
mitigate thermal dissipation and achieve an ad-
vantage in memory compression. In 2020, Ad-
hikary et.al. [27] proposed a learning algorithm
grounded in optimization theory on the manifold
[28] with goal of solving the Kraus, which pro-
vides an algorithmic basis for substantial applica-
tions of HQMM. The work of Markov et.al. [29]
in 2022 shows that HQMM has a significant ad-
vantage in state space complexity over stochastic
process languages. In 2023, Li et.al. [30] presents
a new algorithm for modeling the dynamics of
Markovian open quantum systems that is cleaner
and more efficient than previous algorithms.

Taken together, the above work show that
HQMM has potential advantages that need to

be explored. The primary motivation of this pa-
per is to further explore HQMM from a physical
perspective, providing new tools for a nuanced
understanding of the intricate states of quantum
systems while ensuring algorithmic performance.

We developed a new HQMM learning algo-
rithm, namely SHQMM, using the quantum con-
ditional master equation on an open quantum
system described by the quantum master equa-
tion [31, 32, 33] building upon the work of Clark
et al. [34]. As a result, SHQMM has the ca-
pability to function with open systems and non-
unitary quantum algorithms, rendering it appli-
cable to the noise-related issues that arise in
quantum computers during NISQ. Another as-
pect, SHQMM provides an understanding of the
quantum state of the system under fine balance
condition while guaranteeing algorithmic perfor-
mance, provides HQMM with interpretability
that corresponds to quantum transport systems
[35]. Additionally, our work is expected to pro-
vide new ideas for the physical implementation of
quantum neural network (QNN).

The contribution of this paper is as follows:
1. A new SHQMM learning algorithm is con-

structed on open quantum systems by using the
quantum conditional master equation, which is
able to handle open systems and non-unitary
quantum algorithms.

2. SHQMM with the introduction of periodic
boundary conditions guarantees the performance
of the algorithm under fine balance conditions,
which can be physically related to quantum trans-
port systems. Model possesses a clear physical
representation, well-defined dimensional relation-
ships, and robust interpretability.

3. Numerical experiments show that SHQMM
achieves better results on both quantum and clas-
sical data sets and is robust to random initializa-
tion. Exploration of the quantum system did not
degrade the performance of the model.

The paper is organized as follows: Sec. 2 pro-
vides an introduction of related work, including
the basic concepts of HMM, HQMM and quan-
tum conditional master equation. In Sec. 3, we
formally introduce the SHQMM, a novel stochas-
tic probabilistic graphical model. The implemen-
tation of SHQMM is demonstrated using a quan-
tum transport system as an illustrative example.
Sec. 4 presents the results of numerical experi-
ments on the SHQMM model, demonstrating its
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adaptability on both quantum and classical data,
robust to random initialization, and performance
on DA. In Sec. 5, we compare SHQMM to previ-
ous work, analyze its complexity, and discuss the
benefits. Finally, in Sec. 6, we summarize our
work.

2 Related work
2.1 Hidden quantum Markov model
The Hidden Markov Model (HMM) is a type of
probabilistic graph model that describes the evo-
lutionary properties of Markov dynamics. It con-
sists of two important parameters: the transition
matrix T and the observation matrix C, which
are constant matrices. A HMM can be defined
as λ = (T,C, x0), where x0 is the initial state
vector. The update of the hidden state and the
observable results can be obtained from Eq.1,
which represents a state-emitting (Moore) hidden
Markov model.

xt+∆t = Txt

yt+∆t = diag(C(y,:))xt+∆t,
(1)

where the variable y represents an output sym-
bol in the observable space O.

A Hierarchical Quantum Markov Model
(HQMM) can be defined using a set of parameters
λQ = (ρ0,Ky), similar to the classical Markov
process. Here, ρ0 corresponds to the initial state
vector x0 of the classical Markov model, and
the Kraus operator Ky corresponds to the ma-
trices T and C. In comparison to the classical
Markov model, the Kraus operator Ky plays a
dual role as both the evolution state and the ob-
servable output result. It satisfies the condition∑

mK†
mKm = I. When the system is measured

(assuming the measurement or read-out result is
y), the density matrix can be expressed as follows
[27]:

ρy(t+ ∆t) =
∑

ωy
Kωyρ(t)K†

ωy

Tr[
∑

ωy
Kωyρ(t)K†

ωy ]
(2)

where ωy denotes the auxiliary dimension of
Kraus operator.

The difference between the HMM and the
HQMM is shown in Table.1.

To calculate the parameters {K} of the
HQMM, Adhikary et.al. [27] proposed a maxi-
mum likelihood estimation algorithm. This algo-

Table 1: The difference between the HMM and the
HQMM

Model HMM HQMM
State state vector x density matrix ρ

Transition
and Emission matrix T,C Kraus operators

{K}
Steady
State x∗ = Tx∗ ρ∗ =

∑
ωy
Kωyρ

∗K†
ωy

Probability Idiag(C(y,:))x Tr(
∑

ωy
Kωy

ρK†
ωy

)

rithm assumes that a set of observation sequences
y1, y2, y3, · · · , yT is known, and constructs the
maximum likelihood function based on this data.
This is a particular case where ω = 1:

L = −ln tr
(
KyT · · ·Ky2Ky1ρ0K

†
y1K

†
y2 · · ·K†

yT

)
.

(3)
Then the parameter solving problem of the

HQMM is transformed into a constrained opti-
mization problem:

minmize{K} L ({K})

subject to
∑

y

K†
yKy = I,Ky ∈ Cn×n. (4)

Stack Km by column to form a new matrix κ =
[K1,K2, · · · ,Km]T with dimension nm × n, the
constraint condition in Eq.4 can be rewritten as

κ†κ = I, κ ∈ Cnm×n. (5)

According to Ref.[27], κ in Eq.5 lies on the
Stiefel manifold, and the following gradient de-
scent method can be used to solve Eq.4:

G = ∂L

∂κ
,

κ = κ− τU(I + τ

2V†U)−1V†κ.
(6)

In Eq.6, U = [G, κ], V = [κ,−G], and τ is a
positive real number.

2.2 The quantum conditional master equation

As a general type of equation describing the evo-
lution of open quantum systems, the quantum
conditional master equation adopts the specific
form of the Lindbladian equation [36], with par-
ticular consideration given to the interaction with
the environment.
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For an open quantum system, the Hamiltonian
form can be applied as

H = HS +HE +H ′. (7)

HS and HE represent the Hamiltonians of the
quantum system and the environment, respec-
tively. The Hamiltonian H ′ describes the cou-
pling effect between the quantum system and the
environment. In the case of weak coupling be-
tween the quantum system and the environment,
H ′ can be treated as a perturbation. Using the
expansion of the second-order cumulant, we can
obtain a description of the evolution of the re-
duced density matrix.

ρ̇(t) = −iLρ(t)

−
∫ t

0
dτ⟨L′(t)G(t, τ)L′(τ)G†(t, τ)⟩ρ(t).

