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We propose a quantum error mitigation strategy for the variational quantum
eigensolver (VQE) algorithm. We find, via numerical simulation, that very
small amounts of coherent noise in VQE can cause substantially large errors
that are difficult to suppress by conventional mitigation methods, and yet our
proposed mitigation strategy is able to significantly reduce these errors. The
proposed strategy is a combination of previously reported techniques, namely
randomized compiling (RC) and zero-noise extrapolation (ZNE). Intuitively,
randomized compiling turns coherent errors in the circuit into stochastic Pauli
errors, which facilitates extrapolation to the zero-noise limit when evaluating
the cost function. Our numerical simulation of VQE for small molecules shows
that the proposed strategy can mitigate energy errors induced by various types
of coherent noise by up to two orders of magnitude.

1 Introduction
Quantum computing is an emerging technology with the potential to solve classically in-
tractable computational problems. One of its most promising applications is simulation
of quantum chemistry [1, 2, 3]. Standard approaches for solving quantum chemistry prob-
lems on a quantum computer require a fault-tolerant implementation [4], which unfor-
tunately remains a distant future prospect. The variational quantum eigensolver (VQE)
algorithm was proposed as a near-term alternative [5, 6]. VQE is based on the hybrid
quantum-classical computational paradigm, where a classical computer guides a parame-
terized quantum circuit towards the correct solution. In recent years, proof-of-principle
demonstrations of VQE were successfully conducted on current, noisy intermediate-scale
quantum (NISQ) computers [3, 5, 7, 8, 9, 10, 11, 12].

Scaling VQE to larger system sizes seems to pose serious challenges. For example it
is known that variational algorithms suffer from the barren plateau phenomenon, where
the energy landscape is exponentially flat in most of the Hilbert space [13]. Additionally,
when the circuit ansatz contains too many parameters the classical optimization step could
become too slow to converge [14]. These problems are greatly exacerbated in the presence
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of noise. Studying the complex interplay in VQE between noise, classical optimization,
and circuit ansatz is a major motivation of this work. As the error tolerance required for
useful chemistry calculations is very small (< 1.6 mHa), it is highly desirable to find ways
to suppress and mitigate the effect of different noise processes in VQE.

To address the problem of noise on near-term devices, several quantum error mitiga-
tion schemes have been proposed to suppress the effect of quantum noise and correct the
expectation values of observables of interest [15]. Unlike quantum error correction, error
mitigation schemes do not require additional qubits, but generally require additional cir-
cuit runs and possibly some increase in circuit depth. Most critically, the accuracy of these
methods depends on very strong, physically unmotivated or difficult-to-verify assumptions
about the nature of the error model affecting the computation. Overcoming the latter
limitation is another major motivation of the current work.

A few variants of quantum error mitigation are known, some of which specifically target
VQE applications. For example, zero-noise extrapolation (ZNE) [10, 16, 17, 18] and prob-
abilistic error cancellation (PEC) [17, 18, 19] are effective for mitigating Pauli-stochastic
noise. The quantum subspace expansion (QSE) [9, 20] was suggested to mitigate errors
in VQE, and was argued to be especially effective for mitigating the effect of decoherence.
However, these methods are not effective in the presence of coherent noise, and while some
kinds of coherent noise can be reduced by better calibration of the hardware, other kinds,
such as coherent crosstalk, pose significant challenges with current calibration technology.
Furthermore, even a small miscalibration can result in significant error in the algorithm’s
output if the computation is relatively long. Randomized compiling (RC) [21] is a compi-
lation technique with an important noise-tailoring effect, in which coherent noise processes
in a noisy circuit are transformed into effective incoherent noise processes, with a marked
reduction in the worst-case error rate. The benefit of RC for practical algorithms has been
demonstrated in experiment [22], as well as methods that combine RC with quantum error
mitigation protocols [23, 24, 25, 26, 27, 28]. To the best of our knowledge the effect of
combining RC with quantum error mitigation on the accuracy of a VQE algorithm has not
been reported thus far.

