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Utilizing quantum computer to inves-
tigate quantum chemistry is an impor-
tant research field nowadays. In addi-
tion to the ground-state problems that
have been widely studied, the determina-
tion of excited-states plays a crucial role
in the prediction and modeling of chemi-
cal reactions and other physical processes.
Here, we propose a non-variational full
circuit-based quantum algorithm for ob-
taining the excited-state spectrum of a
quantum chemistry Hamiltonian. Com-
pared with previous classical-quantum hy-
brid variational algorithms, our method
eliminates the classical optimization pro-
cess, reduces the resource cost caused by
the interaction between different systems,
and achieves faster convergence rate and
stronger robustness against noise with-
out barren plateau. The parameter up-
dating for determining the next energy-
level is naturally dependent on the en-
ergy measurement outputs of the previ-
ous energy-level and can be realized by
only modifying the state preparation pro-
cess of ancillary system, introducing lit-
tle additional resource overhead. Numer-
ical simulations of the algorithm with hy-
drogen, LiH, H2O and NH3 molecules are
presented. Furthermore, we offer an ex-
Jingwei Wen: wjw17@tsinghua.org.cn
Shijie Wei: weisj@baqis.ac.cn
Guilu Long: gllong@tsinghua.edu.cn

perimental demonstration of the algorithm
on a superconducting quantum comput-
ing platform, and the results show a good
agreement with theoretical expectations.
The algorithm can be widely applied to
various Hamiltonian spectrum determina-
tion problems on the fault-tolerant quan-
tum computers.

1 Introduction

As one of the emerging research fields, quantum
computation is devoted to solving some certain
computational problems that are intractable to
deal with in classical computers using the prin-
ciples of quantum mechanics [1, 2]. Since the
concept was proposed, quantum computing has
become one of the most fruitful fields in contem-
porary physics and various important problems
of practical significance such as prime factoriza-
tion [3], database search [4, 5], and solution of
linear equations [6, 7] have been solved by al-
gorithms in quantum version. In recent years,
the development of quantum algorithms applied
to quantum chemistry have become an active re-
search field, with huge potential market applica-
tion value [8, 9, 10]. Some quantum algorithms
used to determine the ground-state of chemi-
cal molecule Hamiltonian, such as the classical-
quantum hybrid variational quantum eigensolver
(VQE) algorithm [11, 12, 13, 14] and its improve-
ments [15, 16, 17, 18], the full quantum eigen-
solver (FQE) algorithm [19], have obtained rapid
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Figure 1: Classification of quantum algorithms for quan-
tum chemistry. The algorithms are divided into hybrid
quantum algorithm for noisy intermediate scale quantum
(NISQ) devices and full quantum algorithm for fault-
tolerant quantum computers, where the former one re-
quires the cooperation of classical and quantum comput-
ers while the latter one is based on the full circuit-based
quantum operation. The purpose of quantum chemistry
is divided into determining ground- or excited-states.

theoretical development and some state-of-the-
art experimental demonstration. To be specific,
the VQE algorithm is divided into two parts, i.e.
preparing and measuring of quantum states on
the quantum computer and parameter optimiza-
tion on the classical computer. By iterating the
whole process until convergence, the ground-state
and ground-state energy of the target Hamilto-
nian can be obtained. But the FQE algorithm
removes the classical optimizer and performs all
the calculations on the quantum computer by us-
ing quantum gradient descent [20].

However, in addition to the ground-states, the
determination of the excited-states is also indis-
pensable for the study of chemical reaction pro-
cesses. Up to now, a series of modified versions
of the hybrid variational algorithms have been
proposed for finding energy spectrum, such as
variational quantum deflation (VQD) [21, 22] and
subspace-search variational quantum eigensolver
(SSVQE) [23, 24] algorithms and some extension
versions [25, 26, 27, 28, 29, 30, 31]. The basic idea
of the former method is introducing state-specific
penalization terms to the Hamiltonian and deter-
mining each eigenstate by a separate minimiza-
tion. While the latter algorithm performs a single
minimization for a set of initially selected orthog-
onal states with one ansatz, and realizes the map-
ping from these states to the lower excited-states
of target Hamiltonian.

Although so much progress has been made in
the investigation of excited-states, it is still a

research direction of concern to determine the
energy spectrum of the molecular Hamiltonian
based on a complete quantum circuit model for
future fault-tolerant quantum computation, just
as shown in the Figure 1. In this work, we fill the
last step of solving quantum chemistry problems
in different algorithm frames and propose a full
quantum excited-state solver (FQESS) algorithm
for determining the whole spectrum of chemistry
Hamiltonian efficiently and steadily. Compared
with classical-quantum hybrid variational algo-
rithms, our method removes the optimization in
classical computers, and its non-variational na-
ture can ensure that the algorithm converges to
the target states along the direction of the fastest
gradient descent, avoiding barren plateau phe-
nomenon. Moreover, the parameter updating for
different energy-levels can be simply realized by
modifying the state preparation process of an-
cillary system based on the energy measurement
of the last energy-level, which is experimentally
friendly.

