General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory

Zohreh Davoudi1,2,3,4, Alexander F. Shaw1,3, and Jesse R. Stryker1,2,5

1Department of Physics, University of Maryland, College Park, MD 20742, USA
2Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA
3Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, MD 20742, USA
4The NSF Institute for Robust Quantum Simulation, University of Maryland, College Park, Maryland 20742, USA
5Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

With a focus on universal quantum computing for quantum simulation, and through the example of lattice gauge theories, we introduce rather general quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple (bosonic and fermionic) quantum numbers with non-trivial functional coefficients. In particular, we analyze diagonalization of Hamiltonian terms using a singular-value decomposition technique, and discuss how the achieved diagonal unitaries in the digitized time-evolution operator can be implemented. The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions, for which a complete quantum-resource analysis within different computational models is presented. The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories. The example chosen further demonstrates the importance of adopting efficient theoretical formulations: it is shown that an explicitly gauge-invariant formulation using loop, string, and hadron degrees of freedom simplifies the algorithms and lowers the cost compared with the standard formulations based on angular-momentum as well as the Schwinger-boson degrees of freedom. The loop-string-hadron formulation further retains the non-Abelian gauge symmetry despite the inexactness of the digitized simulation, without the need for costly controlled operations. Such theoretical and algorithmic considerations are likely to be essential in quantumly simulating other complex theories of relevance to nature.

Non-Abelian gauge theories describe strong and weak interactions in nature. Simulating dynamics of strongly-interacting matter starting from such underlying gauge-theory frameworks is an exciting application of quantum simulators and quantum computers. With a focus on digital quantum computation, we have analyzed, in depth, the resource requirements for evolving a system of fermionic matter coupled to non-Abelian gauge bosons in 1+1 spacetime dimensions. To this end, we have taken into account efficient choices of the model's representation for mapping to discrete degrees of freedom of the quantum computer, proposed wiser decomposition of time evolution operation into smaller operations by preserving as many symmetries of the model as possible, and kept track of the systematic uncertainties introduced by algorithmic approximations. This has led to complete algorithms with bounded errors, and concrete circuit constructions, for both near- and far-term era of quantum computing. Importantly, our general strategies, including the subalgorithms developed, are shown to be applicable to a larger class of physical models, including more complex gauge theories and beyond.

► BibTeX data

► References

[1] Richard P. Feynman. ``Simulating physics with computers''. Int. J. Theor. Phys. 21, 467–488 (1982).
https:/​/​doi.org/​10.1007/​BF02650179

[2] Seth Lloyd. ``Universal quantum simulators''. Science 273, 1073–1078 (1996).
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[3] John Preskill. ``Quantum computing in the NISQ era and beyond''. Quantum 2, 79 (2018). arXiv:1801.00862.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79
arXiv:1801.00862

[4] Iulia M Georgescu, Sahel Ashhab, and Franco Nori. ``Quantum simulation''. Reviews of Modern Physics 86, 153 (2014). arXiv:1308.6253.
https:/​/​doi.org/​10.1103/​RevModPhys.86.153
arXiv:1308.6253

[5] Dave Wecker, Matthew B Hastings, Nathan Wiebe, Bryan K Clark, Chetan Nayak, and Matthias Troyer. ``Solving strongly correlated electron models on a quantum computer''. Physical Review A 92, 062318 (2015). arXiv:1506.05135.
https:/​/​doi.org/​10.1103/​PhysRevA.92.062318
arXiv:1506.05135

[6] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C Benjamin, and Xiao Yuan. ``Quantum computational chemistry''. Reviews of Modern Physics 92, 015003 (2020). arXiv:1808.10402.
https:/​/​doi.org/​10.1103/​RevModPhys.92.015003
arXiv:1808.10402

[7] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al. ``Quantum chemistry in the age of quantum computing''. Chemical Reviews 119, 10856–10915 (2019). arXiv:1812.09976.
https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803
arXiv:1812.09976

[8] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan. ``Low-depth quantum simulation of materials''. Physical Review X 8, 011044 (2018). arXiv:1706.00023.
https:/​/​doi.org/​10.1103/​PhysRevX.8.011044
arXiv:1706.00023

[9] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. ``Quantum algorithms for quantum chemistry and quantum materials science''. Chemical Reviews 120, 12685–12717 (2020). arXiv:2001.03685.
https:/​/​doi.org/​10.1021/​acs.chemrev.9b00829
arXiv:2001.03685

[10] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer. ``Quantum computing enhanced computational catalysis''. Physical Review Research 3, 033055 (2021). arXiv:2007.14460.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033055
arXiv:2007.14460

[11] He Ma, Marco Govoni, and Giulia Galli. ``Quantum simulations of materials on near-term quantum computers''. npj Computat. Mater. 6, 85 (2020).
https:/​/​doi.org/​10.1038/​s41524-020-00353-z

[12] Matthew Dietrich, David Hertzog, Martin J. Savage, et al. ``Nuclear Physics and Quantum Information Science: Report by the NSAC QIS Subcommittee''. Technical Report NSAC-QIS-2019. NSF & DOE Office of Science (2019). url: https:/​/​science.osti.gov/​-/​media/​np/​pdf/​Reports/​NSAC_QIS_Report.pdf.
https:/​/​science.osti.gov/​-/​media/​np/​pdf/​Reports/​NSAC_QIS_Report.pdf

[13] Christian W. Bauer et al. ``Quantum Simulation for High-Energy Physics''. PRX Quantum 4, 027001 (2023). arXiv:2204.03381.
https:/​/​doi.org/​10.1103/​PRXQuantum.4.027001
arXiv:2204.03381

[14] Simon Catterall et al. ``Report of the snowmass 2021 theory frontier topical group on quantum information science''. In Snowmass 2021. (2022). arXiv:2209.14839.
arXiv:2209.14839

[15] Travis S. Humble, Gabriel N. Perdue, and Martin J. Savage. ``Snowmass computational frontier: Topical group report on quantum computing'' (2022). arXiv:2209.06786.
arXiv:2209.06786

[16] Tim Byrnes and Yoshihisa Yamamoto. ``Simulating lattice gauge theories on a quantum computer''. Phys. Rev. A 73, 022328 (2006). arXiv:quant-ph/​0510027.
https:/​/​doi.org/​10.1103/​PhysRevA.73.022328
arXiv:quant-ph/0510027

[17] Stephen P. Jordan, Keith S.M. Lee, and John Preskill. ``Quantum Algorithms for Quantum Field Theories''. Science 336, 1130–1133 (2012). arXiv:1111.3633.
https:/​/​doi.org/​10.1126/​science.1217069
arXiv:1111.3633

[18] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. ``Quantum Computation of Scattering in Scalar Quantum Field Theories''. Quant. Inf. Comput. 14, 1014–1080 (2014). arXiv:1112.4833.
https:/​/​doi.org/​10.26421/​QIC14.11-12-8
arXiv:1112.4833

[19] Erez Zohar and Benni Reznik. ``Confinement and lattice QED electric flux-tubes simulated with ultracold atoms''. Phys. Rev. Lett. 107, 275301 (2011). arXiv:1108.1562.
https:/​/​doi.org/​10.1103/​PhysRevLett.107.275301
arXiv:1108.1562

[20] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein. ``Optical Abelian Lattice Gauge Theories''. Annals Phys. 330, 160–191 (2013). arXiv:1205.0496.
https:/​/​doi.org/​10.1016/​j.aop.2012.11.009
arXiv:1205.0496