(8)

Here, the Liouvillian super operator is defined
as L = [HS , (· · · )], L′ = [H ′

S , (· · · )]. G(t, τ) =
G(t, τ) × (· · · ) × G†(t, τ). G(t, τ) is the Green’s
function related to HS . The reduced density ma-
trix is obtained by partially tracing the density
matrix of the composite system, that is, ρ(t) =
TrE [ρT (t)].

In experiments, measurement results are typ-
ically linked to changes in the internal state of
a system. Therefore, unlike the method used
to derive Eq.8, Li et. al. [35] introduced the
"detailed balance" condition to illustrate the re-
lationship among different system states when
studying the current ( the measurement result) of
a quantum transport system. This allowed them
to derive the quantum conditional master equa-
tion (QCME) in Equation 12 and to obtain some
interesting results. By adopting the approach of
the QCME described in reference [35] and consid-
ering the detailed balance among different system
states, the general QCME can be expressed as
following when the environment space is divided
into different subspaces as shown in Figure 1.

ρ̇(Mq) = −iLρ(Mq)

−
∫ t

0
dτTrE(Mq) [L′(t)G(t, τ)L′(τ)G†(t, τ)ρT (t)].

(9)
Here, the proposed initial conditions for

the quantum conditional master equation are
ρT (0) ≃

∑
Mq

ρ(Mq)(0) ⊗ ρ
(Mq)
E (0), and ρ(Mq)

Figure 1: The diagram of dividing the environ-
ment space. The Pentagon represents the Hilbert
space of the environment, which is divided into some
subspace M1, M2, M3, · · · , Mq corresponding to
ρ(M1), ρ(M2) · · · , ρ(Mq).

denotes conditional density matrix of the quan-
tum system corresponding to the environment
ρ

(Mq)
E associated with the subspace Mq. Note

that ρ(Mq) also satisfies positive semi-definite,
and Tr(ρ(Mq)) ≤ 1, Tr[

∑
Mq

ρ(Mq)] = 1. The use
of quantum conditional master equation enables
the representation of the relationship between the
different subspaces Mq, which provides a better
understanding of the open quantum system being
studied.

3 The SHQMM based on QCME
3.1 The quantum master equation of quantum
transport system
Since any quantum computing needs an actual
physical system to implement, we need search for
an open quantum system that can be described
by the conditional master equation to establish
HQMM. We found that the quantum transport
system is suited for implementing our HQMM
based on previous work [27, 35].

As a result, in this section, we present the
quantum conditional master equation for the
quantum transport system. The Hamiltonian of
this quantum system is expressed as follows [35]:

H = HS(a†
µ, aµ) +

∑
α=L,R

∑
µk

ϵαµkd
†
αµkdαµk

+
∑

α=L,R

∑
µk

(tαµka
†
µdαµk + H.c).

(10)

where HS is the Hamiltonian of the quantum
dots system, L and R represent the left and right
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electrodes respectively, d†
αµk and dαµk represent

the creation and annihilation operators of elec-
trons in the electrode, respectively, and tαµk rep-
resents the coupling strength between the elec-
trode and the quantum dot system. The master
equation for the quantum transport system can
be derived through some calculations [35] based
on Eq.8:

ρ̇ = −iLρ− 1
2

∑
µ

{[a†
µ, A

(−)
µ ρ− ρA(+)

µ ] + H.c.}.

(11)
If the state space where the electrode is located,

without any electrons passing through the quan-
tum dot system, is denoted as E(0), it is formed
by the wave function of the two isolated elec-
trodes on the left and right E(0) = span{|ψL⟩ ⊗
|ψR⟩}. If there are n electrons from the state
space where the right electrode passes through
the quantum dot to the left electrode, it is de-
noted as E(n) (n = 1, 2, 3, · · · ). Then the elec-
trode state space E in the equation can be decom-
posed as E = ⊕nE

(n), which leads to the quan-
tum conditional master equation [35] with an ini-
tial condition of ρT (0) ≃

∑
n ρ

(n)(0) ⊗ ρ
(n)
E (0).

ρ̇(n) = −iLρ(n) − 1
2

∑
µ

{[a†
µA

(−)
µ ρ(n) + ρ(n)A(+)

µ a†
µ

−A
(−)
Lµ ρ

(n)a†
µ − a†

µρ
(n)A

(+)
Lµ −A

(−)
Rµ ρ

(n−1)a†
µ

− a†
µρ

(n+1)A
(+)
Rµ ] + H.c.}.

(12)
Here, ρ(n) = Tr_E(n) [ρT (t)] is the conditional

density matrix of the quantum dot system [35],
which means that there are n electrons passing
through the quantum dot system within time t.
Here, the number of electrons n corresponds to
the subspace Mq in Eq. 9.

3.2 The relationship between the QCME equa-
tion and HQMM
Based on the contents in Sec.2.2 and 3.1, we de-
rive the hidden quantum Markov model from a
quantum master equation and propose a novel
stochastic graph model from a quantum condi-
tional master equation. After some calculations
(the detailed proof and calculation process are
shown in supplemental material, we obtain:

(1) For quantum master equation of Eq.8, the
evolution density matrix of quantum dot system

is

ρ(t+ ∆t) =
∑
i,µ

Ki,µρK
†
i,µ. (13)

(2) For quantum conditional master equation
of Eq.12, the evolution density matrix of quantum
dot system is

ρ(n)(t+ ∆t) =
∑
i,µ

Ki,µρ
(n)K†

i,µ

+
∑

µ

K3,µρ
(n−1)K†

3,µ

+
∑

µ

K4,µρ
(n+1)K†

4,µ,

(14)

where i = 0, 1, 2.
Comparing Eq.2(ωy = 1) and Eq.13, we con-

cluded that there is a close relationship between
a quantum Markov model and a quantum master
equation. However, the Kraus operators Ki,µ of
Eq.14 are involved with the related ρ(n), ρ(n−1),
and ρ(n+1). This difference arises from the di-
vision of the Hilbert space of the environment,
which gives rise to a new HQMM called the split
hidden quantum Markov model.

3.3 Split hidden quantum Markov model
In this section, we present the SHQMM inspired
by quantum transport systems, which is the main
theoretical improvement in this work. Similar to
the HQMM, the SHQMM is defined by applying
a set of parameters λSQ = (ρ(0), ρ(1), ρ(2), · · ·,Ky)
where Tr(

∑
i=0 ρ

(i)) = 1.
Firstly, the evolution conditional density ma-

trix of quantum system HS is written as

ρ(Mq)(t+ ∆t) =
∑

y

K(M1)
y ρ(M1)(t)K(M1)†

y + · · ·

+
∑

y

K(Mq)
y ρ(Mq)(t)K(Mq)†

y + · · · ,

(15)
where, q denotes the values of subspace for en-

vironment M and
∑

i,µK
†
i,µKi,µ = I. The pa-

rameter y represents the read-out of information
symbols from the open quantum system. Eq.15
represents a comprehensive expression that cor-
relates to the relationship between ρ(Mq).

