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We study how parallelism can speed up quantum simulation. A parallel
quantum algorithm is proposed for simulating the dynamics of a large class of
Hamiltonians with good sparse structures, called uniform-structured Hamilto-
nians, including various Hamiltonians of practical interest like local Hamiltoni-
ans and Pauli sums. Given the oracle access to the target sparse Hamiltonian,
in both query and gate complexity, the running time of our parallel quantum
simulation algorithm measured by the quantum circuit depth has a doubly
(poly-)logarithmic dependence polylog log(1/ϵ) on the simulation precision ϵ.
This presents an exponential improvement over the dependence polylog(1/ϵ) of
previous optimal sparse Hamiltonian simulation algorithm without parallelism.
To obtain this result, we introduce a novel notion of parallel quantum walk,
based on Childs’ quantum walk. The target evolution unitary is approximated
by a truncated Taylor series, which is obtained by combining these quantum
walks in a parallel way. A lower bound Ω(log log(1/ϵ)) is established, show-
ing that the ϵ-dependence of the gate depth achieved in this work cannot be
significantly improved.

Our algorithm is applied to simulating three physical models: the Heisen-
berg model, the Sachdev-Ye-Kitaev model and a quantum chemistry model in
second quantization. By explicitly calculating the gate complexity for imple-
menting the oracles, we show that on all these models, the total gate depth of
our algorithm has a polylog log(1/ϵ) dependence in the parallel setting.
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1 Introduction
Simulating the quantum Hamiltonian dynamics is a fundamental problem in computational
physics. Despite its ubiquity and importance, the problem is believed to be intractable
for classical computers. Quantum computers were originally proposed to efficiently solve
this problem [1]. The first algorithm for solving this problem was given by Lloyd for local
Hamiltonians [2], and has been followed by many remarkable results over the past twenty
years. Moreover, these results have found diverse applications in other quantum algorithms
(e.g., [3–6]) beyond quantum simulation.

While the state-of-the-art has achieved an optimal quantum algorithmic solution to
simulating a large class of Hamiltonians [7], it remains open whether the quantum simula-
tion algorithms can be parallelized in order to provide further speed-up. In this work, we
identify a class of Hamiltonians that can be more efficiently simulated in parallel, called
uniform-structured Hamiltonians. Then we introduce the notion of parallel quantum walk
within Childs’ framework [3,8–10]. Based on it, we propose a parallel quantum simulation
algorithm for uniform-structured Hamiltonians.

Hamiltonian simulation

Simulating the time evolution of a quantum system governed by a time-independent Hamil-
tonian H for a time t is essentially approximating the unitary e−iHt to some precision
ϵ, according to the Schrödinger equation. In this paper, we focus on the digital quan-
tum simulation (rather than the analog quantum simulation [11]), that is, simulating the
Hamiltonian with a fault-tolerant universal quantum computer, given some oracle access to
the Hamiltonian H. The complexity of a quantum simulation algorithm consists of query
complexity and gate complexity, which depends on several factors: the simulation time t,
the precision ϵ, and other parameters of the target Hamiltonian (e.g., size, matrix norm,
and sparsity of H).

In the literature, there are basically three approaches to simulating a Hamiltonian:

• The product formula approach is conceptually the simplest without introducing an-
cilla qubits. Early works [2, 12–16] on product-formula-based algorithms often had
a poor complexity dependence on the precision ϵ, which was later improved [17] by
techniques borrowed from other simulation approaches. This approach has regained
attention in recent years due to a number of new results (e.g., [17–29]) and its po-
tential to be implemented in the near term.

• The LCU (linear combination of unitaries)-based approach [16] spawned the ground-
breaking work [30] that improves the complexity dependence on ϵ from poly(1/ϵ) to
polylog(1/ϵ) (which is also achieved earlier in [31] by fractional queries). The idea
is to approximate e−iHt with a linear combination of unitaries easier to implement.
This approach can be used to simulating a d-sparse Hamiltonian H, which is an
Hermitian matrix with at most d nonzero entries in each row. The Hamiltonian H
is accessed by two oracles: an oracle OH giving the entry Hjk according to the index
pair (j, k), and an oracle OL giving the column index of the cth nonzero entry in row
j according to c and j.

In particular, combined with Childs’ quantum walks [8,9,32], this approach achieves
a nearly optimal [10] query complexity for simulating sparse Hamiltonians. The LCU
technique has also been applied to solving the quantum linear systems problem [3],
which was originally solved in [33] by phase estimation.
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• The lower bound on query complexity for sparse Hamiltonian simulation was finally
reached by the quantum signal processing approach [7, 34, 35], which provides a new
way to transform the eigenvalue of a unitary by manipulating a single ancilla qubit
without performing phase estimation. The input model was also generalized beyond
sparse matrices by subsequent works on qubitization and block-encoding [6, 7, 36].

Later works make further improvements on the complexity dependence on other param-
eters [35, 37–40], and the average-case complexity [41]. We particularly note that almost
all1 of the above approaches for Hamiltonian simulation are sequential.

Parallel quantum computation

The aim of this paper is to study parallel quantum simulation of Hamiltonians. The
computational model we adopt is the quantum circuit model where the running time of
a quantum algorithm is measured by the depth of its circuit implementation, with both
gates and oracle queries being allowed to be performed in parallel.

A pioneering work in this direction is Cleve and Watrous’ O(logn)-depth parallel quan-
tum circuit for n-qubit quantum Fourier transform [42], which can be used to parallelize
Shor’s factoring algorithm [43] with poly-time classical pre- and post-processing. Follow-
ing works on parallel Shor’s algorithm include factoring on a 2D quantum architecture [44]
and discrete logarithm on elliptic curves [45]. The limits on parallelizing Grover’s search
algorithm [46] were first considered by Zalka [47]. This inspired a line of studies [48–52]
on parallel quantum query algorithms and complexity bounds. The low-depth (parallel)
quantum circuit classes are also studied (e.g., [53–63]), amongst which one surprising result
is a quantum advantage established by constant-depth quantum circuits over their clas-
sical counterparts [64–67]. Recently, [68] proposed a quantum algorithm with a constant
quantum depth for multivariate trace estimation.

The research on parallel quantum computation is not restricted to the circuit model.
For example, in measurement-based quantum computing, it was observed that parallelism
can provide more benefits than in the circuit model [69–71]. Another parallel model closer
to the current quantum hardware is distributed quantum computing, which can efficiently
simulate the quantum circuit model with low depth overhead [72]. Parallelism is also
studied at more abstract levels like quantum programming [73,74].

1.1 Main Results
Our main result is a parallel quantum simulation algorithm for uniform-structured Hamil-
tonians, which will be formally defined in Sections 3.2 and 3.3. These Hamiltonians include
local Hamiltonians, Pauli sums and other Hamiltonians of interest.2 Roughly speaking,
a uniform-structured Hamiltonian H acting on n qubits has the form H = ∑

w∈[m]Hw,3

where m = poly(n), and for each w, Hw is a sparse Hamiltonian whose structure is speci-
fied by a parameter sw. Here, the structure of a sparse Hamiltonian is basically a compact

1The only exception we know is [37]. The depth complexity of their algorithm for simulating time-
dependent lattice Hamiltonians is smaller than the size complexity by an O(n) factor, where n is the
number of qubits.

2A local Hamiltonian can be actually represented as a Pauli sum, by decomposing each local term
with respect to the Pauli basis. Instead of writing a local Hamiltonian as a Pauli sum, in this paper we
adopt a more natural way to describe the local Hamiltonians, which still fits well within our framework of
uniform-structured Hamiltonians.

3In this paper, [m] denotes the set {0, 1, . . . , m − 1} for all m ∈ N.
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way to describe how the non-zero entries are arranged in its matrix representation. For
example, for a local Hamiltonian H with Hw being local terms, we can choose each sw to
be an n-bit string with l bits of 1 that indicate the subsystem of l qubits on which Hw

non-trivially acts. A good observation of the sparse structure, i.e., a good choice of sw, is
definitely important for our algorithm. We adopt the sparse matrix input model for these
Hamiltonians, that is, a target Hamiltonian H is accessed by two oracles: an oracle OH

giving an entry Hjk by the mapping |j, k, 0⟩ 7→ |j, k,Hjk⟩, and an oracle OP giving the
parameter sw by the mapping |w, 0⟩ 7→ |w, sw⟩. Here, OP might be different for various
types of Hamiltonians. Formal details of the input model will be described in Section 2.

Throughout this paper we assume the target Hamiltonian H is normalized such that
∥H∥max = 1, where ∥H∥max := maxjk|Hjk|. Then our main result can be stated as the
following:

Theorem 1.1 (Informal version of Theorem 5.5). Any uniform-structured Hamiltonian
H = ∑

w∈[m]Hw acting on n qubits with each Hw being d-sparse, can be simulated for
time t to precision ϵ by a quantum circuit of depth poly(log log(1/ϵ), logn,m, d, t) and size
poly(log(1/ϵ), n,m, d, t).

Here, the running time of our algorithm, i.e., the quantum circuit depth, has a doubly
(poly-)logarithmic dependence on the precision ϵ. To the best of our knowledge, this is the
first Hamiltonian simulation algorithm that achieves such dependence on ϵ.

Applying this theorem (actually Theorem 5.5) to simulating local Hamiltonians, we
have:

Corollary 1.2 (Parallel simulation of local Hamiltonians). Let H = ∑
w∈[m]Hw be an

l-local Hamiltonian4 acting on n qubits, where each Hw acts on a subsystem of l qubits
whose positions are indicated by l bits of 1 in an n-bit string sw. Suppose the oracle OP

has access to sw such that OP |w, 0⟩ = |w, sw⟩. Then H can be simulated for time t to
precision ϵ by a quantum circuit of

• depth O(τ log γ) and size O(τγ) w.r.t. queries5 to OH ,

• depth O(τ log γ) and size O(mτγ) w.r.t. queries to OP , and

• depth O
(
τ
(
log2 γ · log2 n+ log3 γ

))
and size O

(
τγ2 ·

(
mn4 + γ3)) w.r.t. gates,

where τ := m2l · t, γ := log(τ/ϵ), and we allow arbitrary one- or two-qubit gates.

The best known algorithm for this task is by applying the optimal sparse Hamilto-
nian simulation of [7, 35] (note that H in Corollary 1.2 is

(
m2l

)
-sparse), which requires

O
(
τ + log(1/ϵ)

log log(1/ϵ)

)
queries and a factor O(n+ log(1/ϵ) · polylog(1/ϵ)) of additional gates.

By introducing parallelism, our algorithm exponentially improves the dependence on ϵ, in
the depth w.r.t. both queries and gates.

It is worth noting the difference between the oracle OP used in Corollary 1.2 for local
Hamiltonians and the oracle OL in previous works [8–10,12,35] for generic sparse Hamilto-
nians. Oracle OL computes a function L(j, c) denoting the column index of the cth non-zero

4In this paper, for an l-local Hamiltonian, l is not necessarily constant (as is usually assumed) and
can depend on n (e.g., l = polylog(n)). Also, the local Hamiltonian H =

∑
w

Hw is not necessarily
geometrically local, which further requires each Hw to act on adjacent l qubits.

5For simplicity, the depth/size (complexity) w.r.t. queries/gates refers to the depth/size of the circuit
composed of the specified queries/gates, respectively. See Section 2.1 for detailed definitions.
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entry in row j of H. In practice, oracle OP is a more natural choice than OL, because if
one wants to exploit the local structure of the Hamiltonian to be simulated, knowing the
locality parameter sw given by OP is intuitively the minimal requirement. As evidence,
for example, when we apply our algorithm to the Heisenberg model in Section 7.1, it turns
out that implementing the oracle OP is gate-efficient. Note that in the local Hamiltonian
case, a query to the oracle OL can be achieved by at most m2l queries to OP .

Lower bounds

It was shown in [31] that sparse Hamiltonian simulation requires Ω
(

log(1/ϵ)
log log(1/ϵ)

)
queries. We

are able to further prove a lower bound on the gate depth for the Hamiltonian simulation:

Theorem 1.3 (ϵ-dependence depth lower bound for Hamiltonian simulation). Any quan-
tum algorithm for sparse Hamiltonian simulation to precision ϵ has depth complexity
Ω(log log(1/ϵ)) w.r.t. gates. The same holds even for uniform-structured Hamiltonian
simulation.

This theorem implies that our parallel quantum algorithm given in Theorem 1.1 for
simulating uniform-structured Hamiltonians cannot be significantly improved in the ϵ-
dependence.

Applications

For illustration, our algorithm is applied in Section 7 to simulating three quantum dynam-
ical models in physics and chemistry of practical interest:

• The Heisenberg model for studying the self-thermalization and many-body localiza-
tion [75–77];

• The Sachdev-Ye-Kitaev (SYK) model for studying the simplest AdS/CFT dual-
ity [78–81]; and

• A second-quantized molecular model for studying the electronic structure of a molecule [82–
84].

We explicitly calculate the gate cost for implementing the oracles mentioned above and
the total gate complexity for the simulation. Table 1 shows a comparison of our algorithm
with previous best known algorithms on the same tasks. From it, one can see that by intro-
ducing parallelism, our algorithm achieves an exponential speed-up on the ϵ-dependence
for simulating all these models.

It is however worth pointing out that the parallel speed-up in the above applications
has limitations in practice, because the n-dependence in the depth complexity (w.r.t. gates)
of our algorithm is worse than previous best algorithms in these cases. For simulating local
Hamiltonians, as stated in Corollary 1.2, the n-dependence comes from the linear (up to
a poly-logarithmic factor) dependence on m (the number of local terms) and ∥H∥max (the
norm of the Hamiltonian). For example, in the SYK model, m scales as O

(
n4) and ∥H∥max

scales as O
(
n2.5), so our algorithm has n-dependence Õ

(
n6.5). In comparison, the previous

best algorithm [85] for simulating the SYK model has a sublinear dependence on m, by
using asymmetric qubitization to exploit the structure of the Hamiltonian, which results
in a better n-dependence Õ

(
n3.5). Due to the above issue, in practical scenarios where

the required precision is not too high, for example, ϵ = 2−O(n), our improvement on the
ϵ-dependence becomes less significant because the n-dependence is the dominant part.
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Model Algorithms Gate depth (n, t) Gate depth (ϵ)

Heisenberg model
Childs et al. [77] Õ

(
n3) O

(
log(1/ϵ)

log log(1/ϵ)

)
Haah et al. [37] Õ(n) polylog(1/ϵ)
Our algorithm Õ

(
n3) O

(
log3 log(1/ϵ)

)
SYK model

Babbush et al. [85] Õ
(
n3.5t

)
polylog(1/ϵ)

Our algorithm Õ
(
n6.5t

)
O
(
log3 log(1/ϵ)

)

Molecular model

Babbush et al. [84] Õ
(
n8t
)

O
(

log(1/ϵ)
log log(1/ϵ)

)
Later improvements

(e.g. [86–90])
poly(n, t) polylog(1/ϵ)

Our algorithm Õ
(
n8t
)

O
(
log3 log(1/ϵ)

)
Table 1: A comparison of our algorithm (Theorem 5.5) with previous best algorithms in simulating
three physical models. Here, parameter n is the size of the system to be simulated,6 t is the simulation
time, and ϵ is the precision of simulation. The complexity of an algorithm is measured by the depth
complexity w.r.t. gates, where for readability the dependence on different parameters are split. The
notation Õ(·) denotes an asymptotic upper bound suppressing poly-logarithmic factors. For Heisenberg
model, we follow the convention of taking t = n.

1.2 High-level Overview of the Algorithm
Our algorithm is motivated by the LCU (linear combination of unitaries)-based approach
to Hamiltonian simulation [10, 16, 30]. The basic idea of this approach is to approximate
the target unitary e−iHt with a linear combination of unitaries easier to implement. In
particular, [10] uses a Chebyshev series approximation e−iHt ≈

∑
r αrTr(H), where for

each r, αr ∈ C is some appropriate coefficient, and Tr(x) is the r-degree Chebyshev
polynomial. Each Tr(H) can be obtained by r steps of Childs’ quantum walk [8,9]. Then a
linear combination of these quantum walks is performed by the LCU technique [10,16,32].
Essentially, this approach is sequential due to the fact that r steps of quantum walk require
r sequential queries, and to achieve a total precision ϵ of the simulation, r should be as
large as Θ(log(1/ϵ)), inducing a logarithmic precision-dependence.

In this work, we introduce a parallel quantum walk which is implementable with a
quantum circuit of constant depth w.r.t. queries, for a large class of Hamiltonians with
good sparse structures — uniform-structured Hamiltonians. The parallel quantum walk is
not a direct parallelization of Childs’ quantum walk; instead it implements a monomial of
H. We express the unitary e−iHt as a Taylor series e−iHt ≈

∑
r βrH

r (like in the previous
work [30]), where each r-degree monomialHr can be obtained (with a proper scaling factor)
by an r-parallel quantum walk. These parallel quantum walks are then linearly combined
in parallel by a technique described in Section 4, which exploits parallelism in the LCU
algorithm to combine R terms with depth complexity polylog(R). Since there are about
O(log(1/ϵ)) terms in the LCU to achieve a total precision ϵ of the simulation, the depth
complexity of our parallel algorithm w.r.t. queries is roughly polylog log(1/ϵ), achieving a
doubly (poly-)logarithmic precision-dependence.

6More specifically, n has different meanings in different models: for the Heisenberg model, it is the exact
number of qubits on the spin chain; for the SYK model, it is a half of the number of Majorana fermions;
and for the second-quantized molecular model, it is the number of spin orbitals.
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Parallel quantum walk

The main ingredient in our parallel simulation algorithm is the parallel quantum walk.
For an intuition of the algorithm, let us consider a very special case of uniform-structured
Hamiltonians for example, a tensor product of Pauli matrices; that is, H = ⊗

t∈[n] σt for
σt ∈ {1, X, Y, Z} being Pauli matrices. Although H is a simple 1-sparse Hamiltonian,
it suffices for an illustration of the main idea in our algorithm. To begin with, one can
think of H as a weighted adjacency matrix of a 1-sparse graph H, then a step of Childs’
quantum walk without parallelism is a “superposition version” of a classical random walk:
it performs |j⟩ 7→ H |j⟩ = Hjk |k⟩ for all vertices j in H, where k is the unique neighbor of
vertex j, and Hjk ∈ {1, i,−1,−i}.