[21] D. Banerjee, M. Dalmonte, M. Muller, E. Rico, P. Stebler, U.-J. Wiese, and P. Zoller. ``Atomic Quantum Simulation of Dynamical Gauge Fields coupled to Fermionic Matter: From String Breaking to Evolution after a Quench''. Phys. Rev. Lett. 109, 175302 (2012). arXiv:1205.6366.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.175302
arXiv:1205.6366

[22] Erez Zohar, J.Ignacio Cirac, and Benni Reznik. ``Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory''. Phys. Rev. Lett. 110, 125304 (2013). arXiv:1211.2241.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.125304
arXiv:1211.2241

[23] Erez Zohar, J. Ignacio Cirac, and Benni Reznik. ``Quantum simulations of gauge theories with ultracold atoms: local gauge invariance from angular momentum conservation''. Phys. Rev. A 88, 023617 (2013). arXiv:1303.5040.
https:/​/​doi.org/​10.1103/​PhysRevA.88.023617
arXiv:1303.5040

[24] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. ``Quantum Algorithms for Fermionic Quantum Field Theories'' (2014). arXiv:1404.7115.
arXiv:1404.7115

[25] Erez Zohar and Michele Burrello. ``Formulation of lattice gauge theories for quantum simulations''. Phys. Rev. D 91, 054506 (2015). arXiv:1409.3085.
https:/​/​doi.org/​10.1103/​PhysRevD.91.054506
arXiv:1409.3085

[26] Kevin Marshall, Raphael Pooser, George Siopsis, and Christian Weedbrook. ``Quantum simulation of quantum field theory using continuous variables''. Phys. Rev. A 92, 063825 (2015). arXiv:1503.08121.
https:/​/​doi.org/​10.1103/​PhysRevA.92.063825
arXiv:1503.08121

[27] A. Mezzacapo, E. Rico, C. Sabin, I.L. Egusquiza, L. Lamata, and E. Solano. ``Non-Abelian $SU(2)$ Lattice Gauge Theories in Superconducting Circuits''. Phys. Rev. Lett. 115, 240502 (2015). arXiv:1505.04720.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.240502
arXiv:1505.04720

[28] E.A. Martinez et al. ``Real-time dynamics of lattice gauge theories with a few-qubit quantum computer''. Nature 534, 516–519 (2016). arXiv:1605.04570.
https:/​/​doi.org/​10.1038/​nature18318
arXiv:1605.04570

[29] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ignacio Cirac. ``Digital quantum simulation of $\mathbb{Z}_2$ lattice gauge theories with dynamical fermionic matter''. Phys. Rev. Lett. 118, 070501 (2017). arXiv:1607.03656.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.070501
arXiv:1607.03656

[30] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ignacio Cirac. ``Digital lattice gauge theories''. Phys. Rev. A 95, 023604 (2017). arXiv:1607.08121.
https:/​/​doi.org/​10.1103/​PhysRevA.95.023604
arXiv:1607.08121

[31] Ali Hamed Moosavian and Stephen Jordan. ``Faster Quantum Algorithm to Simulate Fermionic Quantum Field Theory''. Phys. Rev. A 98, 012332 (2018). arXiv:1711.04006.
https:/​/​doi.org/​10.1103/​PhysRevA.98.012332
arXiv:1711.04006

[32] T.V. Zache, F. Hebenstreit, F. Jendrzejewski, M.K. Oberthaler, J. Berges, and P. Hauke. ``Quantum simulation of lattice gauge theories using Wilson fermions''. Sci. Technol. 3, 034010 (2018). arXiv:1802.06704.
https:/​/​doi.org/​10.1088/​2058-9565/​aac33b
arXiv:1802.06704

[33] Frederik Görg, Kilian Sandholzer, Joaquín Minguzzi, Rémi Desbuquois, Michael Messer, and Tilman Esslinger. ``Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter''. Nature Phys. 15, 1161–1167 (2019). arXiv:1812.05895.
https:/​/​doi.org/​10.1038/​s41567-019-0615-4
arXiv:1812.05895

[34] Christian Schweizer, Fabian Grusdt, Moritz Berngruber, Luca Barbiero, Eugene Demler, Nathan Goldman, Immanuel Bloch, and Monika Aidelsburger. ``Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices''. Nature Physics 15, 1168–1173 (2019). arXiv:1901.07103.
https:/​/​doi.org/​10.1038/​s41567-019-0649-7
arXiv:1901.07103

[35] N. Klco, E.F. Dumitrescu, A.J. McCaskey, T.D. Morris, R.C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M.J. Savage. ``Quantum-classical computation of Schwinger model dynamics using quantum computers''. Phys. Rev. A 98, 032331 (2018). arXiv:1803.03326.
https:/​/​doi.org/​10.1103/​PhysRevA.98.032331
arXiv:1803.03326

[36] Hsuan-Hao Lu et al. ``Simulations of Subatomic Many-Body Physics on a Quantum Frequency Processor''. Phys. Rev. A 100, 012320 (2019). arXiv:1810.03959.
https:/​/​doi.org/​10.1103/​PhysRevA.100.012320
arXiv:1810.03959

[37] Arpan Bhattacharyya, Arvind Shekar, and Aninda Sinha. ``Circuit complexity in interacting QFTs and RG flows''. JHEP 10, 140 (2018). arXiv:1808.03105.
https:/​/​doi.org/​10.1007/​JHEP10(2018)140
arXiv:1808.03105

[38] Jesse R. Stryker. ``Oracles for Gauss's law on digital quantum computers''. Phys. Rev. A 99, 042301 (2019). arXiv:1812.01617.
https:/​/​doi.org/​10.1103/​PhysRevA.99.042301
arXiv:1812.01617

[39] Indrakshi Raychowdhury and Jesse R. Stryker. ``Solving Gauss's Law on Digital Quantum Computers with Loop-String-Hadron Digitization''. Phys. Rev. Res. 2, 033039 (2020). arXiv:1812.07554.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033039
arXiv:1812.07554

[40] Di Luo, Jiayu Shen, Michael Highman, Bryan K. Clark, Brian DeMarco, Aida X. El-Khadra, and Bryce Gadway. ``Framework for simulating gauge theories with dipolar spin systems''. Phys. Rev. A 102, 032617 (2020). arXiv:1912.11488.
https:/​/​doi.org/​10.1103/​PhysRevA.102.032617
arXiv:1912.11488

[41] Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte. ``Lattice gauge theories and string dynamics in Rydberg atom quantum simulators''. Phys. Rev. X 10, 021041 (2020). arXiv:1902.09551.
https:/​/​doi.org/​10.1103/​PhysRevX.10.021041
arXiv:1902.09551

[42] Alexander Mil, Torsten V. Zache, Apoorva Hegde, Andy Xia, Rohit P. Bhatt, Markus K. Oberthaler, Philipp Hauke, Jürgen Berges, and Fred Jendrzejewski. ``A scalable realization of local U(1) gauge invariance in cold atomic mixtures''. Science 367, 1128–1130 (2020). arXiv:1909.07641.
https:/​/​doi.org/​10.1126/​science.aaz5312
arXiv:1909.07641

[43] Natalie Klco, Jesse R. Stryker, and Martin J. Savage. ``SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers''. Phys. Rev. D 101, 074512 (2020). arXiv:1908.06935.
https:/​/​doi.org/​10.1103/​PhysRevD.101.074512
arXiv:1908.06935

[44] Natalie Klco and Martin J. Savage. ``Digitization of scalar fields for quantum computing''. Phys. Rev. A 99, 052335 (2019). arXiv:1808.10378.
https:/​/​doi.org/​10.1103/​PhysRevA.99.052335
arXiv:1808.10378