Secondly, when we read out or measure a cer-
tain value y′ for ρ(Mq)(t), the conditional density
matrix ρ(Mq)(t+ ∆t) is rewritten as follows:
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ρ
(Mq)
y′ (t+ ∆t) =

ρ
′(Mq)
y′ (t+ ∆t)

Tr[
∑

Mq
ρ′ (Mq)

y′ (t+ ∆t)]
,

ρ
′(Mq)
y′ (t+ ∆t) = K

(M1)
y′ ρ(M1)(t)K(M1)†

y′ + · · ·

+K
(Mq)
y′ ρ(Mq)(t)K(Mq)†

y′ + · · · .
(16)

Thirdly, the probability of obtaining the mea-
surement result y′ is given by:

P (y′) =
∑
Mq

Tr[ρ
′(Mq)
y′ (t+ ∆t)]. (17)

Here, Eq.17 describes the contribution of
different ρ′(Mq) to the probability P (y′), and this
process reveals the concept of "detailed balance"
in physics, as described in Eq.15.

The concretely implement example of our
SHQMM To calculate the parameters of the
SHQMM, assuming that a set of sequences

y0, y1 · · · , yT are known, the conditional density
matrix evolution under the measurement result yi

is shown in Fig.2 based on transport system. It
can be seen that Fig.2 is similar to a neural net-
work and shows the process of forward propaga-
tion through time t. This suggests that SHQMM
is promising as a physical realization pathway
for QNN, which will be our further research.
This demonstrates the connection of quantum
state evolution among the different subspaces n
in QCME and the conversion relationship among
the probabilities Tr(ρ(n)). Compared to previous
work on HQMM (the probabilities for the mea-
surement value yi depend on ρ =

∑
n ρ

(n)), the
property illustrated in Fig.2 also displays the con-
tribution variance of different ρ(n) to the proba-
bilities of obtaining the measurement value yi at
time ti. Therefore, our model produces a more
stable and robust model structure (as seen in ex-
perimental results).

Here, based on the QCME (Eq.14), we can
write a probability function using the following
equations.

ρ
(0)
T = KyT −1ρ

(0)
T −1K

†
yT −1 +AyT −1ρ

(1)
T −1A

†
yT −1 ,

ρ
(1)
T = RyT −1ρ

(0)
T −1R

†
yT −1 +KyT −1ρ

(1)
T −1KyT −1 +AyT −1ρ

(2)
T −1A

†
yT −1 ,

. . .

ρ
(n)
T = RyT −1ρ

(n−1)
T −1 R†

yT −1 +KyT −1ρ
(n)
T −1KyT −1 +AyT −1ρ

(n+1)
T −1 A†

yT −1 ,

. . .

ρ
(Nmax)
T = RyT −1ρ

(Nmax−1)
T −1 R†

yT −1 +KyT −1ρ
(Nmax)
T −1 KyT −1 .

(18)

where Ki,µ, K3,µ and K4,µ of Eq.14 denote
Kyi , Ryi and Ayi , respectively. Nmax denotes
the maximum value of n. The probability of yi is
P (yi) =

∑
n Tr[Kyiρ

(n)(t)K†
yi

+Ryiρ
(n−1)(t)R†

yi
+

Ayiρ
(n+1)(t)A†

yi
].

From Eq.18, the probability of sequences
y0, y1 · · · , yT can be easily obtained

Py0,y1··· ,yT = Tr(ρT )

ρT = ρ
(0)
T + ρ

(1)
T + · · · + ρ

(...)
T .

(19)

To compute the parameters of the SHQMM,
we propose a maximum likelihood estimation
method, based on the results in [23, 27]. Firstly,
we use the probability function to derive all pos-
sible Kraus operators, and then use the gradient

descent algorithm to find the matrix form of the
Kraus operator that satisfies the minimum prob-
ability function of the given sequence. This turns
parameter-solving into an optimization problem.

minimize{K,R,A} L ({K,R,A}) = −ln Tr(ρT )

subject to
∑
y∈O

K†
yKy +R†

yRy +A†
yAy = I.

(20)
Stack Ky, Ry, Ay by column to form a new

matrix κ = [K1,K2, · · · , R1, R2, · · · , A1, A2, · · · ]
with dimension 3dimO · m × m(m is the dimen-
sion of the Kraus operator) . So the constraint
condition in Eq.20 can be rewritten as

κ†κ = I, κ ∈ C3dimO·m×m. (21)
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We summarize all the above steps into an algo-
rithm for solving the Kraus operator. The specific
steps are shown in the Algorithm1.

Algorithm 1 Leaning SHQMM using gradient
descent method on Stiefel manifold
Require: Training data D ∈ NM×l , W is num-

ber of sequences and l is the length of se-
quence.

Ensure: {Ki}dimO
i=1 , {Ri}dimO

i=1 , {Ai}dimO
i=1 · · ·

1: Initialize: Complex orthogonal ma-
trix on Stiefel κ ∈ C3dimO·m×m and
ρ(0), ρ(1), ρ(2), · · · , ρ(N−1) and require
that ρ(i) is positive semi-definite and∑N−1

i=0 ρ(i) = ρtotal, ρtotal is density matrix.
2: for epoch = 1 : E do
3: split the data D into B batches DB

4: for batch = 1 : B do
5: Compute gradient G{K}

i = ∂L
∂K∗

i
, G{R}

i =
∂L
∂R∗

i
, G{A}

i = ∂L
∂A∗

i

6: Compute the like-hood function L

7: Stack G
{K}
i , G

{R}
i , G

{A}
i vertically to

construct G = [GK
1 , · · · , GA

O]T
8: Construct U = [G|κ],V = [κ| −G]
9: G = βGold + (1 − β)G

10: Update κ = κ− τU(I + τ
2 V†U)−1V†κ

11: end for
12: Update learning rate τ = ατ
13: end for
14: Compute the DA function by using the value

of probability function L
15: return {Ki}dimO

i=1 , {Ri}dimO
i=1 , {Ai}dimO

i=1 and
DA

In Algorithm1, τ(learning rate), α(decay fac-
tor) and β(momentum parameter) are the hyper-
parameters, and DA is a function that describes
the quality of the model.

As one of the core evaluation metrics of
HQMM, DA [37] is able to measure the perfor-
mance among models with different structures
and functions in a relatively fair way [38], defined
as:

DA = f(1 + logιP (D|M)
l

). (22)

Where, D is data, M is model. l is the length
of the sequence, and ι is the number of output
symbol in the sequence. The function f(·) is a
non-linear segmented function that can map any
argument in (−∞, 1] to (−1, 1], defined as:

f(x) =


x, x ≥ 0,
1 − e−0.25x

1 + e−0.25x
, x < 0.

(23)

The model can perfectly predict the Markov
sequence if DA = 1 and the model better than
random model for DA > 0.

In the SHQMM, different models can produce
different prediction effects for the same sequences,
depending on the number Mq of initialized con-
ditional density matrices and the connections be-
tween them. Eq.18 describes the closest connec-
tion between the conditional density matrix and
the number Mq, which is equal to n.

The optimal solution of HQMM is one of the
optimal solutions of Eq.20. Therefore, periodic
boundary conditions are applied to the first and
last conditional density matrices, similar to the
arrangement of atoms in a crystal.

