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Ground states of local Hamiltonians are
of key interest in many-body physics and
also in quantum information processing.
Efficient verification of these states are
crucial to many applications, but very
challenging. Here we propose a simple, but
powerful recipe for verifying the ground
states of general frustration-free Hamilto-
nians based on local measurements. More-
over, we derive rigorous bounds on the
sample complexity by virtue of the quan-
tum detectability lemma (with improve-
ment) and quantum union bound. No-
tably, the number of samples required does
not increase with the system size when
the underlying Hamiltonian is local and
gapped, which is the case of most interest.
As an application, we propose a general
approach for verifying Affleck-Kennedy-
Lieb-Tasaki (AKLT) states on arbitrary
graphs based on local spin measurements,
which requires only a constant number of
samples for AKLT states defined on var-
ious lattices. Our work is of interest not
only to many tasks in quantum informa-
tion processing, but also to the study of
many-body physics.

1 Introduction
Multipartite entangled states play key roles in
various quantum information processing tasks,
including quantum computation, quantum sim-
ulation, quantum metrology, and quantum net-
working. An important class of multipartite
states are the ground states of local Hamiltonians,
such as Affleck-Kennedy-Lieb-Tasaki (AKLT)
states [1, 2] and many tensor-network states [3, 4].
Huangjun Zhu: zhuhuangjun@fudan.edu.cn

They are of central interest in traditional con-
densed matter physics and also in the recent
study of symmetry-protected topological orders
[5–8]. In addition, such states are particularly
appealing to quantum information processing be-
cause they can be prepared by cooling down [9]
and adiabatic evolution [10–14] in addition to
quantum circuits. Recently, they have found
increasing applications in quantum computation
and simulation [15–21]. Notably, AKLT states
on various 2D lattices, including the honeycomb
lattice, can realize universal measurement-based
quantum computation [8, 22–26].

To achieve success in quantum information pro-
cessing, it is crucial to guarantee that the under-
lying multipartite quantum states satisfy desired
requirements, irrespective of whether they are
prepared by quantum circuits or as ground states
of local Hamiltonians. Unfortunately, traditional
tomographic methods are notoriously resource
consuming. To resolve this problem, many re-
searchers have tried to find more efficient alterna-
tives [20, 27–31]. Recently, a powerful approach
known as quantum state verification (QSV) has
attracted increasing attention [32–43]. Efficient
verification protocols based on local measure-
ments have been constructed for many states of
practical interest, including bipartite pure states
[32, 37, 44–48], stabilizer states [37, 40, 49–55],
hypergraph states [52], weighted graph states
[56], and Dicke states [57, 58]. The efficiency of
this approach has been demonstrated in quite a
few experiments [59–62]. Although several works
have considered the verification of ground states
of local Hamiltonians [14, 21, 33, 35, 36, 38, 63],
the sample costs of known protocols are still too
prohibitive for large and intermediate quantum
systems of practical interest, which consist of
more than 100 qubits or qudits, even if the Hamil-
tonians are frustration free.
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In this work, we propose a general recipe
for verifying the ground states of frustration-
free Hamiltonians based on local measurements,
which does not require explicit expressions for the
ground states. Each protocol is constructed from
a matching cover or edge coloring of a hypergraph
encoding the action of the Hamiltonian and is
thus very intuitive. Moreover, we derive a rigor-
ous performance guarantee by virtue of the spec-
tral gap of the underlying Hamiltonian and sim-
ple graph theoretic quantities, such as the degree
and chromatic index (also known as edge chro-
matic number). For a local Hamiltonian defined
on a lattice, to verify the ground state within in-
fidelity ϵ and significance level δ, the sample cost
is only O((ln δ−1)/(γϵ)), where γ is the spectral
gap of the underlying Hamiltonian. Compared
with previous protocols, the scaling behaviors are
much better with respect to the system size, spec-
tral gap γ, and the precision as quantified by the
infidelity ϵ. Notably, we can verify the ground
state with a constant sample cost that is inde-
pendent of the system size when the spectral gap
γ is bounded from below by a positive constant.

For example, we can verify AKLT states de-
fined on arbitrary graphs, and the resource over-
head is upper bounded by a constant that is inde-
pendent of the system size for most AKLT states
of practical interest, including those defined on
various 1D and 2D lattices. When ϵ = δ = 0.01
and the number of nodes is around 100, our pro-
tocols are tens of thousands of times more effi-
cient than previous protocols, and the efficiency
advantage becomes more and more significant as
the target precision and system size increase. Ad-
ditional details can be found in the companion
paper [64] (see Appendix D). Our recipe is ex-
pected to find diverse applications in quantum
information processing and many-body physics.

Technically, a frustration-free Hamiltonian is
relatively easy to deal with because such a Hamil-
tonian offers the possibility of parallel verification
of multiple local terms simultaneously. High de-
gree of parallel processing is crucial to achieving
a high efficiency. Nevertheless, it is still nontriv-
ial to combine the local information as efficiently
as possible so as to draw an accurate conclusion
about the ground state of the whole Hamiltonian,
although the basic idea is quite intuitive. Our
main contribution in this work is to construct
nearly optimal verification protocols and to derive

nearly tight bounds on the sample complexity by
fully exploiting the frustration-free property.

To establish our main results on the sample
complexity, we first derive a stronger quantum
detectability lemma, which improves over previ-
ous results [65, 66]. This stronger detectability
lemma can be used to derive tighter upper bounds
on the operator norm of certain product of pro-
jectors tied to the projectors that compose the
Hamiltonian; it is also of general interest that is
beyond the focus of this paper. In addition, by
virtue of a generalization of the quantum union
bound [67, 68], we derive a simple, but nearly
tight lower bound on the spectral gap of the aver-
age of certain test projectors based on the opera-
tor norm of a product. Combining these technical
tools we derive our main result Theorem 1, which
clarifies the spectral gap and sample complexity
of our verification protocol. Other main results
(including Theorems 2 and 3), once formulated,
can be proved by virtue of standard arguments
widely used in quantum information theory. Fa-
miliarity with the concepts of spherical t-designs
[69–71] and spin coherent states [72] would be
helpful to understanding the proof of Theorem 3.

The rest of this paper is organized as fol-
lows. In Sec. 2 we first review the basic frame-
work of quantum state verification and discuss
its generalization to subspace verification. Then
we introduce basic concepts on hypergraphs and
frustration-free Hamiltonians that are relevant to
the current study. In Sec. 3 we prove a stronger
detectability lemma and discuss its implications.
In Sec. 4 we propose a general approach for veri-
fying the ground states of frustration-free Hamil-
tonians and determine the sample complexity. In
Sec. 5 we illustrate the power of this simple idea
by constructing efficient protocols for verifying
general AKLT states. Section 6 summarizes this
paper.

2 Preliminaries
2.1 Quantum state verification
Consider a device that is supposed to produce
the target state |Ψ⟩ within the Hilbert space H,
but actually produces the states σ1, σ2, . . . , σN

in N runs. Our task is to verify whether these
states are sufficiently close to the target state on
average, where the closeness is usually quanti-
fied by the fidelity. To this end, in each run we
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can perform a random test from a set of accessi-
ble tests. Each test is essentially a two-outcome
measurement {Tl, 1 − Tl} and is determined by
the test operator Tl, which satisfies the condition
Tl|Ψ⟩ = |Ψ⟩, so that the target state |Ψ⟩ can al-
ways pass the test [37, 39, 40].

Suppose the test Tl is chosen with probability
pl; then the performance of the verification pro-
cedure is determined by the verification operator
Ω =

∑
l=1 plTl. If σ is a quantum state that sat-

isfies ⟨Ψ|σ|Ψ⟩ ≤ 1 − ϵ, then the probability that
σ can pass each test on average satisfies

max
⟨Ψ|σ|Ψ⟩≤1−ϵ

tr(Ωσ) = 1 − [1 − β(Ω)]ϵ = 1 − ν(Ω)ϵ,

(1)
where β(Ω) is the second largest eigenvalue of Ω,
and ν(Ω) = 1 − β(Ω) is the spectral gap from
the maximum eigenvalue. To verify the target
state within infidelity ϵ and significance level δ
(assuming 0 < ϵ, δ < 1), the minimum number of
tests required reads [37, 39, 40]

N =
⌈ ln δ

ln[1 − ν(Ω)ϵ]

⌉
≤
⌈ ln(δ−1)
ν(Ω)ϵ

⌉
≈ ln(δ−1)

ν(Ω)ϵ ,

(2)
which is inversely proportional to the spectral
gap ν(Ω). To optimize the performance, we need
to maximize the spectral gap over the accessible
measurements. The verification operator Ω is ho-
mogeneous if it has the following form [39, 40]

Ω = |Ψ⟩⟨Ψ| + λ(1 − |Ψ⟩⟨Ψ|), (3)

where 0 ≤ λ < 1 is a real number. Such a verifica-
tion strategy is also useful for fidelity estimation
and is thus particularly appealing.