This paper is organized as follows: in Sec 2,
we introduce the details of the FQESS algorithm,
and analyze the complexity of the algorithm. In
Sec 3, we present a numerical simulation with
hydrogen, LiH, H2O and NH3 molecules under
noiseless and noise condition separately. In Sec
4, we offer an experimental demonstration of
FQESS algorithm on the real superconducting
quantum computing platform. Finally, sec 5 gives
a conclusion.

2 Results
2.1 Full Quantum Excited-State Solver
Here we introduce a full quantum algorithm
for solving the excited-states of the quantum
chemistry Hamiltonian. Quantum simulation of
fermionic systems can be reformulated in terms
of qubit operations by Jordan-Wigner [32] or
Bravyi-Kitaev transformation [33], and then the
target n-qubit chemistry Hamiltonian can be gen-
erally expressed as

H1 =
L1∑
i=1

α
(1)
i Pi (1)

which is expressed as the linear combination of
L1 ≤ 4n Pauli words Pi (tensor product of Pauli
matrices) with real coefficients α(1)

i , and we want
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Figure 2: Quantum circuit for the realization of FQESS
algorithm. The whole system includes n+log2 Li qubits
and is divided into working system and ancillary system.
The basic process for determining the i-th eigenstate,
which is repeated by ki times, includes four parts, that is
encoding with operator Vi, entangling with Li controlled
gates, decoding with Hardmard gates and measurement
on the ancillary qubits. The output state of working sys-
tem is

∣∣∣Ẽi

〉
and its measurement results on the different

Pauli words ϵ(i)
j is used for calculating the eigenvalues

Ẽi and updating the state preparation operator.

to find the spectrum. Let the set of eigenstates
be {|Ej⟩}2n

j=1 with corresponding eigenenergies
{Ej}2n

j=1, satisfying |Ei| ≥ |Ej | when i ≤ j.
We first need to construct a quantum circuit

to realize the Hamiltonian in equation (1), as
shown in the Figure 2. Note that we have n-
qubit as the working system, while we need an-
other log2 L1 ≤ 2n qubits as the ancillary sys-
tem. In principle, we at most need 3n qubits to
ensure the expansion generality of the subsequent
quantum states. The details for the realization of
such a process with quantum circuits will be pre-
sented in section 2.2. Once we realize the Hamil-
tonian H1 with the quantum circuit, we apply
the circuit-based operators with enough times (k1
times) to an arbitrary initial quantum state |ψ0⟩,
then we have the normalized quantum state as∣∣∣Ẽ1

〉
= Hk1

1 |ψ0⟩ /(⟨ψ0|H2k1
1 |ψ0⟩)1/2, an approx-

imation to the eigenvector |E1⟩ with the biggest
absolute value of eigenvalue |E1|. The corre-
sponding approximate eigenvalue Ẽ1 can be de-
termined by Ẽ1 =

〈
Ẽ1

∣∣∣H1
∣∣∣Ẽ1

〉
=

∑L1
i=1 α

(1)
i ϵ

(1)
i ,

and the energy component ϵ(1)
i =

〈
Ẽ1

∣∣∣Pi

∣∣∣Ẽ1
〉

can be obtained by measuring the average values
of the output quantum state under different Pauli
words.

Furthermore, based on the complete-
ness of Pauli basis, output density ma-
trix ρ1 =

∣∣∣Ẽ1
〉 〈
Ẽ1

∣∣∣ can be expanded as

ρ1 =
∑l1

j=1 β
(1)
j Pj , where the coefficients satisfy

β
(1)
j = tr(Pjρ1)/2n = ϵ

(1)
j /2n. This can be

understood as the energy contribution of ρ1 to
each Pauli term in the Hamiltonian. Then we
can re-constructed the original Hamiltonian as

H2 =
L2∑
i=1

(α(1)
i − Ẽ1β

(1)
i )Pi =

L2∑
i=1

α
(2)
i Pi (2)

which can be realized with the same circuit as
above, just changing the initial state preparation
of ancillary system. The corresponding physi-
cal meaning is that we have eliminated the en-
ergy contribution of |E1⟩ to each Pauli term in
the Hamiltonian, so the biggest absolute value of
eigenvalues for the new Hamiltonian is |E2| now.
Similarly, by applying the new circuit-based op-
erator with k2 times to the arbitrary initial quan-
tum state, we can have

∣∣∣Ẽ2
〉

= Hk2
2 |ψ0⟩√

⟨ψ0|H2k2
2 |ψ0⟩

, Ẽ2 =
L2∑
i=1

α
(2)
i ϵ

(2)
i (3)

which is the eigenvector |E2⟩ with the second
biggest absolute value of eigenvalue in H1 and
corresponding eigenvalue E2.