ρ
(0)
T = KyT −1ρ

(0)
T −1K

†
yT −1 +AyT −1ρ

(1)
T −1A

†
yT −1

+RyT −1ρ
(Nmax)
T −1 R†

yT −1 ,

ρ
(Nmax)
T = RyT −1ρ

(Nmax−1)
T −1 R† +KyT −1ρ

(Nmax)
T −1 KyT −1

+AyT −1ρ
(0)
T −1A

†
yT −1 .

(24)
Different from Eq.18, Eq.24 includes periodic

boundary conditions. This empirical improve-
ment is due to the fact that the Kraus opera-
tors (R,A) often converge to zero during the op-
timization process, which means that the model
has essentially degenerated into a HQMM. This
improvement ensures the stability of the learning
process.

More detailed cases are presented in supple-
mental material.

Extend the expandability ability of the
SHQMM If we need to further improve the
complexity of the model, we can set the param-
eters Nmax = 4, 5, 6, · · · and apply a more com-
plicated connection defined as k-local. Thus, the
general SHQMM can be defined as a tuple λSQ =
(Cm, k−local,Kj

y , y ∈ O, j = 2k + 1, ρ(i)
0 , i ∈

[0, Nmax − 1]) with the following conditions:

(1) ρ
(i)
0 is conditional density matrix,

Tr(
∑Nmax−1

i=0 ρ
(i)
0 ) = 1.
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(2) For every Kraus operator, Kj
y : Cm → Cm

and
∑

y,j

(
Kj

y

)†
Kj

y = I.

(3) The evolution of ρ(i) follows Eq.25.

ρ(i)(t+ ∆t) =
⌊ j

2 ⌋∑
j′=−⌊ j

2 ⌋

∑
y∈O

K
j′+1+⌊ j

2 ⌋
y ρ(i−j′)(t)Kj′+1+⌊ j

2 ⌋†
y ,

(25)

where the periodic boundary conditions
should be applied and conditional density matrix
beyond index range should be zeroed, that
is, 0 ≤ i − j′ ≤ Nmax − 1. ⌊ j

2⌋ equal to k,
j′ ∈ {−⌊ j

2⌋,−⌊ j
2⌋ + 1,. . . ,⌊ j

2⌋ − 1, ⌊ j
2⌋}.

(4) The probability of observation symbol y is

p(y) =

N−1∑
i=0

Tr(
⌊ j

2 ⌋∑
j′=−⌊ j

2 ⌋

K
j′+1+⌊ j

2 ⌋
y ρ(i−j′)(t)Kj′+1+⌊ j

2 ⌋†
y ),

(26)
where, k-local represents the relationship be-

tween different conditional density matrix and j
represents the number of Kraus operator classes.

In summary, enhancing state correlations and
moving beyond simple neighbor connections en-
hances SHQMM’s applicability to diverse time se-
ries problems.

Comparison of properties of SHQMM and
HQMM We use a simple case to illustrate
the correlation and difference between SHQMM
and HQMM. For 1-local model, by summing the
conditional density matrix ρ(n) with index n in
Eq.18, we obtain:

ρ(t+ ∆t)
=

∑
y

Kyρ(t)K†
y +

∑
y

Ryρ(t)R†
y +

∑
y

Ayρ(t)A†
y

=
∑
ωy

Kωyρ(t)K†
ωy
.

(27)
The second equal sign in Eq.27 shows a for-

mal relationship between SHQMM and HQMM,
but our model has clear physical implications
compared to the auxiliary dimension ωy in Eq.2
(HQMM with ωy = 3). This indicates that the
SHQMM is a valid HQMM at the same time.

The differences between SHQMM and HQMM
lie in the following aspects:

• SHQMM makes density matrix have a hi-
erarchy structure as shown in Fig.2, and
the density matrix evolves through multiple
channels.

• Kraus operator{Kj
y}j=2k+1

y∈O acts on different
conditional density matrix ρ(n) in SHQMM,
whereas in HQMM, Kraus oprator {Kωy }y∈O

acts on total density matrix ρ.

• SHQMM can be derived from actual physical
systems, such as quantum transport systems,
as shown in Fig.2.

The SHQMM can reflect the relationship be-
tween hidden states and is more suitable for han-
dling more complex data than the HQMM. From
a physical system implementation point of view,
the quantum conditional master equation may
differ from the quantum transport system for
other open quantum systems[31, 32, 33], resulting
in different split hidden quantum Markov models.
The Bayesian rule for SHQMM is:

ρ
(n)
y|x(t+ ∆t) =

∑⌊ j
2 ⌋

j′=⌊ j
2 ⌋
K

j′+1+⌊ j
2 ⌋

y ρ(n−j′)(t)Kj′+1+⌊ j
2 ⌋†

y

Tr
(∑n=N−1

n=0
∑⌊ j

2 ⌋
j′=⌊ j

2 ⌋
K

j′+1+⌊ j
2 ⌋

y ρ(n−j′)(t)Kj′+1+⌊ j
2 ⌋†

y

) . (28)

Eq.28 expresses, under the principle of condi-
tional probability, the quantum state correspond-
ing to the system when the system is observed as
x at t and as y at t + ∆t. Table 2 shows the
properties of the SHQMM and HQMM.

4 Experiment and results

In this section, we applied quantum and classical
data to train and test our SHQMM. All experi-
ments were performed on an experimental plat-
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Table 2: The properties of HQMM and sHQMM

Model State Transition
and Emission Probability Bayesian Rule Evolution

SHQMM {ρ(i)}N−1
i=0

quantum channel
Ks

Eq.26 ρ
(n)
y|x Eq.25

HQMM ρ
quantum channel

K Tr(
∑

ωy
Kωyρ(t)K†

ωy
) Eq.2

∑
ωy
Kωyρ(t)K†

ωy

form outfitted with Intel Core i7 CPU and 16
GB RAM, trials were executed on Python 3.8
with PyTorch and qiskit libraries for modeling
and evaluating. The source code and further de-
tails are available at here.

Quantum data Firstly, we used the quantum
data generated by a quantum mechanical process
in Ref.[23]. The quantum data has six hidden
states and six observational values. The size of
the quantum data is 40 × 3000.

Training and validation We use 20 × 3000
data to train our model, generating a total of 20
models. Simultaneously, we used 10 × 3000 data
to verify the model, and the remaining data were
used to test the model. The results are shown
in Fig.3 with hyperparameters τ = 0.95, α =
0.95, β = 0.90 (More calculation results can be
found in supplemental material). Fig.3 shows
several models λSQ for single, double and three
qubits quantum system which are used to con-
struct the SHQMM under the different parame-
ters N and k. It found : (1) With the increase of
the qubit number, the value of DA also increases
and reaches a stable value at about 20 epochs
(three qubits exceed 20 epochs). (2) Apart from
the single bit, the connection mode (different k-
local) and N have little effect on the DA value.
(3) While a higher number of quantum bits re-
sults in a relatively larger value of DA, the stan-
dard deviation (STD) decreases as the number of
qubits increases during evaluation with alterna-
tive data. This suggesting potential overfitting.