In this work we numerically simulate noisy VQE experiments and show significant
improvement in their performance under an error mitigation strategy that combines RC
and ZNE. We give evidence that this improvement is generic by performing simulations
under varied conditions, such as different target molecules, noise models, and classical
optimizers. We use a structured variational ansatz, namely the unitary coupled cluster
ansatz with single and double excitations (UCC-SD) [6]. The main advantage from using
a structured ansatz is that it explores a small subset of the Hilbert space, in which there
is good reason to believe the ground state lies – thus it requires fewer circuit parameters
and is less likely to exhibit a vanishing gradient in the error-free case [29].

In our simulations we use an error model in which single-qubit gates are perfect and
two-qubit gates are noisy, where the noise is described by a small unitary error, possibly
entangling the target qubits with other qubits. In particular, decoherence and relaxation
noise is assumed to be negligible. This represents a situation where the circuit can be
executed without loss of coherence, but still suffers from systematic noise due to small
calibration errors or small amounts of crosstalk. Such errors can quickly add up in a long
circuit and result in a poor output state, greatly harming the performance of VQE. In
addition, coherent noise of this form can be harmful if the variational ansatz is highly
specialized to explore a small subset of the full Hilbert space. In this case coherent noise
can take the state outside of the relevant manifold, resulting in unphysical results.

Our findings suggest that the application of both RC and ZNE to deep, structured
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Figure 1: Overall VQE scheme with RC and ZNE

VQE algorithms can provide a drastic synergetic effect in terms of the accuracy of the
molecular energy extracted from VQE under these conditions. Interestingly, under all
coherent noise models we consider, we find that the effects of RC and ZNE when applied
separately are rather limited, but combining them reduces the energy error by up to two
orders of magnitude.

The circuits we simulate are in a regime where the depth is challenging for NISQ devices,
but much smaller than the depth required for non-variational methods such as quantum
phase estimation (QPE) [30]. There are two motivations for studying this regime. First,
deep VQE algorithms may become practical in a post NISQ era where the error rates are
much smaller than in NISQ devices, but still too high for QPE. Second, QPE requires as
input a good approximation to the ground state, and it has been recently argued that this
requirement severely limits the usefulness of QPE for chemistry simulations [31]. Here we
note one strategy that could circumvent the aforementioned argument: when successful, a
quantum variational algorithm (such as VQE) could find a circuit that efficiently prepares
a state with high overlap with the ground state, which can then be used as input to QPE.

The outline of the paper is as follows. In Section 2, we explain background theory of
VQE and the error-mitigation method employed in this work, as well as our noise models
and simulation methodology. In Section 3, we present and discuss our simulation results.
In Section 4, we conclude and discuss future perspectives.

2 Variational quantum eigensolver simulation and noise models
2.1 Variational quantum eigensolver
VQE is a hybrid classical-quantum algorithm for simulating properties of a Hamiltonian
H. In this work H represents the electronic structure Hamiltonian of some small molecule.
VQE is based on using a classical optimizer to minimize the expected energy over some
parameterized family of quantum circuits, where the cost function is evaluated within the
optimization loop using a quantum computer. When successful, this algorithm finds a
circuit that prepares an approximation to the ground state of the molecule, as well as an
estimate of its ground state energy.

In this work we study a family of VQE experiments designed to compute the dependence
of the ground state energy on the positions of the nuclei in the molecule, reproducing the so-
called potential energy surface of the molecule (or a one-dimensional slice of it, commonly
known as a disassociation curve). To embed H into qubits, we use the standard techniques
of second quantization and the Jordan-Wigner transform. For a variational ansatz, we use
the unitary coupled cluster ansatz with single- and double-excitations (UCC-SD) . The
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Figure 2: Schematic illustration of how we perform ZNE with and without RC. Ck,l and C ′
k,l denote

single qubit operations, where k and l denote the cycle index and the qubit index, respectively.

parameterized states have the form

|ψ(θ)⟩ = U(θ)|ψHF⟩ (1)

where θ = θ1, . . . , θm are the variational parameters, and |ψHF⟩ is a computational basis
state encoding the Hartree-Fock approximation to the ground state. The circuit U(θ) is a
Trotterized version of the exponential eT (θ)−T (θ)† where T (θ) is the cluster operator with
parameters θ. For a given value θ, the cost function is the expected energy, ⟨ψ(θ)|H|ψ(θ)⟩,
which can be computed efficiently on the quantum computer. See Appendix A.1 for more
details.