2.2 Subspace verification
Next, we generalize the idea of QSV to sub-
space verification, which is crucial to verifying
ground states of local Hamiltonians. Previously,
the idea of subspace verification was employed
only in some special setting [50]. Consider a de-
vice that is supposed to produce a quantum state
supported in a subspace V within the Hilbert
space H, but may actually produce something
different. To this end, in each run we can per-
form a random test from a set of accessible tests.
Each test is determined by a test operator Tl as
in QSV. Let Q be the projector onto the sub-
space V. Then the condition Tl|Ψ⟩ = |Ψ⟩ in QSV
should now be replaced by TlQ = Q, so that every

state supported in V can always pass each test.
Suppose the test Tl is performed with probabil-
ity pl; then the performance of the verification
procedure is determined by the verification op-
erator Ω =

∑
l=1 plTl, which is analogous to the

counterpart in QSV. The verification operator Ω
is homogeneous if it has the following form [cf.
Eq. (3)]

Ω = Q+ λ(1 −Q), (4)

where 0 ≤ λ < 1 is a real number.
Suppose the quantum state σ produced has fi-

delity at most 1 − ϵ, which means tr(Qσ) ≤ 1 − ϵ;
then the maximal probability that σ can pass
each test on average reads

max
tr(Qσ)≤1−ϵ

tr(Ωσ) = 1 − [1 − β(Ω)]ϵ = 1 − ν(Ω)ϵ,

(5)
where

β(Ω) = ∥Ω̄∥, Ω̄ = Ω −Q = (1 −Q)Ω(1 −Q),
(6)

and ν(Ω) = 1 − β(Ω) is also called the spec-
tral gap. The number of tests required to
verify the subspace V within infidelity ϵ and
significance level δ is still given by Eq. (2), al-
though the meaning of ν(Ω) is a bit different now.

2.3 Hypergraphs
A hypergraph G = (V,E) is specified by a set
of vertices V and a set of edges (hyperedges) E,
where each edge is a nonempty subset of V [52,
73]. An edge is a loop if it contains only one
vertex. Two distinct vertices of G are neighbors
or adjacent if they belong to a same edge. The
degree of a vertex j ∈ V is the number of its
neighbors and is denoted by deg(j); the degree of
G is the maximum vertex degree and is denoted
by ∆(G). The hypergraph G is connected if for
each pair of distinct vertices i, j, there exist a
positive integer h and vertices i1, i2, . . . , ih with
i1 = i and ih = j such that ik, ik+1 are adjacent
for k = 1, 2, . . . , h− 1.

Two distinct edges of G are neighbors or adja-
cent if their intersection is nonempty. A subset
M of E is a matching of G if no two edges in M
are adjacent. A set M of matchings is a matching
cover if it covers E, which means ∪M∈MM = E.
It should be noted that, in some literature, a
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matching cover means a set of matchings that
covers the vertex set, which is different from our
definition. An edge coloring of G is an assign-
ment of colors to its edges such that adjacent
edges have different colors. The edge coloring
is trivial if no two edges are assigned with the
same color. Note that every edge coloring of G
determines a matching cover. Conversely, every
matching cover composed of disjoint matchings
determines an edge coloring. The chromatic in-
dex (also known as edge chromatic number) of
G is the minimum number of colors required to
color the edges of G and is denoted by χ′(G); it is
also the minimum number of matchings required
to cover the edge set E.

A (simple) graph is a special hypergraph in
which each edge contains two vertices. Accord-
ing to Vizing’s theorem [73, 74], the chromatic
index of a graph G(V,E) satisfies

∆(G) ≤ χ′(G) ≤ ∆(G) + 1. (7)

In general, it is computationally very demanding
to find an optimal edge coloring, but it is easy
to construct a nearly optimal edge coloring with
∆(G) + 1 ≤ χ′(G) + 1 colors [75].

2.4 Frustration-free Hamiltonians

Since we are mainly interested in the ground
states, without loss of generality, we can assume
that the Hamiltonian H is a sum of projectors,
which share a common null vector. These projec-
tors can be labeled by the edges (hyperedges) of
a hypergraph G = (V,E) [52, 73], and H can be
expressed as

H =
∑
e∈E

Pe, (8)

where the projector Pe acts (nontrivially) only
on the nodes associated with the vertices con-
tained in e. Given that H is frustration free
by assumption, a state |Φ⟩ is a ground state iff
Pe|Φ⟩ = 0 for all e ∈ E, so the ground state
energy is 0. The spectral gap of H is the smallest
nonzero eigenvalue and is denoted by γ = γ(H)
(note the distinction from the spectral gap of
a verification operator). The Hamiltonian H is
k-local if each projector Pe acts on at most k
nodes, in which case each edge of G contains at
most k vertices. Let g = g(H) be the smallest

integer j such that each projector Pe commutes
with all other projectors Pe′ except for j of them.

3 A stronger detectability lemma

The detectability lemma proved in Ref. [65] and
improved in Ref. [66] is a powerful tool for under-
standing the properties of frustration-free Hamil-
tonians, including the spectral gaps in particu-
lar. Here we shall derive a stronger version of the
detectability lemma and discuss its implications.
This result will be very useful to deriving tighter
bounds on the sample cost of our verification pro-
tocols for the ground states, which is our original
motivation. We believe that it is also of indepen-
dent interest to many researchers in the quantum
information community.

3.1 Improvement of the detectability lemma

The following improvement of the detectability
lemma and its corollary Lemma 2 are proved in
Sec. 3.2.

Lemma 1. Let {Pk}q
k=1 be a set of projectors

on a given Hilbert space H, Qk = 1 − Pk, and
H =

∑
k Pk. Let |ψ⟩ be any normalized ket in H,

|φ⟩ = Q1Q2 · · ·Qq|ψ⟩, and εφ = ⟨φ|H|φ⟩/∥φ∥2

with ∥φ∥2 = ∥|φ⟩∥2 = ⟨φ|φ⟩ (assuming ∥φ∥ > 0).
Then

∥φ∥2 ≤ ζ

εφ + ζ
≤ s2g̃

εφ + s2g̃
≤ s2g2

εφ + s2g2 ≤ g2

εφ + g2

(9)

with ζ = maxj ζj and s = maxj<k sjk, where sjk

is the largest singular value of PjPk that is not
equal to 1 (sjk = 0 if all singular values of PjPk

are equal to 1), and

ζj =
∑

k|j∈Ak

gks
2
jk, g̃ = max

j

∑
k|j∈Ak

gk, (10)

Ak = {j|j < k, PjPk ̸= PkPj}, gk = |Ak|. (11)

Here the last upper bound in Eq. (9) was de-
rived in Ref. [66], while the first three bounds
improve over the original result.

To appreciate the implications of Lemma 1,
suppose the Hamiltonian H in Lemma 1 is frus-
tration free, and |ψ⟩ is orthogonal to the ground
state space. Then |φ⟩ = Q1Q2 · · ·Qq|ψ⟩ is
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also orthogonal to the ground state space, which
means εφ ≥ γ = γ(H) and

∥(1 − P1)(1 − P2) · · · (1 − Pq)|ψ⟩∥2

= ∥Q1Q2 · · ·Qq|ψ⟩∥2 = ∥φ∥2 ≤ ζ

γ + ζ

≤ s2g̃

γ + s2g̃
≤ s2g2

γ + s2g2 ≤ g2

γ + g2 . (12)

Here the last upper bound was derived in
Ref. [66]. Our improvement of the detectability
lemma presented in Lemma 1 is crucial to deriv-
ing the first three upper bounds, which in turn
are crucial to deriving Lemma 2 and Theorem 1
below. This improvement can sometimes signif-
icantly reduce the upper bound on the number
of tests required to verify the ground state of a
frustration-free Hamiltonian, as we shall see in
Sec. 4.

Lemma 2. Suppose the Hamiltonian H in
Lemma 1 is frustration free; let Q0 be the pro-
jector onto the ground state space of H and

Q̄k = (1 −Q0)Qk(1 −Q0), k = 1, 2, . . . , q. (13)

Then

∥Q̄1Q̄2 · · · Q̄q∥2 ≤ ζ

γ + ζ
≤ s2g̃

γ + s2g̃
≤ s2g2

γ + s2g2

≤ g2

γ + g2 . (14)

The first two upper bounds in Eq. (14) may
depend on the order of the projectors Q̄k in the
product [cf. Eq. (9)], while the last two upper
bounds are independent of this order.

3.2 Proofs of Lemmas 1 and 2
Proof of Lemma 1. To start with, we shall derive
an upper bound for ⟨φ|Pk|φ⟩ = ∥Pk|φ⟩∥2. Fol-
lowing Ref. [66], to derive an upper bound for

∥Pk|φ⟩∥ = ∥Pk(1 − P1)(1 − P2) · · · (1 − Pq)|ψ⟩∥,
(15)

we can move the projector Pk to the right until it
is annihilated by 1 − Pk. Only those terms that
do not commute with Pk will contribute to the
upper bound.