To further test the reliability of our model, we
will evaluate it from several perspectives.

Initialize Kraus In Ref. [27], it was stated
that the training outcome of HQMM is suscepti-
ble to the initial Kraus operators in smaller mod-
els. Thus, this study investigates the effect of the

initial position of Kraus operators on Stiefel man-
ifolds for SHQMM. Eq. 29 is utilized to evaluate
the distance between various initial positions.

D(κ1, κ2) = ||κ1κ
†
2 − I||2. (29)

When κ1 = κ2, D = 0. The initialization
method for the Kraus operator is presented in
Algorithm 2. The varying behaviors of the DA
are depicted in Figure 4 for different random ini-
tialization seeds (RS). Results clearly shows that
our proposed SHQMM remains stable regardless
of the initial Kraus values, thus confirming its va-
lidity.

Algorithm 2 Initial Kraus operator on Stiefel
manifolds
Require: the dimension of Kraus operator m,

the class of Kraus operator j, the dimension
of observable space dimO and random seed
RS

Ensure: Kraus operator {Kj
y}

1: Initialize: random vector v⃗1 = random(m ·
j · dimO, 1,RS), zero matrix κ = zeros(m · j ·
dimO, 2m), κ(:, 1) = v⃗1

||v⃗1||
2: for s = 2 : 2m do
3: v⃗s = random(m · j · dimO, 1)
4: if all column vectors in κ and v⃗s are or-

thogonal do
5: v⃗s = v⃗s

||v⃗s|| ; κ(:, s) = v⃗s

6: else do
7: Schmidt Orthogonalization of κ and v⃗s

8: v⃗s = v⃗s
||v⃗s|| ; κ(:, s) = v⃗s

9: end if
10: end for
11: construct new matrix κ′ = κ(:, 1 : m)/

√
2 +

κ(:,m+ 1 : 2m)/
√

2
12: split κ′ into Kraus operator

Selection of effective models Given the var-
ious methods available to construct models, se-
lecting the most effective one for a given dataset
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is a critical challenge. Typically, the expressive-
ness of a model is directly linked to the number
of its parameters. The number of parameters for
SHQMM is as follows:

NP = m2 · j. (30)

The corresponding results are shown in Fig.5
to obtain best training results, we should change
the dimension m of Kraus operator firstly and
then adjust the parameter j for a given sequence.

Hyperparameters selection for the model
To obtain the optimal DA, Algorithm 1 em-
ploys three hyperparameters, namely τ , α, and
β. Fig. 6 demonstrates the impact of vary-
ing hyperparameters on DA, indicating that DA
is more sensitive to changes in α as compared
to τ . Moreover, the existence of multiple lo-
cal optima in SHQMM is evident. To identify
the global optimum, we investigated the effect
of momentum parameter β on DA for the best
case (τ = 0.95, α = 0.95) and the worst case
(τ = 0.65, α = 0.65), as presented in Fig.7. It
was observed that DA may reach the global op-
timum at τ = 0.95, α = 0.95, and β = 0.90,
and that DA can be further enhanced by select-
ing a different β. However, after computing the
distance of Kraus solutions between different hy-
perparameters (τ = 0.95, α = 0.95, β = 0.90 and
τ = 0.65, α = 0.65, β = 0.60) using Eq. 29, we
discovered that their DA values were compara-
ble despite locating at different positions on the
Stiefel manifold.

Classical data To conduct a thorough evalu-
ation of the model, classical data generated by
a hidden Markov process with transition matrix
T and emission matrix C were utilized to com-
pute the Kraus operator and determine DA. The
results obtained from the classical data are pre-
sented in Fig. 8, where hyperparameters were set
to τ = 0.95, α = 0.95, and β = 0.90.

Similar to the quantum case, the value of DA
also increases and reaches a stable state after ap-
proximately 20 epochs (for three qubits, it took
20 epochs to stabilize). The different values of k-
local have little impact on the DA value, and the
standard deviation (STD) continues to decrease
as the qubit number increases for the testing data,
possibly due to model overfitting. Additional test
results can be found in supplemental material.

T =



0.8 0.01 0 0.1 0.3 0
0.02 0.02 0.1 0.15 0.05 0
0.08 0.03 0.1 0.4 0.05 0.5
0.05 0.04 0.5 0.35 0 0.5
0.03. 0.5 0.03 0 0.6 0
0.02 0.4 0.27 0 0 0


,

C =



0.2 0 0.05 0.95 0.01 0.05
0.7 0.1 0.05 0.01 0.05 0.05
0.05 0.8 0.1 0.02 0.05 0.04
0.04 0.04 0.02 0 0.84 0.11
0.01 0.03 0.7 0.01 0.02 0.2

0 0.03 0.08 0.01 0.03 0.55


.

Result The numerical experimental results of
SHQMM on quantum and classical data are dis-
played in supplemental material. The current re-
sults are likely to be overfitted given the complex-
ity of the relationship between complex model
and simple data with lower number and dimen-
sionality of hidden states [26]. Keeping the hyper-
parameters constant, the training step converges
more and more slowly as the number of qubits
increases.

SHQMM exhibits good robustness in numerical
experiments and maintains stable performance in
multiple task scenarios. For different sequences,
the model maintains STD(DA) < 0.01. Different
initial values of the Kraus operator have a negligi-
ble effect on the convergence of the model, due to
the hierarchical structure of the conditional den-
sity matrix.

5 Analysis and discussion

In this section, the performance of SHQMM is
analyzed from both experimental and theoretical
perspectives.

Performance comparisons It is imperative
to acknowledge the existence of structural differ-
ences between different models. Remarkably, the
model presented here represents a groundbreak-
ing development in our recognized field, as it is
uniquely capable of articulating a meticulous rep-
resentation of the internal state of a quantum sys-
tem. Consequently, the task of identifying mod-
els that are precisely aligned to the same baseline
for performance evaluation becomes a formidable
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challenge. To address this, we have wisely cho-
sen to compare models that exhibit maximum
congruence in both structure and functionality.
Table. 3 compares the DA of quantum data ob-
tained by the SHQMM, HMM and HQMM in [23]
as follows:

Table 3: Comparison of HMM, HQMM and SHQMM on
DA. The presentation of complete data under different
parameters is shown in [23] and supplemental material.

Model DA

2, 6−HMM(L) 0.0327
2, 6, 1−HQMM (L) 0.1303

3,AR-SHQMM ≥0.1700

2, 2-HMM(L) stands for the classical Hidden
Markov model with two hidden states and two
observables, and L stands for the fact that the
value is obtained by learning. Similarly, 2, 2, 1-
HQMM(L) denotes the quantum hidden Markov
model having two hidden states, two observables,
with one Kraus operator per observable. For
SHQMM, 3,AR means that the number of hidden
states is 3, and AR means that the current model
has 3 hidden states and connectivity is adjacent.
≥ indicates that the value did not converge at the
number of iterations set.

As can be seen from Table. 3, SHQMM im-
proves DA by about 23.35% over the HQMM al-
gorithm, while the quantum versions of the algo-
rithm all have better performance in model qual-
ity over the classical algorithm.