2.2 Noise models
We choose a noise model in which entangling gates are noisy and single-qubit gates are
perfect. The motivation is that we are mainly concerned with simulating residual calibra-
tion errors, and single-qubit gates can typically be calibrated to orders-of-magnitude higher
fidelity than two-qubit gates. We choose an error rate of roughly 10−3. In comparison the
circuits we simulate have up to 103 noisy two-qubit gates. In our work U(θ) is compiled
using a gateset consisting of CNOT gates and arbitrary single-qubit gates. We consider four
kinds of coherent and time stationary noise models affecting the CNOT: (i) over-rotation by
a small amount ϵ (that is U 7→ UU ϵ), (ii) small X-axis rotation on the control qubit prior
to the CNOT gate (we call it XI rotation noise hereafter), (iii) small Z-axis rotation on the
target qubit prior to the CNOT gate (we call it IZ rotation noise hereafter), and (iv) coherent
crosstalk where a small unwanted ZZ interaction couples each of the two qubits involved
in a CNOT gate and its nearest neighbours, where the qubits are assumed to be arranged in
a 1D chain with periodic boundaries. Other sources of noise, such as relaxation processes
and state-preparation and measurement (SPAM) errors are not considered in this work.

2.3 Simulation details
Computing the cost function for a given value of θ⃗ can be done using one of two methods:
1) by direct computation of the average energy tr(ρθH), where ρθ is the output state of
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the circuit, or 2) by computing an empirical average based on a finite number of simulated
samples. In the latter case we expand the Hamiltonian as a sum of n-qubit Pauli operators

H =
M∑

j=1
ajPj (2)

and estimate each term tr(ρθPj) separately by simulating a measurement of the observable
Pj using a finite number of shots. Note that the second method represents how VQE has to
be implemented in practice, but makes the simulation much slower, since M can be large
and shot noise can harm the performance of the classical optimizer. We present results
using both methods, showing that the improvement from our error mitigation strategy
persists even under the more realistic, but slower, second method. We remark that the
measurement overhead is a major bottleneck for VQE algorithms, and in the present work
we do not attempt to improve it in our simulations (see [6, 32, 33, 34] for various ways to
reduce this overhead).

We perform and compare VQE simulations under various conditions: with no quantum
error mitigation, with RC alone, with ZNE alone, and with RC and ZNE combined. The
theoretical details of RC and ZNE are described in appendices A.2 and A.3. The overall
VQE scheme with RC and ZNE is depicted in Figure 1. In this work we utilize the
following python modules: True-Q [35] for quantum circuit simulation and compilation,
SciPy [36] and BOBYQA [37] for classical parameter optimization, and OpenFermion [38]
for qubit-mapping of electronic structure Hamiltonians.

For a given value of θ⃗, computing the mitigated expected energy under randomized
compiling is performed by the following steps (see Figure 2): (i) create noise-magnified
version of the ansatz circuit by identity-insertion method (e.g., CNOT 7→ CNOT3). (ii) apply
randomized compiling to both circuits. (iii) calculate the expectation values for both
circuits, and (iv) apply post-processing to obtain zero-noise estimates of the average energy.

In Step (ii), randomized compiling is applied in simulation either by replacing the circuit
with Nrand randomized compilations (we set Nrand = 20 in our experiments, because we
find this number to be sufficient for converting coherent errors to Pauli stochastic errors in
our simulations [22]), or by twirling the noise on each noisy clock-cycle, which transforms
it to an effective noise process described by a Pauli channel [21]. The latter method has
the same effect as performing an exact average of 4nk circuits, where n is the number of
qubits and k is the number of clock-cycles with two-qubit gates (we abuse terminology and
refer to this as the infinite randomization limit), see Appendix A.3 and Ref. [21] for more
details. In our simulations noise affects only two-qubit gates, which are non-parameterized
in our circuit ansatz. Hence we can pre-compute the twirled noise operators outside of the
VQE loop, which significantly improves the runtime of the simulation. We present results
using both methods and show that the improvement due to our error mitigation strategy
holds in both cases.