For j = 1, 2, . . . , q let

|φj⟩ = (1 − Pj)(1 − Pj+1) · · · (1 − Pq)|ψ⟩; (16)

then |φ1⟩ = |φ⟩. By virtue of Lemma 3 below we
can deduce that

∥Pk|φj⟩∥ = ∥Pk(1 − Pj)|φj+1⟩∥
≤ ∥Pk|φj+1⟩∥ + sjk∥Pj |φj+1⟩∥, (17)

where sjk is the largest singular value of PjPk

that is not equal to 1 (note that sjk = skj). So

∥Pk|φ⟩∥ ≤
∑

j∈Ak

sjk∥Pj |φj+1⟩∥, (18)

where Ak is defined in Eq. (11) and denotes the
set of indices of the projectors P1, P2, . . . , Pk−1
that do not commute with Pk. As a corollary,

⟨φ|Pk|φ⟩ ≤ gk

∑
j∈Ak

s2
jk∥Pj |φj+1⟩∥2, (19)

where gk = |Ak| is the cardinality of Ak.
Next, summing over k in Eq. (19) yields

⟨φ|H|φ⟩ =
∑

k

⟨φ|Pk|φ⟩

≤
∑

k

gk

∑
j∈Ak

s2
jk∥Pj |φj+1⟩∥2

=
q−1∑
j=1

ζj∥Pj |φj+1⟩∥2 ≤ ζ
q−1∑
j=1

∥Pj |φj+1⟩∥2

= ζ
[
∥φq∥2 − ∥φ1∥2] ≤ ζ

(
1 − ∥φ∥2), (20)

which implies the first inequality in Eq. (9). Here
the last equality follows from the relation |φj⟩ =
(1 − Pj)|φj+1⟩ and the identity

∥Pj |φj+1⟩∥2 + ∥(1 − Pj)|φj+1⟩∥2 = ∥φj+1∥2.
(21)

The rest inequalities in Eq. (9) are simple corol-
laries of the facts below,

ζj =
∑

k|j∈Ak

gks
2
jk ≤ s2 ∑

k|j∈Ak

gk ≤ s2g̃ ∀j, (22)

g̃ = max
j

∑
k|j∈Ak

gk ≤ g2, (23)

0 ≤ s < 1. (24)

The following technical lemma employed in the
proof of Lemma 1 is proved in Appendix A

Lemma 3. Suppose P and Q are two projectors
on H and |ψ⟩ ∈ H. Then

∥P (1 −Q)|ψ⟩∥ ≤ ∥P |ψ⟩∥ + s∥Q|ψ⟩∥, (25)

where s is the largest singular value of PQ that
is not equal to 1 (s = 0 if all singular values of
PQ are equal to 1).

Accepted in Quantum 2023-12-26, click title to verify. Published under CC-BY 4.0. 5



Equation (25) holds even if |ψ⟩ is not normal-
ized.

Proof of Lemma 2. By assumptionQ0 commutes
with all Pk and Qk for 1 ≤ k ≤ q. Let |ψ⟩ be
any normalized ket in the Hilbert space under
consideration; then (1 − Q0)|ψ⟩ is orthogonal to
the ground state space. Therefore,

∥Q̄1Q̄2 · · · Q̄q|ψ⟩∥2

= ∥(1 −Q0)Q1Q2 · · ·Qq(1 −Q0)|ψ⟩∥2

≤ ∥Q1Q2 · · ·Qq(1 −Q0)|ψ⟩∥2

≤ ζ

γ + ζ
∥(1 −Q0)|ψ⟩∥2 ≤ ζ

γ + ζ

≤ s2g̃

γ + s2g̃
≤ s2g2

γ + s2g2 ≤ g2

γ + g2 , (26)

which implies Eq. (14). Here the second inequal-
ity follows from Eq. (12).

4 Efficient verification of ground states

4.1 Matching and coloring protocols

Suppose the Hamiltonian in Eq. (8) has a nonde-
generate ground state denoted by |ΨH⟩ (the non-
degeneracy assumption is included to simplify the
description and is not crucial). Let Qe = 1 − Pe;
then Pe|ΨH⟩ = 0 and Qe|ΨH⟩ = |ΨH⟩ for all
e ∈ E. To verify the ground state, we need to
verify that the state is supported in the range of
Qe for each e ∈ G(V,E), which can be realized
by subspace verification. A verification protocol
(operator) for an edge e is referred to as a bond
verification protocol (operator). Since Pe and Qe

for each edge e only act on a few nodes, it is
much easier to construct bond verification pro-
tocols than protocols for the ground state. Here
we provide a general recipe for constructing ver-
ification protocols for the ground state given a
bond verification protocol with verification oper-
ator Ωe for each edge e. Note that the operator
Ωe should satisfy the conditions Qe ≤ Ωe ≤ 1
and ΩeQe = Qe. Since Qe is a projector, it fol-
lows that the largest eigenvalue of Ωe is 1 and its
multiplicity is at least the rank of Qe; all other
eigenvalues of Ωe belong to the interval [0, 1). Let

βe = ∥Ωe −Qe∥, νe = 1 − βe, (27)
βE = max

e∈E
βe, νE = 1 − βE = min

e∈E
νe; (28)

then νe is the spectral gap of Ωe, and νE is the
minimum spectral gap over all bond verification
operators.

In many cases of practical interest, the under-
lying Hamiltonian has a high symmetry (say the
symmetry of a square lattice), and it is possible
to construct bond verification operators Ωe that
are unitarily equivalent to each other. Accord-
ingly, all βe for e ∈ E are equal, and so are all νe

for e ∈ E, which means βE = βe and νE = νe.
Given a matching M of G, we can construct

a test for the ground state |ΨH⟩ by performing
the bond verification strategy Ωe for each e ∈ M
independently. The resulting test operator reads

TM =
∏

e∈M

Ωe. (29)

Note that all Ωe for e ∈ M commute with each
other, so the order in the product does not mat-
ter. In addition, a state |Φ⟩ satisfies TM |Φ⟩ = |Φ⟩
iff Pe|Φ⟩ = 0 for each e ∈ M . So the state |Φ⟩
can pass the test TM with certainty iff it belongs
to the null space of Pe for each e ∈ M .

Let M = {Ml}m
l=1 be a matching cover of

G(V,E) that consists of m matchings, so that
∪m

l=1Ml = E. For each matching Ml, we can con-
struct a test TMl

by Eq. (29). Then only the tar-
get state |ΨH⟩ can pass each test with certainty.
Let p = (pl)m

l=1 be a probability distribution on
M , then we can construct a matching protocol for
|ΨH⟩ by performing the test TMl

with probability
pl for l = 1, 2, . . . ,m. The resulting verification
operator reads

Ω(M , p) =
m∑

l=1
plTMl

, (30)

Figure 1: Optimal edge colorings of the square lattice
and honeycomb lattice. These optimal colorings can be
used to construct efficient protocols for verifying ground
states of frustration-free Hamiltonians, including AKLT
states.
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which can be abbreviated as Ω(M ) when the
probability distribution p is uniform, that is,
pl = 1/m for l = 1, 2, . . . ,m.

When the matchings in M are mutually
disjoint, M determines an edge coloring of G,
as illustrated in Fig. 1; the resulting protocol
is called an edge coloring protocol or coloring
protocol in short. Such a protocol has a very
simple graphical description and is thus quite
appealing.

4.2 Sample complexity
The efficiency of the matching protocol is guar-
anteed by Theorem 1 below, which can be proved
by virtue of the improved detectability lemma
and quantum union bound [67, 68], as shown in
Sec. 4.3.

Theorem 1. Suppose H is the frustration-free
Hamiltonian in Eq. (8). Let Ω(M ) be the ver-
ification operator associated with the matching
cover M = {Ml}m

l=1 of G(V,E) and bond veri-
fication operators {Ωe}e∈E. Then

ν(Ω(M )) ≥ νE

m
fm

(
γ

s2g2

)
≥ νEγ

6mg2 , (31)

where νE = mine∈E νe is the minimum spectral
gap of Ωe, s is defined as in Lemma 1, and

fm(x) :=


√

1+x−1√
1+x

m = 2,
√

1+x−1√
1+x+1 m ≥ 3.

(32)

The number of tests required to verify the ground
state within infidelity ϵ and significance level δ
satisfies

N ≤
⌈
m ln(δ−1)
νEϵfm

( γ
s2g2

)⌉ ≤
⌈6mg2 ln(δ−1)

νEγϵ

⌉
. (33)

The weaker bound in Eq. (31) and that in
Eq. (33) can already clarify the sample com-
plexity of the matching protocol. The stronger
bounds in the two equations are slightly more
complicated and rely on the stronger detectability
lemma, that is, Lemma 1. On the other hand, this
improvement can sometimes significantly reduce
the upper bound on the number of tests (though
not the scaling behavior) required to verify the
ground state of a frustration-free Hamiltonian. In
the verification of the AKLT state on the honey-
comb lattice for example, the first lower bound

in Eq. (31) is about six times of the second lower
bound. So the number of tests in Eq. (33) can be
reduced by a factor of six thanks to the stronger
bound, which can make a huge difference for prac-
tical applications.

It is instructive to analyze the lower bound for
the spectral gap in Eq. (31) when γ/(s2g2) ≪ 1,
which holds in most cases of practical interest.
When x ≪ 1, the function fm(x) can be approx-
imated as

fm(x) ≈


x
2 m = 2,
x
4 m ≥ 3.