For this special case, multiple steps of Childs’ quantum walk can be directly imple-
mented in parallel, as shown in the following. Observe that the graph H consists of 2n−1

pairs of vertices, among which for each pair (j, k), multiple steps of Childs’ quantum walk
simply alternate between the state |j⟩ and |k⟩ with an accumulated phase. If we can predict
(compute) the destination of r steps of this walk and the accumulated phase by quantum
circuits with depth significantly less than r, then these r steps can be implemented effi-
ciently in parallel.

Note that for H, there is a “uniform” way to determine the unique neighbor of a ver-
tex. Consider an n-bit string s that characterizes the diagonality of Pauli matrices in
the sequence ⟨σt⟩t∈[n]: s has its tth bit being 0 if σt ∈ {1, Z} is diagonal, and being 1 if
σt ∈ {X,Y } is off-diagonal. Then it is easy to see that j, k are neighbors if and only if
k = j ⊕ s, where ⊕ is the bit-wise XOR operator. Assume s is given by an oracle OP , a
step of Childs’ quantum walk |j⟩ 7→ Hjk |k⟩ can be implemented by first querying OP to
calculate k = j ⊕ s, followed by querying OH to add the phase Hjk.

Now r sequential steps of the walk essentially perform the mapping |j⟩ 7→ Hr |j⟩ =
H

⌈r/2⌉
jk H

⌊r/2⌋
kj |l⟩, where l = j ⊕ s ⊕ . . . ⊕ s = j ⊕ s⊕r ∈ {j, k} is the destination of these

steps. We can perform this mapping in parallel through two stages. In the first stage, we
compute the destination l: first query r oracles OP simultaneously to compute r copies of
s; then classically compute s⊕r in a binary tree of depth O(log r), using the associativity
of XOR. In the second stage, the accumulated phase H⌈r/2⌉

jk H
⌊r/2⌋
kj is computed in a similar

fashion, by querying OH in parallel combined with parallel classical computation.
By a standard technique in reversible computation [91], the above parallel classical

computation can be easily converted to parallel quantum computation, inducing depth
complexity O(1) w.r.t. queries and depth complexity O(log r) w.r.t. gates.

Although for the above example, one can easily find faster ways (by noting that s⊕r

is either s or 0 depending on r mod 2) to implement multiple steps of Childs’ quantum
walk in parallel, we adopt the above two-stage procedure because it captures the main
idea of our algorithm. In general, denote H the Hamiltonian to be simulated and H its
corresponding graph. We define an r-parallel quantum walk that can be implemented in
two stages, where the two oracles OH and OP are queried separately. The first stage is
called pre-walk which, roughly speaking, prepares a superposition over all paths of length r
generated from r steps of unweighted random walk on the graph H. This stage intuitively
predicts all possible paths in r steps of quantum walks, and can be done efficiently in
parallel, with only a constant depth complexity w.r.t. queries to OP , provided that the
Hamiltonian H is uniform-structured. The second stage is called re-weight, which adjusts
the weights (i.e., the quantum amplitudes) of the state prepared by pre-walk, according
to the entry values Hjk given by the oracle OH . This stage does not depend on the
structure of H, and can be done efficiently in parallel with a constant depth complexity

Accepted in Quantum 2023-10-06, click title to verify. Published under CC-BY 4.0. 8



Parallel quantum walk Q(r)

+
1. Pre-walk (Sec. 3.2.1)

2. Re-weight (Sec. 3.2.2)

A uniform-structured
Hamiltonian H

(Sec. 3.2.1 & Sec. 3.3)

sparse structure

O(1)-depth w.r.t. queries to OP

entry value

O(1)-depth w.r.t. queries to OH

A parallel implementation
of Hr(with a proper factor;

Sec. 3.2)

Target unitary e−iHt

(with small t; Sec. 5)

Parallel LCU (Sec. 4)
r = 1, 2, . . . , R = ⌈log(1/ϵ)⌉

polylog(R)-depth

Figure 1: An outline of the parallel quantum algorithm for Hamiltonian simulation.

w.r.t. queries to OH . Finally combining with other techniques as in Childs’ quantum walk,
we can implement the monomial operator Hr (with a proper scaling factor, see Section 3
for details).

Note again that in the above example, although the parallel quantum walk performs
multiple steps of Childs’ quantum walk, in general they are not essentially equivalent.
Specifically, r-parallel quantum walk implements Hr, while r steps of Childs’ quantum
walk yields Tr(H). For those readers familiar with block-encoding (see Definition 2.8),
the parallel quantum walk actually provides a depth-efficient way to block-encode the
operator Hr, if H is uniform-structured. It is more like an extension of a single step of
Childs’ quantum walk.

Parallel LCU for Hamiltonian series

To approximate the evolution unitary e−iHt by a truncated Taylor series, the final step of
our algorithm is to linearly combine the monomials Hr obtained from the parallel quantum
walks discussed above. The ordinary LCU algorithm [3, 10] implementing a linear combi-
nation of R unitaries has depth complexity Θ(R). As pointed out in [3], if these unitaries
are powers of a single unitary, then the LCU can be done in a parallel way analogous
to the phase estimation [92] with depth complexity O(logR). We slightly generalize this
result to implementing a linear combination of block-encoded (see Definition 2.8) powers
of a Hamiltonian (called a Hamiltonian power series) in parallel. Since the LCU requires
a state corresponding to the coefficients in the linear combination, we also present a par-
allel quantum algorithm for this state-preparation procedure, based on standard results in
quantum sampling [93].

To summarize, the whole algorithm is visualized in Figure 1.

1.3 Related Works
Our algorithm for Hamiltonian simulation shows that by employing parallelism, the com-
plexity dependence on the precision ϵ can be significantly reduced from polylog(1/ϵ) to
polylog log(1/ϵ). For reducing the dependence on other parameters like the simulation
time t, Atia and Aharonov [94] studied the fast-forwarding of Hamiltonians (which is fur-
ther explored in a recent work [95]) — the ability to simulate a Hamiltonian by a quantum
circuit with size significantly less than the simulation time t (e.g. polylog(t)). Note that the
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concept of fast-forwarding does not concern parallelism and depth complexity. They show
that the fast-forwarding of generic Hamiltonians is impossible unless BQP = PSPACE.7

Nevertheless, they provided three examples of fast-forwardable Hamiltonians: Hamiltoni-
ans constructed from the modular exponentiation unitary in Shor’s algorithm, commuting
local Hamiltonians, and quadratic Hamiltonians. Interestingly, although these examples
belong to the class of uniform-structured Hamiltonians defined in this paper (by properly
setting the oracle OH and OP ), we are not aware of a direct way to extend our results to
reduce the dependence on t by parallelization.

Jeffery, Magniez, and de Wolf [50] studied the parallel query complexity of element-
distinctness and k-sum problems. The upper bounds in their results are obtained by
what they called “parallelized quantum walk algorithms”. But it should be noted that
their algorithm is developed in the framework of finding marked elements via quantum
walks [96], in particular, a modified quantum walk on multiple copies of Johnson graphs
corresponding to a specific function (element-distinctness or k-sum), with parallel queries
to that function. In contrast, our parallel quantum walk is defined in the framework of
quantum walks for Hamiltonians [3,8–10], in particular, a quantum walk that implements
a monomial Hr (with a proper scaling factor) by r parallel queries to the oracles accessing
a Hamiltonian H.

Recent Developments

After the work described in this paper, the depth complexity O
(
τ
(
log2 γ · log2 n+ log3 γ

))
of our parallel quantum algorithm for local Hamiltonian simulation (see Corollary 1.2)
was further improved to O

(
τ log2 γ · log2 n

)
in [97], which is achieved by depth-optimal

quantum state preparation [97–100].
Recently, the depth lower bounds on Hamiltonian simulation were studied in [101].

They showed that simulating time-independent sparse Hamiltonians in general requires
Ω(t) depth w.r.t. to queries; and based on the random oracle heuristic [102,103], simulating
time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians
requires Ω(t/nc) depth w.r.t. gates, where c is some constant. This gives a negative answer
to the second open question in Section 1.4 in the general case.

1.4 Discussion
In this paper, we propose a parallel quantum algorithm for Hamiltonian simulation that
achieves a doubly (poly-)logarithmic precision-dependence in the depth complexity. This
exponential improvement from the previous (poly-)logarithmic precision-dependence is
rather a theoretical result, because in practice if the precision required is not too high,
the improvement becomes less significant. Still, regarding the great importance of parallel
computing and its success in the classical world, we hope our work may shed light on the
design of parallel quantum algorithms and our ideas may contribute to future Hamiltonian
simulation in practice.

Some readers might be also concerned that in order to extract classical information
to the required precision from the output quantum state, the overhead of measurements
could dominate the overall complexity. Indeed, our analysis only focuses on the asymptotic
cost of the quantum simulation itself, without taking the cost of post-processing into

7Note that this differs from the well-known “no-fast-forwarding theorem” in [13] stating that no sparse
Hamiltonian can be simulated for time t with sub-linear query complexity in t. Atia and Aharonov’s
result [94] is not restricted to the query model.
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account. Nevertheless, one can expect that the output quantum state of our algorithm can
be coherently fed to another quantum system (see [104–106]). For example, the output
state of a quantum algorithm can be directly used as the input data in quantum machine
learning [107], which is much more efficient than preparing the input data classically.

One direction of future work is to consider whether the complexity of Hamiltonian
simulation can be further improved.

• Given simulation time t and precision ϵ, the depth complexity w.r.t. queries of our
algorithm is O(τ log γ), while the query complexity of the best sequential quantum
algorithm [7, 35] is roughly O(τ + γ), where τ ∝ t and γ = log(τ/ϵ). It remains
open whether the multiplicative dependence on τ and γ can be improved to additive
O(τ + log γ).

• Another open question, as mentioned in Section 1.3, is whether parallelization can
significantly improve the dependence on the simulation time t; more precisely, what
kind of Hamiltonians can be simulated for time t by a quantum circuit of depth
polylog(t), by allowing parallel queries?

• Intuitively, the power of parallelism is provided by the use of ancilla qubits. Con-
sidering the dependence on precision ϵ, from the upper bound on the circuit size in
Theorem 1.1, we can derive a simple upper bound O(polylog(1/ϵ)) on the number of
ancilla qubits in our algorithm. On the other hand, to achieve a significant speed-
up (in particular, a circuit depth O(polylog log(1/ϵ))), we can also derive a lower
bound Ω

(
log(1/ϵ)

polylog log(1/ϵ)

)
on the number of ancillae in simulating uniform-structured

Hamiltonians. This is obtained by the fact that the size of a quantum circuit is no
greater than the product of the circuit depth and the number of qubits, combined
with the lower bound Ω

(
log(1/ϵ)

log log(1/ϵ)

)
on the circuit size (see the proof of Theorem 1.3

and [7, 35]). Therefore, whether the number of ancillae can be further reduced re-
mains an interesting question. More generally, the trade-off between the circuit depth
and the number of ancillae will be an important issue in parallel quantum algorithms.

• As mentioned in Section 1.1, in several practical applications the depth complexity
(w.r.t. gates) of our algorithm has worse dependence on the system size compared
to the previous best algorithms. Is it possible to reduce the n-dependence in the
complexity while retaining the improvement on the ϵ-dependence?

Another important direction is to study what other kinds of Hamiltonians with special
structures can be simulated efficiently in parallel. Although the class of uniform-structured
Hamiltonians in this work includes many physical Hamiltonians, one might also encounter
non-physical ones in other quantum algorithms that use Hamiltonian simulation as a sub-
routine (e.g., quantum linear system solver [3, 33], and quantum differential equations
solver [108]). How about exploiting the structures of those non-physical Hamiltonians for
parallelism?

Finally, a very interesting attempt is to generalize our ideas and techniques to broader
applications.

• In this paper we are only concerned about time-independent Hamiltonian simulation.
For time-dependent Hamiltonian simulation, one approach [30,38,109–111] is to use
the Dyson series to replace the Taylor series to approximate the unitary evolution.
An interesting question is whether our algorithm (in particular, the parallel quantum
walk) can be generalized for simulating time-dependent Hamiltonians.
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• The major technical tool introduced in this work is a parallel quantum walk for
Hamiltonians, which we believe can also be extended to general matrices. This
tool might be applicable to other problems, for example, solving quantum linear
differential equations [108], for which an operator eAt is to be implemented instead
of the unitary eiHt for Hamiltonian simulation, where A is a general matrix.

• As quantum singular value transform (QSVT) [36] has shown its power in manipulat-
ing the block-encodings of general matrices, and serves as a building block for many
other quantum algorithms (e.g., [4, 112, 113]), it is also interesting to ask whether
parallelism can provide speed-ups for QSVT.

1.5 Structure of the Paper
For convenience of the reader, some preliminaries are presented in Section 2. In Section 3,
we introduce a parallel quantum walk for Hamiltonians. More concretely, we revisit the
framework of Childs’ quantum walk in Section 3.1, give a parallelization of it and show
how to implement this parallel quantum walk in Section 3.2, and analyze the complexity in
Sections 3.2.1 and 3.2.2. Specifically in Section 3.2.1, we define uniform-structured Hamil-
tonians, for which the parallel quantum walk can be performed efficiently. In Section 3.3 we
present an extension of the parallel quantum walk to the case of a sum of sparse Hamilto-
nians, where we also extend the class of uniform-structured Hamiltonians to include more
Hamiltonians of interest. In Section 4, we show how to implement a parallel LCU for a
Hamiltonian power series. Section 5 assembles the above results to simulate a Hamiltonian
by combining parallel quantum walks. In Section 6, we prove an ϵ-dependence lower bound
on the gate depth for Hamiltonian simulation. In Section 7, we apply our algorithm to
simulate three concrete physical models.

2 Preliminaries and Notations
2.1 Basic Terminologies
Sparse matrix input model

Let H be a d-sparse N × N Hamiltonian acting on n qubits with ∥H∥max = 1. H is
accessed by:

• An entry oracle Ob
H that gives an entry of H with b-bit precision such that

Ob
H |j, k, z⟩ = |j, k, z ⊕Hjk⟩ ,

for j, k ∈ [N ] and z,Hjk ∈ [2b], where the complex number Hjk is stored in a b-bit
string that contains its real part and imaginary part (each with b/2 bits assuming b
is even), and b will be determined by the precision ϵ of the algorithm. When we are
just referring to the oracle we may omit the superscript b.

• A sparse structure oracle OP that gives parameters about the sparse structure of H
such that

OP |x, y⟩ = |x, P (x, y)⟩

for x ∈ X , y ∈ Y, where X ,Y are sets of integers, and P : X × Y → Y is a function
determined by the sparse structure of H such that for all x ∈ X , P (x, ·) is a bijection
for y ∈ Y.
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In many previous works [3, 8–10, 12] on sparse Hamiltonians, instead of OP , an oracle OL

is given such that OL |j, t⟩ = |j, L(j, t)⟩, where L(j, t) ∈ [N ] gives the column index of the
tth nonzero entry in row j of H for t ∈ [d] and gives 0 for t /∈ [d]. We note that OL can be
expressed as a special case of OP by taking X = Y = [N ] and P = L. However, compared
to these work, we adopt a more general oracle OP because Hamiltonians investigated in this
paper have different sparse structures, which can be better exploited by different concrete
forms of OP (see examples in Sections 3.2 and 3.3). Moreover, the implementations of
these OP ’s turn out to be very efficient, compared to much costlier implementations of
the oracle OH , as shown in Section 7 when we calculate the total gate complexity of our
algorithm in simulating practical physical models.

As in previous works, we allow using (single-qubit) controlled versions of these oracles,
and will not explicitly distinguish between the controlled and uncontrolled versions.

Complexity model

In this paper, we will consider both query complexity and gate complexity, where we allow
arbitrary one- or two-qubit gates. For a parallel quantum algorithm represented by a
quantum circuit, we will measure its cost by its depth and size. When considering the gate
complexity, each oracle query is temporarily counted as one gate. The depth of a quantum
circuit w.r.t. gates is defined as the length of the longest path composed of gates and wires
from the circuit inputs to outputs, where the length is the total number of gates on this
path. The size of a quantum circuit w.r.t. gates is defined as the total number of gates in
the entire quantum circuit.

We adopt the definition of parallel query complexity in previous works (see for exam-
ple [50]). The query complexity is calculated for each oracle separately. When considering
the query complexity with respect to an oracle O, all gates and queries to other oracles are
ignored. We allow queries to multiple copies of O in parallel — that is, we can perform
the mapping

|ψ1⟩ ⊗ . . .⊗ |ψr⟩ 7→ O |ψ1⟩ ⊗ . . .⊗ O |ψr⟩

in a single time-step for some r. From the viewpoint of a quantum circuit, these parallel
queries to O act as “gates” in the same circuit layer. The depth of a quantum circuit w.r.t.
queries to O is defined as the length of the longest path composed of queries to O and
wires from the circuit inputs to outputs, where the length is the total number of queries
to O on this path. The size of a quantum circuit w.r.t. queries to O is then defined as the
number of total queries in the entire quantum circuit.

We use the following terminologies. The depth/size complexity of an algorithm (resp.
problem) refers to the depth/size (w.r.t. queries or gates if specified) of quantum circuits
implementing (resp. solving) it. Without specification, the depth/size (complexity) implic-
itly means the depth/size (complexity) w.r.t. gates. The query/gate depth refers to the
depth complexity w.r.t. queries/gates. We will also use the adjectives “α-depth and β-size”
to describe a circuit of depth α and size β (w.r.t. queries or gates if specified).

Error model

A pure state |ψ⟩ is said to be approximated by |ψ̃⟩ to precision ϵ, if they are close in the
l2-norm such that

∥∥∥|ψ⟩ − |ψ̃⟩
∥∥∥ ≤ ϵ. A unitary U is said to be implemented to precision

ϵ, if a unitary Ũ is actually implemented such that
∥∥∥U − Ũ

∥∥∥ ≤ ϵ, where the norm is the
spectral norm. The terms “ϵ-precise” and “ϵ-close” will also be used interchangeably.
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2.2 Parallel Quantum Circuit
Now we review some basic techniques for constructing parallel quantum circuits. Although
the results are known in the previous literature, we provide their proofs in order to illustrate
basic ideas in designing parallel quantum circuits.