Repeat this process with 2n times, we can de-
termine the whole spectrum of the initial Hamil-
tonian. Note that the order of solution is based on
the magnitude of the absolute values of the eigen-
values, rather than the magnitude of the eigen-
values themselves, which may cause some confu-
sion. This can be solved by introducing a bias
term −λ0I

⊗n (λ0 > max{0, E1, · · ·E2n}) into the
Hamiltonian, making all the eigenvalues negative.
Then the first solved eigenstate is the ground-
state, followed by the first excited-state, and so
on. And the bias parameter λ0 should not be too
big, because it affects the ratio of reconstructed
eigenvalues (Ei − λ0)/(E1 − λ0), which is related
to the convergence rate of the algorithm. In gen-
eral, the bigger the bias parameter is, the more
operation times we need. The repetition satis-
fies ki = O(log(N/ϵ)), which is logarithmically
dependent on the system size N and the inverse
of energy precision ϵ [19]. The FQESS algorithm
proposed here can be integrated into the scope
of power iteration scheme or quantum gradient
descent scheme for eigenvalue evaluation, as dis-
cussed in the appendix A. The detailed process of
the FQESS algorithm is summarized in the table
of Algorithm 1.
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Algorithm 1: FQESS algorithm
Input: Hamiltonian H1 =

∑L1≤4n

j=1 α
(1)
j Pj ,

State |ψ0⟩, Bias parameter λ0,
Iteration times ki

Output: Eigenstates
∣∣∣Ẽi

〉
, Eigenvalues Ẽi

Preprocess: Construct U1 = H1 − λ0I
⊗n

1 for i = 1 : 2n do
2 Apply circuit ki times to |ψ0⟩, having∣∣∣Ẽi

〉
= Uki

i |ψ0⟩ ;

3 Measure ϵ(i)j =
〈
Ẽi

∣∣∣Pj

∣∣∣Ẽi

〉
and get

Ẽi =
∑Li

j=1 α
(i)
j ϵ

(i)
j ;

4 return
∣∣∣Ẽi

〉
and Ẽi ;

5 Reconstruct α(i+1)
j = α

(i)
j − Ẽiϵ

(i)
j /2n ;

6 Construct circuit
Ui+1 =

∑Li+1
j=1 α

(i+1)
j Pj − λ0I

⊗n

7 end

2.2 Realization of Circuit-Based Operator

Now we turn to discuss concretely about how
to realize the operator Ui = Hi − λ0I

⊗n in
the circuit-based quantum computation frame.
Without loss of generality, we can set P1 = I⊗n,
then we have

Ui = (α(i)
1 − λ0)I⊗n +

Li∑
j=2

α
(i)
j Pj (4)

where Li ≤ 4n. This is the target operator
we aimed to repeat by ki times when determin-
ing the i-th eigenstate. In principle, it can be
understood as a linear combination of unitary
Pauli words and can be simulated by introducing
ancillary qubits to form a bigger Hilbert space
[34, 35, 36, 37, 38, 39], as shown in the Figure 2.
The basic process is divided into four parts, in-
cluding encoding, entangling, decoding and mea-
surement. The first encoding process is a quan-
tum state preparation process for ancillary sys-
tem, realized by the log2 Li-qubit operator Vi,
whose first column is [α(i)

1 − λ0, α
(i)
2 , · · · , α(i)

Li
]. It

does not matter what the other matrix elements
are as long as the operator is unitary, and we can
determine the operator by schmidt orthogonaliza-
tion or by decomposing it into single- and two-
qubit operators. Selectively, the quantum state

of ancillary system after encoding is

Vi |0a⟩ =
[
(α(i)

1 − λ0) |1⟩ +
Li∑

j=2
α

(i)
j |j⟩

]
/C (5)

where C =
[
(α(i)

1 − λ0)2 +
∑Li

j=2(α(i)
j )2]1/2 is a

normalization constant. Note that the notations
|0a⟩ and |1⟩ refer to the same quantum states∣∣∣0⊗ log2 Li

〉
here. This quantum state can be pre-

pared by the initialization algorithm in Ref [40]
with O(Li log2 Li) standard gate operations or
O(log2 Li) steps with quantum random access
memory method [41]. Then a series of multi-
qubit controlled operators