(34)

Therefore, the spectral gap can be bounded from
below as follows,

ν(Ω(M )) ≥ νE

m
fm

(
γ

s2g2

)
≈


νEγ

2ms2g2 m = 2,
νEγ

4ms2g2 m ≥ 3,
(35)

which is tighter than the second bound in
Eq. (31). Accordingly, the number of tests re-
quired to verify the ground state within infidelity
ϵ and significance level δ satisfies

N ≲


2ms2g2 ln(δ−1)

νEγϵ m = 2,
4ms2g2 ln(δ−1)

νEγϵ m ≥ 3.
(36)

If the underlying Hamiltonian H is 2-local and
each projector Pe acts on two nodes, then G is a
(simple) graph and g ≤ 2∆(G) − 2, where ∆(G)
is the degree of G, so Theorem 1 implies that

ν(Ω(M )) ≥ νEγ

24m[∆(G) − 1]2 . (37)

The cardinality of the matching cover M is at
least the chromatic index χ′(G), which satisfies
χ′(G) ≤ ∆(G) + 1 by Vizing’s theorem [73, 74].
If M is optimal, that is, m = |M | = χ′(G), then
Eq. (37) yields

ν(Ω(M )) ≥ νEγ

24[∆(G) + 1][∆(G) − 1]2

≥ νEγ

24∆(G)3 . (38)

Here νE and ∆(G) do not grow with the sys-
tem size for most Hamiltonians of practical in-
terest, including those defined on various lat-
tices as illustrated in Fig. 1. If in addition
the spectral gap γ has a universal lower bound,
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then the spectral gap ν(Ω(M )) has a universal
lower bound, so the number of tests required
to verify the ground state does not grow with
the system size. Compared with previous works
[14, 21, 33, 35, 36, 38, 63], our approach can
achieve much better scaling behaviors with re-
spect to the system size, spectral gap γ, and infi-
delity ϵ.

Since coloring protocols are special matching
protocols, all results on matching protocols pre-
sented above also apply to coloring protocols. In
addition, we can derive the following result tai-
lored to coloring protocols; see Sec. 4.4 for a
proof.

Theorem 2. Suppose the matching cover M in
Theorem 1 is actually an edge coloring of G and
p = (|M1|, |M2|, . . . , |Mm|)/|E|; then

ν(Ω(M , p)) ≥ νEγ

|E|
. (39)

The inequality is saturated if M is the trivial edge
coloring with |M | = |E| and all bond verification
operators Ωe are homogeneous and have the same
spectral gap.

If H is 2-local and each projector Pe acts on
two nodes, then |E| ≤ n∆(G)/2 ≤ n(n− 1)/2, so
Theorem 2 means

ν(Ω(M , p)) ≥ 2νEγ

n∆(G) ≥ 2νEγ

n(n− 1) . (40)

4.3 Proof of Theorem 1

Proof of Theorem 1. For l = 1, 2, . . . ,m let TMl

be the test operators associated with the match-
ings Ml as defined in Eq. (29). Let

Πl :=
∏

e∈Ml

Qe =
∏

e∈Ml

(1 − Pe), (41)

Ω0(M ) := 1
m

m∑
l=1

Πl. (42)

Then Πl are test projectors for the ground state
|ΨH⟩, and Ω0(M ) is a verification operator for
|ΨH⟩, although in general they cannot be realized
by local measurements.

Now the fact Ωe ≤ Qe + βE(1 −Qe) means

TMl
=
∏

e∈Ml

Ωe ≤
∏

e∈Ml

[Qe + βE(1 −Qe)]

≤ Πl + βE(1 − Πl) = νEΠl + βE , (43)

Ω(M ) = 1
m

m∑
l=1

TMl
≤ 1
m

m∑
l=1

(νEΠl + βE)

= νEΩ0(M ) + βE , (44)

which in turn imply that

ν(Ω(M )) ≥ νEν(Ω0(M )). (45)

In conjunction with Lemma 4 below we can de-
duce that

ν(Ω(M )) ≥ νE

m
fm

(
γ

s2g2

)
≥ νE

m
fm

(
γ

g2

)
≥ νEγ

6mg2 , (46)

which confirms Eq. (31). Equation (33) is an
immediate consequence of Eqs. (2) and (31).

Next, we prove an auxiliary lemma employed
in the proof of Theorem 1.

Lemma 4. Let Ω0(M ) be the verification oper-
ator defined in Eq. (42) following the premise in
Theorem 1. Then

ν(Ω0(M )) ≥ 1
m
fm

(
γ

s2g2

)
≥ 1
m
fm

(
γ

g2

)
≥ γ

6mg2 , (47)

where fm(x) is defined in Eq. (32).
Proof of Lemma 4. Let

Π̄l = Πl − |ΨH⟩⟨ΨH |, l = 1, 2, . . . ,m, (48)

Ω̄0(M ) = Ω0(M ) − |ΨH⟩⟨ΨH | = 1
m

m∑
l=1

Π̄l; (49)

then Π̄l are projectors. First, suppose the match-
ings in M are mutually disjoint, so that M corre-
sponds to an edge coloring. If in addition m ≥ 3,
then

ν(Ω0(M )) = 1 − ∥Ω̄0(M )∥

≥ 1 − ∥Π̄1Π̄2 · · · Π̄m∥
m(1 + ∥Π̄1Π̄2 · · · Π̄m∥)

≥ 1
m

1 − [1 + (γ/ζ)]−1/2

1 + [1 + (γ/ζ)]−1/2 = 1
m

[1 + (γ/ζ)]1/2 − 1
[1 + (γ/ζ)]1/2 + 1

= 1
m
fm

(γ
ζ

)
≥ 1
m
fm

(
γ

s2g̃

)
≥ 1
m
fm

(
γ

s2g2

)
≥ 1
m
fm

(
γ

g2

)
. (50)
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Here the first inequality follows from Lemma 5
below; the second inequality follows from
Lemma 2, which implies that

∥Π̄1Π̄2 · · · Π̄m∥2 ≤ 1
1 + (γ/ζ) , (51)

where ζ is defined as in Lemma 1. The last three
inequalities in Eq. (50) are due to the following
inequalities

ζ ≤ s2g̃ ≤ s2g2 ≤ g2 (52)

and the fact that the function fm(x) is monoton-
ically increasing in x for x ≥ 0, which is clear
from the definition in Eq. (32).

Meanwhile, we have γ ≤ 1 and g ≥ 1, which
means γ/g2 ≤ 1. So Eq. (50) implies that

ν(Ω0(M )) ≥ 1
m
fm

(
γ

g2

)
≥
(
3 − 2

√
2
) γ

mg2

>
γ

6mg2 , (53)

which confirms Eq. (47). Note that the function
fm(x) is monotonically increasing and concave in
x for x ≥ 0.

When m = 2, the first inequality in Eq. (50)
can be improved by Lemma 5 below, then
Eq. (47) follows from a similar reason as pre-
sented above.

Next, we turn to the general situation in which
the matchings in M = {Ml}m

l=1 are not neces-
sarily disjoint. In this case, we can always con-
struct a matching cover M ′ = {M ′

l }m
l=1 composed

of mutually disjoint matchings M ′
l that satisfy

M ′
l ⊆ Ml for l = 1, 2, . . . ,m. Let

Π′
l :=

∏
e∈M ′

l

Qe, Ω0(M ′) := 1
m

m∑
l=1

Π′
l. (54)

Then

Πl ≤ Π′
l, Ω0(M ) ≤ Ω0(M ′), (55)

which implies that

ν(Ω0(M )) ≥ ν(Ω0(M ′)) ≥ 1
m
fm

(
γ

s2g2

)
≥ 1
m
fm

(
γ

g2

)
≥ γ

6mg2 . (56)

This observation completes the proof of
Lemma 4.

The following technical lemma employed in the
proof of Lemma 4 is proved in Appendix B.

Lemma 5. Suppose P1, P2, . . . , Pm are m pro-
jectors acting on the Hilbert space H. Let O =∑m

j=1 Pj/m; then

1 − ∥O∥ ≥ 1 − ∥P1P2 · · ·Pm∥
m(1 + ∥P1P2 · · ·Pm∥) . (57)

If m = 2, then

1 − ∥O∥ = 1 − ∥P1P2∥
2 . (58)

When P2 = P3 = · · · = Pm and P1 are
mutually orthogonal rank-1 projectors, we have
∥O∥ = (m − 1)/m and ∥P1P2 · · ·Pm∥ = 0, in
which case the inequality in Eq. (57) is saturated.
So the lower bound in Eq. (57) is nearly optimal
without further constraints.

4.4 Proof of Theorem 2
Proof of Theorem 2. Let TMl

be the test opera-
tor associated with the matching Ml ∈ M as
defined in Eq. (29). Then

Ω(M , p) =
m∑

l=1
plTMl

=
m∑

l=1
pl

∏
e∈Ml

Ωe

≤
m∑

l=1
pl

1
|Ml|

∑
e∈Ml

Ωe = 1
|E|

∑
e∈E

Ωe

≤ 1
|E|

∑
e∈E

(1 − Pe + βEPe)

= 1
|E|

∑
e∈E

(1 − νEPe) = 1 − νE

|E|
H, (59)

which implies Eq. (39). Here the third equal-
ity holds because p = (|M1|, |M2|, . . . , |Mm|)/|E|,
∪lMl = E, and all matchings Ml in M are pair-
wise disjoint.