[45] Christian W. Bauer, Wibe A. de Jong, Benjamin Nachman, and Davide Provasoli. ``Quantum Algorithm for High Energy Physics Simulations''. Phys. Rev. Lett. 126, 062001 (2021). arXiv:1904.03196.
https:/​/​doi.org/​10.1103/​PhysRevLett.126.062001
arXiv:1904.03196

[46] Zohreh Davoudi, Mohammad Hafezi, Christopher Monroe, Guido Pagano, Alireza Seif, and Andrew Shaw. ``Towards analog quantum simulations of lattice gauge theories with trapped ions''. Phys. Rev. Res. 2, 023015 (2020). arXiv:1908.03210.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023015
arXiv:1908.03210

[47] Natalie Klco and Martin J. Savage. ``Systematically Localizable Operators for Quantum Simulations of Quantum Field Theories''. Phys. Rev. A 102, 012619 (2020). arXiv:1912.03577.
https:/​/​doi.org/​10.1103/​PhysRevA.102.012619
arXiv:1912.03577

[48] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. ``Parton physics on a quantum computer''. Phys. Rev. Res. 2, 013272 (2020). arXiv:1908.10439.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013272
arXiv:1908.10439

[49] Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. ``Deeply inelastic scattering structure functions on a hybrid quantum computer''. Phys. Rev. D 102, 016007 (2020). arXiv:1908.07051.
https:/​/​doi.org/​10.1103/​PhysRevD.102.016007
arXiv:1908.07051

[50] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. ``General Methods for Digital Quantum Simulation of Gauge Theories''. Phys. Rev. D 100, 034518 (2019). arXiv:1903.08807.
https:/​/​doi.org/​10.1103/​PhysRevD.100.034518
arXiv:1903.08807

[51] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Harmalkar, Henry Lamm, Scott Lawrence, and Neill C. Warrington. ``Gluon Field Digitization for Quantum Computers''. Phys. Rev. D 100, 114501 (2019). arXiv:1906.11213.
https:/​/​doi.org/​10.1103/​PhysRevD.100.114501
arXiv:1906.11213

[52] Natalie Klco and Martin J. Savage. ``Fixed-point quantum circuits for quantum field theories''. Phys. Rev. A 102, 052422 (2020). arXiv:2002.02018.
https:/​/​doi.org/​10.1103/​PhysRevA.102.052422
arXiv:2002.02018

[53] Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan. ``Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator''. Nature 587, 392–396 (2020). arXiv:2003.08945.
https:/​/​doi.org/​10.1038/​s41586-020-2910-8
arXiv:2003.08945

[54] Alexander F. Shaw, Pavel Lougovski, Jesse R. Stryker, and Nathan Wiebe. ``Quantum Algorithms for Simulating the Lattice Schwinger Model''. Quantum 4, 306 (2020). arXiv:2002.11146.
https:/​/​doi.org/​10.22331/​q-2020-08-10-306
arXiv:2002.11146

[55] Bipasha Chakraborty, Masazumi Honda, Taku Izubuchi, Yuta Kikuchi, and Akio Tomiya. ``Classically emulated digital quantum simulation of the Schwinger model with a topological term via adiabatic state preparation''. Phys. Rev. D 105, 094503 (2022). arXiv:2001.00485.
https:/​/​doi.org/​10.1103/​PhysRevD.105.094503
arXiv:2001.00485

[56] Junyu Liu and Yuan Xin. ``Quantum simulation of quantum field theories as quantum chemistry''. JHEP 12, 011 (2020). arXiv:2004.13234.
https:/​/​doi.org/​10.1007/​JHEP12(2020)011
arXiv:2004.13234

[57] Michael Kreshchuk, William M. Kirby, Gary Goldstein, Hugo Beauchemin, and Peter J. Love. ``Quantum simulation of quantum field theory in the light-front formulation''. Phys. Rev. A 105, 032418 (2022). arXiv:2002.04016.
https:/​/​doi.org/​10.1103/​PhysRevA.105.032418
arXiv:2002.04016

[58] Jan F. Haase, Luca Dellantonio, Alessio Celi, Danny Paulson, Angus Kan, Karl Jansen, and Christine A. Muschik. ``A resource efficient approach for quantum and classical simulations of gauge theories in particle physics''. Quantum 5, 393 (2021). arXiv:2006.14160.
https:/​/​doi.org/​10.22331/​q-2021-02-04-393
arXiv:2006.14160

[59] Danny Paulson et al. ``Towards simulating 2D effects in lattice gauge theories on a quantum computer''. PRX Quantum 2, 030334 (2021). arXiv:2008.09252.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.030334
arXiv:2008.09252

[60] Raka Dasgupta and Indrakshi Raychowdhury. ``Cold-atom quantum simulator for string and hadron dynamics in non-Abelian lattice gauge theory''. Phys. Rev. A 105, 023322 (2022). arXiv:2009.13969.
https:/​/​doi.org/​10.1103/​PhysRevA.105.023322
arXiv:2009.13969

[61] Simon V. Mathis, Guglielmo Mazzola, and Ivano Tavernelli. ``Toward scalable simulations of lattice gauge theories on quantum computers''. Phys. Rev. D 102, 094501 (2020). arXiv:2005.10271.
https:/​/​doi.org/​10.1103/​PhysRevD.102.094501
arXiv:2005.10271

[62] Yasar Y. Atas, Jinglei Zhang, Randy Lewis, Amin Jahanpour, Jan F. Haase, and Christine A. Muschik. ``SU(2) hadrons on a quantum computer via a variational approach''. Nature Commun. 12, 6499 (2021). arXiv:2102.08920.
https:/​/​doi.org/​10.1038/​s41467-021-26825-4
arXiv:2102.08920

[63] Sarmed A Rahman, Randy Lewis, Emanuele Mendicelli, and Sarah Powell. ``SU(2) lattice gauge theory on a quantum annealer''. Phys. Rev. D 104, 034501 (2021). arXiv:2103.08661.
https:/​/​doi.org/​10.1103/​PhysRevD.104.034501
arXiv:2103.08661

[64] Zohreh Davoudi, Norbert M. Linke, and Guido Pagano. ``Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach''. Phys. Rev. Res. 3, 043072 (2021). arXiv:2104.09346.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.043072
arXiv:2104.09346

[65] João Barata, Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. ``Single-particle digitization strategy for quantum computation of a $\phi^4$ scalar field theory''. Phys. Rev. A 103, 042410 (2021). arXiv:2012.00020.
https:/​/​doi.org/​10.1103/​PhysRevA.103.042410
arXiv:2012.00020

[66] Wibe A. de Jong, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, and Xiaojun Yao. ``Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model''. Phys. Rev. D 106, 054508 (2022). arXiv:2106.08394.
https:/​/​doi.org/​10.1103/​PhysRevD.106.054508
arXiv:2106.08394

[67] Anthony N. Ciavarella and Ivan A. Chernyshev. ``Preparation of the SU(3) lattice Yang-Mills vacuum with variational quantum methods''. Phys. Rev. D 105, 074504 (2022). arXiv:2112.09083.
https:/​/​doi.org/​10.1103/​PhysRevD.105.074504
arXiv:2112.09083

[68] Anthony Ciavarella, Natalie Klco, and Martin J. Savage. ``Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis''. Phys. Rev. D 103, 094501 (2021). arXiv:2101.10227.
https:/​/​doi.org/​10.1103/​PhysRevD.103.094501
arXiv:2101.10227

[69] Angus Kan and Yunseong Nam. ``Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer'' (2021). arXiv:2107.12769.
arXiv:2107.12769

[70] Thomas D. Cohen, Henry Lamm, Scott Lawrence, and Yukari Yamauchi. ``Quantum algorithms for transport coefficients in gauge theories''. Phys. Rev. D 104, 094514 (2021). arXiv:2104.02024.
https:/​/​doi.org/​10.1103/​PhysRevD.104.094514
arXiv:2104.02024

