Engines for predictive work extraction from memoryful quantum stochastic processes

Ruo Cheng Huang1, Paul M. Riechers1,2, Mile Gu1,3,4, and Varun Narasimhachar1,5

1Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
2Beyond Institute for Theoretical Science (BITS), San Francisco, CA, USA
3Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore
4MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, 117543, Singapore
5A*STAR Quantum Innovation Centre (Q.InC), Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Republic of Singapore 138632

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum information-processing techniques enable work extraction from a system's inherently quantum features, in addition to the classical free energy it contains. Meanwhile, the science of computational mechanics affords tools for the predictive modeling of non-Markovian classical and quantum stochastic processes. We combine tools from these two sciences to develop a technique for predictive work extraction from non-Markovian stochastic processes with quantum outputs. We demonstrate that this technique can extract more work than non-predictive quantum work extraction protocols, on the one hand, and predictive work extraction without quantum information processing, on the other. We discover a phase transition in the efficacy of memory for work extraction from quantum processes, which is without classical precedent. Our work opens up the prospect of machines that harness environmental free energy in an essentially quantum, essentially time-varying form.

Thermodynamics has taught us that engines can be fueled not only by heat flow, but by any process arising from objects being out of thermal equilibrium. Quantum engines are powered by uniquely quantum forms of such non-equilibrium processes. Meanwhile, information ratchets (predictive engines) use memory and prediction to harness processes' patterns over time, which would be inaccessible to memoryless, non-predictive engines. We build an engine that combines quantum and predictive functionalities, and thereby, extracts useful energy from processes in a way that neither non-predictive quantum engines nor non-quantum predictive engines can.

► BibTeX data

► References

[1] Daniel V Schroeder. ``An introduction to thermal physics''. American Association of Physics Teachers. (1999). doi: 10.1119/​1.19116.

[2] Stephen J Blundell and Katherine M Blundell. ``Concepts in thermal physics''. Oup Oxford. (2009). doi: 10.1093/​acprof:oso/​9780199562091.001.0001.

[3] James Sethna. ``Statistical mechanics: entropy, order parameters, and complexity''. Volume 14. Oxford University Press, USA. (2021). doi: 10.1093/​oso/​9780198865247.001.0001.

[4] Herbert B Callen. ``Thermodynamics and an introduction to thermostatistics''. John wiley & sons. (1991). doi: 10.1119/​1.14986.

[5] Leo Szilard. ``On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings''. Behavioral Science 9, 301–310 (1964). doi: 10.1002/​bs.3830090402.

[6] Rolf Landauer. ``Irreversibility and heat generation in the computing process''. IBM journal of research and development 5, 183–191 (1961). doi: 10.1147/​rd.53.0183.

[7] Charles H Bennett. ``The thermodynamics of computation—a review''. International Journal of Theoretical Physics 21, 905–940 (1982). doi: 10.1007/​BF02084158.

[8] Dibyendu Mandal and Christopher Jarzynski. ``Work and information processing in a solvable model of Maxwell’s demon''. Proceedings of the National Academy of Sciences 109, 11641–11645 (2012). doi: 10.1073/​pnas.1204263109.

[9] Dibyendu Mandal, HT Quan, and Christopher Jarzynski. ``Maxwell’s refrigerator: an exactly solvable model''. Physical review letters 111, 030602 (2013). doi: 10.1103/​PhysRevLett.111.030602.

[10] Juan MR Parrondo, Jordan M Horowitz, and Takahiro Sagawa. ``Thermodynamics of information''. Nature physics 11, 131–139 (2015). doi: 10.1038/​nphys3230.

[11] John Goold, Marcus Huber, Arnau Riera, Lídia Del Rio, and Paul Skrzypczyk. ``The role of quantum information in thermodynamics—a topical review''. Journal of Physics A: Mathematical and Theoretical 49, 143001 (2016). doi: 10.1088/​1751-8113/​49/​14/​143001.

[12] Felix Binder, Luis A Correa, Christian Gogolin, Janet Anders, and Gerardo Adesso. ``Thermodynamics in the quantum regime''. Fundamental Theories of Physics 195, 1–2 (2018). doi: 10.1007/​978-3-319-99046-0.