Lemma 2.1 (Parallel copying [42, 54]). Let COPYb be a unitary that creates b copies of
a bit (including the original copy); that is,

COPYb |x⟩ |0⟩⊗b−1 = |x⟩⊗b

for all x ∈ {0, 1}. There is an O(log b)-depth and O(b)-size quantum circuit that imple-
ments COPYb.

Proof. Suppose b is a power of two w.l.o.g. Then as shown in Figure 2, the gate COPYb

can be inductively constructed from COPYb/2, with COPY1 being the identity operator.
It is easy to check the depth and size of this quantum circuit by induction.

|x⟩
COPYb/2

|0⟩⊗b/2−1

|0⟩
COPYb/2

|0⟩⊗b/2−1

Figure 2: Inductive construction of the gate COPYb

Lemma 2.1 can be easily extended from copying a single bit to copying an m-bit string,
with the circuit depth and size multiplied by m. We use COPYm

b to denote such a circuit.
For the case b = 2, we will omit the subscript and write COPYm.

Lemma 2.2 (Parallel controlled rotations [42,54]). Let Cb-RZ be a unitary that performs
a phase shift on a single qubit controlled by b qubits; that is,

Cb-RZ |γ⟩ |ψ⟩ = |γ⟩RZ

(
2πγ · 2−b

)
|ψ⟩ (1)

for all γ ∈ [2b] and |ψ⟩ ∈ C2, where RZ(θ) = e−iθZ/2. Then Cb-RZ can be implemented
by an O(log b)-depth and O(b)-size quantum circuit.

The same conclusion holds for Cb-RX and Cb-RY defined by replacing RZ(θ) in (1)
with RX(θ) = e−iθX/2 and RY (θ) = e−iθY/2, respectively.

Proof. Let γj represent the jth bit of γ for j ∈ [b]. A parallel quantum circuit for Cb-
RZ is shown in Figure 3. To see its correctness, suppose |ψ⟩ = α |0⟩ + β |1⟩, then
COPYb |ψ⟩ |0⟩⊗b−1 = α |0⟩⊗b + β |1⟩⊗b is an entangled state. Since applying RZ to
any of the b entangled qubits will add to the relative phase, the whole state becomes
|γ⟩
(
α |0⟩⊗b + ei2πγ·2−b

β |1⟩⊗b
)

after applying C-RZ in parallel. The final state is obtained
by reverse computation with COPY†

b. It is easy to check the depth and size of the quantum
circuit by Lemma 2.1.

The cases of X and Y -rotations can be easily proved by combining the above proof
and the identities RX(θ) = HadRZ(θ) Had and RY (θ) = RZ(π/2)RX(θ)RZ(π/2), where
Had stands for the Hadamard gate.

Accepted in Quantum 2023-10-06, click title to verify. Published under CC-BY 4.0. 14



. . .

. . .

|γ0⟩
|γ1⟩

...
|γb−1⟩

|ψ⟩

COPYb

RZ

(
20π

)
COPY†

b

|0⟩ RZ

(
2−1π

)
...

|0⟩ RZ

(
2−b+1π

)
Figure 3: A parallel quantum circuit for Cb-RZ

The following lemma accommodates a classical parallel computing technique into the
quantum setting.

Lemma 2.3 (Sequence of associative operators). Let ◦ be an associative operator. Given
a unitary U◦ that performs |x, y, z⟩ 7→ |x, y, z ⊕ (x ◦ y)⟩ and its inverse U †

◦ , then for all
m ∈ N, the mapping

|x1, . . . , xm⟩ |z⟩ 7→ |x1, . . . , xm⟩ |z ⊕ (x1 ◦ . . . ◦ xm)⟩

can be implemented by a quantum circuit of depth O(logm) and size O(m) w.r.t. U◦ and
its inverse, where the additional gate complexity is often negligible compared to U◦ and
thus omitted.

Proof. Let the partial sum S◦(l, r) := xl ◦ . . . ◦ xr. Our goal is to compute S◦(1,m) =
x1 ◦ . . . ◦ xm. We can compute S◦(l, r) inductively by

S◦(l, r) = S◦(l, p) ◦ S◦(p+ 1, r),

where p = (l + r − 1)/2. Assuming m is a power of two w.l.o.g., then the computation
of S◦(1,m) forms a tree of depth O(logm) and size O(m) w.r.t. U◦, where the root is
S◦(1,m) and the leaves are S◦(i, i) = xi for i ∈ [m]. Once S◦(1,m) is computed into an
ancilla space, apply COPY gate to copy the result into |z⟩, then clean all the garbage
partial sums by reverse computation with U †

◦ .

Corollary 2.4 (Parallel addition of a sequence [42]). The addition of a sequence, i.e., the
mapping

|x1, . . . , xm⟩ |z⟩ 7→ |x1, . . . , xm⟩ |z ⊕ (x1 + . . .+ xm)⟩

for all x1, . . . , xm, z ∈ [2b], can be implemented by an O(logm+ log b)-depth and O(mb)-
size quantum circuit, where the addition is in Z2b.

Proof. By Lemma 2.3, combined with classical techniques of three-two adder, pairwise
representation and carry-lookahead adder. A detailed proof can be found in [42].

Corollary 2.5 (Parallel controlled Z gate). Let Cb-Z be a unitary that perform Z gate
on a single qubit controlled by b qubits; that is,

Cb-Z |x⟩ |ψ⟩ =
{

|x⟩Z |ψ⟩ , x = 2b − 1,
|x⟩ |ψ⟩ , o.w.
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for all x ∈ [2b] and |ψ⟩ ∈ C2, then Cb-Z can be implemented by an O(log b)-depth and
O(b)-size quantum circuit.

Proof. Write x as a bit string x = x0 . . . xb−1, then the Cb-Z gate can be implemented in
the following ways. First take ◦ to be AND gate in Lemma 2.3 to compute x0 ∧ . . .∧ xb−1
in the ancilla space by an O(log b)-depth and O(b)-size quantum circuit, then conditioned
on this apply a C-Z gate to |ψ⟩, and finally clean the garbage by reverse computation.

The following lemma translates the parallel classical results of computing elementary
arithmetic functions [114] to the quantum case using the technique of reversible comput-
ing [91].

Lemma 2.6 (Parallel quantum circuit for elementary arithmetics [114]). Let f be one of
the following elementary arithmetic functions: addition, subtraction, multiplication, divi-
sion, cosine, sine, arctangent, exponentiation, logarithm, maximum, minimum, factorial.8
Then the unitary that performs

|x̃⟩ |ỹ⟩ |z⟩ 7→ |x̃⟩ |ỹ⟩ |z ⊕ f̃(x̃, ỹ)⟩

for all x̃, ỹ, z ∈ [2b] can be implemented by an O
(
log2 b

)
-depth and O

(
b4)-size quantum

circuit,9 where x̃, ỹ are floating number representation of x, y on suitable intervals, and
f̃(x̃, ỹ) is 2−b-close to f(x, y). (For unary function the second operand y is omitted, e.g.,
f(x, y) = cos(x).) In particular, for f being addition, subtraction or multiplication, the
depth can be O(log b).

In the remainder of this paper, the name “elementary arithmetic function” may also
refer to a composition of a constant number of the arithmetic functions in Lemma 2.6.
As elementary arithmetic operations are frequently used in this paper, in some cases we
will measure the efficiency of computation with respect to these building blocks. More
specifically we have the following definition for arithmetic-depth-efficient computation.10

Definition 2.7 (Arithmetic-depth-efficient computation). A quantum circuit on b qubits
is called arithmetic-depth-efficient if it is O

(
log2 b

)
-depth and O

(
b4)-size. A function f

is arithmetic-depth-efficiently computable if the mapping |x⟩ |z⟩ 7→ |x⟩ |z ⊕ f(x)⟩ for all
x, z ∈ [2b]11 can be implemented by an arithmetic-depth-efficient quantum circuit.

2.3 Block-encoding
Block-encoding is a recently introduced fundamental tool for arithmetic operations on
matrices represented as a block of a unitary. It has been developed through a series of
researches in quantum algorithms [3, 4, 6, 7, 10,33,36].

8In particular, for factorial, x is required to be O
(
b2).

9The complexity in [114] is more refined and complicated. Here we take a simple upper bound.
10Note that this differs from the notion of depth-efficient computation, which often refers to a poly-

logarithmic depth computation. As an analog of the classical depth-efficient class NC, [54] introduced the
quantum depth-efficient class QNC.

11Functions (or arithmetic operators) with multiple inputs and outputs can be easily converted to this
form.
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Definition 2.8 (Block-encoding). An (s+a)-qubit unitary U is an (α, a, ϵ)-block-encoding
of an s-qubit operator A if∥∥∥A− α

(
⟨0|⊗a ⊗ 1

)
U
(
|0⟩⊗a ⊗ 1

)∥∥∥ ≤ ϵ.

Intuitively, this implies the 2s × 2s upper-left block of U is (ϵ/α)-close to A/α; that is,

U =
(
B ∗
∗ ∗

)
and ∥B −A/α∥ ≤ ϵ/α.

In this paper, we will slightly abuse the terminology in such a way that if the condition
is ∥∥∥A− α

(
1⊗ ⟨0|⊗a

)
U
(
1⊗ |0⟩⊗a

)∥∥∥ ≤ ϵ,

then for simplicity U is also called an (α, a, ϵ)-block-encoding of A.

3 Parallel Quantum Walk
In this section, we define a parallel quantum walk within the framework of Childs’ quantum
walks [3, 8–10]. In Section 3.1, we revisit Childs’ quantum walk. Then we propose a
parallelization of it in Section 3.2 and show how to implement the parallel quantum walk
in two stages: pre-walk and re-weight, whose complexities are analyzed in Section 3.2.1
and Section 3.2.2 respectively. In particular, in Section 3.2.1 we define uniform-structured
Hamiltonians for which the parallel quantum walk can be implemented efficiently. The
Hamiltonians considered in Section 3.2 are d-sparse. In Section 3.3, we further consider
a sum of d-sparse Hamiltonians and extend the parallel quantum walk and the class of
uniform-structured Hamiltonians.

3.1 A Quantum Walk for Hamiltonians
Let H be a d-sparse N × N Hamiltonian acting on n qubits (i.e. N = 2n). By analogy
with the classical Markov chain, the Hermitian H can be seen as a transition matrix with
“complex probability” on a d-sparse undirected graph whose adjacency matrix is given by
replacing each nonzero entry in H with 1. Following [15], this graph is called the graph
of the Hamiltonian, which we will often denote as H in the serif font throughout this
paper. We write (j, k) ∈ H if an undirected edge (j, k) exists in the graph H. Following
Childs’ extension [3, 8–10, 32] of Szegedy’s quantum walk [115], we define for all j ∈ [N ]
the post-transition state of |j⟩:

|ψj⟩ := 1√
d

∑
(j,k)∈H

(√
H∗

jk |k⟩ +
√

1 − |Hjk| |k +N⟩
)
, (2)

as a generalization of the classical random walk, where z∗ stands for the complex conjugate
of z, and the square root

√
H∗

jk is chosen such that
√
H∗

jk

(√
Hjk

)∗ = H∗
jk. Note that

|ψj⟩ ∈ C2N because N ≤ k +N ≤ 2N − 1 for k ∈ [N ]. The factor 1/
√
d and the garbage

states |k +N⟩ are introduced to keep |ψj⟩ a normalized state. Now we are ready to define
the quantum walk, a unitary acting on the extended space C2N ⊗ C2N for the N × N
Hamiltonian H.
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Definition 3.1 (Quantum walk for Hamiltonians [3]). Given Hamiltonian H as above.
Let H = C2N ⊗C2N be the state space. For each j ∈ [N ], define

|Ψj⟩ := |j⟩ ⊗ |ψj⟩ = 1√
d

∑
(j,k)∈H

|j⟩
(√

H∗
jk |k⟩ +

√
1 − |Hjk| |k +N⟩

)
, (3)

where |ψj⟩ is defined in (2). Let T : H → H be any unitary such that

T (|j⟩ ⊗ |z⟩) =
{

|Ψj⟩ , if j ∈ [N ] and z = 0,
any state, o.w.

(4)

for all j, z ∈ [2N ]. Let S : H → H be the SWAP operator such that S |a, b⟩ = |b, a⟩ for
all a, b ∈ [2N ]. Then a step of quantum walk for H is defined as Q := S(2ΠT − 1), where
ΠT = T (|0⟩⟨0| ⊗ 1n+1)T † is a projector, with |0⟩ ∈ C2N and 1n+1 the identity operator
acting on n+ 1 qubits.

The following lemma from [3] shows that we can implement a polynomial of H by
multiple steps of quantum walk. More precisely, r iterations of Q block-encodes a r-degree
Chebyshev polynomial of H.

Lemma 3.2. T †QrT is a (1, n+ 2, 0)-block-encoding of Tr(H/d), if T in (4) is performed
precisely, where Tr(x) is the r-degree Chebyshev polynomial (of the first kind).

The proof of Lemma 3.2 involves some interesting techniques, which were later used
in [7] to develop qubitization. Here we only give a proof for the special case when r = 1
(thus T †QT = T †ST ), which provides a basis for our generalization to parallel quantum
walks in Section 3.2.

Corollary 3.3. T †ST is a (1, n + 2, 0)-block-encoding of H/d, if T in (4) is performed
precisely.

Proof. To see (
1⊗ ⟨0|⊗n+2

)
T †ST

(
1⊗ |0⟩⊗n+2

)
= H/d,

it suffices to prove (
⟨j| ⊗ ⟨0|⊗n+2

)
T †ST

(
|l⟩ ⊗ |0⟩⊗n+2

)
= Hjl/d. (5)

We first write the state |Ψj⟩ in (3) into two parts |Ψj⟩ = |Φj⟩ + |Φ⊥
j ⟩, where the subnor-

malized states

|Φj⟩ := 1√
d

∑
(j,k)∈H

|j⟩
√
H∗

jk |k⟩ and |Φ⊥
j ⟩ := 1√

d

∑
(j,k)∈H

|j⟩
√

1 − |Hjk| |k +N⟩

with |j⟩ , |k⟩ ∈ C2N . It is easy to verify that

⟨Φj |S |Φl⟩ = Hjl/d

⟨Φj |S |Φ⊥
l ⟩ = ⟨Φ⊥

j |S |Φl⟩ = ⟨Φ⊥
j |S |Φ⊥

l ⟩ = 0

for all j, l ∈ [N ]. Thus the LHS of (5) is ⟨Ψj |S |Ψl⟩ = Hjl/d.
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Now we briefly illustrate how to implement one step of quantum walk by a quantum
circuit. For the sake of simplicity we only consider query complexity, and assume each
step is performed precisely. It suffices to show how to implement the unitary T (and thus
T †), because in Q = ST (2 |0⟩⟨0| ⊗ 1n+1 − 12n+2)T † only the operator T requires oracle
queries. As the ordinary quantum walk does not assume any special structure of the sparse
Hamiltonian H (e.g., assume H is local), we take OP = OL here.

Lemma 3.4 (Query complexity of T [10]). The unitary T can be implemented by a quan-
tum circuit with O(1) queries to OH and OL.

Proof. Let HA ⊗ HB be the state space with HA = HB = C2N . As in the definition (4) of
T , we only consider its action on the initial state |j⟩ ⊗ |0⟩ for j ∈ [N ], with |j⟩ , |0⟩ ∈ C2N .
Then T can be implemented in the following way:

1. Prepare a uniform superposition over computational basis states of size d in HB.

2. Query the oracle OL to obtain in HB a superposition over nonzero entries in row j.

3. Query the oracle OH to compute Hjk in an ancilla space, conditioned on which
rotates the state in HB, then uncompute Hjk by reverse computation.

That is,

|j⟩ |0⟩ 1−→ |j⟩ 1√
d

∑
t∈[d]

|t⟩

2−→ |j⟩ 1√
d

∑
(j,k)∈H

|k⟩

3−→ |j⟩ 1√
d

∑
(j,k)∈H

|k⟩ |Hjk⟩

3−→ |j⟩ 1√
d

∑
(j,k)∈H

(√
H∗

jk |k⟩ +
√

1 − |Hjk| |k +N⟩
)

|Hjk⟩

3−→ |j⟩ |ψj⟩ .

3.2 Parallelization
The algorithm for the quantum walk described in Section 3.1 is highly sequential, because r
steps of quantum walk need r iterations ofQ, which in total requires Θ(r) sequential queries
to OH and OL. Now we define a parallel quantum walk, which can be implemented by a
quantum circuit of only constant depth w.r.t. queries for uniform-structured Hamiltonians
(to be defined in Section 3.2.1). Slightly abusing the notation, we denote j ∈ Hr if a path
j = (j0, . . . , jr)12 of length r + 1 exists in the graph H.

Definition 3.5 (r-parallel quantum walk for Hamiltonians). Given Hamiltonian H as
above. Let H = HA ⊗ HB be the state space, where HA = HB =

(
C2N

)⊗(r+1)
. For each

12In this paper, a vector is written in a bold font. The coordinates will be indexed from 0, for example,
a = (a0, . . . , ak−1), where the dimension k is indicated by the context.
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j0 ∈ [N ], define

|Ψ(r)
j0

⟩ := 1√
dr

∑
j∈Hr

|j⟩

︸︷︷︸
∈HA

⊗ |j0⟩
⊗
s∈[r]

(√
H∗

jsjs+1
|js+1⟩ +

√
1 −

∣∣Hjsjs+1

∣∣ |js+1 +N⟩
)

︸ ︷︷ ︸
∈HB

(6)

where |j⟩ = |j0⟩ . . . |jr⟩ ∈ HA. Let:

• T (r) : H → H be any unitary operator such that

T (r)(|j⟩ |z1⟩ . . . |z2r+1⟩) =
{

|Ψ(r)
j ⟩ , j ∈ [N ], z1 = . . . = z2r+1 = 0,

any state, o.w.
(7)

for all j, z1, . . . , z2r+1 ∈ [2N ];

• S(r) : H → H be the reverse order operator such that

S(r) |a0, . . . , a2r+1⟩ = |a2r+1, . . . , a0⟩

for all as ∈ [2N ], s ∈ [2r + 2].