3 Results and discussion
Our results indicate significant gains in terms of accuracy by combining RC and ZNE
in deep VQE algorithms. This is true even though applying each separately is much
less effective. Figure 3 shows an example of the effect of error mitigation on simulating
a molecular disassociation curve. In all of the numerical experiments we performed a
similar behaviour is observed, which seems to be robust to changing various details in
the implementation of VQE, such as using different classical optimizers, as well as details
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Figure 3: Theoretical and experimental disassociation curves for the LiH molecule. The theoretical curve
is obtained by the full-configuration interaction (FCI) method. The experimental curves are generated
by classical simulation of a VQE algorithm on a noisy quantum computer. Here the noise model is the
over-rotation model discussed in the main text, and the classical optimizer used is BOBYQA.

of our numerical simulations, such as simulating measurements by sampling vs. directly
computing expectation values.

Figure 4 shows the error on the simulated dissociation curve of the H2 molecule via noisy
VQE experiments, with and without error mitigation. In this figure (and similar figures
below) the energy error is defined as the simulated energy value minus the exact energy
value obtained by the full configuration interaction (FCI) method [1], and the violin plots
are with respect to 35 – 60 VQE trials with random initial parameters, each trial requiring
roughly 100 − 400 evaluations of the objective function to reach convergence. Figure 5
shows similar results for the LiH molecule. In Figure 5 the improvement from combining
RC & ZNE is quite significant when considering the minimum energy amongst a number
of VQE trials with random initial parameters. We note that taking the minimum energy
amongst a number of trials with random initial points is likely to be the best strategy in
any real life application of VQE, since the starting point in parameter space will likely have
a significant impact on the convergence of the algorithm. The results in Figures 4 and 5
clearly show that the energy error induced by coherent noise can be significantly mitigated
by combining randomized compiling with zero-noise extrapolation. The magnitude of the
error reduction depends on the noise model and strength. In our simulation, the energy
error can be reduced by 1 – 2 orders of magnitude.

In the simulations in Figures 4 and 5, the cost function is evaluated within the VQE
loop by computing the expectation value of the energy exactly for each desired value of the
variational parameters (see Section 2.1 for more details.) In real-life implementations of
VQE one must estimate the expectation value of the Hamiltonian empirically. We provide
results in the appendix (Figure 9) based on measurement by simulated sampling, and find
that a similar improvement from our error mitigation strategy persists. Here we use the
simplest measurement strategy where each Pauli term in the Hamiltonian is measured
separately. As mentioned previously, we do not attempt to improve the performance of
VQE by optimizing the measurement strategy in this work.

We also study the effect of this error mitigation strategy on the energy landscape; that
is, the value of the expected energy as a function of the variational parameters. Figure 6
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Figure 4: VQE simulation results for the H2 molecule with the Powell optimizer. The figure shows the
energy errors for the energy errors for the four different error models and error mitigation strategies
discussed in the text. The energy error is defined as Evqe −Eexact. Red diamonds (green stars) denote
median (minimum) energy estimates among 35-60 trials for each molecular configuration. Raw data are
shown as open circles, and the their distribution for each molecular configuration is shown in a violin
plot.

shows two-dimensional slices of the energy landscape under over-rotation noise and their
deviation from the ideal energy. The figure shows that we can drastically reduce the
errors induced by coherent noise over the entire energy surface by combining RC and ZNE.
Similar data demonstrating the improvement in the error-mitigated energy landscape with
other noise models is included in Appendix C (Figures 10 and 11). Figure 12 in the same
appendix shows that noise magnification by identity insertion not only globally flattens the
energy landscape but also modifies its characteristic shape. Figure 13 shows the analogous
situation under randomized compiling. Contrary to the previous case (Figure 12), with RC
noise magnification does not significantly alter the characteristic shape of the landscape.
This is a clear manifestation of the noise suppression effect of RC. Adding ZNE to the
simulations unleashes the full benefit of our error mitigation strategy, as shown for three
different error models in Figures 6, 10 and 11, which demonstrate a remarkable restoration
of the energy landscape by combining RC and ZNE.