Complexity analysis Complexity serves as a
theoretical measure encompassing both the com-
putational and time costs associated with an al-
gorithm. To ensure consistency between various
models and their original literature in terms of de-
scription, we have retained their respective sym-
bol systems in this chapter. The complexity of
HMM, HQMM and SHQMM is analyzed as fol-
lows:

• Building upon previous research [23], a clas-
sical HMM algorithm can be succinctly char-
acterized as (n, s), where n denotes the num-
ber of hidden states and s represents the
number of observations. In the context of an
HMM with a prediction sequence of length
T , the complexity arises as each state tran-
sition involves n states undergoing transi-

tions, with each state having n possible tran-
sitions, resulting in a complexity denoted as
O(Tn2)[39].

• Similarly, the HQMM is denoted by the
ternary (n, s, w). Introducing the parameter
w, alongside n and s, accounts for the num-
ber of Kraus operators per observable. In a
manner akin to HMM, where a HQMM pre-
diction sequence of length T is considered,
there exist n states undergoing transitions,
with each state producing w observations.
Consequently, the complexity of HQMM is
denoted as O(Tnw). In scenarios of compa-
rable scale, the complexity of HQMM is no-
tably influenced by the parameter w, which
can be independently set based on the appli-
cation scenario. Generally, in smaller-scale
tasks, n < w may occur, while in longer se-
quence tasks, n > w is more likely.

• The model structure of SHQMM is denoted
as (Nmax, s, k), where Nmax represents the
number of hidden states in the model, equiv-
alent to n in other models. k represents
the connectivity state which is related to the
number of Kraus operators. Due to struc-
tural constraints, 2k + 1 ≤ Nmax. Similarly
to HMM, SHQMM exhibits parallels in com-
plexity analysis. During the transition pro-
cess among Nmax states, each state yields
2k+ 1 observational outputs. Therefore, the
complexity is expressed as O(TNmax(2k +
1)). Notably, due to the constraints of the
connection method, imposing an upper limit
on the complexity of SHQMM, expressed as
O(TNmax(2k + 1)) ≤ O(TN2

max).

Discussion of Quantum Advantage Ex-
ploring quantum advantages is a shared pursuit
among all quantum machine learning algorithms.

In prior research, a substantial body of work
has focused on examining the benefits of quan-
tum versions of HMM. Noteworthy contributions,
exemplified by [22] and [23], have highlighted
the advantages observed in numerical experi-
ments of Quantum HMM (HQMM), particularly
in the DA. Additionally, certain studies have un-
dertaken theoretical analyses to elucidate these
quantum advantages. Notably, [25] and [26] pro-
vide insights into the advantages of HQMM, em-
phasizing its physical performance and memory
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efficiency. Furthermore, [29] illustrates the quan-
tum approach’s superiority in terms of state space
complexity. Experiments in this work align with
the aforementioned research, further substantiat-
ing the merits associated with quantum-based ap-
proaches.

According to the analysis of complexity, it is
evident that HQMM and SHQMM demonstrate
advantages when n is larger. This implies that
quantum solutions are more suitable for scenar-
ios involving long sequence tasks. It should be
acknowledged that in numerical experiments on
classical computers, the results did not fully re-
flect this advantage. This is attributed to the ad-
ditional computational cost incurred by the clas-
sical computer’s quantum simulation process.

Nevertheless, the experimental results of our
work, [23] and [27] still showcase the poten-
tial performance advantages of the quantum ap-
proach, namely the ability to convey more in-
formation with fewer hidden states. This high
expressivity has been mathematically proven in
[29], representing a potential advantage of quan-
tum approaches. In terms of encoding efficiency,
a substantial amount of information can be en-
coded onto a smaller number of quantum states,
thereby enhancing the utilization of informational
resources. This implies that SHQMM can be ap-
plied to large-scale tasks such as weather forecast-
ing.

Furthermore, the superiority of SHQMM is un-
derscored by its capacity to correspond to a tan-
gible physical system, specifically the quantum
transport system. This attribute imparts a lucid
interpretability to SHQMM, enabling continuous
trackigng of the internal intricacies of the quan-
tum system throughout the evolutionary process
further than HQMM. Also, owing to its associa-
tion with an authentic quantum physical system,
SHQMM demonstrates an increased affinity for
quantum data, a trait supported by the results
of numerical experiments. Together with other
quantum versions of HMM models, SHQMM en-
riches the available selection of models for the
study of quantum Markov processes.

It is noteworthy, however, that SHQMM’s per-
formance with some classical datasets appears
suboptimal. Further analysis, informed by the in-
sights of Michael et.al.’s work [36] thereby consti-
tuting a focal point for our forthcoming research
endeavors.

6 Conclusion
In this paper, the novel stochastic probabilistic
graphical model, SHQMM, is introduced as our
main theoretical contribution using quantum con-
ditional master equations. An empirical improve-
ment has also been implemented by introducing
periodic boundary conditions to ensure the sta-
bility of the learning process.

Numerical experiments underscore that the
model’s performance on DA remains robust fol-
lowing the introduction of the new structure,
displaying heightened insensitivity to the initial
state and increased overall robustness.

SHQMM emerges as a valuable tool for elu-
cidating the intricate relationships among hid-
den states within quantum systems, providing
support and additional choices for addressing
HMM challenges through quantum methods. The
model’s correspondence with quantum transport
systems further enhances its appeal, offering
promising prospects for physical implementation.
Additionally, given the structural similarities,
SHQMM assumes a pivotal role as a theoretical
foundation for the physical realization of QNN.

7 Acknowledgements
This work is supported by the National Key R&D
Program of China, Grant No.2018FYA0306703
and Chengdu Innovation and Technology Project,
No.2021-YF05-02413-GX and 2021-YF09-00114-
GX, the Open Fund of Advanced Cryptogra-
phy and System Security Key Laboratory of
Sichuan Province (Grant No. SKLACSS-202210),
Sichuan Province key research and develop-
ment project, No.2022YFG0315, Natural Science
Foundation of Xinjiang Uygur Autonomous Re-
gion, Granted No. 2023D01A63.

References
[1] Juan I Cirac and Peter Zoller. “Quantum

computations with cold trapped ions”. Phys-
ical review letters 74, 4091 (1995).

[2] Emanuel Knill, Raymond Laflamme, and
Gerald J Milburn. “A scheme for efficient
quantum computation with linear optics”.
nature 409, 46–52 (2001).

[3] Jacob Biamonte, Peter Wittek, Nicola Pan-
cotti, Patrick Rebentrost, Nathan Wiebe,

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 12

https://dx.doi.org/10.1103/physrevlett.74.4091
https://dx.doi.org/10.1103/physrevlett.74.4091
https://dx.doi.org/10.1038/35051009


and Seth Lloyd. “Quantum machine learn-
ing”. Nature 549, 195–202 (2017).

[4] M Cerezo, Guillaume Verdon, Hsin-Yuan
Huang, Lukasz Cincio, and Patrick J Coles.
“Challenges and opportunities in quantum
machine learning”. Nature Computational
Science 2, 567–576 (2022).