∑Li
i=1 |i⟩ ⟨i|Pi are ap-

plied onto the whole system, creating entangle-
ment between the ancillary and working systems.
The state of the whole system is transformed into[
|1⟩ (α(i)

1 − λ0)P1 +
∑Li

j=2 |j⟩α(i)
j Pj

]
|ψ0⟩ /C. Fol-

lowed by the decoding operation realized with the
Hardmard gates H⊗ log2 Li on the ancillary sys-
tem, we concern the output state of working sys-
tem in the

∣∣∣0⊗ log2 Li

〉
subspace of the ancillary

system as

(α(i)
1 − λ0)P1 +

∑Li
j=2 α

(i)
j Pj

C
√

2Li
|ψ0⟩ = Ui |ψ0⟩

C
√

2Li
(6)

and this means that we can realize the simula-
tion of target operator by measuring the ancillary
system in state

∣∣∣0⊗ log2 Li

〉
with success probabil-

ity P
(i)
s = ||Ui |ψ0⟩ ||2/(C22Li) at each iteration,

where ||x|| represents the modulus of vector x.
We can also further increase the probability for
obtaining target quantum states by quantum am-
plitude amplification technology [42, 43].

Then the output of this basic process will be
the input for the next iteration, which needs to
be repeated ki times when determining the i-
th eigenstate, and the final output state

∣∣∣Ẽi

〉
of

the working system would be a good approxima-
tion to the eigenstate |Ei⟩. Based on the output
state, we can obtain its measurement values for
each Pauli words ϵ(i)j =

〈
Ẽi

∣∣∣Pj

∣∣∣Ẽi

〉
as the ba-

sic energy components, which are then used for
calculating the approximate eigenvalues Ẽi and
updating the state preparation operator for de-
termining the next eigenstate. It is worth em-
phasizing that when we want to determine dif-
ferent energy-levels, only the operator Vi needs
to be changed, which reduces the complexity and
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Figure 3: A simulation of the iteration process for hydro-
gen molecule without noise at the R = 1.25 angstrom.
(a) The iteration processes for different energy-levels.
(b) The updating parameter α(i)

j under Pauli basis and
the black diamond points represent the mean coefficients
for different energy-levels.

resource cost during the iteration updating pro-
cess. In addition to the programmable or updat-
able state preparation process, the other parts
of our algorithm can be modularized in principle
for determining the energy spectrum of different
molecules. Moreover, the procedures for deter-
mining the i-th eigenstate in our FQESS algo-
rithm is similar to that in FQE algorithm, and
by updating the state preparation process using
the energy output of last iteration, we extend the
solution of the ground-state to the entire energy
spectrum.

2.3 Complexity Analysis

The algorithm complexity for our FQESS algo-
rithm includes qubit resources and gate complex-
ity. For qubit resources, the number of ancillary
qubits needed is log2 L ≤ 2n, where L = max{Li}
is the maximum number of Pauli words in the
Hamiltonian. Therefore, the total number of
qubits in our algorithm is O(n+log2 L), no more
than 3n-qubits. As for the gate complexity in
each basic process, we need O(L log2 L) single-
and two-qubit gates for the encoding process [40]
and O(nL log2 L) basic gates for entangling pro-
cess [44, 45]. Consider another log2 L Hardmard
gates for decoding, the total basic gates required
for the realization of Ui operator when obtain-
ing the i-th energy-level is O(nL log2 L) for the
FQESS algorithm. For the chemistry Hamilto-
nian of electrons with L = O(n4), the gate com-
plexity is O(n5 log2 n). Moreover, to estimate
the approximate eigenvalue Ẽi =

∑Li
j=1 α

(i)
j ϵ

(i)
j ,
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Figure 4: (a-d) The minimum iteration times ki for re-
alizing chemical accuracy when determining eigenenergy
and its relation with the energy difference. (e) The maxi-
mum iteration times K = max{ki} under different bond
lengths (unit in angstrom).

we need O(Li/P
(i)
s /δ2) measurements, where P (i)

s

indicates the probability that all qubits of the
auxiliary system are measured to be |0⟩ quantum
states, and δ ∝ N−1/2 represents the statistical
error of ϵ(i)j when N measurements are made [46].

