Quantum Alchemy and Universal Orthogonality Catastrophe in One-Dimensional Anyons

Naim E. Mackel1, Jing Yang1,2, and Adolfo del Campo1,3

1Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
2Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns vag 12, 106 91 Stockholm, Sweden
3Donostia International Physics Center, E-20018 San Sebastián, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Many-particle quantum systems with intermediate anyonic exchange statistics are supported in one spatial dimension. In this context, the anyon-anyon mapping is recast as a continuous transformation that generates shifts of the statistical parameter $\kappa$. We characterize the geometry of quantum states associated with different values of $\kappa$, i.e., different quantum statistics. While states in the bosonic and fermionic subspaces are always orthogonal, overlaps between anyonic states are generally finite and exhibit a universal form of the orthogonality catastrophe governed by a fundamental statistical factor, independent of the microscopic Hamiltonian. We characterize this decay using quantum speed limits on the flow of $\kappa$, illustrate our results with a model of hard-core anyons, and discuss possible experiments in quantum simulation.

► BibTeX data

► References

[1] Jon M Leinaas and Jan Myrheim. On the theory of identical particles. Il Nuovo Cimento B (1971-1996), 37 (1): 1–23, 1977. https:/​/​doi.org/​10.1007/​BF02727953. URL https:/​/​doi.org/​10.1007/​BF02727953.

[2] Frank Wilczek. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett., 48: 1144–1146, Apr 1982a. https:/​/​doi.org/​10.1103/​PhysRevLett.48.1144.

[3] Frank Wilczek. Remarks on dyons. Phys. Rev. Lett., 48: 1146–1149, Apr 1982b. https:/​/​doi.org/​10.1103/​PhysRevLett.48.1146.

[4] A. Shapere and F. Wilczek. Geometric Phases in Physics. Advanced series in mathematical physics. World Scientific, 1989. https:/​/​doi.org/​10.1142/​0613.

[5] Avinash Khare. Fractional statistics and quantum theory, 2nd edition. 02 2005. ISBN 978-981-256-160-2. https:/​/​doi.org/​10.1142/​5752.

[6] F. D. M. Haldane. "fractional statistics'' in arbitrary dimensions: A generalization of the pauli principle. Phys. Rev. Lett., 67: 937–940, Aug 1991. https:/​/​doi.org/​10.1103/​PhysRevLett.67.937.

[7] Yong-Shi Wu. Statistical distribution for generalized ideal gas of fractional-statistics particles. Phys. Rev. Lett., 73: 922–925, Aug 1994. https:/​/​doi.org/​10.1103/​PhysRevLett.73.922.

[8] M. V. N. Murthy and R. Shankar. Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics. Phys. Rev. Lett., 73: 3331–3334, Dec 1994. https:/​/​doi.org/​10.1103/​PhysRevLett.73.3331.

[9] U. Aglietti, L. Griguolo, R. Jackiw, S.-Y. Pi, and D. Seminara. Anyons and chiral solitons on a line. Phys. Rev. Lett., 77: 4406–4409, Nov 1996. https:/​/​doi.org/​10.1103/​PhysRevLett.77.4406.

[10] Anjan Kundu. Exact solution of double ${\delta}$ function bose gas through an interacting anyon gas. Phys. Rev. Lett., 83: 1275–1278, Aug 1999. https:/​/​doi.org/​10.1103/​PhysRevLett.83.1275.

[11] M. T. Batchelor, X.-W. Guan, and N. Oelkers. One-dimensional interacting anyon gas: Low-energy properties and haldane exclusion statistics. Phys. Rev. Lett., 96: 210402, Jun 2006. https:/​/​doi.org/​10.1103/​PhysRevLett.96.210402.

[12] M. D. Girardeau. Anyon-fermion mapping and applications to ultracold gases in tight waveguides. Phys. Rev. Lett., 97: 100402, Sep 2006. https:/​/​doi.org/​10.1103/​PhysRevLett.97.100402.