[5] Kishor Bharti, Alba Cervera-Lierta, Thi Ha
Kyaw, Tobias Haug, Sumner Alperin-Lea,
Abhinav Anand, Matthias Degroote, Her-
manni Heimonen, Jakob S Kottmann, Tim
Menke, et al. “Noisy intermediate-scale
quantum (nisq) algorithms (2021)” (2021).
arXiv:2101.08448v1.

[6] Alán Aspuru-Guzik, Roland Lindh, and
Markus Reiher. “The matter simulation (r)
evolution”. ACS central science 4, 144–
152 (2018).

[7] Iulia M Georgescu, Sahel Ashhab, and
Franco Nori. “Quantum simulation”. Re-
views of Modern Physics 86, 153 (2014).

[8] Markus Reiher, Nathan Wiebe, Krysta M
Svore, Dave Wecker, and Matthias Troyer.
“Elucidating reaction mechanisms on quan-
tum computers”. Proceedings of the National
Academy of Sciences 114, 7555–7560 (2017).

[9] Yudong Cao, Jhonathan Romero, and Alán
Aspuru-Guzik. “Potential of quantum com-
puting for drug discovery”. IBM Journal of
Research and Development 62, 6–1 (2018).

[10] Roman Orus, Samuel Mugel, and Enrique
Lizaso. “Quantum computing for finance:
Overview and prospects”. Reviews in Physics
4, 100028 (2019).

[11] Pierre-Luc Dallaire-Demers, Jonathan
Romero, Libor Veis, Sukin Sim, and Alán
Aspuru-Guzik. “Low-depth circuit ansatz
for preparing correlated fermionic states on
a quantum computer”. Quantum Science
and Technology 4, 045005 (2019).

[12] Elizabeth Fons, Paula Dawson, Jeffrey Yau,
Xiao-jun Zeng, and John Keane. “A novel
dynamic asset allocation system using Fea-
ture Saliency Hidden Markov models for
smart beta investing”. Expert Systems with
Applications 163, 113720 (2021).

[13] PV Chandrika, K Visalakshmi, and K Sakthi
Srinivasan. “Application of Hidden Markov

Models in Stock Trading”. In 2020 6th Inter-
national Conference on Advanced Comput-
ing and Communication Systems (ICACCS).
Pages 1144–1147. (2020).

[14] Dima Suleiman, Arafat Awajan, and Wael
Al Etaiwi. “The use of hidden Markov model
in natural arabic language processing: A sur-
vey”. Procedia computer science 113, 240–
247 (2017).

[15] Hariz Zakka Muhammad, Muhammad Nas-
run, Casi Setianingsih, and Muhammad Ary
Murti. “Speech recognition for English to
Indonesian translator using hidden Markov
model”. In 2018 International Conference on
Signals and Systems (ICSigSys). Pages 255–
260. IEEE (2018).

[16] Erik LL Sonnhammer, Gunnar Von Heijne,
Anders Krogh, et al. “A hidden Markov
model for predicting transmembrane helices
in protein sequences”. In LSMB 1998. Pages
175–182. (1998). url: https://cdn.aaai.
org/ISMB/1998/ISMB98-021.pdf.

[17] Gary Xie and Jeanne M Fair. “Hidden
Markov Model: a shortest unique represen-
tative approach to detect the protein tox-
ins, virulence factors and antibiotic resis-
tance genes”. BMC Research Notes 14, 1–
5 (2021).

[18] Sean R Eddy. “What is a hidden markov
model?”. Nature biotechnology 22, 1315–
1316 (2004).

[19] Paul M Baggenstoss. “A modified baum-
welch algorithm for hidden markov models
with multiple observation spaces”. IEEE
Transactions on speech and audio process-
ing 9, 411–416 (2001).

[20] Aleksandar Kavcic and Jose MF Moura.
“The viterbi algorithm and markov noise
memory”. IEEE Transactions on information
theory 46, 291–301 (2000).

[21] Todd K Moon. “The expectation-
maximization algorithm”. IEEE Signal
processing magazine 13, 47–60 (1996).

[22] Alex Monras, Almut Beige, and Karoline
Wiesner. “Hidden quantum Markov mod-
els and non-adaptive read-out of many-body
states” (2010). arXiv:1002.2337.

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 13

https://dx.doi.org/10.1038/nature23474
https://dx.doi.org/10.1038/s43588-022-00311-3
https://dx.doi.org/10.1038/s43588-022-00311-3
http://arxiv.org/abs/2101.08448v1
https://dx.doi.org/10.1021/acscentsci.7b00550
https://dx.doi.org/10.1021/acscentsci.7b00550
https://dx.doi.org/10.1103/RevModPhys.86.153
https://dx.doi.org/10.1103/RevModPhys.86.153
https://dx.doi.org/10.1073/pnas.1619152114
https://dx.doi.org/10.1073/pnas.1619152114
https://dx.doi.org/10.1147/JRD.2018.2888987
https://dx.doi.org/10.1147/JRD.2018.2888987
https://dx.doi.org/10.1016/j.revip.2019.100028
https://dx.doi.org/10.1016/j.revip.2019.100028
https://dx.doi.org/10.1088/2058-9565/ab3951
https://dx.doi.org/10.1088/2058-9565/ab3951
https://dx.doi.org/10.1016/j.eswa.2020.113720
https://dx.doi.org/10.1016/j.eswa.2020.113720
https://dx.doi.org/10.1109/ICACCS48705.2020.9074387
https://dx.doi.org/10.1016/j.procs.2017.08.363
https://dx.doi.org/10.1016/j.procs.2017.08.363
https://dx.doi.org/10.1109/ICSIGSYS.2018.8372768
https://dx.doi.org/10.1109/ICSIGSYS.2018.8372768
https://cdn.aaai.org/ISMB/1998/ISMB98-021.pdf
https://cdn.aaai.org/ISMB/1998/ISMB98-021.pdf
https://dx.doi.org/10.21203/rs.3.rs-185430/v1
https://dx.doi.org/10.21203/rs.3.rs-185430/v1
https://dx.doi.org/10.1038/nbt1004-1315
https://dx.doi.org/10.1038/nbt1004-1315
https://dx.doi.org/10.1109/89.917686
https://dx.doi.org/10.1109/89.917686
https://dx.doi.org/10.1109/89.917686
https://dx.doi.org/10.1109/18.817531
https://dx.doi.org/10.1109/18.817531
https://dx.doi.org/10.1109/79.543975
https://dx.doi.org/10.1109/79.543975
http://arxiv.org/abs/1002.2337


[23] Siddarth Srinivasan, Geoff Gordon, and
Byron Boots. “Learning hidden quantum
markov models”. In Amos Storkey and
Fernando Perez-Cruz, editors, Proceedings
of the Twenty-First International Confer-
ence on Artificial Intelligence and Statis-
tics. Volume 84 of Proceedings of Ma-
chine Learning Research, pages 1979–1987.
PMLR (2018). url: https://proceedings.
mlr.press/v84/srinivasan18a.html.