3 Numerical Simulation
In this part, we present a demonstration of the
FQESS algorithm for excited-states with the hy-
drogen and LiH molecules in the minimal STO-
3G basis for a range of inter-nuclear separations
to verify the feasibility and robustness of the al-
gorithm. The fermionic Hamiltonian of hydro-
gen can be translated into qubit representation
by Bravyi-Kitaev transformation [33], obtaining
a two-qubit Hamiltonian as

H(R) =αR
0 + αR

1 σ
(1)
z + αR

2 σ
(2)
z + αR

3 σ
(1)
z ⊗ σ(2)

z

+ αR
4 σ

(1)
x ⊗ σ(2)

x + αR
5 σ

(1)
y ⊗ σ(2)

y

(7)

where σ
(i)
β (β = x, y, z) is the Pauli operator

acting on the i-th qubit and the real-valued co-
efficients αR

i are functions of the inter-nuclear
distance R [26]. Also, a six-qubit Hamiltonian
for LiH molecule containing 118 Pauli words is
obtained via the Jordan-Wigner transformation
[32]. Moreover, numerical simulation results of
larger molecules for H2O (12 qubits) and NH3 (14
qubits) in STO-6G basis set are presented in Ap-
pendix B. First, we apply our FQESS algorithm
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Figure 5: A simulation of hydrogen (a) and LiH (b) molecule spectrum without noise for a range of inter-nuclear
separations (unit in angstrom). The exact values are obtained by Hamiltonian diagonalization and plotted in gray
lines. The numerical results are plotted with circles. Errors between the numerical outputs and the theoretical
expectations are shown in the bottom panel.

to the hydrogen molecule and plot the power it-
eration process for each eigenstate at R = 1.25
angstrom in the Figure 3, together with a up-
dating parameter α(i)

j under different Pauli basis.
The initial state is chosen as |ψ0⟩ = |0⟩ ⊗ |+⟩,
where |+⟩ is a eigenvector of σx matrix. It
can be concluded that iteration processes can
quickly converge to the target values. More im-
portantly, the iteration times needed is less when
the energy-level is high enough, especially for the
last eigenstate, there is no need for extra iter-
ations. This is due to that our algorithm elimi-
nates the other eigen-components during the iter-
ation process and the left new-constructed Hamil-
tonian has less eigen-components and is purer,
which makes it easier to extract the remaining
eigenstates. We need to analyze the properties
related to the number of iterations. The Figure
4 shows the relationship between the number of
iterations ki required to achieve chemical accu-
racy (0.0016 Hartree) and the energy-level dif-
ference. It can be found that a larger energy-
level interval generally requires fewer iterations,
but the highest energy state requires only one
iteration (k4 = 1), independent of the energy-
level difference. We also plot the iterations times
with bond length and find the maximum times
K = max{ki}. We will show below that our
FQESS algorithm can achieve faster convergence
compared with other typical hybrid variational
quantum algorithms for excited-states.

We plot the whole spectrum of the hydrogen

and LiH molecules for a wide range of inter-
nuclear separations in Figure 5. We set ki = 600
for better optimization results beyond chemical
accuracy and the initial state for hydrogen is
still |ψ0⟩ but for LiH molecule is |+⟩⊗6. By in-
troducing suitable bias terms, we can find the
energy-levels in turns, and the maximum dif-
ferences for two molecules between the numeri-
cal outputs and the theoretical expectations are
0.000145 and 0.001203 Hartree, separately. More-
over, we study the effect of random noise term in
the form

∑n
i δα

R
i σ

(i)
z , which is used to simulate

decoherence noise with certain intensity [19, 31].
In each optimization, we set iteration times as
ki = 600 and these processes are repeated five
times for average values, which is used as the out-
put and the maximum deviation from the mean
values are seen as error bars, as plotted in the
Figure 6. We can conclude based on the output
results that our algorithm is robust to the ran-
dom noise and the fast convergence still can be
achieved. The mean error of different eigenener-
gies between optimization results and theoretical
expectations are 0.000978 and 0.000231 Hartree
and the accuracy of most data points exceed the
chemical accuracy.

Furthermore, we compare the FQESS algo-
rithm with another two typical hybrid varia-
tional algorithms for excited-states, i.e. VQD and
SSVQE algorithm. The ansatz circuit for these
two algorithms is the hardware-efficient ansatz
[13] and the classical optimization algorithm used

Accepted in Quantum 2024-01-02, click title to verify. Published under CC-BY 4.0. 6



1 3 5 7 9 11 13 15

Iteration

-1

-0.6

-0.2

E
n
e
rg

y
 L

e
v
e
l(
 H

a
rt

re
e
 )

Hydrogen molecule at R=1.25 angstrom

Noisy

( a )

Ground-state

First excited-state

Second excited-state

Third excited-state

100 200 300

Iteration

-7.95

-7.75

-7.55

-7.35

E
n
e
rg

y
 L

e
v
e
l(
 H

a
rt

re
e
 )

LiH molecule at R=1.20 angstrom

Noisy

( b )
Ground-state

First excited-state

Second excited-state

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

-1

0

1

2

3

E
n
e
rg

y
 L

e
v
e
l 
( 

H
a
rt

re
e
 )