Our main results show significant improvement in accuracy of the mitigated ground
energy, as measured by the minimum optimal value amongst a number of VQE trials
with random initial points. In terms of precision, we observe a notable effect where the
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Figure 5: VQE simulation results for the LiH molecule with the BOBYQA optimizer. The figure shows
the energy errors for the four different error models and error mitigation strategies discussed in the text.
The energy error is defined as Evqe − Eexact. Red diamonds (green stars) denote median (minimum)
energy estimates among 35 trials for each molecular configuration. Raw data are shown as open circles,
and the their distribution for each molecular configuration is shown in a violin plot.

spread of the optimal values (over random initial points, at any fixed nuclear separation)
is significantly increased when using RC and ZNE, most apparently in the violin plots
in Figure 5. This spread indicates the consistency with which the classical optimizer
converges to the same solution given random starting points. Figure 14 shows that this
spread strongly depends on the particular classical optimizer, and hence it is in part due to
sensitivity of the optimizer to initial conditions. This sensitivity is likely due to a complex
interplay between the particular classical optimization routine, the error mitigation method
used, and the type and strength of the noise. Indeed, this sensitivity is greatly reduced
in our simulation of the infinite-randomization, infinite-shot limit, where each noise source
is replaced by its associated Pauli channel under twirling, and the expected energy is
computed exactly, see Figure 15 in the appendix. In this latter figure the variance is
almost entirely eliminated by combining ZNE & RC. This indicates that the performance
of the classical optimizers in VQE can be greatly enhanced by carefully choosing hyper-
parameters in the error mitigation strategy, such as the number randomizations used in
RC.

To eliminate the influence of the classical optimizer in the above discussion, we fix the
variational parameters to some value and consider the energy error in the output state
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Figure 6: (a-d) Heatmaps estimated for the energy of H2 under under over-rotation noise (ϵ = 0.02),
(a) without any quantum error mitigation scheme, (b) with only RC, (c) with only ZNE, and (d) with
both RC and ZNE. (e-h) Energy deviation from the ideal heatmap. The first two parameter θ1, θ2 are
vairable while θ0 is fixed at 8.6◦.

of the resulting circuit. In Figure 16 the variance of the estimated energy depends on
the error rate and the number of randomizations, with a clear reduction in variance as
the number of randomizations increases. We include similar results in Appendix C which
demonstrate the same behaviour with other coherent noise models. Figures 17 and 18
show histograms of energy deviations from the ideal values for the H2 ansatz for some
fixed parameter values. Figure 16(d-f), Figure 17(d-f), and Figure 18 (d-f), show that the
precision of the energy is proportional to 1/

√
Nrand, where Nrand denotes the number of

random circuits, confirming a theoretical result [21].
Finally, to provide some intuition for the significant synergy effect of RC and ZNE,

we simulate expectation values of the 14 Pauli terms comprising the H2 Hamiltonian,
and we vary the CNOT infidelity by repeating it an odd number of times, see Figures 19
to 21 in Appendix C. Without RC the resulting expectation values show strong nonlinear
dependence on the number of CNOT repetitions. This is due to the nature of coherent
noise, where errors can accumulate quadratically [21] and in a way that depends on the
state. When we apply RC in each simulation the dependence of the resulting expectation
values on the number of repetitions becomes almost linear, facilitating extrapolation to
the zero-noise limit. Related ideas have recently been suggested [27] and demonstrated in
experiment [24, 39].

4 Conclusion and future perspective
We propose a quantum error mitigation technique for the VQE algorithm to reduce energy
errors induced by coherent noise by using RC and ZNE. We demonstrate that, with this
strategy, energy errors in VQE simulations induced by coherent noise are reduced by up
to two orders of magnitude. Accordingly, our analysis of the energy landscape shows large
improvements when RC and ZNE are combined. This can be explained by the noise-
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twirling effect of RC, in which coherent noise is converted to stochastic noise, resulting in
a more linearized dependence of expectation values with gate infidelities, enabling ZNE to
successfully extrapolate to the zero-noise limit. This proposed error mitigation technique
can be used for other quantum algorithms which involve calculating expectation values of
observables.