[71] Bárbara Andrade, Zohreh Davoudi, Tobias Graß, Mohammad Hafezi, Guido Pagano, and Alireza Seif. ``Engineering an effective three-spin Hamiltonian in trapped-ion systems for applications in quantum simulation''. Quantum Sci. Technol. 7, 034001 (2022). arXiv:2108.01022.
https:/​/​doi.org/​10.1088/​2058-9565/​ac5f5b
arXiv:2108.01022

[72] M. Sohaib Alam, Stuart Hadfield, Henry Lamm, and Andy C. Y. Li. ``Primitive quantum gates for dihedral gauge theories''. Phys. Rev. D 105, 114501 (2022). arXiv:2108.13305.
https:/​/​doi.org/​10.1103/​PhysRevD.105.114501
arXiv:2108.13305

[73] Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert M. Linke. ``Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions''. PRX Quantum 3, 020324 (2022). arXiv:2112.14262.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020324
arXiv:2112.14262

[74] Jinglei Zhang, Ryan Ferguson, Stefan Kühn, Jan F. Haase, C. M. Wilson, Karl Jansen, and Christine A. Muschik. ``Simulating gauge theories with variational quantum eigensolvers in superconducting microwave cavities''. Quantum 7, 1148 (2023). arXiv:2108.08248.
https:/​/​doi.org/​10.22331/​q-2023-10-23-1148
arXiv:2108.08248

[75] Masazumi Honda, Etsuko Itou, Yuta Kikuchi, Lento Nagano, and Takuya Okuda. ``Classically emulated digital quantum simulation for screening and confinement in the Schwinger model with a topological term''. Phys. Rev. D 105, 014504 (2022). arXiv:2105.03276.
https:/​/​doi.org/​10.1103/​PhysRevD.105.014504
arXiv:2105.03276

[76] Zhao-Yu Zhou, Guo-Xian Su, Jad C. Halimeh, Robert Ott, Hui Sun, Philipp Hauke, Bing Yang, Zhen-Sheng Yuan, Jürgen Berges, and Jian-Wei Pan. ``Thermalization dynamics of a gauge theory on a quantum simulator''. Science 377, 311–314 (2022). arXiv:2107.13563.
https:/​/​doi.org/​10.1126/​science.abl6277
arXiv:2107.13563

[77] Daniel González-Cuadra, Torsten V. Zache, Jose Carrasco, Barbara Kraus, and Peter Zoller. ``Hardware Efficient Quantum Simulation of Non-Abelian Gauge Theories with Qudits on Rydberg Platforms''. Phys. Rev. Lett. 129, 160501 (2022). arXiv:2203.15541.
https:/​/​doi.org/​10.1103/​PhysRevLett.129.160501
arXiv:2203.15541

[78] Jesse Osborne, Ian P. McCulloch, Bing Yang, Philipp Hauke, and Jad C. Halimeh. ``Large-Scale $2+1$D $\mathrm{U}(1)$ Gauge Theory with Dynamical Matter in a Cold-Atom Quantum Simulator'' (2022). arXiv:2211.01380.
arXiv:2211.01380

[79] Zohreh Davoudi, Niklas Mueller, and Connor Powers. ``Towards Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States''. Phys. Rev. Lett. 131, 081901 (2023). arXiv:2208.13112.
https:/​/​doi.org/​10.1103/​PhysRevLett.131.081901
arXiv:2208.13112

[80] Niklas Mueller, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz. ``Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory''. PRX Quantum 4, 030323 (2023). arXiv:2210.03089.
https:/​/​doi.org/​10.1103/​PRXQuantum.4.030323
arXiv:2210.03089

[81] Edison M. Murairi, Michael J. Cervia, Hersh Kumar, Paulo F. Bedaque, and Andrei Alexandru. ``How many quantum gates do gauge theories require?''. Phys. Rev. D 106, 094504 (2022). arXiv:2208.11789.
https:/​/​doi.org/​10.1103/​PhysRevD.106.094504
arXiv:2208.11789

[82] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. ``Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions. I. Axial gauge''. Phys. Rev. D 107, 054512 (2023). arXiv:2207.01731.
https:/​/​doi.org/​10.1103/​PhysRevD.107.054512
arXiv:2207.01731

[83] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J. Savage. ``Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions. II. Singlebaryon β-decay in real time''. Phys. Rev. D 107, 054513 (2023). arXiv:2209.10781.
https:/​/​doi.org/​10.1103/​PhysRevD.107.054513
arXiv:2209.10781

[84] Giuseppe Clemente, Arianna Crippa, and Karl Jansen. ``Strategies for the determination of the running coupling of (2+1)-dimensional QED with quantum computing''. Phys. Rev. D 106, 114511 (2022). arXiv:2206.12454.
https:/​/​doi.org/​10.1103/​PhysRevD.106.114511
arXiv:2206.12454

[85] Guy Pardo, Tomer Greenberg, Aryeh Fortinsky, Nadav Katz, and Erez Zohar. ``Resource-efficient quantum simulation of lattice gauge theories in arbitrary dimensions: Solving for Gauss's law and fermion elimination''. Phys. Rev. Res. 5, 023077 (2023). arXiv:2206.00685.
https:/​/​doi.org/​10.1103/​PhysRevResearch.5.023077
arXiv:2206.00685

[86] M.C. Banuls et al. ``Simulating Lattice Gauge Theories within Quantum Technologies''. Eur. Phys. J. D 74, 165 (2020). arXiv:1911.00003.
https:/​/​doi.org/​10.1140/​epjd/​e2020-100571-8
arXiv:1911.00003

[87] Natalie Klco, Alessandro Roggero, and Martin J. Savage. ``Standard model physics and the digital quantum revolution: thoughts about the interface''. Rept. Prog. Phys. 85, 064301 (2022). arXiv:2107.04769.
https:/​/​doi.org/​10.1088/​1361-6633/​ac58a4
arXiv:2107.04769

[88] Erez Zohar. ``Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods''. Phil. Trans. A. Math. Phys. Eng. Sci. 380, 20210069 (2021). arXiv:2106.04609.
https:/​/​doi.org/​10.1098/​rsta.2021.0069
arXiv:2106.04609

[89] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski. ``Cloud Quantum Computing of an Atomic Nucleus''. Phys. Rev. Lett. 120, 210501 (2018). arXiv:1801.03897.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.210501
arXiv:1801.03897

[90] Omar Shehab, Kevin A. Landsman, Yunseong Nam, Daiwei Zhu, Norbert M. Linke, Matthew J. Keesan, Raphael C. Pooser, and Christopher R. Monroe. ``Toward convergence of effective field theory simulations on digital quantum computers''. Phys. Rev. A 100, 062319 (2019). arXiv:1904.04338.
https:/​/​doi.org/​10.1103/​PhysRevA.100.062319
arXiv:1904.04338

[91] Alessandro Roggero and Joseph Carlson. ``Dynamic linear response quantum algorithm''. Phys. Rev. C 100, 034610 (2019). arXiv:1804.01505.
https:/​/​doi.org/​10.1103/​PhysRevC.100.034610
arXiv:1804.01505

[92] Alessandro Roggero, Andy C. Y. Li, Joseph Carlson, Rajan Gupta, and Gabriel N. Perdue. ``Quantum Computing for Neutrino-Nucleus Scattering''. Phys. Rev. D 101, 074038 (2020). arXiv:1911.06368.
https:/​/​doi.org/​10.1103/​PhysRevD.101.074038
arXiv:1911.06368