Spectrum of Hydrogen molecule

Noisy

( c )

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Bond length

0

5

E
rr

o
r

×10
-3

chemical accuracy

1.1 1.2 1.3 1.4 1.5 1.6 1.7
-8

-7.95

-7.9

-7.85

-7.8

-7.75

-7.7

E
n
e
rg

y
 L

e
v
e
l 
( 

H
a
rt

re
e
 )

Spectrum of LiH molecule

Noisy

( d )

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Bond length

0

2

4
E

rr
o

r

×10
-3

chemical accuracy

Figure 6: A simulation of the hydrogen and LiH molecule with noise. (a,b) The iteration processes for different
energy-levels at a specific bond length. (c,d) The whole spectrum for a range of inter-nuclear separations (unit in
angstrom). The exact values are obtained by Hamiltonian diagonalization and plotted by lines. The numerical results
are plotted with circles and the maximum deviation from the mean values are used as error bars. Errors between the
numerical outputs and the theoretical expectations are shown in the bottom panel.

5 10 15 20 25 30

Iteration

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

C
o
n
v
e
rg

e
n
c
e
 V

a
lu

e

FQESS algorithm

( a )

Noiseless

Noisy

20 40 60 80 100

Iteration

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

VQD algorithm

( b )

Noiseless

Noisy

20 40 60 80 100

Iteration

-0.8

-0.75

-0.7

-0.65

SSVQE algorithm

( c ) Noiseless

Noisy

0 100 200 300

Iteration

-8

-7.8

-7.6

-7.4

C
o
n
v
e
rg

e
n
c
e
 V

a
lu

e

FQESS algorithm

( d ) Noiseless

Noisy

0 200 400 600

Iteration

-8

-7.8

-7.6

-7.4

-7.2

VQD algorithm

( e ) Noiseless

Noisy

0 200 400 600

Iteration

-8

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

SSVQE algorithm

( f ) Noiseless

Noisy
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is Newton gradient descent algorithm. For hydro-
gen molecule, the initial state for VQD algorithm
is same to that of FQESS algorithm when deter-
mining various eigenstates. The four initial or-
thogonal states in the SSVQE algorithm are cho-
sen as the eigenstates of P1 and the correspond-
ing weights for them are w1 = 0.4, w2 = 0.3,
w3 = 0.2, w4 = 0.1. So the target convergence
value for SSVQE algorithm is

∑4
i=1wiEi. For

LiH molecule, the convergence values for FQESS
and VQD algorithms are the eigenenergies of LiH
molecule at R = 1.60 angstrom, while target
value for SSVQE algorithm is a weighted average
(w1 = 0.8, w2 = 0.2) of the lowest two eigen-
values. The initial state for VQD and FQESS
algorithm when determining various eigenstates
is |+⟩⊗6 and the two initial orthogonal states for
SSVQE algorithm are |+−⟩⊗3 and |−+⟩⊗3. The
performances of these algorithms under noiseless
and 10% noise for hydrogen and LiH molecules
are presented in the Figure 7. We can find that
our FQESS algorithm shows stronger robustness
against noise and the iteration times needed is
less, which means it can achieve a faster conver-
gence compared with the other two algorithms
for excited-states. Although the two hybrid vari-
ational algorithms can be improved by chang-
ing the ansatz circuit or classical optimization
process, these enhancements require pre-selection
based on some prior knowledge, which is a po-
tential challenge in practical applications, while
the construction of FQESS algorithm only de-
pends on the form of the target chemical Hamil-
tonian. The non-variational nature can also en-
sure that the FQESS algorithm converges to the
target states along the direction of the fastest gra-
dient descent, avoiding barren plateau. In addi-
tion, our algorithm can avoid the key challenges
of overlap estimation realized by swap test in the
VQD algorithm, and the limited number of solv-
able excited-states caused by the difficulty of si-
multaneous optimization of ansatz in the SSVQE
algorithm.

4 Experimental Demonstration

Here we demonstrate our FQESS algorithm with
the real superconducting quantum computation
chip on the Quafu quantum cloud platform
[47]. Detail information about Quafu cloud
platform can be found in the Appendix C.
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Figure 8: (a) Energy components during iteration and
final probability distribution for the ground- and excited-
state. (b) Experimental quantum circuit and iteration
results of FQESS algorithm with hydrogen molecular on
the superconducting quantum computation chips.