In future research, more general quantum noise (including relaxation and measurement
noise) will be applied to investigate the efficacy of this error mitigation strategy in a
more practical setting. Also, the identity insertion method which we employed here is
not suitable for experiments with current NISQ devices because the insertion increases
the depth of the corresponding circuit by a factor of three or more. This problem may
be solved by randomly choosing some entangling gates to magnify their noises instead of
magnifying all the entangling gates [18].

References
[1] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C Benjamin, and Xiao Yuan.

“Quantum computational chemistry”. Reviews of Modern Physics 92, 015003 (2020).

[2] Hari P Paudel, Madhava Syamlal, Scott E Crawford, Yueh-Lin Lee, Roman A
Shugayev, Ping Lu, Paul R Ohodnicki, Darren Mollot, and Yuhua Duan. “Quan-
tum Computing and Simulations for Energy Applications: Review and Perspective”.
ACS Engineering Au 2, 151–196 (2022).

[3] Julia E Rice, Tanvi P Gujarati, Mario Motta, Tyler Y Takeshita, Eunseok Lee,
Joseph A Latone, and Jeannette M Garcia. “Quantum computation of dominant prod-
ucts in lithium–sulfur batteries”. The Journal of Chemical Physics 154, 134115 (2021).

[4] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
“Surface codes: Towards practical large-scale quantum computation”. Physical Review
A 86, 032324 (2012).

[5] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. “A variational eigenvalue
solver on a photonic quantum processor”. Nature communications 5, 4213 (2014).

[6] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. “The
theory of variational hybrid quantum-classical algorithms”. New Journal of Physics
18, 023023 (2016).

[7] Peter JJ O’Malley, Ryan Babbush, Ian D Kivlichan, Jonathan Romero, Jarrod R
McClean, Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding,
et al. “Scalable Quantum Simulation of Molecular Energies”. Physical Review X 6,
031007 (2016).

[8] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,
Jerry M Chow, and Jay M Gambetta. “Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets”. Nature 549, 242–246 (2017).

[9] James I Colless, Vinay V Ramasesh, Dar Dahlen, Machiel S Blok, Mollie E Kimchi-
Schwartz, Jarrod R McClean, Jonathan Carter, Wibe A de Jong, and Irfan Siddiqi.
“Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient
Algorithm”. Physical Review X 8, 011021 (2018).

[10] Abhinav Kandala, Kristan Temme, Antonio D Córcoles, Antonio Mezzacapo, Jerry M
Chow, and Jay M Gambetta. “Error mitigation extends the computational reach of a
noisy quantum processor”. Nature 567, 491–495 (2019).

Accepted in Quantum 2023-10-04, click title to verify. Published under CC-BY 4.0. 10

https://dx.doi.org/10.1103/RevModPhys.92.015003
https://dx.doi.org/10.1021/acsengineeringau.1c00033
https://dx.doi.org/10.1063/5.0044068
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1088/1367-2630/18/2/023023
https://dx.doi.org/10.1088/1367-2630/18/2/023023
https://dx.doi.org/10.1103/PhysRevX.6.031007
https://dx.doi.org/10.1103/PhysRevX.6.031007
https://dx.doi.org/10.1038/nature23879
https://dx.doi.org/10.1103/PhysRevX.8.011021
https://dx.doi.org/10.1038/s41586-019-1040-7


[11] Yangchao Shen, Xiang Zhang, Shuaining Zhang, Jing-Ning Zhang, Man-Hong Yung,
and Kihwan Kim. “Quantum implementation of the unitary coupled cluster for simu-
lating molecular electronic structure”. Physical Review A 95, 020501 (2017).

[12] Yunseong Nam, Jwo-Sy Chen, Neal C Pisenti, Kenneth Wright, Conor Delaney, Dmitri
Maslov, Kenneth R Brown, Stewart Allen, Jason M Amini, Joel Apisdorf, et al.
“Ground-state energy estimation of the water molecule on a trapped-ion quantum
computer”. npj Quantum Information 6, 33 (2020).

[13] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut
Neven. “Barren plateaus in quantum neural network training landscapes”. Nature
communications 9, 4812 (2018).