[93] Weijie Du, James P. Vary, Xingbo Zhao, and Wei Zuo. ``Quantum simulation of nuclear inelastic scattering''. Phys. Rev. A 104, 012611 (2021). arXiv:2006.01369.
https:/​/​doi.org/​10.1103/​PhysRevA.104.012611
arXiv:2006.01369

[94] Weijie Du, James P. Vary, Xingbo Zhao, and Wei Zuo. ``Ab initio nuclear structure via quantum adiabatic algorithm'' (2021). arXiv:2105.08910.
arXiv:2105.08910

[95] Alessandro Roggero, Chenyi Gu, Alessandro Baroni, and Thomas Papenbrock. ``Preparation of excited states for nuclear dynamics on a quantum computer''. Phys. Rev. C 102, 064624 (2020). arXiv:2009.13485.
https:/​/​doi.org/​10.1103/​PhysRevC.102.064624
arXiv:2009.13485

[96] Eric T. Holland, Kyle A. Wendt, Konstantinos Kravvaris, Xian Wu, W. Erich Ormand, Jonathan L DuBois, Sofia Quaglioni, and Francesco Pederiva. ``Optimal Control for the Quantum Simulation of Nuclear Dynamics''. Phys. Rev. A 101, 062307 (2020). arXiv:1908.08222.
https:/​/​doi.org/​10.1103/​PhysRevA.101.062307
arXiv:1908.08222

[97] Dmitri E. Kharzeev and Yuta Kikuchi. ``Real-time chiral dynamics from a digital quantum simulation''. Phys. Rev. Res. 2, 023342 (2020). arXiv:2001.00698.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023342
arXiv:2001.00698

[98] Michael Kreshchuk, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary, and Peter J. Love. ``Simulating Hadronic Physics on NISQ devices using Basis Light-Front Quantization''. Phys. Rev. A 103, 062601 (2021). arXiv:2011.13443.
https:/​/​doi.org/​10.1103/​PhysRevA.103.062601
arXiv:2011.13443

[99] Khadeejah Bepari, Sarah Malik, Michael Spannowsky, and Simon Williams. ``Towards a quantum computing algorithm for helicity amplitudes and parton showers''. Phys. Rev. D 103, 076020 (2021). arXiv:2010.00046.
https:/​/​doi.org/​10.1103/​PhysRevD.103.076020
arXiv:2010.00046

[100] Christian W. Bauer, Marat Freytsis, and Benjamin Nachman. ``Simulating Collider Physics on Quantum Computers Using Effective Field Theories''. Phys. Rev. Lett. 127, 212001 (2021). arXiv:2102.05044.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.212001
arXiv:2102.05044

[101] Andrew M Childs and Yuan Su. ``Nearly optimal lattice simulation by product formulas''. Physical review letters 123, 050503 (2019). arXiv:1901.00564.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.050503
arXiv:1901.00564

[102] Masuo Suzuki. ``General theory of fractal path integrals with applications to many-body theories and statistical physics''. Journal of Mathematical Physics 32, 400–407 (1991).
https:/​/​doi.org/​10.1063/​1.529425

[103] Nathan Wiebe, Dominic Berry, Peter Hoyer, and Barry C Sanders. ``Higher order decompositions of ordered operator exponentials''. Journal of Physics A: Mathematical and Theoretical 43, 065203 (2010). arXiv:0812.0562.
https:/​/​doi.org/​10.1088/​1751-8113/​43/​6/​065203
arXiv:0812.0562

[104] Andrew M Childs, Yuan Su, Minh C Tran, Nathan Wiebe, and Shuchen Zhu. ``Theory of Trotter error with commutator scaling''. Physical Review X 11, 011020 (2021). arXiv:1912.08854.
https:/​/​doi.org/​10.1103/​PhysRevX.11.011020
arXiv:1912.08854

[105] Andrew M Childs and Nathan Wiebe. ``Hamiltonian simulation using linear combinations of unitary operations''. Quantum Information and Computation 12, 901–921 (2012). arXiv:1202.5822.
https:/​/​doi.org/​10.26421/​QIC12.11-12-1
arXiv:1202.5822

[106] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma. ``Simulating Hamiltonian dynamics with a truncated Taylor series''. Physical Review Letters 114, 090502 (2015). arXiv:1412.4687.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502
arXiv:1412.4687

[107] Guang Hao Low and Isaac L. Chuang. ``Optimal Hamiltonian Simulation by Quantum Signal Processing''. Phys. Rev. Lett. 118, 010501 (2017). arXiv:1606.02685.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.010501
arXiv:1606.02685

[108] Guang Hao Low and Isaac L Chuang. ``Hamiltonian simulation by qubitization''. Quantum 3, 163 (2019). arXiv:1610.06546.
https:/​/​doi.org/​10.22331/​q-2019-07-12-163
arXiv:1610.06546

[109] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. ``The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation''. Leibniz International Proceedings in Informatics (LIPIcs) 132, 33:1–33:14 (2019). arXiv:1804.01973.
https:/​/​doi.org/​10.4230/​LIPIcs.ICALP.2019.33
arXiv:1804.01973

[110] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. ``Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics''. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. Page 193–204. New York, NY, USA (2019). Association for Computing Machinery. arXiv:1806.01838.
https:/​/​doi.org/​10.1145/​3313276.3316366
arXiv:1806.01838

[111] Amir Kalev and Itay Hen. ``Quantum algorithm for simulating hamiltonian dynamics with an off-diagonal series expansion''. Quantum 5, 426 (2021). arXiv:2006.02539.
https:/​/​doi.org/​10.22331/​q-2021-04-08-426
arXiv:2006.02539

[112] Abhishek Rajput, Alessandro Roggero, and Nathan Wiebe. ``Hybridized Methods for Quantum Simulation in the Interaction Picture''. Quantum 6, 780 (2022). arXiv:2109.03308.
https:/​/​doi.org/​10.22331/​q-2022-08-17-780
arXiv:2109.03308

[113] Torin F. Stetina, Anthony Ciavarella, Xiaosong Li, and Nathan Wiebe. ``Simulating Effective QED on Quantum Computers''. Quantum 6, 622 (2022). arXiv:2101.00111.
https:/​/​doi.org/​10.22331/​q-2022-01-18-622
arXiv:2101.00111

[114] Johann Ostmeyer. ``Optimised Trotter decompositions for classical and quantum computing''. J. Phys. A 56, 285303 (2023). arXiv:2211.02691.
https:/​/​doi.org/​10.1088/​1751-8121/​acde7a
arXiv:2211.02691

[115] Peter W Shor. ``Fault-tolerant quantum computation''. In Proceedings of 37th Conference on Foundations of Computer Science. Pages 56–65. IEEE (1996). arXiv:quant-ph/​9605011.
https:/​/​doi.org/​10.1109/​SFCS.1996.548464
arXiv:quant-ph/9605011

[116] Jesse R. Stryker. ``Shearing approach to gauge invariant Trotterization'' (2021). arXiv:2105.11548.
arXiv:2105.11548

[117] Andrew M Childs and Wim Van Dam. ``Quantum algorithms for algebraic problems''. Reviews of Modern Physics 82, 1 (2010). arXiv:0812.0380.
https:/​/​doi.org/​10.1103/​RevModPhys.82.1
arXiv:0812.0380

[118] Thomas Häner, Martin Roetteler, and Krysta M. Svore. ``Optimizing Quantum Circuits for Arithmetic'' (2018). arXiv:1805.12445.
arXiv:1805.12445

[119] Thomas Haener, Mathias Soeken, Martin Roetteler, and Krysta M Svore. ``Quantum circuits for floating-point arithmetic''. In International Conference on Reversible Computation. Pages 162–174. Springer (2018). arXiv:1807.02023.
https:/​/​doi.org/​10.1007/​978-3-319-99498-7_11
arXiv:1807.02023