[13] M. T. Batchelor and X.-W. Guan. Generalized exclusion statistics and degenerate signature of strongly interacting anyons. Phys. Rev. B, 74: 195121, Nov 2006. https:/​/​doi.org/​10.1103/​PhysRevB.74.195121.

[14] A. del Campo. Fermionization and bosonization of expanding one-dimensional anyonic fluids. Phys. Rev. A, 78: 045602, Oct 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.045602.

[15] Tassilo Keilmann, Simon Lanzmich, Ian McCulloch, and Marco Roncaglia. Statistically induced phase transitions and anyons in 1d optical lattices. Nature Communications, 2 (1): 361, Jun 2011. ISSN 2041-1723. https:/​/​doi.org/​10.1038/​ncomms1353.

[16] Stefano Longhi and Giuseppe Della Valle. Anyons in one-dimensional lattices: a photonic realization. Opt. Lett., 37 (11): 2160–2162, Jun 2012. https:/​/​doi.org/​10.1364/​OL.37.002160.

[17] Sebastian Greschner and Luis Santos. Anyon hubbard model in one-dimensional optical lattices. Phys. Rev. Lett., 115: 053002, Jul 2015. https:/​/​doi.org/​10.1103/​PhysRevLett.115.053002.

[18] Christoph Sträter, Shashi C. L. Srivastava, and André Eckardt. Floquet realization and signatures of one-dimensional anyons in an optical lattice. Phys. Rev. Lett., 117: 205303, Nov 2016. https:/​/​doi.org/​10.1103/​PhysRevLett.117.205303.

[19] Wanzhou Zhang, Sebastian Greschner, Ernv Fan, Tony C. Scott, and Yunbo Zhang. Ground-state properties of the one-dimensional unconstrained pseudo-anyon hubbard model. Phys. Rev. A, 95: 053614, May 2017. https:/​/​doi.org/​10.1103/​PhysRevA.95.053614.

[20] Luqi Yuan, Meng Xiao, Shanshan Xu, and Shanhui Fan. Creating anyons from photons using a nonlinear resonator lattice subject to dynamic modulation. Phys. Rev. A, 96: 043864, Oct 2017. https:/​/​doi.org/​10.1103/​PhysRevA.96.043864.

[21] Sebastian Greschner, Lorenzo Cardarelli, and Luis Santos. Probing the exchange statistics of one-dimensional anyon models. Phys. Rev. A, 97: 053605, May 2018. https:/​/​doi.org/​10.1103/​PhysRevA.97.053605.

[22] Joyce Kwan, Perrin Segura, Yanfei Li, Sooshin Kim, Alexey V Gorshkov, André Eckardt, Brice Bakkali-Hassani, and Markus Greiner. Realization of 1d anyons with arbitrary statistical phase. arXiv preprint arXiv:2306.01737, 2023. https:/​/​doi.org/​10.48550/​arXiv.2306.01737. URL https:/​/​arxiv.org/​abs/​2306.01737.

[23] M. Girardeau. Relationship between systems of impenetrable bosons and fermions in one dimension. Journal of Mathematical Physics, 1 (6): 516–523, 1960. https:/​/​doi.org/​10.1063/​1.1703687.

[24] Raoul Santachiara, Franck Stauffer, and Daniel C Cabra. Entanglement properties and momentum distributions of hard-core anyons on a ring. Journal of Statistical Mechanics: Theory and Experiment, 2007 (05): L05003–L05003, may 2007. https:/​/​doi.org/​10.1088/​1742-5468/​2007/​05/​l05003.

[25] Yajiang Hao, Yunbo Zhang, and Shu Chen. Ground-state properties of one-dimensional anyon gases. Phys. Rev. A, 78: 023631, Aug 2008. https:/​/​doi.org/​10.1103/​PhysRevA.78.023631.