If M is the trivial edge coloring, then each
matching Ml contains only one edge, so that
m = |E| and pl = 1/|E| for l = 1, 2, . . . , |E|.
Consequently, the first inequality in Eq. (59)
is saturated. If in addition all bond verifica-
tion operators Ωe are homogeneous and have the
same spectral gap, then the second inequality in
Eq. (59) is also saturated, which means

Ω(M , p) = Ω(M ) = 1 − νE

|E|
H, (60)

ν(Ω(M , p)) = ν(Ω(M )) = νEγ(H)
|E|

. (61)

So the inequality in Eq. (39) is saturated in this
case.
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5 Efficient verification of AKLT states
To illustrate the power of our general recipe,
here we consider AKLT states defined on gen-
eral graphs without loops; see Appendix D and
the companion paper [64] for more details. For
any given graph G(V,E), an AKLT Hamiltonian
can be constructed as follows [1, 2, 76, 77]. For
each vertex j we assign a spin operator Sj =
(Sj,x, Sj,y, Sj,z) with spin value Sj = deg(j)/2,
which corresponds to a Hilbert space of dimen-
sion 2Sj + 1. Let Se = Sj + Sk for each edge
e = {j, k} ∈ E and SE = maxe∈E Se; then
SE ≤ ∆(G). Let Pe be the projector onto the
spin-Se subspace of spins j and k; then the AKLT
Hamiltonian can be expressed as HG =

∑
e∈E Pe;

it is frustration free and has a unique ground state
[76, 77], which is denoted by |ΨG⟩.

5.1 Protocols and sample complexity
To verify the AKLT state |ΨG⟩, we need to con-
struct suitable bond verification protocols. This
is a two-body problem for any given bond e, so
we focus on the two nodes j, k connected by e and
ignore all other nodes for the moment. Given any
real unit vector r = (rx, ry, rz) in dimension 3, let
Sj,r = Sj ·r = rxSj,x + rySj,y + rzSj,z be the spin
operator along direction r. Then Sj,r has 2Sj +1
eigenvalues, namely, −Sj ,−Sj + 1, . . . , Sj − 1, Sj .
Now a bond test can be constructed as follows:
both parties perform the spin measurement along
direction r, and the test is passed unless they
both obtain the maximum eigenvalues or both
obtain the minimum eigenvalues.

Let |+⟩j,r (|−⟩j,r) be the eigenstate of Sj,r tied
to the maximum eigenvalue Sj (minimum eigen-
value −Sj). Define |±⟩k,r in a similar way and
let

|+⟩e,r = |+⟩j,r ⊗ |+⟩k,r,

|−⟩e,r = |−⟩j,r ⊗ |−⟩k,r.
(62)

Then the bond test projector can be expressed as

Re,r :=1 − |+⟩e,r⟨+| − |−⟩e,r⟨−|, (63)

which satisfies Re,rQe = Qe as expected. The
trace of this test projector reads

tr(Re,r) =(2Sj + 1)(2Sk + 1) − 2. (64)

In addition, Re,r = Re,−r, so the tests associated
with antipodal points on the unit sphere are iden-
tical. As shown in Sec. IV A in the companion

paper [64], tests of the form Re,r are the optimal
choice based on spin measurements.

Let µ be a probability distribution on the unit
sphere; then we can construct a bond verification
protocol by performing each test Re,r according
to µ. The resulting bond verification operator
reads

Ωe(µ) =
∫
Re,rdµ(r). (65)

According to Eq. (64), its trace is given by

tr[Ωe(µ)] =(2Sj + 1)(2Sk + 1) − 2, (66)

which is independent of µ. Let µ1 and µ2 be two
probability distributions on the unit sphere and
µ = pµ1 + (1 − p)µ2 with 0 ≤ p ≤ 1. Then by
definition it is straightforward to verify that

ν(Ωe(µ)) ≥ p1ν(Ωe(µ1)) + p2ν(Ωe(µ2)). (67)

If in addition µ2 is related to µ1 by an orthogo-
nal transformation (rotation or reflection) on the
unit sphere, then ν(Ωe(µ1)) = ν(Ωe(µ2)). The
two properties are summarized in the following
proposition, which is very helpful to studying the
spectral gap of Ωe(µ).

Proposition 1. The spectral gap ν(Ωe(µ)) is
concave in µ and invariant under orthogonal
transformations on the unit sphere.

By Proposition 1, the spectral gap ν(Ωe(µ)) is
maximized when µ is the isotropic distribution,
which leads to the isotropic protocol ; the resulting
verification operator is denoted by Ωiso

e . By con-
struction Ωiso

e is invariant under orthogonal trans-
formations, so it is block diagonal with respect
to the spin subspaces associated with total spins
|Sj −Sk|, |Sj −Sk| + 1, . . . , Sj +Sk = Se, respec-
tively, and it can be expressed as a weighted sum
of projectors onto these spin subspaces. Mean-
while, Ωiso

e satisfies the conditions 0 ≤ Ωiso
e ≤ 1

and Ωiso
e Qe = Qe, where Qe = 1 − Pe and Pe is

the projector onto the subspace associated with
the maximum total spin Se. Note that Pe and
Qe have ranks 2Se + 1 and (2Sj + 1)(2Sk + 1) −
(2Se + 1) = 4SjSk, respectively. In conjunction
with Eq. (66) we can now deduce that Ωiso

e is ho-
mogeneous and has the form

Ωiso
e = Qe + 2Se − 1

2Se + 1Pe, (68)
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which means ν(Ωiso
e ) = 2/(2Se + 1). The spec-

tral gap of any other verification operator Ω(µ)
based on spin measurements satisfies ν(Ωe(µ)) ≤
ν(Ωiso

e ) = 2/(2Se + 1).
Optimal bond verification protocols can also be

constructed from discrete distributions based on
(spherical) t-designs, which are more appealing to
practical applications. Given a positive integer t,
a probability distribution on the unit sphere is a
t-design if the average of any polynomial of degree
at most t equals the average over the isotropic dis-
tribution [69–71]. The following theorem offers a
general recipe for constructing optimal bond veri-
fication protocols, which can be proved by virtue
of the theories of t-designs [69–71] and spin co-
herent states [72], as shown in Sec. 5.2.

Theorem 3. Let µ be a probability distribution
on the unit sphere and let µsym be the average of
µ and its center inversion. Then the four state-
ments below are equivalent.

1. ν(Ωe(µ)) = 2
2Se+1 .

2. Ωe(µ) = Qe + 2Se−1
2Se+1Pe.

3. Ωe(µ) is homogeneous.

4. µsym forms a spherical t-design with t = 2Se.

Here µsym is center symmetric by construction,
so µsym is a (2Se)-design iff it is a (2⌊Se⌋)-design.
Note that t-designs for the two-dimensional
sphere can be constructed using O(t2) points
[78, 79], so optimal bond verification protocols
can be constructed using O(S2

e ) tests based on
spin measurements. For example, the uniform
distributions on the vertices of the regular tetra-
hedron, octahedron, cube, icosahedron, and do-
decahedron are t-designs with t = 2, 3, 3, 5, 5, re-
spectively. A 7-design can be constructed from
certain orbit of the rotational symmetry group of
the cube [64, 80]. A 9-design can be constructed
from a suitable combination of the icosahedron
and dodecahedron [64, 81].

For simplicity we can choose the same distri-
bution µ for each bond verification protocol (al-
though this is not compulsory). Let M be a
matching cover of G = (V,E) that is composed of
m matchings and let p be a probability distribu-
tion on M (which can be omitted for the uniform
distribution). Then the triple (µ,M , p) specifies
a verification protocol for the AKLT state |ΨG⟩.
Suppose µ forms a t-design with t = 2SE , M

0 20 40 60 80 100

104

106

108

1010

1012

Figure 2: Comparison of sample costs in the verifica-
tion of the AKLT state on the even closed chain with
n nodes within precision ϵ = δ = 0.01. Here the col-
oring protocol is a special matching protocol based on
the optimal edge coloring, and the number of tests is
determined by the first upper bound in Eq. (33) with
m = g = 2, s = 1/2, and νE = 2/5. The HKSE proto-
col is proposed in Refs. [36], and the number of tests is
determined by Eq. (E2) with |E| = n. The BHSRE pro-
tocol is proposed in Ref. [21], and the number of tests is
determined by the lower bound in Eq. (E4) with κ = 2.

is an optimal matching cover (or edge coloring)
with |M | = χ′(G), and p is uniform. By Theo-
rem 1 with m = χ′(G) ≤ ∆(G) + 1, g = 2SE − 2,
and νE = 2/(2SE + 1), the spectral gap of the
resulting verification operator Ω(µ,M ) satisfies

ν(Ω(µ,M )) ≥ γ

24∆(G)4 , (69)

given that SE ≤ ∆(G). So the number of tests
required to verify the AKLT state |ΨG⟩ within
infidelity ϵ and significance level δ satisfies

N ≤
⌈24∆(G)4 ln(δ−1)

γϵ

⌉
, (70)

which leads to an upper bound that is inde-
pendent of the system size when γ is bounded
from below by a positive constant and ∆(G) is
bounded from above by an integer. Notably,
this is the case for various 1D and 2D lattices
[1, 2, 8, 82–87].

The efficiency of our approach is illustrated in
Fig. 2. To verify the AKLT state on the closed
chain with 100 nodes within precision ϵ = δ =
0.01, only 1.66 × 104 tests are required. For the
honeycomb lattice with 100 nodes, only 7.9 × 105

tests are required. By contrast, all protocols
known previously would require tens of thousands
of times more tests as explained in Appendix E.
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When the degree ∆(G) of G is large (compared
with

√
n), Theorem 2 may offer better bounds for

the spectral gap ν(Ω(µ,M , p)) and the number
of tests. Suppose νE = 2/(2SE + 1) and p =
(|M1|, |M2|, . . . , |Mm|)/|E|; then

ν(Ω(µ,M , p)) ≥ 4γ
n∆(G)[2∆(G) + 1] ≥ 2γ

n3 , (71)

N ≤
⌈
n3 ln(δ−1)

2γϵ

⌉
, (72)

given that SE ≤ ∆(G) ≤ n− 1.