[120] Ian D Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik. ``Bounding the costs of quantum simulation of many-body physics in real space''. Journal of Physics A: Mathematical and Theoretical 50, 305301 (2017). arXiv:1608.05696.
https:/​/​doi.org/​10.1088/​1751-8121/​aa77b8
arXiv:1608.05696

[121] Yuan Su, Dominic W. Berry, Nathan Wiebe, Nicholas Rubin, and Ryan Babbush. ``Fault-Tolerant Quantum Simulations of Chemistry in First Quantization''. PRX Quantum 2, 040332 (2021). arXiv:2105.12767.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.040332
arXiv:2105.12767

[122] Ryan Babbush, Dominic W Berry, Ian D Kivlichan, Annie Y Wei, Peter J Love, and Alán Aspuru-Guzik. ``Exponentially more precise quantum simulation of fermions in second quantization''. New Journal of Physics 18, 033032 (2016). arXiv:1506.01020.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​033032
arXiv:1506.01020

[123] Poul Jorgensen. ``Second quantization-based methods in quantum chemistry''. Elsevier. (2012).
https:/​/​doi.org/​10.1016/​B978-0-12-390220-7.X5001-6

[124] Nikolaj Moll, Andreas Fuhrer, Peter Staar, and Ivano Tavernelli. ``Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer''. Journal of Physics A: Mathematical and Theoretical 49, 295301 (2016). arXiv:1510.04048.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​29/​295301
arXiv:1510.04048

[125] Ryan Babbush, Dominic W Berry, Yuval R Sanders, Ian D Kivlichan, Artur Scherer, Annie Y Wei, Peter J Love, and Alán Aspuru-Guzik. ``Exponentially more precise quantum simulation of fermions in the configuration interaction representation''. Quantum Science and Technology 3, 015006 (2017). arXiv:1506.01029.
https:/​/​doi.org/​10.1088/​2058-9565/​aa9463
arXiv:1506.01029

[126] John B. Kogut and Leonard Susskind. ``Hamiltonian Formulation of Wilson's Lattice Gauge Theories''. Phys. Rev. D 11, 395–408 (1975).
https:/​/​doi.org/​10.1103/​PhysRevD.11.395

[127] J. Schwinger. ``On angular momentum''. Technical report. Harvard University (1952).
https:/​/​doi.org/​10.2172/​4389568

[128] Manu Mathur. ``Harmonic oscillator prepotentials in SU(2) lattice gauge theory''. J. Phys. A 38, 10015–10026 (2005). arXiv:hep-lat/​0403029.
https:/​/​doi.org/​10.1088/​0305-4470/​38/​46/​008
arXiv:hep-lat/0403029

[129] Ramesh Anishetty, Manu Mathur, and Indrakshi Raychowdhury. ``Irreducible SU(3) Schwinger Bosons''. J. Math. Phys. 50, 053503 (2009). arXiv:0901.0644.
https:/​/​doi.org/​10.1063/​1.3122666
arXiv:0901.0644

[130] Manu Mathur, Indrakshi Raychowdhury, and Ramesh Anishetty. ``SU(N) Irreducible Schwinger Bosons''. J. Math. Phys. 51, 093504 (2010). arXiv:1003.5487.
https:/​/​doi.org/​10.1063/​1.3464267
arXiv:1003.5487

[131] Indrakshi Raychowdhury and Jesse R. Stryker. ``Loop, String, and Hadron Dynamics in SU(2) Hamiltonian Lattice Gauge Theories''. Phys. Rev. D 101, 114502 (2020). arXiv:1912.06133.
https:/​/​doi.org/​10.1103/​PhysRevD.101.114502
arXiv:1912.06133

[132] Zohreh Davoudi, Indrakshi Raychowdhury, and Andrew Shaw. ``Search for efficient formulations for Hamiltonian simulation of non-Abelian lattice gauge theories''. Phys. Rev. D 104, 074505 (2021). arXiv:2009.11802.
https:/​/​doi.org/​10.1103/​PhysRevD.104.074505
arXiv:2009.11802

[133] Jad C. Halimeh, Haifeng Lang, Julius Mildenberger, Zhang Jiang, and Philipp Hauke. ``Gauge-Symmetry Protection Using Single-Body Terms''. PRX Quantum 2, 040311 (2021). arXiv:2007.00668.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.040311
arXiv:2007.00668

[134] Minh C. Tran, Yuan Su, Daniel Carney, and Jacob M. Taylor. ``Faster Digital Quantum Simulation by Symmetry Protection''. Phys. Rev. X. Quantum. 2, 010323 (2021). arXiv:2006.16248.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.010323
arXiv:2006.16248

[135] Valentin Kasper, Torsten V. Zache, Fred Jendrzejewski, Maciej Lewenstein, and Erez Zohar. ``Non-Abelian gauge invariance from dynamical decoupling''. Phys. Rev. D 107, 014506 (2023). arXiv:2012.08620.
https:/​/​doi.org/​10.1103/​PhysRevD.107.014506
arXiv:2012.08620

[136] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. ``Suppressing Coherent Gauge Drift in Quantum Simulations'' (2020). arXiv:2005.12688.
arXiv:2005.12688

[137] Jad C. Halimeh, Haifeng Lang, and Philipp Hauke. ``Gauge protection in non-abelian lattice gauge theories''. New J. Phys. 24, 033015 (2022). arXiv:2106.09032.
https:/​/​doi.org/​10.1088/​1367-2630/​ac5564
arXiv:2106.09032

[138] Saurabh V. Kadam, Indrakshi Raychowdhury, and Jesse R. Stryker. ``Loop-string-hadron formulation of an SU(3) gauge theory with dynamical quarks''. Phys. Rev. D 107, 094513 (2023). arXiv:2212.04490.
https:/​/​doi.org/​10.1103/​PhysRevD.107.094513
arXiv:2212.04490

[139] Yuan Su, Hsin-Yuan Huang, and Earl T. Campbell. ``Nearly tight Trotterization of interacting electrons''. Quantum 5, 495 (2021). arXiv:2012.09194.
https:/​/​doi.org/​10.22331/​q-2021-07-05-495
arXiv:2012.09194

[140] Burak Şahinoğlu and Rolando D. Somma. ``Hamiltonian simulation in the low-energy subspace''. npj Quantum Inf. 7, 119 (2021). arXiv:2006.02660.
https:/​/​doi.org/​10.1038/​s41534-021-00451-w
arXiv:2006.02660

[141] Changhao Yi and Elizabeth Crosson. ``Spectral analysis of product formulas for quantum simulation''. npj Quantum Information 8, 37 (2022). arXiv:2102.12655.
https:/​/​doi.org/​10.1038/​s41534-022-00548-w
arXiv:2102.12655

[142] Wikipedia contributors. ``Logic synthesis — Wikipedia, the free encyclopedia'' (2013). [Online; accessed Dec-2022].