Then a step of r-parallel quantum walk for H is defined as Q(r) := T (r)†S(r)T (r).

The parallel quantum walk defined above naturally generalizes the original quantum
walk in Definition 3.1. The key idea is that we extend the state |Ψj⟩ in (3) which is a
superposition of one step of walk (j, k) ∈ H, to the state |Ψ(r)

j0
⟩ in (6) which is a super-

position of r steps of walk (i.e., a path) j ∈ Hr. As shown later in Lemma 3.8, the walk
operator Q(r) becomes a block-encoding of the monomial (H/d)r, a generalization of the
H/d obtained from the original quantum walk. (In this sense, the walk operator Q(r) is
an extension of T †QT instead of Q.) It should be emphasized that an r-parallel quantum
walk is not equivalent to r sequential steps of the original quantum walk, which instead
block-encodes a Chebyshev polynomial Tr(H/d).

Remark 3.6. The term “parallel quantum walk” comes from the fact that, as proved
later, the walk operator Q(r) can be performed by a parallel quantum circuit with a
constant query depth if the Hamiltonian H is uniform-structured (see Definition 3.10 in
Section 3.2.1). This result is non-trivial, because the state |Ψ(r)

j0
⟩ in Definition 3.5 contains

a dependence chain (which has a sequential nature) induced by the path j ∈ Hr, where
js+1 depends on js for all l ∈ [r]. This difficulty is resolved by observing that queries
to oracle OH can be actually separated from the dependence chain (see Section 3.2.2),
while queries to oracle OP can be parallelized if the graph H has a good structure (see
Section 3.2.1).

Now we will illustrate why Q(r) is a block-encoding of (H/d)r. Similar to the proof
of Lemma 3.3, we can write |Ψ(r)

j0
⟩ into two parts |Ψ(r)

j0
⟩ = |Φ(r)

j0
⟩ + |Φ(r)⊥

j0
⟩, where the

subnormalized state

|Φ(r)
j0

⟩ := 1√
dr

∑
j∈Hr

|j⟩ ⊗
√
H∗

j0j1
. . . H∗

jr−1jr
|j⟩ (8)

represents the “good” part of |Ψ(r)
j0

⟩. The following lemma shows some orthogonal relations
between these subnormalized states in the context of S(r).
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Lemma 3.7. For all j, k ∈ [N ], we have:

1. ⟨Φ(r)
j |S(r) |Φ(r)

k ⟩ = ((H/d)r)jk.

2. ⟨Φ(r)
j |S(r) |Φ(r)⊥

k ⟩ = ⟨Φ(r)⊥
j |S(r) |Φ(r)⊥

k ⟩ = 0.

Proof. We prove the two cases separately.

1. Let j0 := j and k0 := k. By straightforward calculation we have:

S(r) |Φ(r)
k ⟩ = 1√

dr

∑
k∈Hr

√
H∗

k0k1
. . . H∗

kr−1kr
|kr . . . k0⟩ |kr . . . k0⟩

⟨Φ(r)
j | = 1√

dr

∑
j∈Hr

√
Hj0j1 . . . Hjr−1jr ⟨j0 . . . jr| ⟨j0 . . . jr| .

Then using the self-adjointness of H we obtain:

⟨Φ(r)
j |S(r) |Φ(r)

k ⟩ = 1
dr

∑
j∈Hr

Hj0j1 . . . Hjr−1jr =
(
Hr

dr

)
jk
.

2. Recall that our state space is H = HA ⊗ HB with HA = HB =
(
C2N

)⊗r+1
. Let us

focus on the space HA. Since S(r) is the reverse order operator, every computational
basis component of the state S(r) |Φ(r)⊥

k ⟩ has at least one subsystem s ∈ [r + 1] of
the form |ks +N⟩ ∈ C2N , while every computational basis component of |Φ(r)

j ⟩ or
|Φ(r)⊥

j ⟩ has all subsystems of the form |jt⟩ for t ∈ [r+1]. The orthogonality statement
immediately follows from ⟨jt|ks +N⟩ = 0 for any jt, ks ∈ [N ].

Lemma 3.8. Q(r) = T (r)†S(r)T (r) is a (1, 2rn + 2r + n + 2, ϵ)-block-encoding of (H/d)r,
if T (r) is implemented to precision ϵ/2.

Proof. We first show(
1⊗ ⟨0|⊗2rn+2r+n+2

)
T (r)†S(r)T (r)

(
1⊗ |0⟩⊗2rn+2r+n+2

)
= (H/d)r (9)

for precise T (r). This part is similar to the proof of Lemma 3.3, and it suffices to show

⟨Ψ(r)
j |S(r) |Ψ(r)

l ⟩ = ⟨j| (H/d)r |l⟩ (10)

for all j, l ∈ [N ], where |Ψ(r)
j ⟩ is defined as above. Equation (10) can be obtained by

splitting |Ψ(r)
j ⟩ = |Φ(r)

j ⟩ + |Φ(r)⊥
j ⟩ and then applying Lemma 3.7.

For approximated T (r) with precision ϵ/2, by linearity of error bound propagation, the
LHS of (9) is approximated to precision ϵ.

In order to implement an r-parallel quantum walk Q(r), we only need to focus on the
T (r) part, since S(r) can be trivially implemented by a quantum circuit of constant depth
using SWAP gates. The outline of an implementation of T (r) is presented in Figure 4.

Note that the implementation consists of two stages: pre-walk and re-weight, where
the two oracles OH and OP are queried separately — OP is only queried in the pre-walk
stage, while OH is only queried in the re-weight stage.
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State space

H =
(⊗

s∈[r+1] HA
s

)
⊗
(⊗

s∈[r+1] HB
s

)
, where HA

s = HB
s = C2N for all s.

Input

Any state |j0⟩ ⊗ |0⟩ ⊗ . . .⊗ |0⟩ for j0 ∈ [N ] (due to the definition of T (r) in (7)), with
|j0⟩ , |0⟩ ∈ C2N .

Output

The state |Ψ(r)
j0

⟩ defined in (6).
T (r) can be implemented in the following ways.

Pre-walk

1. Prepare in the subspace HA a pre-walk state

|p(r)
j0

⟩ := 1√
dr

∑
j∈Hr

|j⟩ ∈ HA. (11)

Re-weight

2. Copy the computational basis states in HA to HB; that is, apply
COPY(r+1)·(n+1) to obtained the state

1√
dr

∑
j∈Hr

|j⟩ |j⟩ ∈ HA ⊗ HB.

3. Query r copies of the oracle OH in parallel, each in the subspace HA
s ⊗ HB

s+1
for s ∈ [r].13 Similar to the proof of Lemma 3.4, for each query we compute
Hjsjs+1 in a temporary ancilla space, conditioned on which rotates the state
in HB

s+1, then uncompute Hjsjs+1 . Finally we obtain the goal state |Ψ(r)
j0

⟩.

Figure 4: Implementation of T (r).

3.2.1 Pre-walk and Uniform-structured Hamiltonians

Now we give a detailed description of pre-walk. At the same time, we introduce a class
of Hamiltonians — uniform-structured Hamiltonians, for which the pre-walk can be con-
ducted in a parallel fashion. The state |p(r)

j0
⟩ = 1√

dr

∑
j∈Hr |j⟩ in (11) earns the name

“pre-walk state” because it is a superposition of all paths generated by r steps of un-

13Here we exploit the two copies of |j⟩ to parallelize the queries to the oracle OH . The idea of using
multiple copies of data is intuitive and ubiquitous in classical parallel computing. An alternative way to
achieve the parallelization is: given a single copy of |j⟩ ∈ HA, first query ⌈r/2⌉ copies of OH in parallel,
each in the subspace HA

s ⊗ HA
s+1 for even s; and then query ⌊r/2⌋ copies of OH in parallel, each in

HA
s ⊗ HA

s+1 for odd s. This technique is used later for proving Corollary 3.19. In this alternative way, one
can also modify Definition 3.5 (and relevant statements, including Lemma 3.7) such that (8) only contains
one copy of |j⟩.
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weighted random walk on the graph H starting from the vertex j0. We call the process
of generating |p(r)

j0
⟩ an r-pre-walk. For simplicity, we assume |p(r)

j0
⟩ ∈

(
CN

)⊗r+1
, that is,

|js⟩ ∈ CN for all |js⟩.
For the pre-walk, we only need to focus on the graph H and the oracle OP that char-

acterizes its sparse structure, as |p(r)
j0

⟩ does not involve any weight Hjk. One remaining
question is what kind of oracle OP to be used in our algorithm. Since the complexities that
we consider are measured in terms of the query complexity with respect to OP and gate
complexity, for practical reasons, OP should be reasonably efficiently implementable. Con-
versely, if OP is powerful enough (thus hard to implement), then intuitively the pre-walk
can be done with only a few queries to OP . For instance, given an oracle OP = Opath that
directly gives the path generated from walks according to a sequence of choices, as shown
in the following lemma, then the query complexity is O(1). Recall that L(j, t) denotes the
column index of the tth nonzero entry in row j of H, i.e., the tth neighbor of vertex j in
the graph H.

Lemma 3.9 (Pre-walk with a strong path oracle Opath). Let OP = Opath give a path
generated by r steps of walk starting from j0, according to the sequence of choices t ∈ [d]r;
that is, take X = [N ],Y = [N ]r, and P (j0, t) = (j1, . . . , jr) with js+1 := L(js, ts) for
s ∈ [r]. Then the r-pre-walk can be implemented by a quantum circuit of

• size O(1) w.r.t. queries to OP , and

• depth O(1) and size O(r log d) w.r.t. gates.

Proof. Assume d is a power of two w.l.o.g. Starting from the initial state |j0⟩ |0⟩⊗r,
the pre-walk can be implemented in the following way. First prepare a superposition

1√
dr

∑
t∈[d]r |t⟩ in the second register by an O(1)-depth and O(r log d)-size quantum circuit

using Hadamard gates, then query OP to compute P (j0, t) = (j1, . . . , jr) and thus obtain
the goal state |p(r)

j0
⟩.

In general, it might be expensive to implement Opath . For example, given the oracle
OL that computes the function L, the straightforward way to implement the strong oracle
Opath requires r sequential queries to OL. However, for a special class of Hamiltonians,
generating a path according to a sequence of choices can be done more efficiently by
exploiting parallelism in computing compositions of the function L. This forms the basic
idea of uniform-structured Hamiltonians. Let function L(r) : [N ]×[d]r → [N ] be inductively
defined as

L(r)(j, t0, . . . , tr−1) := L
(
L(r−1)(j, t0, . . . , tr−2), tr−1

)
for j ∈ [N ], t ∈ [d]r, with L(1) := L. Note that L(r) gives the destination of r steps of
walk according to a sequence of choices. Uniform-structured Hamiltonians are a class of
Hamiltonians for which the function L(r) can be computed efficiently in parallel.

Definition 3.10 (Uniform-structured Hamiltonian). A d-sparse Hamiltonian H with the
associated oracle OP is uniform-structured if:

• For all r ∈ N, the corresponding L(r) can be expressed as

L(r)(j, t) = f(j, g(t0) ◦ . . . ◦ g(tr−1)) (12)

where the function f, g and the operator ◦ with input/output lengths O(n) satisfy
that:
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– f and the mapping |0⟩ 7→ 1√
d

∑
t∈[d] |g(t)⟩ are arithmetic-depth-efficiently com-

putable (see Definition 2.7) with O(1) queries to OP ;
– ◦ is associative and arithmetic-depth-efficiently computable.

• There exists an “inverse” function L(−1) such that L(−1)(j, L(j, t)) = g(t) for all
j ∈ [N ], t ∈ [d], and L(−1) is arithmetic-depth-efficiently computable with O(1)
queries to OP .

Remark 3.11. One might notice in the first condition that the expression g(t0) ◦ . . . ◦
g(tr−1) is ready to be computed in parallel by Lemma 2.3, which is actually the key to im-
plement a parallel pre-walk. We also point out that if the function g and its inverse are both
arithmetic-depth-efficiently computable, then the mapping |0⟩ 7→ 1√

d

∑
t∈[d] |g(t)⟩ is also

arithmetic-depth-efficiently computable by evaluating g in place on the state 1√
d

∑
t∈[d] |t⟩,

which can be prepared by applying Hadamard gates in parallel.
In the second condition, the inverse function L(−1) actually enables an efficient garbage

cleaning, as shown later in Corollary 3.19.

For a better understanding of the quite involved Definition 3.10, we show three examples
of uniform-structured Hamiltonians. The first example is a band Hamiltonian, which has
its nonzero entries concentrated within a band around the diagonal.

Lemma 3.12 (Band Hamiltonian). Assume d ∈ [N ] is odd. Let H be a d-band Hamilto-
nian, i.e., Hjk = 0 if k /∈ Bd

j , where Bd
j := {j + t− (d− 1)/2 : t ∈ [d]} with the addition

and subtraction in ZN .14 Let OP be an empty oracle, that is, take X = Y = ∅ and P to
be undefined. Then H is uniform-structured.

Example 3.13. The 4 × 4 Hamiltonian H with matrix form

H :=


1 i 0 0

−i 2 3 0
0 3 −1 −i
0 0 i 1


is 3-band.

Proof of Lemma 3.12. Note that for band Hamiltonians we do not need to query OP .
The lemma is proved by verifying the conditions in Definition 3.10. Note that L(j, t) =
j+ t− (d− 1)/2, where the addition and subtraction are in ZN (although in this case the
nonzero entries are not necessarily ordered, the correctness of the algorithm is unaffected).

• We have

L(r)(j, t) = j + (t0 − (d− 1)/2) + . . .+ (tr−1 − (d− 1)/2);

that is, take f(j, k) = j + k, g(t) = t− (d− 1)/2, and ◦ to be addition in (12).

– By Lemma 2.6, f is arithmetic-depth-efficiently computable. As in Remark 3.11,
the mapping |0⟩ 7→ 1√

d

∑
t∈[d] |g(t)⟩ is arithmetic-depth-efficiently computable

too.

14This allows a slightly more general definition than the usual band Hamiltonian, because in ZN when
the band has its center close to 0 it will wrap back from the N −1 side. For instance, taking H03 = H30 = 1
in Example 3.13 H is still 3-band.
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– The addition is obviously associative; and is arithmetic-depth-efficiently com-
putable by Lemma 2.6.

• Take the inverse function to be L(−1)(j, k) = k − j, which is arithmetic-depth-
efficiently computable by Lemma 2.6.

The second example is a tensor product of Pauli matrices. Recall that any Hamiltonian
can be expressed as a sum of (scaled) tensor products of Pauli matrices, which form a basis
for the Hermitian space. In Section 3.3, we will further show that this Pauli sum is also
uniform-structured (according to the extended definition).

Lemma 3.14 (Tensor product of Pauli matrices). Let H be a (scaled) tensor product of
Pauli matrices, that is, H = α

⊗
k∈[n] σk with σk ∈ {1, X, Y, Z} and α being a constant.

Let OP give an n-bit string s characterizing the Pauli string ⟨σk⟩k∈[n]. In particular, take
X = [1], Y = [N ] and P (x, y) = y ⊕ s, where the kth bit of s is defined as

sk :=
{

0, σk ∈ {1, Z} (diagonal),
1, σk ∈ {X,Y } (off-diagonal).

Then H is uniform-structured.

Proof. Note that the sparsity d = 1 for H, because all Pauli matrices are 1-sparse. The
lemma is proved by verifying the conditions in Definition 3.10. It holds that L(j, t) = j⊕s
where ⊕ is the bit-wise XOR operator.

• We have
L(r)(j, t) = j ⊕ s⊕ . . .⊕ s;

that is, take f(j, k) = j ⊕ k, g(t) = s, and ◦ to be ⊕ in (12).

– f is arithmetic-depth-efficiently computable, while the mapping |0⟩ 7→ 1√
d

∑
t∈[d] |g(t)⟩

is trivial to perform with a single query to OP because d = 1.
– The XOR ⊕ is obviously associative and arithmetic-depth-efficiently computable.

• Take the inverse function to be L(−1)(j, k) = s, which can be computed by a single
query to OP .

The third example is a local Hamiltonian term, which acts non-trivially on a subsystem
of l qubits, whose positions are indicated by the l bits of 1 in an n-bit string s. The sum
of many local Hamiltonian terms is a local Hamiltonian, which will be investigated in
Section 3.3 as a uniform-structured Hamiltonian (according to the extended definition).

Lemma 3.15 (Local Hamiltonian term). Let H be an l-local Hamiltonian term; that
is, H = Hs ⊗ 1s̄, where Hs is a Hamiltonian acting on the subsystem of l qubits whose
positions are indicated by l bits of 1 in the n-bit string s, and 1s̄ is the identity operator on
the subsystem of the rest n− l qubits. Let OP give the locality parameter s. In particular,
set X = [1], Y = [N ] and P (x, y) = y ⊕ s. Then H is uniform-structured.

Example 3.16. Let H := A⊗ 1⊗B ⊗ 1 be a 16 × 16 Hamiltonian with A and B being
2 × 2 Hamiltonians, and 1 being 2 × 2 identity matrix. Then H is a 2-local Hamiltonian
term Hs ⊗ 1s̄, with Hs = A⊗B and s = 1010.
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Proof of Lemma 3.15. The lemma is proved by verifying the conditions in Definition 3.10.
We use the superscript i to denote the ith bit of a number. Note that the sparsity d = 2l,
L(j, t) = j ◁s (t ↾s), where the operator ↾s: [d] → [N ] lifts an l-bit string to an n-bit string
according to s, defined as

(b ↾s)i := si · bs0+...+si
,

and the operator ◁s: [N ] × [N ] → [N ] overwrites an n-bit string by another according to
s, defined as

(a ◁s b)i := ai(1 − si) + bisi (13)

for all a, b ∈ [N ], i ∈ [n]. For instance, 101 ↾01011= 01001 and 10011 ◁01011 01001 = 11001.
Technically, we further define two operators ◁: [N ]×[N ]2 → [N ] and ◁∨: [N ]2×[N ]2 →

[N ]2 such that

a ◁ (b, x) := a ◁x b, (a, x) ◁∨ (b, y) := (a ◁y b, x ∨ y) (14)

for all a, b, x, y ∈ [N ], i ∈ [n], where ∨ is the bit-wise OR operator.