[13] Paul Skrzypczyk, Anthony J Short, and Sandu Popescu. ``Work extraction and thermodynamics for individual quantum systems''. Nature communications 5 (2014). doi: 10.1038/​ncomms5185.

[14] Johan Åberg. ``Catalytic coherence''. Physical review letters 113, 150402 (2014). doi: 10.1103/​PhysRevLett.113.150402.

[15] Kamil Korzekwa, Matteo Lostaglio, Jonathan Oppenheim, and David Jennings. ``The extraction of work from quantum coherence''. New Journal of Physics 18, 023045 (2016). doi: 10.1088/​1367-2630/​18/​2/​023045.

[16] Andrew JP Garner, Jayne Thompson, Vlatko Vedral, and Mile Gu. ``Thermodynamics of complexity and pattern manipulation''. Physical Review E 95, 042140 (2017). doi: 10.1103/​PhysRevE.95.042140.

[17] Matteo Lostaglio. ``Thermodynamic laws for populations and quantum coherence: A self-contained introduction to the resource theory approach to thermodynamics'' (2018). doi: 10.48550/​arXiv.1807.11549.

[18] James P Crutchfield and Karl Young. ``Inferring statistical complexity''. Physical review letters 63, 105 (1989). doi: 10.1103/​PhysRevLett.63.105.

[19] Cosma Rohilla Shalizi and James P Crutchfield. ``Computational mechanics: Pattern and prediction, structure and simplicity''. Journal of statistical physics 104, 817–879 (2001). doi: 10.1023/​A:1010388907793.

[20] James P Crutchfield. ``Between order and chaos''. Nature Physics 8, 17–24 (2012). doi: 10.1038/​nphys2190.

[21] Alexander B. Boyd, Dibyendu Mandal, and James P. Crutchfield. ``Correlation-powered information engines and the thermodynamics of self-correction''. Phys. Rev. E 95, 012152 (2017). doi: 10.1103/​PhysRevE.95.012152.

[22] Michael A Nielsen and Isaac Chuang. ``Quantum computation and quantum information''. Cambridge University Press. (2011). doi: 10.1017/​CBO9780511976667.

[23] Philipp Strasberg, Gernot Schaller, Tobias Brandes, and Massimiliano Esposito. ``Quantum and information thermodynamics: A unifying framework based on repeated interactions''. Phys. Rev. X 7, 021003 (2017). doi: 10.1103/​PhysRevX.7.021003.

[24] Kavan Modi, Tomasz Paterek, Wonmin Son, Vlatko Vedral, and Mark Williamson. ``Unified view of quantum and classical correlations''. Phys. Rev. Lett. 104, 080501 (2010). doi: 10.1103/​PhysRevLett.104.080501.

[25] Ariadna E Venegas-Li, Alexandra M Jurgens, and James P Crutchfield. ``Measurement-induced randomness and structure in controlled qubit processes''. Physical Review E 102, 040102 (2020). doi: 10.1103/​PhysRevE.102.040102.

[26] James P Crutchfield. ``The calculi of emergence: computation, dynamics and induction''. Physica D: Nonlinear Phenomena 75, 11–54 (1994). doi: 10.1016/​0167-2789(94)90273-9.

[27] Christopher J Ellison, John R Mahoney, and James P Crutchfield. ``Prediction, retrodiction, and the amount of information stored in the present''. Journal of Statistical Physics 136, 1005–1034 (2009). doi: 10.1007/​s10955-009-9808-z.

[28] Sarah E Marzen and James P Crutchfield. ``Nearly maximally predictive features and their dimensions''. Physical Review E 95, 051301 (2017). doi: 10.1103/​PhysRevE.95.051301.

[29] Paul M Riechers and James P Crutchfield. ``Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction''. Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 033115 (2018). doi: 10.1063/​1.4985199.

[30] Alexandra M Jurgens and James P Crutchfield. ``Shannon entropy rate of hidden Markov processes''. Journal of Statistical Physics 183, 1–18 (2021). doi: 10.1007/​s10955-021-02769-3.

[31] Paul M Riechers and Mile Gu. ``Initial-state dependence of thermodynamic dissipation for any quantum process''. Physical Review E 103, 042145 (2021). doi: 10.1103/​PhysRevE.103.042145.