[26] Yajiang Hao, Yunbo Zhang, and Shu Chen. Ground-state properties of hard-core anyons in one-dimensional optical lattices. Phys. Rev. A, 79: 043633, Apr 2009. https:/​/​doi.org/​10.1103/​PhysRevA.79.043633.

[27] Yajiang Hao and Shu Chen. Dynamical properties of hard-core anyons in one-dimensional optical lattices. Phys. Rev. A, 86: 043631, Oct 2012. https:/​/​doi.org/​10.1103/​PhysRevA.86.043631.

[28] Ovidiu I Pâţu, Vladimir E Korepin, and Dmitri V Averin. One-dimensional impenetrable anyons in thermal equilibrium: I. anyonic generalization of lenard's formula. Journal of Physics A: Mathematical and Theoretical, 41 (14): 145006, mar 2008a. https:/​/​doi.org/​10.1088/​1751-8113/​41/​14/​145006.

[29] Ovidiu I Pâţu, Vladimir E Korepin, and Dmitri V Averin. One-dimensional impenetrable anyons in thermal equilibrium: II. determinant representation for the dynamic correlation functions. Journal of Physics A: Mathematical and Theoretical, 41 (25): 255205, may 2008b. https:/​/​doi.org/​10.1088/​1751-8113/​41/​25/​255205.

[30] Lorenzo Piroli and Pasquale Calabrese. Exact dynamics following an interaction quench in a one-dimensional anyonic gas. Phys. Rev. A, 96: 023611, Aug 2017. https:/​/​doi.org/​10.1103/​PhysRevA.96.023611.

[31] Fangli Liu, James R. Garrison, Dong-Ling Deng, Zhe-Xuan Gong, and Alexey V. Gorshkov. Asymmetric particle transport and light-cone dynamics induced by anyonic statistics. Phys. Rev. Lett., 121: 250404, Dec 2018. https:/​/​doi.org/​10.1103/​PhysRevLett.121.250404.

[32] L. Mandelstam and I. Tamm. The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. USSR, 9: 249, 1945. https:/​/​doi.org/​10.1007/​978-3-642-74626-0_8.

[33] Norman Margolus and Lev B. Levitin. The maximum speed of dynamical evolution. Physica D: Nonlinear Phenomena, 120 (1): 188–195, 1998. ISSN 0167-2789. https:/​/​doi.org/​10.1016/​S0167-2789(98)00054-2. URL Proceedings of the Fourth Workshop on Physics and Consumption.

[34] Samuel L. Braunstein, Carlton M. Caves, and G.J. Milburn. Generalized uncertainty relations: Theory, examples, and lorentz invariance. Annals of Physics, 247 (1): 135–173, 1996. ISSN 0003-4916. https:/​/​doi.org/​10.1006/​aphy.1996.0040. URL.

[35] Norman Margolus. Counting distinct states in physical dynamics. 2021. https:/​/​doi.org/​10.48550/​arXiv.2111.00297.

[36] S. Deffner and S. Campbell. Quantum speed limits: from heisenberg's uncertainty principle to optimal quantum control. Journal of Physics A: Mathematical and Theoretical, 50 (45): 453001, oct 2017. https:/​/​doi.org/​10.1088/​1751-8121/​aa86c6.

[37] Samuel L Braunstein and Carlton M Caves. Statistical distance and the geometry of quantum states. Physical Review Letters, 72 (22): 3439–3443, May 1994. ISSN 0031-9007. https:/​/​doi.org/​10.1103/​PhysRevLett.72.3439.

[38] Matteo G. A. Paris. Quantum estimation for quantum technology. International Journal of Quantum Information, 07 (supp01): 125–137, January 2009. ISSN 0219-7499. https:/​/​doi.org/​10.1142/​S0219749909004839.