• We have

L(r)(j, t) = j ◁ (t0 ↾s, s) ◁∨ . . . ◁∨ (tr−1 ↾s, s);

that is, take f(j, (k, x)) = j ◁ (k, x), g(t) = (t ↾s, s), and ◦ to be ◁∨ in (12).

– To compute f , it suffices to compute the operator ◁, which according to (13)
and (14) is arithmetic-depth-efficiently computable.
The mapping |0⟩ 7→ 1√

d

∑
t∈[d] |g(t)⟩ can be performed by first querying OP

to obtain |s⟩ in an ancilla, then conditioned on it implementing n controlled
Hadamard gates in parallel, assuming d is a power of two w.l.o.g. This is
arithmetic-depth-efficient with O(1) queries.

– The associativity of ◁∨ is easy to verify by noting that a ◁x b ◁y c =
a ◁x (b ◁y c) for all a, b, c, x, y ∈ [N ] and the associativity of ∨. Also, ◁∨

is arithmetic-depth-efficiently computable by (14).

• Take the inverse function to be L(−1)(j, k) = (k ∧ s, s), where ∧ is the bit-wise AND
operator. This is arithmetic-depth-efficiently computable with O(1) queries to OP .

Now we are ready to present the parallel pre-walk subroutine for uniform-structured
Hamiltonians. As aforementioned, the parallelism relies on the structure of L(r), which
will be shown to be computable by a logarithmic depth quantum circuit with respect to r.
The goal is achieved through several lemmas and corollaries.

Lemma 3.17. For a uniform-structured Hamiltonian H, the mapping

|j⟩ |g(t)⟩ |z⟩ 7→ |j⟩ |g(t)⟩ |z ⊕ L(r)(j, t)⟩

for all j, z ∈ [N ], t ∈ [d]r with g(t) = (g(t0), . . . , g(tr−1)), can be implemented by a quantum
circuit of

• size O(1) w.r.t. queries to OP , and

• depth O
(
log r · log2 n

)
and size O

(
rn4) w.r.t. gates.
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Proof. Since ◦ is associative and arithmetic-depth-efficiently computable, by Lemma 2.3
we can first evaluate g(t0) ◦ . . . ◦ g(tr−1) by an O

(
log r · log2 n

)
-depth and O

(
rn4)-size

quantum circuit. Also f is arithmetic-depth-efficiently computable with O(1) queries
to OP , thus L(r)(j, t) = f(j, g(t0) ◦ . . . ◦ g(tr−1)) can be computed by additional depth
O
(
log2 n

)
and size O

(
n4) w.r.t. gates and O(1) queries. Finally apply COPYn to copy

the result into |z⟩, followed by garbage cleaning using reverse computation. The total
complexity follows from summing these complexities up.

Note that for different s ∈ [r + 1], the function L(s) can be computed in parallel, then
we obtain the following corollary.

Corollary 3.18. For a uniform-structured Hamiltonian H, the mapping

|j⟩ |g(t)⟩ |z⟩ 7→ |j⟩ |g(t)⟩
r⊗

s=1
|zs−1 ⊕ L(s)(j, t0, . . . , ts−1)⟩ (15)

for all j ∈ [N ], t ∈ [d]r, z ∈ [N ]r, can be implemented by a quantum circuit of

• depth O(1) and size O(r) w.r.t. queries to OP , and

• depth O
(
log r · log2 n

)
and size O

(
r2n4) w.r.t. gates.

Proof. First make r copies of |j⟩ |g(t)⟩ by applying parallel COPYO(rn)
r in Lemma 2.1,

which has depth O(log r) and size O
(
r2n

)
. Then apply Lemma 3.17 to each of the r copies,

for the sth copy taking the input (j, g(t0), . . . , g(ts−1)) to compute L(s)(j, t0, . . . , ts−1),
which can be done in parallel for s = 1 to r. Finally apply COPYn in parallel to store
the result, followed by garbage cleaning using reverse computation. The final complexity
comes from summing up these complexities.

With the help of the inverse function L(−1), we can generate a path state |j⟩ from
the state |j0, g(t)⟩ by erasing the redundant information |g(t)⟩ in (15), as shown in the
following corollary.

Corollary 3.19. For a uniform-structured Hamiltonian H, the mapping

|j0, g(t)⟩ 7→ |j⟩

for all j0 ∈ [N ], t ∈ [d]r, where j ∈ Hr has js+1 := L(js, ts) for s ∈ [r], can be implemented
by a quantum circuit of

• depth O(1) and size O(r) w.r.t. queries to OP , and

• depth O
(
log r · log2 n

)
and size O

(
r2n4) w.r.t. gates.

Proof. Since js = L(s)(j0, t0, . . . , ts−1) for s = 1 to r, to perform the required mapping we
only need to clean the |g(t)⟩ in (15) after applying Corollary 3.18 to |j0, g(t)⟩ |0⟩⊗r. Recall
that L(−1)(js, js+1) = g(ts) for s ∈ [r], so we can compute L(−1) by taking inputs |js, js+1⟩
to clean g(ts) first on odd s then on even s, thereby for different s the computation can be
done in parallel. Since L(−1) is arithmetic-depth-efficiently computable with O(1) queries
to OP , the cleaning process can be done by a quantum circuit of depth O

(
log2 n

)
and size

O
(
rn4) w.r.t. gates and O(1) queries. The final complexity follows from summing these

complexities up.
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A combination of the above results gives a parallel pre-walk algorithm for uniform-
structured Hamiltonians.

Lemma 3.20 (Pre-walk on uniform-structured Hamiltonians). Let H be a uniform-
structured Hamiltonian, then an r-pre-walk on its graph H, i.e., preparing the state |p(r)

j0
⟩,

can be implemented by a quantum circuit of

• depth O(1) and size O(r) w.r.t. queries to OP , and

• depth O
(
log r · log2 n

)
and size O

(
r2n4) w.r.t. gates.

Proof. Let ⊗s∈[r+1] Hs be the state space with Hs = CN . The process of preparing |p(r)
j0

⟩
is shown below, starting from the initial state |j0⟩ |0⟩⊗r with |j0⟩ , |0⟩ ∈ CN .

1. Perform the mapping |0⟩ 7→ 1√
d

∑
t∈[d] |g(t)⟩ in each Hs for s = 1 to r, to obtain the

state
1√
dr

|j0⟩
∑

t∈[d]r
|g(t)⟩ .

2. Apply Corollary 3.19 we obtain the goal state |p(r)
j0

⟩ = 1√
dr

∑
j∈Hr |j⟩.

Each mapping |0⟩ 7→ 1√
d

∑
t∈[d] |g(t)⟩ in Step 1 is arithmetic-depth-efficient with O(1)

queries to OP , due to the definition of uniform-structured Hamiltonians. Combined with
Corollary 3.19 the final complexity is obtained.

3.2.2 Re-weight

Intuitively, the re-weight procedure in the implementation of T (r) in Figure 4 adjusts the
“weight” of each path |j⟩ in the pre-walk state |p(r)

j0
⟩ according to the entries in H, given

by the oracle OH . As we will see in the following, the re-weight analysis is in fact simpler
than the pre-walk because there is no requirement on the sparse structure of H.

Lemma 3.21 (Re-weight). Re-weight of |p(r)
j0

⟩, i.e., performing the mapping |p(r)
j0

⟩ 7→
|Ψ(r)

j0
⟩, where |Ψ(r)

j0
⟩ is defined in (6), can be implemented to precision ϵ by a quantum

circuit of

• depth O(1) and size O(r) w.r.t. queries to Ob
H with b = O(log(1/ϵ)), and

• depth O
(
log2 log(1/ϵ)

)
and size O

(
r
[
n+ log4(1/ϵ)

])
w.r.t. gates,

for r = polylog(1/ϵ).

Proof. We analyze separately the query complexity and gate complexity of the re-weight
stage, including Step 2 and Step 3 in Figure 4.

• For query complexity, only Step 3 involves queries to OH . As HA
s ⊗HB

s+1 are disjoint
for s ∈ [r], these r queries are independent, and thus can be done in parallel with
depth O(1) and size O(r). The precision b of oracle Ob

H will be determined in the
gate complexity analysis below.

Accepted in Quantum 2023-10-06, click title to verify. Published under CC-BY 4.0. 28



• For gate complexity, in Step 2 the COPY(r+1)·(n+1) gate can be implemented by
an O(1)-depth and O(rn)-size quantum circuit. In Step 3, one needs to apply r
controlled rotations conditioned on some Hjk; that is, perform the mapping

|0⟩ |Hjk⟩ 7→
(√

H∗
jk |0⟩ +

√
1 − |Hjk| |1⟩

)
|Hjk⟩ . (16)

To achieve a total precision ϵ of T (r), each rotation in (16) needs to be O(ϵ/r)-precise,
which requires Hjk given by the oracle Ob

H to have b = O(log(r/ϵ)) = O(log(1/ϵ))
bits of precision. To perform the rotation, first compute

√
(1 − |Hjk|)/H∗

jk and its
arctangent arithmetic-depth-efficiently by Lemma 2.6, then apply Cb-RY in Corol-
lary 2.2.
Following [9], to satisfy the condition

√
H∗

jk

(√
Hjk

)∗ = H∗
jk one should be careful

in choosing the sign of
√
H∗

jk for Hjk < 0. This problem is addressed by adding an

O
(
2−b

)
disturbance on the imaginary part of Hjk to force it to be nonzero (thereby

forcing Hjk to be complex) for those Hjk < 0, with the total precision unchanged
up to a constant factor.15 Now for Hjk = reiθ, let

√
H∗

jk :=
√
reiθ/2, which is also

arithmetic-depth-efficiently computable by Lemma 2.6. From Corollary 2.2, a Cb-RY

gate can be implemented by an O(log b)-depth and O(b)-size quantum circuit. The
total complexity follows by summing up the complexities of r rotations.

Finally, combining the pre-walk complexity (Lemma 3.20 in Section 3.2.1), the re-weight
complexity (Lemma 3.21 in the above), and the negligible complexity of implementing S(r)

gives the total complexity of the parallel quantum walk for uniform-structured Hamiltoni-
ans.

Theorem 3.22 (Parallel quantum walks for uniform-structured Hamiltonians). For a
uniform-structured Hamiltonian H, the r-parallel quantum walk Q(r) can be performed to
precision ϵ by a quantum circuit of

• depth O(1) and size O(r) w.r.t. queries to Ob
H with b = O(log(1/ϵ)),

• depth O(1) and size O(r) w.r.t. queries to OP , and

• depth O
(
log r · log2 n+ log2 log(1/ϵ)

)
and size O

(
r2n4 + r log4(1/ϵ)

)
w.r.t. gates,

for r = polylog(1/ϵ).

3.3 Extension: A Parallel Quantum Walk for a Sum of Hamiltonians
As shown in the previous section, the parallel quantum walk can be efficiently implemented
in parallel for the class of uniform-structured Hamiltonians, which are however somewhat
restricted in applications. Now we extend the framework in Section 3.2 to a parallel quan-
tum walk for a sum of Hamiltonians, that is, a Hamiltonian of the form H = ∑

w∈[m]Hw,

15In [9], to avoid this sign ambiguity, they assign different signs to
√

H∗
jk for Hjk above and below

the diagonal, and replace H with H + ∥H∥max1 to force the diagonal elements to be non-negative. For
Hamiltonian simulation problem, this modification works well by only introducing a global phase. Here
we provide an alternative solution that is not restricted to the Hamiltonian simulation task.
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where Hw are d-sparse Hamiltonians and m = poly(n). In this extended framework, we
generalize the class of uniform-structured Hamiltonians to include more Hamiltonians of
practical interest, like Pauli sums and local Hamiltonians.

Recall that in Section 3.2 the good sparse structure of a Hamiltonian H is a key
to efficiently implement the parallel quantum walk. The intuition behind the extended
framework in this section is then: if some Hamiltonians has the same type of good sparse
structures, then a sum of them is still structured well enough for exploiting parallelism.
The organization of this section is similar to Section 3.2. For readability, we only provide
the essential definitions and lemmas here, and leave more details to Appendix A.

Let us first define the extended parallel quantum walk for a sum of Hamiltonians.
Recall that the state |Ψ(r)

j0
⟩ in (6), which is a superposition of paths j = (j0, . . . , jr−1) in

the graph H, is a key ingredient in the parallel quantum walk in the previous section. Now
in the case of a sum Hamiltonian H = ∑

w Hw, the graph H can be “decomposed” into
a sum of subgraphs Hw, so in a path j ∈ H each edge (js, js+1) belongs to at least one
subgraph. Thus, we can define an extended state |Ψ(r,m)

j0
⟩, which is still a superposition of

paths j ∈ H, but each tensored with a corresponding string w, such that (js, js+1) ∈ Hws

for all s ∈ [r]. In this way, the extended parallel quantum walk can better exploit the sum
structure of the Hamiltonian H = ∑

w∈[m]Hw, as shown later.

Definition 3.23 ((r,m)-parallel quantum walk). Given the Hamiltonian H as above. Let
H = HW ⊗HA⊗HB be the walk space, where HW = (Cm)⊗r and HA = HB =

(
C2N

)⊗r+1
.

For each j0 ∈ [N ], define |Ψ(r,m)
j0

⟩ :=

1√
(md)r

∑
w∈[m]r

∑
j∈Hw

|w⟩

︸︷︷︸
∈HW

⊗ |j⟩

︸︷︷︸
∈HA

⊗ |j0⟩
⊗
s∈[r]

(√
H̃∗

jsjs+1
|js+1⟩ +

√
1 −

∣∣∣H̃jsjs+1

∣∣∣ |js+1 +N⟩
)

︸ ︷︷ ︸
∈HB

(17)
where j ∈ Hw denotes (js, js+1) ∈ Hws for all s ∈ [r], and H̃jk := Hjk/c(j, k) with
c(j, k) := ∑

w∈[m][[(j, k) ∈ Hw]]16 the number of subgraphs containing the edge (j, k) ∈ H.
Let

• T (r,m) : H → H be any unitary operator such that

T (r,m)(|w⟩ |j⟩ |z⟩) =
{

|Ψ(r,m)
j ⟩ , j ∈ [N ],w = 0, z = 0,

any state, o.w.

for all w ∈ [m]r, j ∈ [2N ], z ∈ [2N ]2r+1.

• S(r,m) : H → H reverses the order in the subspace HA ⊗ HB; that is, S(r,m) =
1W ⊗ S(r), where S(r) : HA ⊗ HB → HA ⊗ HB is the reverse order operator in
Definition 3.5.

Then a step of (r,m)-parallel quantum walk forH is defined asQ(r,m) := T (r,m)†S(r,m)T (r,m).

Remark 3.24. Note that in (17), the amplitudes are determined by a new Hamiltonian H̃,
which is entry-wise rescaled from H. The rescaling factor for each entry Hjk is c(j, k), i.e.,
the number of overlapping subgraphs Hw on the edge (j, k) ∈ H. For later implementation
of the extended parallel quantum walk, we will consider a new oracle OH̃ giving an entry of

16Here [[·]] stands for the Iverson bracket; that is, [[p]] = 1 if p is true and [[p]] = 0 if p is false.
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H̃ such that OH̃ |j, k, z⟩ = |j, k, z ⊕ H̃jk⟩. Note that if c(j, k) can be efficiently computed,
OH̃ can be easily constructed from OH , with the total precision scaled by at most m for
the construction, as c(j, k) = ∑

w∈[m][[(j, k) ∈ Hw]] ≤ m. The overhead caused by this
precision scaling will be shown to be negligible later.

The extended parallel quantum walk defined above also block-encodes a monomial of
H, as shown in the following lemma.

Lemma 3.25. Q(r,m) = T (r,m)†S(r,m)T (r,m) is a (1, r⌈logm⌉ + 2rn+ 2r + n+ 2, ϵ)-block-
encoding of

(
H
md

)r
, if T (r,m) is implemented to precision ϵ/2.

Proof. Postponed to Appendix A.

As a straightforward generalization of the implementation of T (r) in Figure 4, an imple-
mentation of T (r,m) is shown in Figure 5. We call the procedure of preparing the (extended)
pre-walk state |p(r,m)

j0
⟩ in (18) an (r,m)-pre-walk. Now we will introduce the notion of m-

uniform-structured Hamiltonians as an extension of the uniform-structured Hamiltonians
in Section 3.2. We first redefine the function L : [m] × [N ] × [d] → [N ] such that L(w, j, t)
is the tth neighbor of vertex j in subgraph Hw, and let L(r) : [m]r × [N ] × [d]r → [N ] be
inductively defined as

L(r)(w, j, t) := L
(
wr−1, L

(r−1)(w0, . . . , wr−2, j, t0, . . . , tr−2), tr−1
)

for w ∈ [m]r, j ∈ [N ], t ∈ [d]r, with L(1) := L.

Definition 3.26 (m-uniform-structured Hamiltonian). A sum HamiltonianH = ∑
w∈[m]Hw

with the associated oracle OP is m-uniform-structured if:

• For all r ∈ N, its corresponding L(r) can be expressed as

L(r)(w, j, t) = f(j, g(w0, t0) ◦ . . . ◦ g(wr−1, tr−1)) (19)

where the function f, g and the operator ◦ with input/output lengths O(n) satisfy
that:

– f and the mapping |w⟩ |0⟩ 7→ |w⟩ 1√
d

∑
t∈[d] |g(w, t)⟩ are arithmetic-depth-efficiently

computable with O(1) queries to OP for all w ∈ [m];
– ◦ is associative and arithmetic-depth-efficiently computable.

• There exists an inverse function L(−1) such that L(−1)(w, j, L(w, j, t)) = g(w, t) for
all w ∈ [m], j ∈ [N ], t ∈ [d], and L(−1) is arithmetic-depth-efficiently computable
with O(1) queries to OP .

• The function [[(j, k) ∈ Hw]] can be arithmetic-depth-efficiently computed with O(1)
queries to OP , given j, k ∈ [N ], w ∈ [m] as inputs.