5.2 Proof of Theorem 3
Proof of Theorem 3. Let

O = PeΩe(µ)Pe = Ωe(µ) −Qe; (73)

then O is a positive operator supported in the
range of the projector Pe, which has rank 2Se +1,
and we have

∥O∥ = 1 − ν(Ωe(µ)). (74)

In addition,

O =
∫

dµ(r)(Re,r −Qe)

=
∫

dµ(r)(Pe − |+⟩e,r⟨+| − |−⟩e,r⟨−|), (75)

which implies that

tr(O) = 2Se − 1. (76)

Suppose ν(Ωe(µ)) = 2/(2Se + 1); then

∥O∥ = 2Se − 1
2Se + 1 = tr(O)

2Se + 1 . (77)

This equation implies that O has rank 2Se + 1
and all nonzero eigenvalues are equal given that
O is a positive operator supported in the range
of the projector Pe, which has rank 2Se + 1. So
O is necessarily proportional to Pe. In conjunc-
tion with the trace formula derived above we can
deduce that

O = 2Se − 1
2Se + 1Pe, (78)

which confirms the implication 1 ⇒ 2. The im-
plication 2 ⇒ 3 is obvious.

Suppose Ωe(µ) is homogeneous; then it has the
form

Ωe(µ) = Qe + λPe, (79)

which means O = λPe. In addition,

λ = tr(O)
tr(Pe) = 2Se − 1

2Se + 1 , ν(Ωe(µ)) = 2
2Se + 1 ,

(80)

which confirms the implication 3 ⇒ 1. So state-
ments 1, 2, 3 are equivalent.

To complete the proof of Theorem 3, it suffices
to prove the equivalence of statements 2 and 4.
If statement 2 holds, then Eq. (78) holds, which
implies that

tr
(
O2) = (2Se − 1)2

2Se + 1 . (81)

So the distribution µsym forms a spherical t-
design with t = 2Se according to Lemma 6 below,
which confirms the implication 2 ⇒ 4.

If µsym is a spherical t-design with t = 2Se,
then

tr
(
O2) = (2Se − 1)2

2Se + 1 = 1
2Se + 1[tr(O)]2 (82)

by Lemma 6. Since O is a positive operator sup-
ported in the range of the projector Pe, which has
rank 2Se+1, the above equation implies Eq. (78),
and thereby confirming the implication 4 ⇒ 2
and completing the proof of Theorem 3.

The following technical lemma employed in the
proof of Theorem 3 is proved in Appendix C

Lemma 6. Let µ be a probability distribution on
the unit sphere and Ωe(µ) the bond verification
operator based on µ. Then

tr[Ωe(µ) −Qe]2 ≥ (2Se − 1)2

2Se + 1 , (83)

and the inequality is saturated iff µsym is a t-
design with t = 2Se.

6 Summary
We proposed a general recipe for verifying the
ground states of frustration-free Hamiltonians
based on local measurements. We also provided
rigorous bounds on the sample cost required to
achieve a given precision by virtue of the spectral
gap of the underlying Hamiltonian and simple
graph theoretic quantities, as presented in The-
orems 1 and 2. The sample complexity achieved
by our recipe is optimal with respect to the target
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precision as quantified by the infidelity and signif-
icance level. When the Hamiltonian is local and
gapped in the thermodynamic limit, the sample
complexity is independent of the system size and
is thus optimal with respect to the system size as
well. Nevertheless, we believe that the stronger
detectability lemma (Lemma 1) we proved can be
further improved by a constant factor. Accord-
ingly, the constant in Theorem 1 can be further
improved. In any case, our approach can achieve
much better scaling behaviors with respect to the
system size, spectral gap, and infidelity compared
with alternative approaches known before.

To demonstrate the power of this recipe,
we constructed concrete protocols for verifying
AKLT states defined on arbitrary graphs based
on local spin measurements, which are dramati-
cally more efficient than previous protocols. For
AKLT states defined on many lattices, including
the 1D chain and honeycomb lattice, the sample
cost does not increase with the system size. Our
work reveals an intimate connection between the
quantum verification problem and many-body
physics. The protocols we constructed are use-
ful not only to addressing various tasks in quan-
tum information processing, but also to studying
many-body physics.

The verification strategy considered in this
work can make a meaningful conclusion only if
all tests are passed. In practice, it is unrealis-
tic to prepare the perfect target state, and even
states with a high fidelity may fail to pass some
tests when the total test number N is large. In
addition, imperfection in the measurement de-
vices may also cause some failures. To construct
a robust verification protocol, it is necessary to
allow certain failure rate. Fortunately, this ex-
tension will only incur a constant overhead [55].
For a typical choice of the allowed failure rate,
the overhead is about ten times. So all of our
conclusions are still applicable after minor modi-
fication even if robustness is taken into account.
In addition, by virtue of the recipe proposed in
Refs. [39, 40, 55], our protocols can be generalized
to the adversarial scenario in which the prepara-
tion device cannot be trusted; moreover, the sam-
ple overhead is negligible if robustness is not a
concern or if homogeneous strategies can be con-
structed. In general, it is still an open problem
to construct robust and efficient verification pro-
tocols in the adversarial scenario, which deserves

further study.
Our verification protocols can only extract in-

formation about the fidelity with the target state.
Nevertheless, this key information is very use-
ful in many applications in quantum information
processing. One of the main goals in the active
research area of quantum characterization, verifi-
cation, and validation (QCVV) [27–31] is to ex-
tract such key information as efficiently as possi-
ble given the limited resources available, which is
the best we can do. Even if this key information
is not enough in certain situations, it is still valu-
able as a first-step diagnosis before taking more
sophisticated methods. To extract more informa-
tion necessarily means more resource overhead.
Actually, other characterization methods, such
as quantum tomography, usually require substan-
tially (often exponentially) more resources.
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Appendix
In this appendix we first prove three auxiliary
lemmas employed in the main text, namely Lem-
mas 3, 5, and 6. Then we briefly discuss the con-
nections with and distinctions from the compan-
ion paper [64]. Finally, we compare our verifica-
tion protocols with previous protocols known in
the literature.

A Proof of Lemma 3
Proof of Lemma 3. When H has dimension 0
or 1, the inequality in Eq. (25) is trivial. In addi-

tion, it is easy to verify this inequality when one
of the following four conditions holds,

1. P = 0 or Q = 0;

2. P = 1 or Q = 1;

3. P = Q;

4. PQ = 0.

So we can exclude these cases in the following
discussion. Furthermore, we can assume that |ψ⟩
is a normalized ket without loss of generality.

Suppose H has dimension 2, which is the sim-
plest nontrivial case. In view of the above anal-
ysis, we can assume that P and Q are distinct
rank-1 projectors that are not orthogonal to each
other. Then P and Q correspond to two distinct
pure states, denoted by |α⟩ and |β⟩ hence forth.
Let |β⊥⟩ be the (normalized) ket that is orthog-
onal to |β⟩. Let a, b, c be the Bloch vectors of
|α⟩, |β⊥⟩, |ψ⟩, respectively. Let θ be the angle
between a and b and let ϕ be the angle between
b and c, where 0 < θ < π and 0 ≤ ϕ ≤ π, so that
0 < θ + ϕ < 2π. Then we have

s = ∥PQ∥ = sin θ2 , (A1)

∥P (1 −Q)|ψ⟩∥ = |⟨α|β⊥⟩⟨β⊥|ψ⟩| = cos θ2 cos ϕ2 ,
(A2)

∥Q|ψ⟩∥ = |⟨β|ψ⟩| = sin ϕ2 . (A3)

According to the definitions of the vectors a, c
and angles θ, ϕ introduced above it is easy to ver-
ify that

a · c ≥ cos(θ + ϕ), (A4)

which implies that

∥P |ψ⟩∥ = |⟨α|ψ⟩| =
√

1 + a · c
2

≥

√
1 + cos(θ + ϕ)

2 =
∣∣∣∣cos θ + ϕ

2

∣∣∣∣ ≥ cos θ + ϕ

2 .

(A5)

Therefore,

∥P |ψ⟩∥ + s∥Q|ψ⟩∥ ≥ cos θ + ϕ

2 + sin θ2 sin ϕ2

= cos θ2 cos ϕ2 = ∥P (1 −Q)|ψ⟩∥, (A6)
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which confirms the inequality in Eq. (25).
Now we are ready to consider the most general

situation. Denote by r1 and r2 the ranks of P and
Q, respectively, and let r = min{r1, r2}. Then P
and Q have spectral decompositions

P =
r1∑

j=1
|αj⟩⟨αj |, Q =

r2∑
k=1

|βk⟩⟨βk|, (A7)

which satisfy

⟨αj |βk⟩ = s̃jδjk, 0 ≤ s̃j ≤ 1 (A8)

for j = 1, 2, . . . , r1 and k = 1, 2, . . . , r2. Without
loss of generality, we can assume that s̃j = 0 if
j > r.