As a proof-of-principle experimental demon-
stration, we consider the singlet and spatial
symmetry of ground state in the hydrogen
molecular, and then only two configurations
are relevant in the calculation, i.e. the ground-
state configuration and the double excitation
configuration. Then the simplified Hamiltonian
can be expressed as a two-dimensional matrix
H = α0 + αxσx + αzσz in the Pauli basis with
coefficients α0 = −1.04235, αx = 0.1813 and
αz = −0.78865 [48]. Then a series of basic
quantum logic gates can be applied as the quan-
tum circuit introduced above and the encode
operator on the ancillary qubit [q0] is Ry(β) =
[cos(β/2),− sin(β/2); sin(β/2), cos(β/2)] with
β = −2.6897 for the ground state. The iteration
process can be realized by introducing a rotation
operator Ry(θ) on the work qubit [q1], which
start from |+⟩ state with θ = π/2 initially.
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The quantum processor will be called ten thou-
sand times to obtain high-precision values in each
setup and the experiment will be repeated three
times to obtain error bars. As for the measure-
ment, assume that the output quantum state
of work system is |ϕI⟩ and the experimentally-
measurable distribution of p0 = |⟨0|ϕI⟩|2 and
p1 = |⟨1|ϕI⟩|2 can be determined in the sub-
space of ancillary qubit. Then two energy com-
ponents can be determined as ϵ0 = ⟨ϕI|ϕI⟩ = 1,
and ϵz = ⟨ϕI|σz |ϕI⟩ = p0 − p1. Because that
ϵx = ⟨ϕI|σx |ϕI⟩ = ⟨ϕI| HσzH |ϕI⟩ where H rep-
resents Hardmard gate, we can repeat the same
circuit but add H on work qubit to obtain |ϕH⟩ =
H |ϕI⟩ with new probability distribution pH

0 and
pH

1 , and then ϵx = ⟨ϕH| ϵz |ϕH⟩ = pH
0 − pH

1 .
Therefore, the energy can be reconstructed as
Eexp =

∑
i=0,x,z αiϵi experimentally. To realize

the multi-step iteration, we need to repeat an-
other same evolution process, but start with the
output state in the last iteration. This can be
realized by modifying the angle θ with formula
θ = −2 arcsin

(
p10.5)

. The experimental quantum
circuit and iteration results of energy are plotted
in the Figure 8, which show a good agreement
with the theoretical expectations.

5 Discussion

In summary, we have proposed a full quantum
algorithm in circuit frame for the excited-states
of quantum chemistry, termed FQESS algorithm.
Compared with the hybrid variational algorithm,
our method does not need the classical optimizer
and all the calculations are performed on the
quantum computer. The non-variational charac-
teristic makes the algorithm converge to the tar-
get states along the direction of the fastest gra-
dient descent, avoiding the barren plateau phe-
nomenon. The output results of energy for the
last energy-level can be used as the updating pa-
rameter for determining the next energy-level,
and the only difference between different itera-
tions for various eigenstates is the state prepa-
ration process of ancillary system, which can be
simply realized by modifying the encoding oper-
ator. We present a numerical simulation with
the hydrogen, LiH, H2O and NH3 molecules to
demonstrate the feasibility and robustness of the
algorithm. A proof-of-principle experiment has
also been demonstrated on the practical super-

conducting quantum chip, and the results show
a good agreement with theoretical expectations.
Our algorithm fills the last step of solving quan-
tum chemistry problems based on different algo-
rithm frames and can be used as a generalized
Hamiltonian diagonalization scheme on the fu-
ture fault-tolerant quantum computers.
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A Theory of the FQESS Algorithm
The eigen-equation for an n×n matrix A can be
written as Au(i) = λiu

(i), where λi is eigenvalue
and u(i) is the corresponding eigenvector. For an
arbitrarily selected vector x(0), it can always be
decomposed in the eigenvector basis as x(0) =∑n

i aiu
(i). Then we can multiply the matrix A

with k times to x(0) and we have

x(k) = Akx(0) = λk
1

[
a1u

(1) +
n∑

i=2
ai(

λi

λ1
)ku(i)

]
(8)

Suppose that the absolute values of the eigen-
values satisfy the relation |λ1| > |λ2| ≥ · · · ≥
|λn|, then limk→∞(λi/λ1)k = 0. Therefore, the
second item in equation (8) will vanish when we
apply enough times of matrix A. Under the as-
sumption that the initial vector has finite over-
lap with the targeted eigenvector (a1 ̸= 0), the
remaining term will be proportional to the eigen-
vector u(1) with the biggest eigenvalue, except for
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Figure 9: Numerical simulations of the 12-qubit H2O (a) and 14-qubit NH3 (b) molecules. The left side in each
panel shows the iteration processes of energy (unit in Hartree) for ground-states, while the right side shows that
for excited-states. The target convergence energies obtained by Hamiltonian diagonalization are indicated by gray
dashed lines.

a coefficient, which can be eliminated by normal-
ization. The process presented above is termed
power iteration method, which is a common iter-
ative method to calculate the maximum absolute
value of eigenvalue and the corresponding eigen-
vector (principal component) of the matrix [49].
This intuitive and elegant method works well for
the eigenvector estimation of the large and sparse
matrices. We take this method as the basic eigen-
component extracter of the chemical Hamiltonian
in the FQESS algorithm.