Note that the first two conditions in Definition 3.26 are naturally generalized from
Definition 3.10, while the third condition is set to guarantee the efficiency of computing
c(j, k) = ∑

w∈[m][[(j, k) ∈ Hw]], which is used in the construction of the oracle OH̃ from
OH , as mentioned in Remark 3.24.

Now we present two important examples of m-uniform-structured Hamiltonians: Pauli
sums and local Hamiltonians, which are generalizations of tensor products of Pauli matrices
and local Hamiltonian terms respectively.
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State space

H =
(⊗

s∈[r] HW
s

)
⊗
(⊗

s∈[r+1] HA
s

)
⊗
(⊗

s∈[r+1] HB
s

)
with HW

s = Cm and HA
s =

HB
s = C2N for all s.

Input

Any state |0⟩⊗mr |j0⟩ |0⟩⊗2N(2r+1) for j0 ∈ [N ], with |j0⟩ ∈ C2N , |0⟩ ∈ C.

Output

The state |Ψ(r,m)
j0

⟩ defined in (17).
T (r,m) can be implemented in the following ways.

Pre-walk

1. Prepare in the subspace HW ⊗ HA a pre-walk state

|p(r,m)
j0

⟩ := 1√
(md)r

∑
w∈[m]r

∑
j∈Hw

|w⟩ |j⟩ ∈ HW ⊗ HA. (18)

Re-weight

2. Copy the computational basis states in HA to HB; that is, apply
COPY(r+1)·(n+1) to obtained the state

1√
(md)r

∑
w∈[m]r

∑
j∈Hw

|w⟩ |j⟩ |j⟩ ∈ H.

3. Query r copies of the modified oracle OH̃ in parallel, each in the subspace
HA

s ⊗ HB
s+1 for s ∈ [r]. For each query we compute H̃jsjs+1 in a temporary

ancilla space, conditioned on which rotates the state in HB
s+1, then uncompute

H̃jsjs+1 with another query. Finally we obtain the goal state |Ψ(r,m)
j0

⟩.

Figure 5: Implementation of T (r,m)

Lemma 3.27 (Pauli sum). Let H be a Pauli sum, that is, H = ∑
w∈[m]Hw where Hw are

(scaled) tensor products of Pauli matrices defined in Lemma 3.14. Let OP give an n-bit
string s(w) characterizing the Pauli string of Hw for each w. In particular, set X = [m],
Y = [N ] and P (w, y) = y ⊕ s(w). Then H is m-uniform-structured.

Proof. Postponed to Appendix A.

Lemma 3.28 (Local Hamiltonian). Let H be an (l,m)-local Hamiltonian, that is, H =∑
w∈[m]Hw where Hw are l-local Hamiltonian terms defined in Lemma 3.28. Let OP give

an n-bit string s(w) characterizing the locality of Hw, i.e., the positions of the l qubits Hw

acts on, for each w. In particular, set X = [m], Y = [N ] and P (w, y) = y ⊕ s(w). Then
H is m-uniform-structured.

Proof. Postponed to Appendix A.
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Remark 3.29. Although any Hamiltonian can be represented as a Pauli sum due to
the fact that tensor products of Pauli matrices form a basis for the Hermitian space, the
number of summands m can be large. Since the complexity of the algorithm depends
on m, only those Pauli sums with small m are of practical interest. The same difficulty
exists when one tries to represent any Hamiltonian as a local Hamiltonian, because the
parameter l can be large.

Following the same line of analysis as in Section 3.2, we have the following theorem
that the (extended) parallel quantum walk for uniform-structured Hamiltonians in Defini-
tion 3.26 can be efficiently implemented in parallel.

Theorem 3.30 (Parallel quantum walks for m-uniform-structured Hamiltonians). For an
m-uniform-structured Hamiltonian, the (r,m)-parallel quantum walk Q(r,m) can be imple-
mented to precision ϵ by a quantum circuit of

• depth O(1) and size O(r) w.r.t. queries to Ob
H with b = O(log(m/ϵ)),

• depth O(1) and size O(rm) w.r.t. queries to OP , and

• depth O
(
log r · log2 n+ log2 log(m/ϵ)

)
and size O

(
mr2n4 + r log4(m/ϵ)

)
w.r.t. gates,

for r = polylog(1/ϵ).

Note that when m = 1, the above theorem reduces to Theorem 3.22. For readability,
the proof of this theorem is postponed to Appendix A.

4 Parallel LCU for Hamiltonian Series
In this section, we show how to implement a linear combination of block-encoded powers of
a Hamiltonian (i.e., a Hamiltonian power series) by a parallel quantum circuit. The method
is based on the LCU (linear combination of unitaries) algorithm developed through [3,10,
16, 30, 32, 36, 116]. Here we adopt the block-encoding version of LCU in [36]. The results
in this section will be used to implement a linear combination of parallel quantum walks
to approximate the evolution unitary e−iHt in Section 5.

We first recall two technical lemmas from [36]. Although they apply to more general
matrices, here for our purpose we restrict them to the Hamiltonians.

Lemma 4.1 (Product of block-encoded Hamiltonian powers [36]). Let K be any Hamil-
tonian. For n,m ∈ N, if U is an (α, a, δ)-block-encoding of Kn and V is a (β, b, ϵ)-
block-encoding of Km, then (1a ⊗ V )(1b ⊗ U) is an (αβ, a+ b, αϵ+ βδ)-block-encoding of
Kn+m, where 1s is the identity operator acting on the proper subsystem composed of the
s qubits.

Definition 4.2 (State preparation unitary). Let a ∈ CR and α := ∥a∥1, where ∥·∥1 is
the l1 norm. A unitary V is called an (α, ϵ)-state-preparation-unitary of a, if the state
V |0⟩ is ϵ-close17 to 1√

α

∑
r∈[R]

√
ar |r⟩ with |0⟩ ∈ CR, where ar is the rth entry of a.

This definition is a special case of state preparation pair in [36], as shown in Appendix B.

Lemma 4.3 (LCU for Hamiltonian series [36]). Let a ∈ CR be an R-dimensional vector,
K be a Hamiltonian, and

17Here, for simplicity of later proofs, the precision is measured by l2-norm, which is different from the
one in [36]. See Appendix B for more details.
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• A := ∑
r∈[R] arK

r be a power series of K;

• V be an (α, δ)-state-preparation-unitary of a;

• Ur be an (β, b, ϵ)-block-encoding of Kr.

If U := ∑
r∈[R] |r⟩⟨r| ⊗ Ur, then

(
V † ⊗ 1

)
U(V ⊗ 1) is an (αβ, s+ b, αβRδ + αβϵ)-block-

encoding of A with s := ⌈logR⌉.

Combining Lemma 4.1 and Lemma 4.3, we can obtain the following:

Corollary 4.4. Let a ∈ CR be an R-dimensional vector, K be a Hamiltonian, s :=
⌈logR⌉, and

• A := ∑
r∈[R] arK

r be a power series of K;

• V be an (α, δ)-state-preparation-unitary of a;

• Wr be a (1, br, ϵ)-block-encoding of Kr, and

W :=
∑

r∈[R]
|r⟩⟨r| ⊗

∏
j∈[s]

(
1b−b2j

⊗W2j

)rj (20)

where b := ∑
j∈[s] b2j and rj is the jth bit of r.

Then
(
V † ⊗ 1

)
W (V ⊗ 1) is an (α, s+ b, αRδ + αsϵ)-block-encoding of A.

Proof. Since W2j is a (1, b2j , ϵ)-block-encoding of K2j , by Lemma 4.1,

Ur :=
∏

j∈[s]

(
1b−b2j

⊗W2j

)rj

is a (1, b, sϵ)-block-encoding of Kr. Then by Lemma 4.3 we reach the conclusion.

Now we present two lemmas showing how to implement V and W in Corollary 4.4 by
parallel quantum circuits. The idea of Lemma 4.5 is similar to a data structure for matrix
sampling in [117], but here we consider complex amplitudes (rather than real amplitudes
in [117]) and explicitly compute the gate complexity. This lemma is based on previous
works on quantum sampling [93].

Lemma 4.5 (Parallel state preparation). Let a ∈ CR be an R-dimensional vector such
that for each r ∈ [R], ar is arithmetic-depth-efficiently computable given r as input, and
let α := ∥a∥1. An (α, ϵ)-state-preparation-unitary V of a can be implemented by an
O
(
log3 log(1/ϵ)

)
-depth and O

(
log5(1/ϵ)

)
-size quantum circuit for R = O(log(1/ϵ)).

Proof. Assume R = 2s w.l.o.g., because one can enlarge the dimension of a by appending
enough 0 entries. Let ar = eiθr |ar| and partial sum S(j, l) := ∑l−1

r=j |ar|. Recall that
our goal is to perform the mapping |0⟩⊗s 7→ 1√

α

∑
r∈[R]

√
ar |r⟩. The state preparation V

consists of s steps, and in the kth step we perform the mapping{
|0⟩⊗s 7→ U0,0 |0⟩ |0⟩⊗s−1 k = 0,
|x⟩ |0⟩⊗s−k 7→ |x⟩Uk,x |0⟩ |0⟩⊗s−k−1 1 ≤ k < s,

(21)
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for all x ∈ [2k], where Uk,x is a single qubit gate such that

Uk,x |0⟩ = √
γx |0⟩ + eiβx/2√1 − γx |1⟩ ,

and we define
γx := S(u,w)

S(u, v) , βx := θw − θu,

with u := 2s−kx, v := 2s−kx + 2s−k and w := (u + v)/2. A proof of the correctness of
this procedure can be found in [117] and [93], except that here we have an additional
accumulative phase βx to handle the complex amplitudes.18

Let us compute the gate complexity. To achieve a total precision ϵ, each step of (21)
needs to be (ϵ/s)-precise. Each step of (21) consists of two controlled rotations, Cb-
RY and Cb-RZ , which are conditioned on elementary arithmetic functions of γx and βx

respectively, where b = O(log(s/ϵ)) = O(log(1/ϵ)) is the number of bits for the required
precision. While βx can be easily computed by an arithmetic-depth-efficient quantum
circuit, as it is an elementary arithmetic function of au and aw, which are arithmetic-
depth-efficiently computable from x; γx needs to be computed from the more complicated
S(u, v).

Note that one can compute all S(j, l) required at once in an ancilla space. This is done
by

• first computing
(
2−b/R

)
-precise ar for all r by arithmetic-depth-efficient circuits

on the input |0, 1, . . . , R− 1⟩, due to the assumption that ar is arithmetic-depth-
efficiently computable;

• then computing S(j, l) in an inductive way analogous to the proof of Lemma 2.3, ex-
cept that one needs to create a constant number of copies of each S(j, l) by COPYb+s

for future computation.

The input state |0, 1, . . . , R− 1⟩ can be prepared by an O(1)-depth and O(Rs)-size quan-
tum circuit, while the inductive summation procedure requires depth O

(
s log2(b+ s)

)
and

size O
(
R(b+ s)4

)
by Lemma 2.6, Lemma 2.1 and the proof of Lemma 2.3. Thus all S(j, l)

required can be computed by an O
(
log3 log(1/ϵ)

)
-depth and O

(
log5(1/ϵ)

)
-size quantum

circuit.
By Lemma 2.2 the controlled rotations in each step of (21) can be implemented by an

O(log b)-depth and O(b)-size quantum circuit, once the rotation angles, some elementary
arithmetic functions of γx, βx are computed by an O

(
log2 b

)
-depth and O

(
b4)-size quantum

circuit. Summing up the s steps gives the final complexity.

The next lemma generalizes Lemma 8 in [3] to the block-encoding case.

Lemma 4.6 (Parallel implementation of W ). The unitary W in (20) can be implemented
by a quantum circuit of depth ∑j∈[s] Dep(W2j ) and size ∑j∈[s] Siz(W2j ), where Dep and
Siz refer to the depth and size cost of a subroutine.

Proof. A parallel quantum circuit implementation of W is shown in Figure 6, where we
omit the identity operator 1b−b2j

on the ancilla space for simplicity of notations. Since
the controlled version of W2j has the same complexity as W2j up to a constant factor, the
final complexity then follows easily.

18An alternative way to handle the complex amplitudes is: in the construction of the state preparation
unitary, prepare the state 1√

α

∑
r∈[R]

√
|ar| |r⟩; and in the LCU, add all the phases eiθr for r ∈ [R] in

parallel.

Accepted in Quantum 2023-10-06, click title to verify. Published under CC-BY 4.0. 35



. . .

. . .

. . .

|r0⟩
|r1⟩

...
|rs−1⟩

|ϕ⟩
W20 W21 W2s−1

|0⟩⊗b

Figure 6: A parallel quantum circuit for W .

5 Parallel Hamiltonian Simulation
Now we are ready to present a parallel quantum simulation algorithm for uniform-structured
Hamiltonians by assembling the techniques developed in the previous sections. Follow-
ing [3, 10, 30], we simulate the evolution unitary e−iHt by first splitting the time interval
t into small segments each of length ∆t, then approximating the evolution within each
segment by the truncated Taylor series

e−iH∆t ≈
R−1∑
r=0

(−iH∆t)r

r! . (22)

In our setting, ∆t should be chosen such that the monomial (H∆t)r can be obtained from
the parallel quantum walk in Section 3. Using the results of Section 4 to combine these
walk operators, we get a block-encoding of e−iH∆t, then we apply these e−iH∆t sequentially
on the initial state. In this way we are able to simulate e−iHt. To guarantee a close to 1
success amplitude after each application of e−iH∆t, a technique introduced in [10, 30, 31]
called robust oblivious amplitude amplification will be used.

Recall that we assume ∥H∥max = 1. Since the monomial
(

H
md

)r
can be obtained from

a parallel quantum walk for m-uniform-structured Hamiltonians, we choose ∆t := 1
md .

By rescaling H with a constant factor 1/2, the eigenvalue of H∆t lies in the interval
[−1/2, 1/2]. The following lemma shows that to achieve an ϵ-precision in (22) it suffices to
choose R = ⌈log(1/ϵ)⌉,19 by taking z = −iH∆t.

Lemma 5.1. Assume R := ⌈log(1/ϵ)⌉ ≥ 4 w.l.o.g., we have∣∣∣∣∣ez −
R−1∑
r=0

zr

r!

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
r=R

zr

r!

∣∣∣∣∣ ≤ ϵ

for z ∈ C with |z| ≤ 1/2.

Proof. Since ∑∞
r=R

zr

r! is absolutely convergent, we have
∣∣∣∑∞

r=R
zr

r!

∣∣∣ ≤
∑∞

r=R
|z|r
r! . The RHS

of the above equation can be bounded by the Taylor remainder eξ|z|R
R! ≤ 1

2R ≤ ϵ, where
0 ≤ ξ ≤ |z| ≤ 1/2.

19Actually R = O
(

log(1/ϵ)
log log(1/ϵ)

)
is also sufficient (for example, see [30]). Nevertheless, for simplicity, here

we choose R = ⌈log(1/ϵ)⌉ instead. According to Lemma 5.2, this simplified choice only incurs a constant
factor in the depth complexity and a poly-logarithmic factor in the size complexity, which has a negligible
impact on our main results.
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Let us analyze the complexity of implementing a block-encoding of e−iH∆t.

Lemma 5.2. For any m-uniform-structured Hamiltonian H, there exists a unitary U∆t

that forms an (α,R(2⌈logm⌉ + 4n), ϵ)-block-encoding of e−iH∆t, and can be implemented
by a quantum circuit of

• depth O(logR) and size O(R) w.r.t. queries to Ob
H with b = O(R+ logm),

• depth O(logR) and size O(mR) w.r.t. queries to OP , and

• depth O
(
log2R · log2 n+ log3R

)
and size O

(
mR2n4 +R(R+ logm)4

)
w.r.t. gates,

where ∆t := 1
md , α < e is a constant, and R = ⌈log(1/ϵ)⌉ ≥ 4.

Proof. In Corollary 4.4, take R = ⌈log(1/ϵ)⌉, ar = (−i)r

r! , K = H
md and Wr = Q(r,m). Then

α = ∑
r∈[R]|ar| < e is a constant, where each ar is arithmetic-depth-efficiently computable

by Lemma 2.6. Assume R = 2s w.l.o.g. To achieve a total ϵ-precision of U∆t, in Corol-
lary 4.4, take the precision of V to be ϵ/(2αR), and the precision of each Wr (i.e., the
precision of Q(r,m) in Theorem 3.30) to be ϵ/(2αs). By Lemma 4.5, the state prepara-
tion unitary V can be implemented by an O

(
log3 log(1/ϵ)

)
-depth and O

(
log5(1/ϵ)

)
-size

quantum circuit. Combining Lemma 4.6 and Theorem 3.30, the implementation of W has

• depth O(s) and size O(R) w.r.t. queries to Ob
H with b = O(log(sm/ϵ)),

• depth O(s) and size O(mR) w.r.t. queries to OP , and

• depthO
(
s
[
logR · log2 n+ log2 log(sm/ϵ)

])
and sizeO

(
mR2n4 +R log4(sm/ϵ)

)
w.r.t.

gates.

The final complexity follows from summing up these complexities and the assumption
m = polyn. Note that the number of ancilla qubits required for the block-encoding is not
a tight upper bound.

To achieve a constant success amplitude after a sequence of e−iH∆t, we need to amplify
the success amplitude to be close to 1 after each application of e−iH∆t with robust oblivious
amplitude amplification. The following lemma is a special case of Lemma 6 in [10].

Lemma 5.3 (Robust oblivious amplitude amplification). Given a unitary U that (α, s, ϵ)-
block-encodes a unitary V , where α = arcsin

(
π

2(2l+1)

)
for some l ∈ N, one can construct a

(1, s, O(ϵ))-block-encoding of V with O(l) uses of U , U † and 1− 2Πs, where Πs := |0⟩⟨0|s
is a projector on the ancilla space of s qubits.

Corollary 5.4. Given a unitary U that (β, s, ϵ)-block-encodes a unitary V , where β =
O(1) is a known constant, a (1, s+ 1, O(ϵ))-block-encoding of V can be implemented by a
quantum circuit of

• size O(1) w.r.t. U and U †, and

• depth O
(
log s+ log2 log(1/ϵ)

)
and size O

(
s+ log4(1/ϵ)

)
w.r.t. gates.