[143] Boris Golubov, Aleksandr Efimov, and Valentin Skvortsov. ``Walsh series and transforms: theory and applications''. Volume 64. Springer Science & Business Media. (2012).
https:/​/​doi.org/​10.1007/​978-94-011-3288-6

[144] Rao K Yarlagadda and John E Hershey. ``Hadamard matrix analysis and synthesis: with applications to communications and signal/​image processing''. Volume 383. Springer Science & Business Media. (2012).
https:/​/​doi.org/​10.1007/​978-1-4615-6313-6

[145] Jonathan Welch, Daniel Greenbaum, Sarah Mostame, and Alan Aspuru-Guzik. ``Efficient quantum circuits for diagonal unitaries without ancillas''. New Journal of Physics 16, 033040 (2014). arXiv:1306.3991.
https:/​/​doi.org/​10.1088/​1367-2630/​16/​3/​033040
arXiv:1306.3991

[146] Christopher Kane, Dorota M. Grabowska, Benjamin Nachman, and Christian W. Bauer. ``Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constraints'' (2022). arXiv:2211.10497.
arXiv:2211.10497

[147] Manu Mathur and T. P. Sreeraj. ``Lattice Gauge Theories and Spin Models''. Phys. Rev. D 94, 085029 (2016). arXiv:1604.00315.
https:/​/​doi.org/​10.1103/​PhysRevD.94.085029
arXiv:1604.00315

[148] Manu Mathur and Atul Rathor. ``Exact duality and local dynamics in SU(N) lattice gauge theory''. Phys. Rev. D 107, 074504 (2023). arXiv:2109.00992.
https:/​/​doi.org/​10.1103/​PhysRevD.107.074504
arXiv:2109.00992

[149] N. E. Ligterink, N. R. Walet, and R. F. Bishop. ``Towards a many body treatment of Hamiltonian lattice SU(N) gauge theory''. Annals Phys. 284, 215–262 (2000). arXiv:hep-lat/​0001028.
https:/​/​doi.org/​10.1006/​aphy.2000.6070
arXiv:hep-lat/0001028

[150] Pietro Silvi, Enrique Rico, Marcello Dalmonte, Ferdinand Tschirsich, and Simone Montangero. ``Finite-density phase diagram of a (1+1)-d non-abelian lattice gauge theory with tensor networks''. Quantum 1, 9 (2017). arXiv:1606.05510.
https:/​/​doi.org/​10.22331/​q-2017-04-25-9
arXiv:1606.05510

[151] R. Brower, S. Chandrasekharan, and U. J. Wiese. ``QCD as a quantum link model''. Phys. Rev. D 60, 094502 (1999). arXiv:hep-th/​9704106.
https:/​/​doi.org/​10.1103/​PhysRevD.60.094502
arXiv:hep-th/9704106

[152] Stefan Kühn, J. Ignacio Cirac, and Mari Carmen Bañuls. ``Non-Abelian string breaking phenomena with Matrix Product States''. JHEP 07, 130 (2015). arXiv:1505.04441.
https:/​/​doi.org/​10.1007/​JHEP07(2015)130
arXiv:1505.04441

[153] Mari Carmen Bañuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Stefan Kühn. ``Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states''. Phys. Rev. X 7, 041046 (2017). arXiv:1707.06434.
https:/​/​doi.org/​10.1103/​PhysRevX.7.041046
arXiv:1707.06434

[154] P. Sala, T. Shi, S. Kühn, M. C. Bañuls, E. Demler, and J. I. Cirac. ``Variational study of U(1) and SU(2) lattice gauge theories with Gaussian states in 1+1 dimensions''. Phys. Rev. D 98, 034505 (2018). arXiv:1805.05190.
https:/​/​doi.org/​10.1103/​PhysRevD.98.034505
arXiv:1805.05190

[155] C. J. Hamer, Wei-hong Zheng, and J. Oitmaa. ``Series expansions for the massive Schwinger model in Hamiltonian lattice theory''. Phys. Rev. D 56, 55–67 (1997). arXiv:hep-lat/​9701015.
https:/​/​doi.org/​10.1103/​PhysRevD.56.55
arXiv:hep-lat/9701015

[156] Yu Tong, Victor V. Albert, Jarrod R. McClean, John Preskill, and Yuan Su. ``Provably accurate simulation of gauge theories and bosonic systems''. Quantum 6, 816 (2022). arXiv:2110.06942.
https:/​/​doi.org/​10.22331/​q-2022-09-22-816
arXiv:2110.06942

[157] Frank Gray. ``Pulse code communication''. U.S. Patent No. 2,632,058 (1953).

[158] Stephen S Bullock and Igor L Markov. ``Smaller circuits for arbitrary n-qubit diagonal computations''. Quantum Information and Computation 4, 027–047 (2004). arXiv:quant-ph/​0303039.
https:/​/​doi.org/​10.26421/​QIC4.1-3
arXiv:quant-ph/0303039

[159] Eyal Kushilevitz and Yishay Mansour. ``Learning decision trees using the fourier spectrum''. In Proceedings of the twenty-third annual ACM symposium on Theory of computing. Pages 455–464. (1991).
https:/​/​doi.org/​10.1137/​0222080

[160] Alex Bocharov, Martin Roetteler, and Krysta M Svore. ``Efficient synthesis of universal repeat-until-success quantum circuits''. Physical Review Letters 114, 080502 (2015). arXiv:1404.5320.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.080502
arXiv:1404.5320

[161] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter. ``Elementary gates for quantum computation''. Phys. Rev. A 52, 3457 (1995). arXiv:quant-ph/​9503016.
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457
arXiv:quant-ph/9503016

[162] Yong He, Ming-Xing Luo, E. Zhang, Hong-Ke Wang, and Xiao-Feng Wang. ``Decompositions of n-qubit toffoli gates with linear circuit complexity''. International Journal of Theoretical Physics 56, 2350–2361 (2017).
https:/​/​doi.org/​10.1007/​s10773-017-3389-4

[163] Z. Davoudi and J. R. Styker. ``On the quantum-computing cost of lattice quantum chromodynamics''. work in progress (2023).

[164] Daniel C. Hackett, Kiel Howe, Ciaran Hughes, William Jay, Ethan T. Neil, and James N. Simone. ``Digitizing Gauge Fields: Lattice Monte Carlo Results for Future Quantum Computers''. Phys. Rev. A 99, 062341 (2019). arXiv:1811.03629.
https:/​/​doi.org/​10.1103/​PhysRevA.99.062341
arXiv:1811.03629

[165] Tobias Hartung, Timo Jakobs, Karl Jansen, Johann Ostmeyer, and Carsten Urbach. ``Digitising SU(2) gauge fields and the freezing transition''. Eur. Phys. J. C 82, 237 (2022). arXiv:2201.09625.
https:/​/​doi.org/​10.1140/​epjc/​s10052-022-10192-5
arXiv:2201.09625

[166] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. ``Toward the first quantum simulation with quantum speedup''. Proceedings of the National Academy of Sciences 115, 9456–9461 (2018). arXiv:1711.10980.
https:/​/​doi.org/​10.1073/​pnas.1801723115
arXiv:1711.10980

[167] Dong An, Di Fang, and Lin Lin. ``Time-dependent unbounded Hamiltonian simulation with vector norm scaling''. Quantum 5, 459 (2021). arXiv:2012.13105.
https:/​/​doi.org/​10.22331/​q-2021-05-26-459
arXiv:2012.13105

[168] Qi Zhao, You Zhou, Alexander F. Shaw, Tongyang Li, and Andrew M. Childs. ``Hamiltonian Simulation with Random Inputs''. Phys. Rev. Lett. 129, 270502 (2022). arXiv:2111.04773.
https:/​/​doi.org/​10.1103/​PhysRevLett.129.270502
arXiv:2111.04773

[169] Marcela Carena, Henry Lamm, Ying-Ying Li, and Wanqiang Liu. ``Lattice renormalization of quantum simulations''. Phys. Rev. D 104, 094519 (2021). arXiv:2107.01166.
https:/​/​doi.org/​10.1103/​PhysRevD.104.094519
arXiv:2107.01166

[170] Anthony Ciavarella. ``Algorithm for quantum computation of particle decays''. Phys. Rev. D 102, 094505 (2020). arXiv:2007.04447.
https:/​/​doi.org/​10.1103/​PhysRevD.102.094505
arXiv:2007.04447