[14] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Ed-
ward Grant, Leonard Wossnig, Ivan Rungger, George H Booth, et al. “The Variational
Quantum Eigensolver: A review of methods and best practices”. Physics Reports 986,
1–128 (2022).

[15] Suguru Endo, Zhenyu Cai, Simon C Benjamin, and Xiao Yuan. “Hybrid Quantum-
Classical Algorithms and Quantum Error Mitigation”. Journal of the Physical Society
of Japan 90, 032001 (2021).

[16] Ying Li and Simon C Benjamin. “Efficient Variational Quantum Simulator Incorpo-
rating Active Error Minimization”. Physical Review X 7, 021050 (2017).

[17] Kristan Temme, Sergey Bravyi, and Jay M Gambetta. “Error Mitigation for Short-
Depth Quantum Circuits”. Physical review letters 119, 180509 (2017).

[18] Andre He, Benjamin Nachman, Wibe A de Jong, and Christian W Bauer. “Zero-noise
extrapolation for quantum-gate error mitigation with identity insertions”. Physical
Review A 102, 012426 (2020).

[19] Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang,
and Kihwan Kim. “Error-mitigated quantum gates exceeding physical fidelities in a
trapped-ion system”. Nature communications 11, 587 (2020).

[20] Jarrod R McClean, Mollie E Kimchi-Schwartz, Jonathan Carter, and Wibe A De Jong.
“Hybrid quantum-classical hierarchy for mitigation of decoherence and determination
of excited states”. Physical Review A 95, 042308 (2017).

[21] Joel J Wallman and Joseph Emerson. “Noise tailoring for scalable quantum compu-
tation via randomized compiling”. Physical Review A 94, 052325 (2016).

[22] Akel Hashim, Ravi K Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell,
John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P O’Brien,
et al. “Randomized Compiling for Scalable Quantum Computing on a Noisy Super-
conducting Quantum Processor”. Physical Review X 11, 041039 (2021).

[23] Jean-Loup Ville, Alexis Morvan, Akel Hashim, Ravi K Naik, Marie Lu, Bradley
Mitchell, John-Mark Kreikebaum, Kevin P O’Brien, Joel J Wallman, Ian Hincks,
et al. “Leveraging randomized compiling for the quantum imaginary-time-evolution
algorithm”. Physical Review Research 4, 033140 (2021).

[24] Youngseok Kim, Christopher J Wood, Theodore J Yoder, Seth T Merkel, Jay M
Gambetta, Kristan Temme, and Abhinav Kandala. “Scalable error mitigation for
noisy quantum circuits produces competitive expectation values”. Nature Physics 19,
752–759 (2023).

Accepted in Quantum 2023-10-04, click title to verify. Published under CC-BY 4.0. 11

https://dx.doi.org/10.1103/PhysRevA.95.020501
https://dx.doi.org/10.1038/s41534-020-0259-3
https://dx.doi.org/10.1038/s41467-018-07090-4
https://dx.doi.org/10.1038/s41467-018-07090-4
https://dx.doi.org/10.1016/j.physrep.2022.08.003
https://dx.doi.org/10.1016/j.physrep.2022.08.003
https://dx.doi.org/10.7566/JPSJ.90.032001
https://dx.doi.org/10.7566/JPSJ.90.032001
https://dx.doi.org/10.1103/PhysRevX.7.021050
https://dx.doi.org/10.1103/PhysRevLett.119.180509
https://dx.doi.org/10.1103/PhysRevA.102.012426
https://dx.doi.org/10.1103/PhysRevA.102.012426
https://dx.doi.org/10.1038/s41467-020-14376-z
https://dx.doi.org/10.1103/PhysRevA.95.042308
https://dx.doi.org/10.1103/PhysRevA.94.052325
https://dx.doi.org/10.1103/PhysRevX.11.041039
https://dx.doi.org/10.1103/PhysRevResearch.4.033140
https://dx.doi.org/10.1038/s41567-022-01914-3
https://dx.doi.org/10.1038/s41567-022-01914-3


[25] Chao Song, Jing Cui, H Wang, J Hao, H Feng, and Ying Li. “Quantum computation
with universal error mitigation on a superconducting quantum processor”. Science
advances 5, eaaw5686 (2019).