Proof. By the assumption,
∥∥∥V − β

(
⟨0|⊗s ⊗ 1

)
U
(
|0⟩⊗s ⊗ 1

)∥∥∥ ≤ ϵ. Pick the minimum l

such that α := arcsin
(

π
2(2l+1)

)
≥ β. Let W be a unitary such that

W |0⟩ = 1√
α

(√
β |0⟩ +

√
α2 − β2 |1⟩

)
,
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and let Ũ :=
(
W † ⊗ 1

)
(1⊗ U)(W ⊗ 1), then we have∥∥∥V − α

(
⟨0|⊗s+1 ⊗ 1

)
Ũ
(
|0⟩⊗s+1 ⊗ 1

)∥∥∥ ≤ ϵ.

Note that α = O(1), by Lemma 5.3 we can construct a (1, s+ 1, O(ϵ))-block-encoding of V
with O(1) uses of Ũ , Ũ † and 1− 2Πs+1. To achieve an O(ϵ)-precision, the implementation
of the rotation W has depth O

(
log2 log(1/ϵ)

)
and size O

(
log4(1/ϵ)

)
by Lemma 2.2 and

Lemma 2.6. The reflection 1−2Πs+1 can be implemented by a Cs+1-Z gate with an ancilla
qubit, which has depth O(log s) and size O(s) by Corollary 2.5. The final complexity
follows from summing up these complexities.

Now we can give a precise statement of the main result of this paper. An informal
version of this theorem was presented as Theorem 1.1.

Theorem 5.5 (Parallel simulation of uniform-structured Hamiltonians). An m-uniform-
structured Hamiltonian H = ∑

w∈[m]Hw acting on n qubits with each Hw being d-sparse,
can be simulated for time t to precision ϵ (ϵ ≤ 0.05) by a quantum circuit of

• depth O(τ log γ) and size O(τγ) w.r.t. queries to Ob
H with b = O(γ),

• depth O(τ log γ) and size O(mτγ) w.r.t. queries to OP , and

• depth O
(
τ
(
log2 γ · log2 n+ log3 γ

))
and size O

(
τγ2 ·

(
mn4 + γ3)) w.r.t. gates,

where τ := mdt, γ := log(τ/ϵ).

Proof. Let ∆t := 1/(md). First consider the case when τ = t/∆t is an integer. To achieve
a total precision ϵ, applying Lemma 5.2 followed by Corollary 5.4 with precision ϵ/τ gives
a (1, O(γ(n+ logm)), O(ϵ/τ))-block-encoding of e−iH∆t. Repeat the above procedure τ
times; that is, using Lemma 4.1 to multiply these block-encoded e−iH∆t we obtain a
(1, O(τγ(n+ logm)), O(ϵ))-block-encoding of e−iHt. By properly scaling the precision ϵ
we can remove the constant factor in O(ϵ) and implement e−iHt to precision ϵ with the
same overhead up to a constant factor. The final complexity follows from summing up
these complexities.

For the case when τ is not an integer, that is, t̃ := t− [t/∆t] ̸= 0, we can independently
simulate the last segment for time t̃. This can be done through simulating H̃ := H∆t/t̃
instead for time ∆t, where the oracle OH̃ for H̃ is easy to construct from OH , with at most
O
(
log2 γ

)
-depth and O

(
γ4)-size of overhead for the required precision by Lemma 2.6. The

final complexity is unchanged.

6 Lower Bounds
In this section, we prove Theorem 1.3 in Section 1.1, which gives a lower bound on the gate
depth of simulating a uniform-structured Hamiltonian and implies that the polylog log(1/ϵ)
factor in the gate depth in Theorem 5.5 cannot be significantly improved to o(log log(1/ϵ)).
Our proof is based on the proof of Theorem 1.2 in [31], which gives a lower bound that
simulating any sparse Hamiltonian to precision ϵ has size Ω

(
log(1/ϵ)

log log(1/ϵ)

)
w.r.t. queries, as

an extension of the “no-fast-forwarding theorem” in [13]. Their proof basically reduces
the problem of computing the parity of N bits (with unbounded error, i.e., with success
probability strictly greater than 1/2), to simulating a 2-sparse 2N × 2N Hamiltonian (to a
high precision). Our lower bound is achieved by two simple observations: the Hamiltonian
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used there is 6-band, which is actually uniform-structured as shown in Lemma 3.12; and
computing the parity of N bits with unbounded error requires depth Ω(logN).

Proof of Theorem 1.3. We will show that there exists a uniform-structured Hamiltonian H
such that simulating H to precision ϵ requires gate depth Ω(log log(1/ϵ)). Following [31],
consider a 2N × 2N Hamiltonian H determined by an N -bit string x = x0 . . . xN−1, such
that

⟨j, k|H |j − 1, k ⊕ xj⟩ = ⟨j − 1, k ⊕ xj |H |j, k⟩ =
√

(N − j + 1)j
N

for all j ∈ [N ] and k ∈ [2], where ⊕ stands for the XOR operator. Note that here H is
6-band, thus is uniform-structured by Lemma 3.12. Also we have ∥H∥max ≤ 1, which can
be normalized to 1 with a constant overhead. In [31] it is shown that:

1.
∣∣∣⟨N,PARITY(x)| e−iHt |0, 0⟩

∣∣∣ = |sin(t/N)N |, where PARITY(x) = x0 ⊕ . . .⊕ xN−1 is
the parity of x;

2. if N = Θ
(

log(1/ϵ)
log log(1/ϵ)

)
, then there is an unbounded-error algorithm to compute

PARITY(x), by simulating H for a constant time t to precision ϵ on the input |0, 0⟩,
followed by a computational basis measurement.

Take N = Θ
(

log(1/ϵ)
log log(1/ϵ)

)
. To finish the proof, it suffices to show that computing

PARITY(x) with unbounded error requires gate depth Ω(logN) = Ω(log log(1/ϵ)). This
is trivial because PARITY(x) depends on all xj for j ∈ [N ], while any o(logN)-depth
quantum circuit only involves o(N) input qubits. More precisely, for the sake of contra-
diction, suppose there exists an o(logN)-depth quantum circuit that takes an input |x⟩
and outputs PARITY(x) by a measurement on the first output qubit with success proba-
bility > 1/2, then there must be an input qubit holding |xk⟩ for some k ∈ [N ] that is not
connected to the output qubit by a path of gates and wires. However, xk = 0 and xk = 1
yield different values of PARITY(x). This gives a contradiction.

7 Applications
It seems that the parallel quantum algorithm for Hamiltonian simulation developed above
can be applied to a wide range of simulation tasks in physics. As a concrete illustration,
three examples of physical interest are presented in this section. For each example, we
explicitly calculate the total gate complexity of the parallel quantum simulation algorithm
for it and compare with the prior art. In particular, we calculate the gate cost for imple-
menting the oracle OH and OP in the algorithm. Since our choices of OP turn out to be
efficiently implementable by quantum gates in these examples, compared to the commonly
chosen oracle OL, we believe that our definition of the oracle OP is more reasonable in
these applications. The results in this section were already summarized in Subsection 1.1
as Table 1.

7.1 Simulation of the Heisenberg Model
Many body localization (MBL) is an intriguing phenomenon in the long-time behaviour of
a closed quantum system with disorders and interactions [75, 118,119]. In contrary to the
conventional assumption in quantum statistical mechanics that a system coupling to a bath
(i.e., a large environment) after a long time will achieve a thermal equilibrium which erases
the initial condition, the MBL system as an isolated many-body quantum system resists
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such thermalization — in a local subsystem the information of the initial state is remem-
bered forever. While a theoretical understanding of MBL still remains challenging since its
introduction by Anderson in 1958 [120], tremendous numerical works on various systems
have been conducted through recent years (for example, see [75, 119, 121] for reviews). A
typical example for numeric studies of MBL is one-dimensional Heisenberg model [75–77].
Due to the difficulty of simulating many-body dynamics classically, quantum simulations
can investigate properties of MBL in larger systems intractable for classical computers.

Following [77], we consider the problem of simulating the one-dimensional nearest-
neighbor Heisenberg model with a random magnetic field in the z direction. More con-
cretely, we will simulate an n-qubit Hamiltonian

H =
∑

w∈[n]
(XwXw+1 + YwYw+1 + ZwZw+1 + hwZw), (23)

where hw ∈ [−1, 1] is chosen uniformly at random, the subscript w indicates the qubit w
that the Pauli matrix acts on, and w = n is equivalent to w = 0 by assuming the periodic
boundary conditions.

First observe that H is a (2, n)-local Hamiltonian with local term Hw := XwXw+1 +
YwYw+1 +ZwZw+1 + hwZw for w ∈ [n]. The locality of Hw is indicated by an n-bit string
s(w) with the uth bit defined as

s(w)u := [[w = u ∨ w + 1 = u]]

for all u ∈ [n], given by the oracle OP as in Lemma 3.28. Then by Lemma 3.28, H is
m-uniform-structured with m = n, thus we can apply Theorem 5.5 to simulate H. For
comparison, take the simulation time t = n as in [77]. Since ∥H∥max ≤

∑
w∈[n]∥Hw∥max =

O(n), to simulate H for time t, it is equivalent to simulate a normalized H with max norm
≤ 1 for a rescaled time t̃ := ∥H∥maxt = O

(
n2). Thus we can determine the parameters in

Theorem 5.5: τ = O
(
n3), γ = O(log(n/ϵ)) and b = O(log(n/ϵ)).

For the total complexity of the algorithm, one should also compute the gate complexities
for implementing the oracle Ob

H and OP .

• To implement OP , that is, to perform the mapping |w⟩ |0⟩ 7→ |w⟩ |s(w)⟩, one can first
prepare the state |0, . . . , n− 1⟩ in the second register, then make n copies of |w⟩ by
applying COPY⌈log n⌉

n , and finally calculate each Boolean function s(w)u for u ∈ [n]
in parallel followed by garbage cleaning. Together with Lemma 2.6, this can be done
by an O(logn)-depth and O(n logn)-size quantum circuit.

• To implement Ob
H , one needs to first generate n uniform random hw ∈ [−1, 1] to b-bit

precision in the pre-processing. This can be done by an O(1)-depth and O(nb)-size
quantum circuit using Hadamard gates followed by single-qubit measurements. The
pre-processing only needs to be done once. Later when a hw is required each time
we can apply a COPYb gate to prepare a new copy of it.

To perform the mapping |j, k, 0⟩ 7→ |j, k,Hjk⟩, one can calculate an entry Hjk by
summing up those (Hw)jk with (j, k) ∈ Hw. Recall that [[(j, k) ∈ Hw]] is arithmetic-
depth-efficiently computable for uniform-structured H, and (Hw)jk is easy to deter-
mine given a copy of hw, therefore the above procedure can be implemented by an
O
(
log2 n+ log b

)
-depth and O

(
n5 + nb

)
-size quantum circuit (in a way analogous to

computing c(j, k) in the proof of Lemma A.3).

Thus, we obtain the following:
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Corollary 7.1 (Parallel simulation of the Heisenberg model). The Heisenberg Hamilto-
nian in (23) can be simulated for time t = n to precision ϵ by an O

(
n3 log3 n · log3 log(1/ϵ)

)
-

depth and O
(
n8 log5(n/ϵ)

)
-size quantum circuit.

In [77] the performance of different quantum simulation algorithms on this task are
compared, amongst which the asymptotically best one is based on quantum signal pro-
cessing [7,35], which achieves a gate complexity O

(
n3 logn+ log(1/ϵ)

log log(1/ϵ) · n logn
)
. Later a

quantum algorithm to simulate lattice Hamiltonians [37] shows a better dependence on n in
the gate complexity, with depth O(n polylog(n/ϵ)) and size O

(
n2 polylog(n/ϵ)

)
. We note

that in the gate depth all these works have a polylog(1/ϵ) dependence, while Corollary 7.1
only contains a polylog log(1/ϵ) factor.

7.2 Simulation of the Sachdev-Ye-Kitaev Model
The Sachdev-Ye-Kitaev (SYK) model [78, 79], a simple but important exactly solvable
many-body system, has drawn an increasing interest in the condense matter physics and
high energy physics communities due to its many striking properties [78–80, 122, 123] and
its potential to have an interesting holographic dual [79, 80]. Like the MBL problem in
Section 7.1, numeric studies of a larger SYK model enabled by quantum simulation could
extend our understandings about its features and dual interpretation.

Following [81,85], we consider the problem of simulating the SYK model evolving under
a Hamiltonian

H = 1
4 · 4!

2n−1∑
p,q,r,s=0

Jpqrsγpγqγrγs, (24)

where each Jpqrs ∼ N
(
0, σ2) is chosen randomly from a normal distribution with variance

σ2 = 3!J2

(2n)3 (J is assumed to be a constant), and γp are Majorana fermion operators such
that {γp, γq} = 2[[p = q]]1. The Majorana operator can be expressed as a tensor product
of Pauli matrices by the Jordan-Wigner transformation

γp 7→
{
Z0 . . . Zp/2−1Xp/2, p is even,
Z0 . . . Z(p−3)/2Y(p−1)/2, p is odd

(25)

for p ∈ [2n] (unlike in [81], our index starts from 0), where as usual the subscript of a Pauli
matrix indicates the qubit it acts on. Now H can be expressed as a Pauli sum on n qubits:

H = α
∑

w∈[2n]4
JwHw (26)

where α is a constant, Jw is chosen randomly from a normal distribution, and each Hw is
a tensor product of Pauli matrices.

It can be seen by Lemma 3.27 that the SYK Hamiltonian in (26) is m-uniform-
structured with m = (2n)4, thus we can apply Theorem 5.5 to simulate it. Note that

∥H∥max ≤
∑

w∈[2n]4
α∥JwHw∥max ≤

∑
w∈[2n]4

αE[|Jw|] = α(2n)4 ·
√

2σ√
π

= O
(
n2.5

)

where we use Jw ∼ N
(
0, σ2) with σ2 = O

(
1/n3). Thus, to simulate H for time t, it is

equivalent to simulate its normalized Hamiltonian with max norm ≤ 1 for a rescaled time
t̃ := ∥H∥maxt = O

(
n2.5t

)
. We can determine the parameters in Theorem 5.5: τ = O

(
n6.5t

)
,

γ = O(log(nt/ϵ)) and b = O(log(nt/ϵ)).
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For the total complexity of the algorithm, we starts from defining a function P : [2n]4 →
{1, i,−1,−i}×{1, X, Y, Z}n ≃ [4]n+1 that maps w ∈ [m] to the Pauli string (with a global
phase) of Hw. For example, if Hw = −iX⊗Z⊗Z then P(w) = (−i,X, Z, Z). One can also
write the Jordan-Wigner transformation in (25) as a function J : [2n] → {1, X, Y, Z}n ≃
[4]n, which can be computed by an O(logn)-depth and O(n logn)-size quantum circuit.
To see this, that is, to perform the mapping |p⟩ |0⟩ 7→ |p⟩ |J (p)⟩, we can first prepare the
state |0, . . . , n− 1⟩ in the second register, then make n copies of |p⟩, and finally compute
the qth bit of J (p):

J (p)q :=
{

3[[q < p/2]] + [[q = p/2]], p is even,
3[[q < (p− 1)/2]] + 2[[q = (p− 1)/2]], p is odd

∈ [4]

for all q ∈ [n] in parallel followed by garbage cleaning. By Lemma 2.6, this can be done
by an O(logn)-depth and O(n logn)-size quantum circuit. Since for all (p, q, r, s) ∈ [2n]4,
the function P(p, q, r, s) can be computed from J (p),J (q),J (r),J (s) by calculating Pauli
algebra on each entry of these n-tuples and gathering up the global phases, P(w) can be
computed by an O(logn)-depth and O(n logn)-size quantum circuit.

Now we will determine the gate complexities for implementing the oracle Ob
H and OP :

• To implement OP , note that s(w) in Lemma 3.27 is easily computable from P(w)
by function restriction, thus OP can be implemented by an O(logn)-depth and
O(n logn)-size quantum circuit.

• To implement Ob
H , one needs to first generate m independent Jw ∈ N

(
0, σ2) to

b-bit precision in the pre-processing. This can be done by the Box-Muller trans-
form [124], which derives two independent standard normally distributed variables
from two independent uniformly distributed variables in [0, 1] by elementary arith-
metic. Thus it suffices to generate m uniformly random variables in [0, 1] to b-bit
precision by an O(1)-depth and O

(
n4b

)
-size quantum circuit using Hadamard gates

followed by single-qubit measurements, and then use Lemma 2.6 to perform the Box-
Muller transform with a scaling σ by an O

(
log2 b

)
-depth and O

(
n4b4)-size quantum

circuit. The pre-processing only needs to be done once. Later when a Jw is required
each time we can apply a COPYb gate to make a new copy of it.

We perform the mapping |j, k, 0⟩ 7→ |j, k,Hjk⟩ in a way similar to the one in Sec-
tion 7.1; that is, sum up those (Hw)jk with (j, k) ∈ Hw. Recall that each [[(j, k) ∈ Hw]]
is arithmetic-depth-efficiently computable for uniform-structured H, and (Hw)jk is
easy to compute from the function P(w) and a copy of Jw. Therefore, the above
procedure can be implemented by an O

(
log2 n+ log b

)
-depth and O

(
n8 + n4b

)
-size

quantum circuit (in a way analogous to the proof of Lemma A.3).

Applying Theorem 5.5, we obtain the following:

Corollary 7.2 (Parallel simulation of the SYK model). The SYK model defined in (24)
can be simulated for time t to precision ϵ by an O

(
n6.5 log3 n · t log3 log(t/ϵ)

)
-depth and

O
(
n14.5t log5(nt/ϵ)

)
-size quantum circuit.

The prior best algorithm based on asymmetric qubitization [85] for this task has gate
complexity O

(
n3.5t+ n2.5t polylog(n/ϵ)

)
, which improves the product-formula-based al-

gorithm [81] with gate complexity O
(
n10t2/ϵ

)
. Later work [125] proposes a sparse SYK

model also of physical interest and gives a simulation algorithm based on qubitization
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with a polylog(1/ϵ) dependence in the gate complexity. Compared to these works, by
introducing parallelism Corollary 7.2 only has a polylog log(1/ϵ) dependence in the gate
depth.