[171] Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, and Alexandru M. Sturzu. ``Role of boundary conditions in quantum computations of scattering observables''. Phys. Rev. D 103, 014506 (2021). arXiv:2007.01155.
https:/​/​doi.org/​10.1103/​PhysRevD.103.014506
arXiv:2007.01155

[172] Michael A Nielsen and Isaac Chuang. ``Quantum computation and quantum information''. Cambridge University Press. (2002).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[173] Craig Gidney. ``Halving the cost of quantum addition''. Quantum 2, 74 (2018). arXiv:1709.06648.
https:/​/​doi.org/​10.22331/​q-2018-06-18-74
arXiv:1709.06648

[174] Cody Jones. ``Low-overhead constructions for the fault-tolerant toffoli gate''. Physical Review A 87, 022328 (2013). arXiv:1212.5069.
https:/​/​doi.org/​10.1103/​PhysRevA.87.022328
arXiv:1212.5069

[175] Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. ``A new quantum ripple-carry addition circuit'' (2004). arXiv:quant-ph/​0410184.
arXiv:quant-ph/0410184

[176] Mihir K Bhaskar, Stuart Hadfield, Anargyros Papageorgiou, and Iasonas Petras. ``Quantum algorithms and circuits for scientific computing''. Quantum Information and Computation 16, 0197–0236 (2016). arXiv:1511.08253.
https:/​/​doi.org/​10.26421/​QIC16.3-4-2
arXiv:1511.08253

Cited by

[1] Christian W. Bauer, Zohreh Davoudi, Natalie Klco, and Martin J. Savage, "Quantum simulation of fundamental particles and forces", Nature Reviews Physics 5 7, 420 (2023).

[2] Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, Roland de Putter, Andrea Delgado, Vedran Dunjko, Daniel J. Egger, Elias Fernandez-Combarro, Elina Fuchs, Lena Funcke, Daniel Gonzalez-Cuadra, Michele Grossi, Jad C. Halimeh, Zoe Holmes, Stefan Kuhn, Denis Lacroix, Randy Lewis, Donatella Lucchesi, Miriam Lucio Martinez, Federico Meloni, Antonio Mezzacapo, Simone Montangero, Lento Nagano, Voica Radescu, Enrique Rico Ortega, Alessandro Roggero, Julian Schuhmacher, Joao Seixas, Pietro Silvi, Panagiotis Spentzouris, Francesco Tacchino, Kristan Temme, Koji Terashi, Jordi Tura, Cenk Tuysuz, Sofia Vallecorsa, Uwe-Jens Wiese, Shinjae Yoo, and Jinglei Zhang, "Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group", arXiv:2307.03236, (2023).

[3] Niklas Mueller, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi, Eugene F. Dumitrescu, and Kübra Yeter-Aydeniz, "Quantum Computation of Dynamical Quantum Phase Transitions and Entanglement Tomography in a Lattice Gauge Theory", PRX Quantum 4 3, 030323 (2023).

[4] Torsten V. Zache, Daniel González-Cuadra, and Peter Zoller, "Quantum and Classical Spin-Network Algorithms for q -Deformed Kogut-Susskind Gauge Theories", Physical Review Letters 131 17, 171902 (2023).

[5] Erik J. Gustafson, Henry Lamm, and Felicity Lovelace, "Primitive Quantum Gates for an $SU(2)$ Discrete Subgroup: Binary Octahedral", arXiv:2312.10285, (2023).

[6] Giovanni Cataldi, Giuseppe Magnifico, Pietro Silvi, and Simone Montangero, "(2+1)D SU(2) Yang-Mills Lattice Gauge Theory at finite density via tensor networks", arXiv:2307.09396, (2023).

[7] Berndt Müller and Xiaojun Yao, "Simple Hamiltonian for quantum simulation of strongly coupled (2 +1 )D SU(2) lattice gauge theory on a honeycomb lattice", Physical Review D 108 9, 094505 (2023).

[8] Tomoya Hayata and Yoshimasa Hidaka, "String-net formulation of Hamiltonian lattice Yang-Mills theories and quantum many-body scars in a nonabelian gauge theory", Journal of High Energy Physics 2023 9, 126 (2023).

[9] Saurabh V. Kadam, "Theoretical Developments in Lattice Gauge Theory for Applications in Double-beta Decay Processes and Quantum Simulation", arXiv:2312.00780, (2023).

[10] Xiaojun Yao, "SU(2) gauge theory in 2 +1 dimensions on a plaquette chain obeys the eigenstate thermalization hypothesis", Physical Review D 108 3, L031504 (2023).

[11] Marco Rigobello, Giuseppe Magnifico, Pietro Silvi, and Simone Montangero, "Hadrons in (1+1)D Hamiltonian hardcore lattice QCD", arXiv:2308.04488, (2023).

[12] Lento Nagano, Aniruddha Bapat, and Christian W. Bauer, "Quench dynamics of the Schwinger model via variational quantum algorithms", Physical Review D 108 3, 034501 (2023).

[13] Raghav G. Jha, Felix Ringer, George Siopsis, and Shane Thompson, "Continuous variable quantum computation of the $O(3)$ model in 1+1 dimensions", arXiv:2310.12512, (2023).

[14] Simone Romiti and Carsten Urbach, "Digitizing lattice gauge theories in the magnetic basis: reducing the breaking of the fundamental commutation relations", arXiv:2311.11928, (2023).

[15] Anthony N. Ciavarella, "Quantum simulation of lattice QCD with improved Hamiltonians", Physical Review D 108 9, 094513 (2023).

[16] Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, Michael J. Cervia, Edison M. Murairi, and Andy Sheng, "Fuzzy Gauge Theory for Quantum Computers", arXiv:2308.05253, (2023).

[17] S. V. Kadam, I. Raychowdhury, and J. Stryker, "Loop-string-hadron formulation of an SU(3) gauge theory with dynamical quarks", The 39th International Symposium on Lattice Field Theory, 373 (2023).

[18] Kyle Lee, James Mulligan, Felix Ringer, and Xiaojun Yao, "Liouvillian dynamics of the open Schwinger model: String breaking and kinetic dissipation in a thermal medium", Physical Review D 108 9, 094518 (2023).

[19] Timo Jakobs, Marco Garofalo, Tobias Hartung, Karl Jansen, Johann Ostmeyer, Dominik Rolfes, Simone Romiti, and Carsten Urbach, "Canonical momenta in digitized Su(2) lattice gauge theory: definition and free theory", European Physical Journal C 83 7, 669 (2023).

[20] Marco Garofalo, Tobias Hartung, Timo Jakobs, Karl Jansen, Johann Ostmeyer, Dominik Rolfes, Simone Romiti, and Carsten Urbach, "Testing the $\mathrm{SU}(2)$ lattice Hamiltonian built from $S_3$ partitionings", arXiv:2311.15926, (2023).

[21] Saurabh V. Kadam, Indrakshi Raychowdhury, and Jesse R. Stryker, "Loop-string-hadron formulation of an SU(3) gauge theory with dynamical quarks", Physical Review D 107 9, 094513 (2023).

[22] Manu Mathur and Atul Rathor, "Exact duality and local dynamics in SU(N) lattice gauge theory", Physical Review D 107 7, 074504 (2023).

[23] Manu Mathur and Atul Rathor, "Exact duality and local dynamics in SU(N) lattice gauge theory", arXiv:2109.00992, (2021).

[24] Christopher Brown, Michael Spannowsky, Alexander Tapper, Simon Williams, and Ioannis Xiotidis, "Quantum Pathways for Charged Track Finding in High-Energy Collisions", arXiv:2311.00766, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-02-27 08:55:13). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-02-27 08:55:11).