[39] Sergio Boixo, Steven T. Flammia, Carlton M. Caves, and JM Geremia. Generalized Limits for Single-Parameter Quantum Estimation. Physical Review Letters, 98 (9): 090401, February 2007. https:/​/​doi.org/​10.1103/​PhysRevLett.98.090401.

[40] Jing Yang, Shengshi Pang, Adolfo del Campo, and Andrew N. Jordan. Super-heisenberg scaling in hamiltonian parameter estimation in the long-range kitaev chain. Phys. Rev. Research, 4: 013133, Feb 2022. https:/​/​doi.org/​10.1103/​PhysRevResearch.4.013133.

[41] J. Anandan and Y. Aharonov. Geometry of quantum evolution. Phys. Rev. Lett., 65: 1697–1700, Oct 1990. https:/​/​doi.org/​10.1103/​PhysRevLett.65.1697.

[42] P. W. Anderson. Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett., 18: 1049–1051, Jun 1967. https:/​/​doi.org/​10.1103/​PhysRevLett.18.1049.

[43] Adolfo del Campo. Exact quantum decay of an interacting many-particle system: the calogero–sutherland model. New Journal of Physics, 18 (1): 015014, jan 2016. https:/​/​doi.org/​10.1088/​1367-2630/​18/​1/​015014.

[44] Filiberto Ares, Kumar S. Gupta, and Amilcar R. de Queiroz. Orthogonality catastrophe and fractional exclusion statistics. Phys. Rev. E, 97: 022133, Feb 2018. https:/​/​doi.org/​10.1103/​PhysRevE.97.022133.

[45] Thomás Fogarty, Sebastian Deffner, Thomas Busch, and Steve Campbell. Orthogonality catastrophe as a consequence of the quantum speed limit. Phys. Rev. Lett., 124: 110601, Mar 2020. https:/​/​doi.org/​10.1103/​PhysRevLett.124.110601.

[46] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86: 153–185, Mar 2014. https:/​/​doi.org/​10.1103/​RevModPhys.86.153.

[47] J. Casanova, C. Sabín, J. León, I. L. Egusquiza, R. Gerritsma, C. F. Roos, J. J. García-Ripoll, and E. Solano. Quantum simulation of the majorana equation and unphysical operations. Phys. Rev. X, 1: 021018, Dec 2011. https:/​/​doi.org/​10.1103/​PhysRevX.1.021018.

[48] N. L. Harshman and A. C. Knapp. Topological exchange statistics in one dimension. Phys. Rev. A, 105: 052214, May 2022. https:/​/​doi.org/​10.1103/​PhysRevA.105.052214.

[49] Gal Ness, Manolo R. Lam, Wolfgang Alt, Dieter Meschede, Yoav Sagi, and Andrea Alberti. Observing crossover between quantum speed limits. Science Advances, 7 (52): eabj9119, 2021. https:/​/​doi.org/​10.1126/​sciadv.abj9119.

[50] Zhenyu Xu and Adolfo del Campo. Probing the full distribution of many-body observables by single-qubit interferometry. Phys. Rev. Lett., 122: 160602, Apr 2019. https:/​/​doi.org/​10.1103/​PhysRevLett.122.160602.

Cited by

[1] Sebastian Nagies, Botao Wang, Adam C. Knapp, André Eckardt, and Nathan L. Harshman, "Beyond braid statistics: Constructing a lattice model for anyons with exchange statistics intrinsic to one dimension", SciPost Physics 16 3, 086 (2024).

[2] Dimpi Thakuria, Abhay Srivastav, Brij Mohan, Asmita Kumari, and Arun Kumar Pati, "Generalised quantum speed limit for arbitrary time-continuous evolution", Journal of Physics A Mathematical General 57 2, 025302 (2024).

[3] Jing Yang and Adolfo del Campo, "Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz", arXiv:2210.14937, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 03:15:50) and SAO/NASA ADS (last updated successfully 2024-06-22 03:15:51). The list may be incomplete as not all publishers provide suitable and complete citation data.