7.3 Simulation of Quantum Chemistry in Second Quantization
One of the most attractive prospects of quantum simulation is in quantum chemistry to
study the static and dynamic properties of chemicals [82, 83, 126]. Prior works on quan-
tum simulation algorithm for chemistry mainly focus on exploiting the special structure
of molecular Hamiltonians (e.g. based on first or second quantization, using Gaussian or-
bital bases or plane wave bases, etc.) to obtain better complexities (see [83] for a review).
Compared to these fault-tolerant quantum algorithms, diverse variational quantum algo-
rithms to circumvent a direct simulation (e.g. variational quantum eigensolver [127]) also
have been explored in recent years due to their potential for immediate applications in the
NISQ era [128].

Following [84] we consider the problem of simulating a molecular electronic structure
Hamiltonian in the second-quantized form. In this form, we will simulate a Hamiltonian

H =
∑

p,q∈[n]
hpqa

†
paq + 1

2
∑

p,q,r,s∈[n]
hpqrsa

†
pa

†
qaras (27)

where n represents the number of spin orbitals, hpq, hpqrs are one-electron and two-electron
integrals, and a†

p, ap are fermionic creation and annihilation operators satisfying the rela-
tions {

a†
p, aq

}
= [[p = q]]1,

{
a†

p, a
†
q

}
= {ap, aq} = 0.

As in the “database” algorithm [84], we assume that these b-bit precise hpq and hpqrs are pre-
computed and stored in a database; for example, an O

(
(nb)4)-size quantum-read/classical-

write RAM (QCRAM), to which one quantum access can be done by an O(log(nb))-depth
and O

(
(nb)4)-size quantum circuit.

One can apply Jordan-Wigner transformation to the creation and annihilation opera-
tors a†

p, ap to obtain Hamiltonians acting on qubits:

a†
p 7→ 1

2Z0 . . . Zp−2(Xp−1 − iYp−1) (28)

ap 7→ 1
2Z0 . . . Zp−2(Xp−1 + iYp−1) (29)

for p ∈ [n], where as usual the subscript of a Pauli matrix indicates the qubit it acts
on. Note that each resulting qubit Hamiltonian in (28) and (29) is a sum of two tensor
products of Pauli matrices, hence by splitting them and applying the transformation to
(27) we obtain H as a Pauli sum on n qubits:

H =
∑

w∈[m]
hwHw, (30)

where m = O
(
n4), each hw is some hpq or hpqrs in (27) (up to a constant factor), and

each Hw is a tensor product of Pauli matrices. Here we omit the explicit mapping from
the indices p, q, r, s in (27) to the index w in (30), but mention that the mapping can be
efficiently performed by an O(1)-depth quantum circuit.

Similar to the SYK model, we see by Lemma 3.27 that the molecular Hamiltonian H in
(30) is m-uniform-structured with m = O

(
n4). According to [84], we have

∑
w∈[m]|hw| =
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O
(
n4). Thus the max norm of H is bounded by

∥H∥max ≤
∑

w∈[m]
∥hwHw∥max ≤

∑
w∈[m]

|hw| = O
(
n4
)
.

To simulate H for time t it is equivalent to simulate its normalized Hamiltonian for a
rescaled time t̃ := ∥H∥maxt = O

(
n4t
)
. The parameters in Theorem 5.5 can be determined

as follows: τ = O
(
n8t
)
, γ = O(log(nt/ϵ)) and b = O(log(nt/ϵ)) .

Now let us compute the gate complexities for implementing the oracle Ob
H and OP :

• The construction of OP is similar to the one in Section 7.2. Here we will omit the
details and claim that it can be implemented by an O(logn)-depth and O(n logn)-
size quantum circuit.

• To implement Ob
H , that is, to perform the mapping |j, k, 0⟩ 7→ |j, k,Hjk⟩, we sum up

those (Hw)jk with (j, k) ∈ Hw to obtain Hjk. Recall that [[(j, k) ∈ Hw]] is arithmetic-
depth-efficiently computable for uniform-structured H. Also (Hw)jk is easy to com-
pute given: a copy of hw which can be read out from the database by an O(log(nb))-
depth and O

(
(nb)4)-size quantum circuit; together with a string characterizing the

Pauli string of Hw (like the function P(w) for the SYK model) computable by an
O(logn)-depth and O(n logn)-size quantum circuit. Therefore the above procedure
can be implemented by an O

(
log2 n+ log b

)
-depth and O

(
n8b4)-size quantum circuit

(in a way analogous to the proof of Lemma A.3).

As an application of Theorem 5.5, we have the following:

Corollary 7.3 (Parallel simulation of molecular Hamiltonians). The molecular Hamilto-
nian in (27) can be simulated for time t to precision ϵ by an O

(
n8 log3 n · t log3 log(t/ϵ)

)
-

depth and O
(
n16t log5(nt/ϵ)

)
-size quantum circuit.

Prior work [84] gives a quantum simulation algorithm for molecular Hamiltonians with
gate complexity O

(
n8t log(nt/ϵ)
log log(nt/ϵ)

)
. Later algorithmic improvements (e.g. [86–90]) focus on

parameters other than the precision ϵ, and all these works have a poly-logarithmic de-
pendence on ϵ as the Hamiltonian simulation subroutines used there have such depen-
dence. By allowing parallelism, Corollary 7.3 exponentially improves the dependence to
polylog log(1/ϵ) with respect to the depth.
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A Details Omitted in Section 3.3
In this appendix we provide details of Section 3.3.

Proof of Lemma 3.25. Similar to the proof of Lemma 3.8, we can write |Ψ(r,m)
j0

⟩ = |Φ(r,m)
j0

⟩+
|Φ(r,m)⊥

j0
⟩, where the subnormalized state

|Φ(r,m)
j0

⟩ := 1√
(md)r

∑
w∈[m]r

∑
j∈Hw

|w⟩ |j⟩ ⊗
√
H̃∗

j0j1
. . . H̃∗

jr−1jr
|j⟩

These subnormalized states also satisfy some orthogonal relations analogous to Lemma 3.7:
for all j, k ∈ [N ],

1. ⟨Φ(r,m)
j |S(r,m) |Φ(r,m)

k ⟩ =
((

H
md

)r)
jk

.

2. ⟨Φ(r,m)
j |S(r,m) |Φ(r,m)⊥

k ⟩ = ⟨Φ(r,m)⊥
j |S(r,m) |Φ(r,m)⊥

k ⟩ = 0.

We omit the proof details here, but mention that this can done by the same techniques as
in the proof of Lemma 3.7, combined with the fact that ∑w∈[m] H̃jsjs+1 = Hjsjs+1 . Using
the orthogonal relations the conclusion is easy to obtain as in the proof of Lemma 3.8.

Proof of Lemma 3.27. The proof is similar to the proof of Lemma 3.14. We verify the
conditions in Definition 3.26. Observe that L(w, j, t) = j ⊕ x(w) where ⊕ is the bit-wise
XOR operator.

• We have
L(r)(w, j, t) = j ⊕ s(w0) ⊕ . . .⊕ s(wr−1);

that is, take f(j, k) = j ⊕ k, g(w, t) = s(w) and ◦ to be ⊕ in (19).

– f is arithmetic-depth-efficiently computable, while computing g(w, t) requires
O(1) queries to OP .

– The XOR ⊕ is obviously associative and arithmetic-depth-efficiently computable.

• Take the inverse function to be L(−1)(w, j, k) = s(w), which can be computed by a
single query to OP .

• Observe that (j, k) ∈ Hw if and only if j⊕k = x(w); that is, [[(j, k) ∈ Hw]] = [[j⊕k =
x(w)]], which is obviously arithmetic-depth-efficiently computable with O(1) queries
to OP .

Proof of Lemma 3.28. In this proof we use superscript i to denote the ith bit of a number.
We verify the conditions in Definition 3.26. Observe that L(w, j, t) = j ◁s(w)

(
t ↾s(w)

)
,

with ◁s and ↾s defined in the proof of Lemma 3.15.

• We have

L(r)(w, j, t) = j ◁
(
t0 ↾s(w0), s(w0)

)
◁∨ . . . ◁∨

(
tr−1 ↾s(wr−1), s(wr−1)

)
;

that is, take f(j, (k, x)) = j ◁ (k, x), g(w, t) =
(
t ↾s(w), s(w)

)
, and ◦ to be ◁∨, where

◁ and ◁∨ are defined in the proof of Lemma 3.15.
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– As shown in the proof of Lemma 3.15, f is arithmetic-depth-efficiently com-
putable.
The mapping |w⟩ |0⟩ 7→ |w⟩ 1√

d

∑
t∈[d] |g(w, t)⟩ can be performed by first query-

ing OP to obtain |s(w)⟩ in an ancilla, then conditioned on it implementing n
controlled Hadamard gates in parallel, assuming d is a power of two w.l.o.g.
This is arithmetic-depth-efficient with O(1) queries.

– ◁∨ is associative and arithmetic-depth-efficiently computable, as shown in the
proof of Lemma 3.15.

• Take the inverse function to be L(−1)(w, j, k) = (k ∧ s(w), s(w)) with ∧ the bit-wise
AND operator. This is arithmetic-depth-efficiently computable with O(1) queries to
OP .

• Observe that (j, k) ∈ Hw if and only if ji = ki for all i with s(w)i = 0; that is,

[[(j, k) ∈ Hw]] =
∧

i∈[n]

(
jiki + (1 − ji)(1 − ki)

)
·
(
1 − s(w)i

)
which is arithmetic-depth-efficiently computable by an O(logn)-depth and O(n)-size
quantum circuit by taking ◦ to be AND gate in Lemma 2.3, with additional O(1)
queries to OP to compute s(w).

A.1 Proof of Theorem 3.30
Recall that the Hamiltonians considered in Section 3.3 has the form H = ∑

w∈[m]Hw. To
prove Theorem 3.30, following the same line of analysis as in Section 3.2, we will show
that:

1. for m-uniform-structured Hamiltonians, the pre-walk, i.e., preparing the pre-walk
state |p(r,m)

j0
⟩ in (18), can be implemented by a parallel quantum circuit;

2. the re-weight can be efficiently implemented in parallel;

3. the (extended) parallel quantum walk for uniform-structured Hamiltonians can be
efficiently implemented in parallel.

Firstly we have the following lemma as a generalization of Corollary 3.19.

Lemma A.1. For an m-uniform-structured Hamiltonian H, the mapping

|w, j0, g(w, t)⟩ 7→ |w⟩ |j⟩

for all j0 ∈ [N ],w ∈ [m]r, t ∈ [d]r, where g(w, t) := (g(w0, t0), . . . , g(wr−1, tr−1)) and
j ∈ Hr satisfies js+1 = L(ws, js, ts) for s ∈ [r], can be implemented by a quantum circuit
of

• depth O(1) and size O(r) w.r.t. queries to OP , and

• depth O
(
log r · log2 n

)
and size O

(
r2n4) w.r.t. gates.

Proof. The lemma can be proved along the same line as Lemma 3.17, Corollary 3.18 and
Corollary 3.19. Recall that m = polyn. We omit the proof details here, but mention that
only the first two conditions of Definition 3.26 are needed.
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Then the following lemma shows that an (r,m)-pre-walk can be implemented by a
parallel quantum circuit, as a generalization of Lemma 3.20.

Lemma A.2 (Pre-walk onm-uniform-structured Hamiltonians). An (r,m)-pre-walk on an
m-uniform-structured Hamiltonian H, i.e., preparing the state |p(r,m)

j0
⟩, can be implemented

by a quantum circuit of

• depth O(1) and size O(r) w.r.t. queries to OP , and

• depth O
(
log r · log2 n

)
and size O

(
r2n4) w.r.t. gates.

Proof. Let HW ⊗ HJ =
(⊗

s∈[r] HW
s

)
⊗
(⊗

s∈[r+1] HJ
s

)
be the state space with HW

s = Cm

and HJ
s = CN . The process of preparing |p(r,m)

j0
⟩ is presented below, starting from the

initial state |0⟩⊗mr |j0⟩ |0⟩⊗Nr with |j0⟩ ∈ CN , |0⟩ ∈ C.

1. Prepare a superposition over computational basis states of size mr in the subspace
HW :

1√
mr

∑
w∈[m]r

|w⟩ |j0⟩ |0⟩⊗Nr .

2. For each s ∈ [r], perform in parallel the mapping |ws⟩ |0⟩ 7→ |ws⟩ 1√
d

∑
ts∈[d] |g(ws, ts)⟩

in the subspace HW
s ⊗ HJ

s+1, to obtain the state

1√
(md)r

∑
w∈[m]r

∑
t∈[d]r

|w⟩ |j0⟩ |g(w, t)⟩

3. Apply Lemma A.1 to obtain the goal state |p(r,m)
j0

⟩ = 1√
(md)r

∑
w∈[m]r

∑
j∈Hw |w⟩ |j⟩.

Step 1 can be done by an O(1)-depth and O(r logm)-size quantum circuit using Hadamard
gates in parallel, assuming m is a power of two w.l.o.g. Each mapping

|w⟩ |0⟩ 7→ |w⟩ 1√
dr

∑
t∈[d]

|g(w, t)⟩

in Step 2 is arithmetic-depth-efficient with O(1)-queries to OP due to Definition 3.26.
Recall that m = polyn, the final complexity follows from summing up these complexities
combined with Lemma A.1.

Now we move to the re-weight analysis.

Lemma A.3. Re-weight of |p(r,m)
j0

⟩, i.e., performing the mapping |p(r,m)
j0

⟩ 7→ |Ψ(r,m)
j0

⟩,
where |Ψ(r,m)

j0
⟩ is defined in (17), can be implemented to precision ϵ by a quantum circuit

of

• depth O(1) and size O(r) w.r.t. queries to Ob
H with b = O(log(m/ϵ)),

• depth O(1) and size O(rm) w.r.t. queries to OP , and

• depth O
(
log2 n+ log2 log(m/ϵ)

)
and size O

(
r
[
mn4 + log4(m/ϵ)

])
w.r.t. gates,

for r = polylog(1/ϵ).
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Proof. The analysis is exactly the same as in Lemma 3.21, with additional complexities
of:

1. Computing c(j, k) = ∑
w∈[m][[(j, k) ∈ Hw]] in r subspaces, each of which can be

implemented by a quantum circuit of

• depth O(1) and size O(m) w.r.t. queries to OP , and

• depth O
(
log2 n

)
and size O

(
mn4) w.r.t. gates.

To see this, note that for each subspace, one can first creates m copies of (j, k) by
COPY2n

m , then compute each [[(j, k) ∈ Hw]] arithmetic-depth-efficiently with O(1)
queries to OP for w ∈ [m] in parallel, due to the third condition in Definition 3.26.
Finally apply Corollary 2.4 to compute c(j, k) in each subspace, followed by garbage
cleaning by reverse computation. The final complexity follows from the assumption
m = polyn.

2. Scaled total precision ϵ̃ = ϵ/m for the aforementioned construction of the oracle OH̃ .

3. Arithmetic-depth-efficient circuits for the division H̃jk = Hjk/c(j, k) by Lemma 2.6.

Finally, combining Lemma A.2, Lemma A.3 and the negligible complexity of imple-
menting S(r,m) gives the complexity of the (r,m)-parallel quantum walk Q(r,m) for m-
uniform-structured Hamiltonians in Theorem 3.30.

B Definition of State Preparation
In this appendix we show that the state preparation unitary in Definition 4.2 is a special
case of Definition 51 in [36]:

Definition B.1 (State preparation pair [36]). Let a ∈ CR and ∥a∥1 ≤ α, the pair of
unitaries (VC , VD) is called an (α, b, ϵ)-state-preparation-pair of a if VC |0⟩ = ∑

r∈[2b] cr |r⟩
and VD |0⟩ = ∑

r∈[2b] dr |r⟩ with |0⟩ ∈ C2b , such that ∑r∈[R]|α(c∗
rdr) − ar| ≤ ϵ and for all

r ∈ R, . . . , 2b − 1 we have c∗
rdr = 0.

This is shown more precisely in the following lemma.

Lemma B.2. Let a ∈ CR and α := ∥a∥1, where we assume R = 2s ≥ 4 w.l.o.g. Let V be
an (α, ϵ)-state-preparation-unitary of a, then (V †, V ) is an (α, s, αRϵ)-state-preparation-
pair of a.

Proof. Let V |0⟩ = ∑
r∈[R]

√
vr |r⟩. By Definition 4.2, we have√√√√∑

r∈[R]

∣∣∣∣√vr −
√
ar

α

∣∣∣∣2 ≤ ϵ. (31)

Note that∑
r∈[R]

∣∣∣∣vr − ar

α

∣∣∣∣ ≤
∑

r∈[R]

∣∣∣∣√vr −
√
ar

α

∣∣∣∣ · ∣∣∣∣√vr +
√
ar

α

∣∣∣∣ ≤ 2
∑

r∈[R]

∣∣∣∣√vr −
√
ar

α

∣∣∣∣. (32)
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By the well-known inequality between l1-norm and l2-norm: ∥x∥1 ≤
√
R·∥x∥2 for x ∈ CR,

the RHS of (32) is upper bounded by

2
√
R ·

√√√√∑
r∈[R]

∣∣∣∣√vr −
√
ar

α

∣∣∣∣2 ≤ 2
√
Rϵ ≤ Rϵ,

where the first inequality comes from (31), and the second inequality uses the assumption
R ≥ 4. Thus we have ∑r∈[R]

∣∣vr − ar
α

∣∣ ≤ Rϵ. Now take b = s, VC = V † and VD = V
in Definition B.1, it immediately follows that ∑r∈[R]|α(c∗

rdr) − ar| = α
∑

r∈[R]
∣∣vr − ar

α

∣∣ ≤
αRϵ, which implies that

(
V †, V

)
is an (α, s, αRϵ)-state-preparation-pair of a.

We note that in the above lemma, the upper bound αRϵ on the precision of the state
preparation pair is very loose, which is for simplicity of the proofs in Section 4 with the
final results unchanged.
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