Given j = 1, 2, . . . , r, let Hj be the subspace
spanned by |αj⟩ and |βj⟩ and let

H0 = (H1 + H2 + · · · + Hr)⊥. (A9)

Then the subspaces H0,H1, . . . ,Hr are mutually
orthogonal. For j = 0, 1, . . . , r, let Πj be the
orthogonal projector onto Hj and let

Pj = ΠjPΠj , Qj = ΠjQΠj , |ψj⟩ = Πj |ψ⟩.
(A10)

Then ∥PjQj∥ = s̃j , where s̃j for j = 1, 2, . . . , r
are introduced in Eq. (A8), while s̃0 = 0 (note
that P0Q0 = 0).

By virtue of the above analysis on the qubit
and several special cases we can deduce that

∥P (1 −Q)|ψj⟩∥ = ∥Pj(1 −Qj)|ψj⟩∥
≤ ∥Pj |ψj⟩∥ + sj∥Qj |ψj⟩∥
= ∥P |ψj⟩∥ + sj∥Q|ψj⟩∥ ≤ ∥P |ψj⟩∥ + s∥Q|ψj⟩∥

(A11)

for j = 0, 1, . . . , r, where

sj =
{
s̃j s̃j < 1,
0 s̃j = 1.

(A12)

Note that s = maxr
j=0 sj . Therefore,

∥P (1 −Q)|ψ⟩∥2 =
r∑

j=0
∥P (1 −Q)|ψj⟩∥2

≤
r∑

j=0
(∥P |ψj⟩∥ + s∥Q|ψj⟩∥)2

=
r∑

j=0

(
∥P |ψj⟩∥2 + s2∥Q|ψj⟩∥2)

+ 2s
r∑

j=0
∥P |ψj⟩∥∥Q|ψj⟩∥

≤ ∥P |ψ⟩∥2 + s2∥Q|ψ⟩∥2 + 2s∥P |ψ⟩∥∥Q|ψ⟩∥
= (∥P |ψ⟩∥ + s∥Q|ψ⟩∥)2, (A13)

which implies Eq. (25) and completes the proof
of Lemma 3.

B Proof of Lemma 5

Proof of Lemma 5. Equation (58) is a simple
corollary of Lemma 1 in Ref. [58], so it remains to
prove Eq. (57). Let |ψ⟩ ∈ H be any normalized
ket, and

x = ∥P1P2 · · ·Pm|ψ⟩∥, (B1)

y =
m∑

j=1
⟨ψ|1 − Pj |ψ⟩ = m−m⟨ψ|O|ψ⟩. (B2)

According to Theorem 1.3 in Ref. [68], which is a
generalization of the quantum union bound [67],
we have

x+
√

1 − x2√
y ≥ 1, (B3)

which implies that

y ≥ (1 − x)2

1 − x2 = 1 − x

1 + x
. (B4)

Now choose |ψ⟩ as an eigenvector of O associated
with the largest eigenvalue, that is, ⟨ψ|O|ψ⟩ =
∥O∥. Then the above equation implies that

m−m∥O∥ ≥ 1 − ∥P1P2 · · ·Pm|ψ⟩∥
1 + ∥P1P2 · · ·Pm|ψ⟩∥

≥ 1 − ∥P1P2 · · ·Pm∥
1 + ∥P1P2 · · ·Pm∥

, (B5)

which in turn implies Eq. (57).
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C Proof of Lemma 6
Proof of Lemma 6. As in the proof of Theo-
rem 3, let

O = Ωe(µ) −Qe =
∫

dµ(r)(Re,r −Qe), (C1)

where Re,r is defined in Eq. (63). The inequal-
ity in Eq. (83) follows from the equality trO =
2Se −1 and the fact that O is a positive operator
supported in the range of the projector Pe, which
has rank 2Se + 1.

Now, by virtue of Lemma 7 below we can de-
duce that

tr(O2) = 2Se − 3 + 22−2Se

⌊Se⌋∑
j=0

(
2Se

2j

)
F2j(µ),

(C2)

where

Ft(µ) :=
∫∫

dµ(r)dµ(s)(r · s)t (C3)

is the tth frame potential of the distribution µ.
Note that F0(µ) = 1 irrespective of the distribu-
tion µ. When t is an even positive integer, the
frame potential Ft satisfies the inequality [70, 71]

Ft(µ) = Ft(µsym) ≥ 1
t+ 1 , (C4)

which is saturated if µsym forms a spherical t-
design. Therefore,

tr(O2) ≥ 2Se − 3 + 22−2Se

⌊Se⌋∑
j=0

(
2Se

2j

)
1

2j + 1

= 2Se − 3 + 22−2Se

2Se + 1

⌊Se⌋∑
j=0

(
2Se + 1
2j + 1

)

= 2Se − 3 + 4
2Se + 1 = (2Se − 1)2

2Se + 1 , (C5)

which reproduces the inequality in Eq. (83). Here
the second equality follows from the identity be-
low,

⌊Se⌋∑
j=0

(
2Se + 1
2j + 1

)
= 22Se . (C6)

If the distribution µsym forms a spherical t-
design with t = 2Se, then

F2j(µ) = F2j(µsym) = 1
2j + 1 , j = 0, 1, . . . , ⌊Se⌋,

(C7)

so the inequality in Eq. (C5) is saturated, and the
inequality in Eq. (83) is saturated accordingly.

Conversely, if the inequality in Eq. (83) is sat-
urated, then the inequality in Eq. (C5) is satu-
rated, so Eq. (C7) holds. Therefore, µsym forms
a spherical t-design with t = 2Se given that
µsym is center symmetric by construction. Note
that µsym is a (2Se)-design iff it is a (2⌊Se⌋)-
design.

In the rest of this appendix we prove an aux-
iliary lemma employed in the proof of Lemma 6.

Lemma 7. Let Re,r and Re,s be test projectors
defined according to Eq. (63). Then
tr[(Re,r −Qe)(Re,s −Qe)] = tr(R̃e,rR̃e,s)

= 2Se − 3 + 2
(1 + r · s

2

)2Se

+ 2
(1 − r · s

2

)2Se

= 2Se − 3 + 22−2Se

⌊Se⌋∑
j=0

(
2Se

2j

)
(r · s)2j , (C8)

where R̃e,r = Pe − |+⟩e,r⟨+| − |−⟩e,r⟨−|.
With Lemma 7 it is easy to compute the trace

tr(Re,rRe,s) since

tr(Re,rRe,s) = tr[(Re,r −Qe)(Re,s −Qe)]
+ tr(Qe). (C9)

Proof of Lemma 7. By definitions in Eqs. (62)
and (63), the kets |±⟩e,r for any unit vector r
in dimension 3 belong to the support of Pe, so
Re,r commutes with Pe and Qe. In addition,
Re,r −Qe = PeRe,rPe = PeRe,r = Re,rPe

= Pe − |+⟩e,r⟨+| − |−⟩e,r⟨−| = R̃e,r. (C10)
Similar conclusions also hold if r is replaced by s.

According to the theory of spin (or atomic)
coherent states (see Sec. III D in Ref. [72]), we
have

|j,r⟨+|+⟩j,s|2 = |j,r⟨−|−⟩j,s|2 =
(1 + r · s

2

)2Sj

,

|j,r⟨+|−⟩j,s|2 = |j,r⟨−|+⟩j,s|2 =
(1 − r · s

2

)2Sj

,

(C11)
which implies that

|e,r⟨+|+⟩e,s|2 = |e,r⟨−|−⟩e,s|2 =
(1 + r · s

2

)2Se

,

|e,r⟨+|−⟩e,s|2 = |e,r⟨−|+⟩e,s|2 =
(1 − r · s

2

)2Se

.

(C12)

Accepted in Quantum 2023-12-26, click title to verify. Published under CC-BY 4.0. 19



Equations (C10) and (C12) together imply
that

tr[(Re,r −Qe)(Re,s −Qe)] = tr(R̃e,rR̃e,s)
= tr(Pe) − 4 + 2|e,r⟨+|+⟩e,s|2 + 2|e,r⟨+|−⟩e,s|2

= 2Se − 3 + 2
(1 + r · s

2

)2Se

+ 2
(1 − r · s

2

)2Se

= 2Se − 3 + 22−2Se

⌊Se⌋∑
j=0

(
2Se

2j

)
(r · s)2j , (C13)

which confirms Eq. (C8) and completes the proof
of Lemma 7.

D Connections with and distinctions
from the companion paper [64]
In this paper, we proposed a general recipe for
verifying the ground states of frustration-free
Hamiltonians based on local measurements and
provided rigorous bounds on the sample cost re-
quired to achieve a given precision as formulated
in Theorems 1 and 2. To illustrate the power of
this general recipe, we constructed efficient pro-
tocols for verifying AKLT states based on local
spin measurements.

In the companion paper [64], we discussed in
more details the verification of AKLT states fol-
lowing the general recipe proposed here and rig-
orous bounds on the sample cost as presented in
Theorems 1 and 2. To be specific, we proved
that the tests of the form in Eq. (63) are op-
timal among tests based on local spin measure-
ments. In addition, the main properties of these
tests and corresponding bond verification oper-
ators can actually be understood from the per-
spective of one spin with a suitable spin value in-
stead of two spins, which is very helpful to techni-
cal analysis and numerical calculation. Notably,
Theorem 3 in Ref. [64], which is the counterpart
of Theorem 3 in this paper, is formulated in this
perspective. Based on this observation we con-
structed many concrete bond verification proto-
cols based on platonic solids and other special
distributions on the unit sphere, which are op-
timal or nearly optimal. Then we discussed the
optimization of the spectral gaps based on the
optimization of matching covers and test proba-
bilities. Furthermore, we constructed a number
of concrete verification protocols for AKLT states
on open and closed chains and compared their

efficiencies based on theoretical analysis and nu-
merical calculation. Finally, we considered AKLT
states on arbitrary graphs up to five vertices.