[24] Herbert Jaeger. “Observable operator mod-
els for discrete stochastic time series”. Neural
computation 12, 1371–1398 (2000).

[25] Qing Liu, Thomas J. Elliott, Felix C. Binder,
Carlo Di Franco, and Mile Gu. “Optimal
stochastic modeling with unitary quantum
dynamics”. Phys. Rev. A 99, 062110 (2019).

[26] Thomas J Elliott. “Memory compres-
sion and thermal efficiency of quantum im-
plementations of nondeterministic hidden
markov models”. Physical Review A 103,
052615 (2021).

[27] Sandesh Adhikary, Siddarth Srinivasan,
Geoff Gordon, and Byron Boots. “Ex-
pressiveness and Learning of Hidden
Quantum Markov Models”. In International
Conference on Artificial Intelligence and
Statistics. Pages 4151–4161. (2020).
url: http://proceedings.mlr.press/
v108/adhikary20a/adhikary20a.pdf.

[28] Bo Jiang and Yu-Hong Dai. “A framework
of constraint preserving update schemes for
optimization on Stiefel manifold”. Mathe-
matical Programming 153, 535–575 (2015).

[29] Vanio Markov, Vladimir Rastunkov, Amol
Deshmukh, Daniel Fry, and Charlee Ste-
fanski. “Implementation and learning of
quantum hidden markov models” (2022).
arXiv:2212.03796v2.

[30] Xiantao Li and Chunhao Wang. “Simulat-
ing markovian open quantum systems us-
ing higher-order series expansion” (2022).
arXiv:2212.02051v2.

[31] Yoshitaka Tanimura. “Stochastic Liouville,
Langevin, Fokker–Planck, and master equa-
tion approaches to quantum dissipative sys-
tems”. Journal of the Physical Society of
Japan 75, 082001 (2006).

[32] Akihito Ishizaki and Graham R Fleming.
“Unified treatment of quantum coherent and
incoherent hopping dynamics in electronic
energy transfer: Reduced hierarchy equa-
tion approach”. The Journal of chemical
physics130 (2009).

[33] Jinshuang Jin, Xiao Zheng, and YiJing Yan.
“Exact dynamics of dissipative electronic
systems and quantum transport: Hierarchi-
cal equations of motion approach”. The Jour-
nal of chemical physics128 (2008).

[34] Lewis A Clark, Wei Huang, Thomas M
Barlow, and Almut Beige. “Hidden quan-
tum markov models and open quantum sys-
tems with instantaneous feedback”. In ISCS
2014 Interdisciplinary Symposium on Com-
plex Systems. Pages 143–151. (2015).

[35] Xin-Qi Li, JunYan Luo, Yong-Gang Yang,
Ping Cui, and YiJing Yan. “Quantum
master-equation approach to quantum trans-
port through mesoscopic systems”. Physical
Review B 71, 205304 (2005).

[36] Michael J Kastoryano, Fernando GSL
Brandão, András Gilyén, et al. “Quan-
tum thermal state preparatio” (2023).
arXiv:2303.18224.

[37] Ming-Jie Zhao and Herbert Jaeger. “Norm-
observable operator models”. Neural compu-
tation 22, 1927–1959 (2010).

[38] Sandesh Adhikary, Siddarth Srinivasan,
and Byron Boots. “Learning quantum
graphical models using constrained gradi-
ent descent on the stiefel manifold” (2019).
arXiv:2101.08448v1.

[39] M. S. Vijayabaskar David R. Westhead, ed-
itor. “Hidden markov models”. Volume 2,
page 18. Humana New York, NY. (2017).

Accepted in Quantum 2024-01-11, click title to verify. Published under CC-BY 4.0. 14

https://proceedings.mlr.press/v84/srinivasan18a.html
https://proceedings.mlr.press/v84/srinivasan18a.html
https://dx.doi.org/10.1162/089976600300015411
https://dx.doi.org/10.1162/089976600300015411
https://dx.doi.org/10.1103/PhysRevA.99.062110
https://dx.doi.org/10.1103/PhysRevA.103.052615
https://dx.doi.org/10.1103/PhysRevA.103.052615
http://proceedings.mlr.press/v108/adhikary20a/adhikary20a.pdf
http://proceedings.mlr.press/v108/adhikary20a/adhikary20a.pdf
https://dx.doi.org/10.1007/s10107-014-0816-7
https://dx.doi.org/10.1007/s10107-014-0816-7
http://arxiv.org/abs/2212.03796v2
http://arxiv.org/abs/2212.02051v2
https://dx.doi.org/10.1143/JPSJ.75.082001
https://dx.doi.org/10.1143/JPSJ.75.082001
https://dx.doi.org/10.1063/1.3155372
https://dx.doi.org/10.1063/1.3155372
https://dx.doi.org/10.1063/1.2938087
https://dx.doi.org/10.1063/1.2938087
https://dx.doi.org/10.1007/978-3-319-10759-2$_$16
https://dx.doi.org/10.1103/PhysRevB.71.205304
https://dx.doi.org/10.1103/PhysRevB.71.205304
http://arxiv.org/abs/2303.18224
https://dx.doi.org/10.1162/neco.2010.03-09-983
https://dx.doi.org/10.1162/neco.2010.03-09-983
http://arxiv.org/abs/2101.08448v1
https://dx.doi.org/10.1007/978-1-4939-6753-7
https://dx.doi.org/10.1007/978-1-4939-6753-7


ρ
(0)
0

ρ
(1)
0

ρ
(2)
0

ρ
(3)
0

...
ρ

(n)
0

...
...

ρ
(1)
T

ρ
(2)
T

ρ
(3)
T

...
ρ

(n)
T

· · ·

· · ·

· · ·

· · ·

· · ·

t = 0 t = 1 t = 2 t = T
ρ

(0)
T

Figure 2: The expanded calculation diagram of ρn(t) for
a set of sequences y0, y1 · · · , yT : The red line represents
the Kraus operator Ky in {K}, the black line represents
the Kraus operator Ry in {R}, and the blue line repre-
sents the Kraus operator Ay in {A}
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Figure 3: The training result of the different SHQMM
for quantum data under different parameters N and
j = 2k + 1. The subfigures (a), (b), (c) represent
the training results for choosing single, double and three
qubits quantum system, respectively.
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Figure 4: The training resulut of SHQMM(Nmax = 3,
AR, Single Qubit) in random initialization
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Figure 5: The relationship between the training outcome
of SHQMM and the number of parameters. (a) repre-
sents the variation of DA with the dimension m of the
Kraus operator. (b) represents the variation of DA with
the j of the conditional density matrix. The training re-
sults are more sensitive to m than j
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Figure 7: Choose the hyperparameters for sHQMM. (a)
shows the DA of τ = 0.95, α = 0.95;(b) shows the DA
of τ = 0.65, α = 0.65.
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Figure 8: The training results of SHQMM for classical
data under different parameters N and j = 2k + 1.
The subfigures (a), (b), (c) represent the training results
for choosing single, double and three qubits quantum
system, respectively.
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