In addition, the method involved in the FQESS
algorithm can also be interpreted from the per-
spective of quantum gradient descent [19]. The
target function can be expressed as a quadratic
optimization problem as f(|X⟩) = ⟨X|H |X⟩,
and then the state evolving along the direction of
the gradient of target function can be expressed
as

∣∣∣Xt+1
〉

=
∣∣∣Xt

〉
− γ∇f(

∣∣∣Xt
〉
) = (I − 2γH)

∣∣∣Xt
〉

(9)
where γ represents the learning rate. If the bias
parameter is set as λ0 = 1/2γ and ignore an
unimportant multiplying factor, the gradient op-
erator Ug = (I − 2γH) will be same to the op-
erator Ui in equation (4), both of which are lin-
ear combinations of unitary operators. Therefore,
the iteration process of FQESS algorithm can also
be regarded as the process of quantum state con-
verging to the specific eigenstate along the gradi-
ent direction of objective function.

B Simulation of H2O and NH3
molecules

To demonstrate the performance of the FQESS
algorithm in larger systems, we offer the numer-
ical simulations with 12-qubit H2O and 14-qubit
NH3 molecules in STO-6G basis set here, pro-
viding additional support for the effectiveness of
our algorithm. For the ground-states, we start
from Hartree-Fock states, and use random ini-
tial quantum states in excited-states for better
convergence. Other setup is same to the simu-
lation in the hydrogen and LiH molecules. As
shown in the Figure 9, the FQESS algorithm can
well converge to the target solution of ground-
states and excited-states, indicating that the al-
gorithm is feasible to solve the energy spectrum in
larger molecular systems. Compared with the ex-
act solutions obtained by Hamiltonian diagonal-
ization, the error of ground-state energy for H2O
(NH3) molecule is 0.000043 (0.000029) Hartree,
and the average error of excited-states is 0.001163
(0.000399) Hartree, both reaching the chemical
accuracy.

C Quafu Quantum Cloud Platform

Quafu is an open cloud platform for quantum
computation [47], which provides four specifica-
tions of superconducting quantum processors cur-
rently. Three of them support general quantum
logical gates, which are 10-qubits and 18-qubits
processors with one-dimensional chain structure
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Figure 10: The topological structure of quantum proces-
sor P-10. Each qubit capacitively coupled to its nearest-
neighbors.

named P-10 and P-18, and a 50+ qubits proces-
sor with a two-dimensional honeycomb structure
named P-50. In this work, we use the first two
qubits of P-10 quantum processor, whose topolog-
ical structure is shown in the Figure 10. The pro-
cessor consists of ten transmon qubits (Q1 −Q10)
arrayed in a row, with each qubit capacitively
coupled to its nearest-neighbors. Each transmon
qubit can be modulated in frequency from about
4 to 5.7 GHz and excited to the excited state
individually. All qubits can be probed though
a common transmission line connected to their
own readout resonators. The qubit parameters
and coherence performance can be found in the
Table 1. The idle frequencies of each qubit (ω10

j )
are designed to reduce residual coupling strength
from other qubits.
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qubit Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
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T1,j (us) 20.0 52.5 15.9 16.3 36.9 44.4 30.8 77.7 22.8 25.0
T ∗

2,j (us) 8.60 1.48 9.11 2.10 12.8 2.73 15.7 1.88 4.49 2.05
F0,j (%) 98.90 98.32 98.67 95.30 97.00 95.47 97.00 96.37 98.33 97.13
F1,j (%) 92.90 92.30 92.97 91.53 86.17 87.93 93.40 93.37 94.63 92.07
Fj,j+1 (%) 94.2 97.8 96.6 97.3 96.8 97.0 94.5 93.2 96.0 -

Table 1: Device parameters. ωs
j shows the maximum frequency of Qj . ω10

j corresponds to the idle frequency of Qj .
ωr

j shows the resonant frequency of Qj during readout. ηj corresponds to the anharmonicity of Qj . gj,j+1 is the
coupling strength between nearest-neighbor qubits. T1,j and T ∗

2,j represent the relaxation time and coherence time
of Qj . F0,j and F1,j are readout fidelities of Qj in |0⟩ and |1⟩. Fj,j+1 represents the fidelity of CZ gate composed
of Qi and Qj , which is obtianed by randomized benchmarking.
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