E Comparison with previous works
In this section we compare our verification pro-
tocols for the ground states of frustration-free lo-
cal Hamiltonians with previous works [14, 21, 33,
35, 36, 38, 63]. It should be noted that the pro-
tocols proposed in Refs. [21, 33, 35, 38, 63] are
also applicable to certain local Hamiltonians that
are not frustration free. The property of being
frustration-free is crucial to attaining the high ef-
ficiency achieved in this work.

According to the following analysis, previous
protocols require at least O(n2(ln δ−1)/(γ2ϵ2))
tests to verify an n-qubit target state within
infidelity ϵ and significance level δ, where γ
is the spectral gap of the underlying Hamilto-
nian. In sharp contrast, our protocols require
only O((ln δ−1)/(γϵ)) tests, which is substantially
more efficient than previous protocols. Notably,
only our protocols can verify the target state
with a sample cost that is independent of the
system size when the Hamiltonian is gapped in
the thermodynamic limit). Moreover, for large
and intermediate quantum systems of practical
interest (which are beyond classical simulation
and are required to demonstrate quantum advan-
tage), only our protocols can achieve the verifica-
tion task with reasonable sample cost acceptable
in experiments or practical applications. When
ϵ = δ = 0.01 and n is around 100 for example,
other protocols would require tens of thousands
of times more samples to achieve the same preci-
sion.

E.1 Comparison with Ref. [38]

In Ref. [38], Takeuchi and Morimae (TM) intro-
duced a protocol for verifying the ground states of
local Hamiltonians. To verify an n-qubit target
state within infidelity ϵ = 1/n and significance
level δ = 1/n, the number of tests required is
given by k +m with

k ≥ 32R2n5, m ≥ 2n5k2 log 2 ≥ 211n15R4 log 2,
(E1)

where R = poly(n)/γ, and γ = γ(H) is the
spectral gap of the underlying Hamiltonian H.
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This number is approximately proportional to the
fourth power of the inverse spectral gap. The
scaling behaviors with ϵ and δ are not clear be-
cause the choices of these parameters in Ref. [38]
are coupled with the number n of qubits. In any
case, the number of required tests is astronomi-
cal for any verification task of practical interest.
When n = 100 for example, this number is at
least 1033R4, which is billions of times more than
what is required in our protocols and is too pro-
hibitive for practical applications.

Incidentally, the TM protocol can be applied to
the adversarial scenario in which the preparation
device is not trusted. By virtue of the recipe pro-
posed in Refs. [39, 40], our protocols can also be
generalized to the adversarial scenario with neg-
ligible overhead in the sample cost. In this sce-
nario, our protocols are still dramatically more
efficient than the TM protocol.

E.2 Comparison with Refs. [14, 21, 33, 35, 36]

In Ref. [33], Cramer et al. introduced an ap-
proach for verifying quantum states that can be
approximated by matrix product states (MPS).
It is much more efficient than quantum state to-
mography, but the paper did not give very specific
sample cost (see the followup Ref. [35] for a bit
more detail). In addition, this approach only ap-
plies to one-dimensional systems, which is a bit
restricted.

In Ref. [36], Hangleiter, Kliesch, Schwarz, and
Eisert (HKSE) extended the approach introduced
in Ref. [33] and proposed a general protocol for
verifying the ground states of local Hamiltonians,
assuming that each local projector can be mea-
sured directly. To verify the target state within
infidelity ϵ and significance level δ, the number of
tests required is given by

|E|3

2γ2ϵ2
ln
[
− |E| + 1

ln(1 − δ)

]
≈ |E|3

2γ2ϵ2
ln |E|

δ
, (E2)

where |E| is the number of edges of the graph
G(V,E) encoding the action of the Hamiltonian,
that is, the number of local projectors. Here the
approximation is applicable when |E| ≫ 1 and
δ ≪ 1, which hold for most cases of practical in-
terest. If the Hamiltonian is 2-local and is defined
on a lattice with n nodes and coordination num-
ber z, then |E| = zn/2, so the above equation

reduces to

z3n3

16γ2ϵ2
ln zn2δ . (E3)

This number is (approximately) proportional to
n3, γ−2, and ϵ−2. The sample complexity is much
better than the TM protocol [38] discussed above.
However, this number is still too prohibitive for
large and intermediate quantum systems of prac-
tical interest, which consist of more than 100
qubits or qudits.

In Ref. [21], Bermejo-Vega, Hangleiter,
Schwarz, Raussendorf, and Eisert (BHSRE)
improved the HKSE protocol and reduced the
sample cost to [see Eq. (E10) in the paper]

n2α2κ2

2γ2ϵ2
ln κ+ 1

δ
≥ n2

2γ2ϵ2
ln κ+ 1

δ
, (E4)

where α, κ depend on certain decomposition of
the underlying Hamiltonian and satisfy the con-
ditions κ ≥ 2 and ακ ≥ 1. Here the scaling be-
havior in n is better than the HKSE protocol, but
the scaling behaviors in γ and ϵ remain the same.

Following the idea of the HKSE protocol,
Ref. [14] introduced a protocol for verifying a
family of tensor network states. The sample cost
is proportional to |E|2/(γ2ϵ2), which is compara-
ble to the BHSRE protocol. However, the proof
in Ref. [14] relies on the Gaussian approximation,
which is not very rigorous. Notably, Eq. (E2) in
Ref. [14] is applicable only under suitable restric-
tions on the parameters, which were not clarified.
Additional analysis is required to derive a rigor-
ous bound on the sample cost.

For example, consider the AKLT state on the
closed chain with n = 100 nodes, in which case
z = 2 and γ ≈ 0.350 [8, 82]. Suppose we want to
verify the target AKLT state within infidelity ϵ =
0.01 and significance level δ = 0.01. We can ap-
ply the optimal coloring protocol, and each bond
verification protocol can be constructed from a
4-design [cf. Theorem 3]. According to Theo-
rem 1 with m = g = 2, s = 1/2, νE = 2/5,
and γ ≈ 0.350, the spectral gap of the verifica-
tion operator is bounded from below by 0.0278,
and the number of tests required by our proto-
col is at most 1.66 × 104. By contrast, according
to Eq. (E2) with |E| = n, the number of tests re-
quired by the HKSE protocol is about 3.76×1011,
which is 22 million times more than our protocol.
According to the lower bound in Eq. (E4) with
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κ = 2, the number of tests required by the BH-
SRE protocol is at least 2.32×109 (assuming that
BHSRE protocol can be generalized to qudit sys-
tems; originally, BHSRE mainly focused on qubit
systems), which is 140 thousand times more than
our protocol.

Next, consider the AKLT state on the honey-
comb lattice with the same number of nodes, in
which case z = 3 and γ ≈ 0.10 [8, 82]. Now we
can apply the optimal coloring protocol as illus-
trated in Fig. 1 in the main text, and each bond
verification protocol can be constructed from a 6-
design [cf. Theorem 3]. According to Theorem 1
with m = 3, g = 4, s = 1/2, νE = 2/7, and
γ ≈ 0.10, the spectral gap of the verification op-
erator is bounded from below by 5.8 × 10−4, and
the number of tests required by our protocol is at
most 7.9×105. By contrast, according to Eq. (E2)
with |E| = 3n/2, the number of tests required by
the HKSE protocol is about 1.6 × 1013, which is
20 million times more than our protocol. Accord-
ing to the lower bound in Eq. (E4) with κ = 3,
the number of tests required by the BHSRE pro-
tocol is at least 2.9 × 1010, which is 37 thousand
times more than our protocol. The advantage of
our verification protocol is more dramatic as the
system size and target precision increase.

In addition, our protocol only uses local
projective measurements. If the projectors that
compose the Hamiltonian can be measured
directly as required in the HKSE protocol, then
the bond spectral gap νE in Theorem 1 can
attain the maximum value 1 instead of 2/5 (2/7)
for the 1D chain (honeycomb lattice), and the
number of tests required by our protocol can be
reduced by a factor of 2/5 (2/7) for the 1D chain
(honeycomb lattice).

E.3 Comparison with Ref. [63]

In Ref. [63], Gluza, Kliesch, Eisert, and Aolita
(GKEA) introduced a protocol for verifying
fermionic Gaussian states. The focus and scope
of applications are very different from the current
work. To verify an L-mode fermionic Gaussian
state within infidelity ϵ and significance level δ,
the sample complexity is about

N ≤
⌈2L4 ln(2/δ)

ϵ2

⌉
. (E5)

When the fermionic Gaussian state is the unique
ground state of a gapped local Hamiltonian, the
sample complexity can be reduced to

N ∼
⌈
L2(lnL)2 ln(2/δ)

2ϵ2
⌉
. (E6)

However, here the constant and scaling behavior
with respect to the spectral gap γ were not clar-
ified in Ref. [63].
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