[32] Paul M Riechers and Mile Gu. ``Impossibility of achieving Landauer's bound for almost every quantum state''. Phys. Rev. A 104, 012214 (2021). doi: 10.1103/​PhysRevA.104.012214.

[33] Alexander B Boyd, Dibyendu Mandal, Paul M Riechers, and James P Crutchfield. ``Transient dissipation and structural costs of physical information transduction''. Physical review letters 118, 220602 (2017). doi: 10.1103/​PhysRevLett.118.220602.

[34] Alexander B Boyd, Dibyendu Mandal, and James P Crutchfield. ``Thermodynamics of modularity: Structural costs beyond the Landauer bound''. Physical Review X 8, 031036 (2018). doi: 10.1103/​PhysRevX.8.031036.

[35] Andrew JP Garner. ``The fundamental thermodynamic bounds on finite models''. Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 063131 (2021). doi: 10.1063/​5.0044741.

[36] Yelena Guryanova, Nicolai Friis, and Marcus Huber. ``Ideal Projective Measurements Have Infinite Resource Costs''. Quantum 4, 222 (2020). doi: 10.22331/​q-2020-01-13-222.

[37] Cyril Elouard, David Herrera-Martí, Benjamin Huard, and Alexia Auffeves. ``Extracting work from quantum measurement in Maxwell’s demon engines''. Physical Review Letters 118, 260603 (2017). doi: 10.1103/​PhysRevLett.118.260603.

[38] Patryk Lipka-Bartosik, Paweł Mazurek, and Michał Horodecki. ``Second law of thermodynamics for batteries with vacuum state''. Quantum 5, 408 (2021). doi: 10.22331/​Q-2021-03-10-408.

[39] F. L. Curzon and B. Ahlborn. ``Efficiency of a Carnot engine at maximum power output''. American Journal of Physics 43, 22–24 (1975). doi: 10.1119/​1.10023. arXiv:https:/​/​pubs.aip.org/​aapt/​ajp/​article-pdf/​43/​1/​22/​12091578/​22_1_online.pdf.

[40] John P. S. Peterson, Tiago B. Batalhão, Marcela Herrera, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira, and Roberto M. Serra. ``Experimental characterization of a spin quantum heat engine''. Phys. Rev. Lett. 123, 240601 (2019). doi: 10.1103/​PhysRevLett.123.240601.

[41] Tan Van Vu and Keiji Saito. ``Finite-time quantum Landauer principle and quantum coherence''. Phys. Rev. Lett. 128, 010602 (2022). doi: 10.1103/​PhysRevLett.128.010602.

[42] Philip Taranto, Faraj Bakhshinezhad, Andreas Bluhm, Ralph Silva, Nicolai Friis, Maximilian P.E. Lock, Giuseppe Vitagliano, Felix C. Binder, Tiago Debarba, Emanuel Schwarzhans, Fabien Clivaz, and Marcus Huber. ``Landauer versus Nernst: What is the true cost of cooling a quantum system?''. PRX Quantum 4, 010332 (2023). doi: 10.1103/​PRXQuantum.4.010332.

[43] Alexander B Boyd, Dibyendu Mandal, and James P Crutchfield. ``Identifying functional thermodynamics in autonomous Maxwellian ratchets''. New Journal of Physics 18, 023049 (2016). doi: 10.1088/​1367-2630/​18/​2/​023049.

[44] Elan Stopnitzky, Susanne Still, Thomas E Ouldridge, and Lee Altenberg. ``Physical limitations of work extraction from temporal correlations''. Physical Review E 99, 042115 (2019). doi: 10.1103/​PhysRevE.99.042115.

[45] Alexandra M Jurgens and James P Crutchfield. ``Functional thermodynamics of Maxwellian ratchets: Constructing and deconstructing patterns, randomizing and derandomizing behaviors''. Physical Review Research 2, 033334 (2020). doi: 10.1103/​PhysRevResearch.2.033334.

[46] Lianjie He, Andri Pradana, Jian Wei Cheong, and Lock Yue Chew. ``Information processing second law for an information ratchet with finite tape''. Physical Review E 105, 054131 (2022). doi: 10.1103/​PhysRevE.105.054131.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-02-27 11:09:49). On SAO/NASA ADS no data on citing works was found (last attempt 2024-02-27 11:09:50).