[26] Matthew Ware, Guilhem Ribeill, Diego Riste, Colm A Ryan, Blake Johnson, and
Marcus P Da Silva. “Experimental Pauli-frame randomization on a superconducting
qubit”. Physical Review A 103, 042604 (2021).

[27] Samuele Ferracin, Akel Hashim, Jean-Loup Ville, Ravi Naik, Arnaud Carignan-Dugas,
Hammam Qassim, Alexis Morvan, David I Santiago, Irfan Siddiqi, and Joel J Wall-
man. “Efficiently improving the performance of noisy quantum computers” (2022).
arXiv:2201.10672.

[28] Nick S Blunt, Laura Caune, Róbert Izsák, Earl T Campbell, and Nicole Holzmann.
“Statistical phase estimation and error mitigation on a superconducting quantum pro-
cessor” (2023). arXiv:2304.05126.

[29] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz
Cincio, and Patrick J Coles. “Noise-induced barren plateaus in variational quantum
algorithms”. Nature communications 12, 6961 (2021).

[30] Michael A Nielsen and Isaac Chuang. “Quantum Computation and Quantum Infor-
mation”. Cambridge University Press. (2002).

[31] Seunghoon Lee, Joonho Lee, Huanchen Zhai, Yu Tong, Alexander M Dalzell, Ashutosh
Kumar, Phillip Helms, Johnnie Gray, Zhi-Hao Cui, Wenyuan Liu, et al. “Evaluating
the evidence for exponential quantum advantage in ground-state quantum chemistry”.
Nature communications 14, 1952 (2023).

[32] Jérôme F Gonthier, Maxwell D Radin, Corneliu Buda, Eric J Doskocil, Clena M
Abuan, and Jhonathan Romero. “Measurements as a roadblock to near-term practical
quantum advantage in chemistry: Resource analysis”. Physical Review Research 4,
033154 (2022).

[33] Ophelia Crawford, Barnaby van Straaten, Daochen Wang, Thomas Parks, Earl Camp-
bell, and Stephen Brierley. “Efficient quantum measurement of Pauli operators in the
presence of finite sampling error”. Quantum 5, 385 (2021).

[34] Tomochika Kurita, Mikio Morita, Hirotaka Oshima, and Shintaro Sato. “Pauli String
Partitioning Algorithm with the Ising Model for Simultaneous Measurement”. The
Journal of Physical Chemistry A 127, 1068–1080 (2023).

[35] Stefanie J. Beale, Arnaud Carignan-Dugas, Dar Dahlen, Joseph Emerson, Ian Hincks,
Pavithran Iyer, Aditya Jain, David Hufnagel, Egor Ospadov, Hammam Qassim, et al.
“True-Q software. Keysight Technologies”. url: trueq.quantumbenchmark.com.

[36] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, et al. “SciPy 1.0: Fundamental algorithms for scientific computing in Python”.
Nature Methods 17, 261–272 (2020).

[37] Michael JD Powell. “The BOBYQA algorithm for bound constrained optimization
without derivatives”. Technical report. University of Cambridge, Cambridge (2009).
url: www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf.

[38] Jarrod R. McClean, Ian D. Kivlichan, Damian S. Steiger, Yudong Cao, E. Schuyler
Fried, Craig Gidney, Thomas Häner, Vojtĕch Havlíček, Zhang Jiang, Matthew Nee-
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A Background theory
A.1 Variational quantum eigensolver and unitary coupled cluster ansatz
The VQE algorithm is a quantum-classical hybrid algorithm. The quantum part is used
to evaluate the cost function by measuring certain expectation values in candidate param-
eterized quantum states, and the classical part performs the optimization, updating the
parameters and calling the quantum part as a subroutine. The goal of VQE experiments
is to approximate the ground state energy of a Hamiltonian H. In this work H represents
the electronic structure Hamiltonian of some molecule. More specifically, the nuclei in
the molecule are represented by stationary, classical point charges (the Born-Oppenheimer
approximation). Under this approximation we obtain a second quantized Hamiltonian of
the form

H =
∑
p,q

hpqapa
†
q +

∑
p,q,r,s

hpqrsapaqa
†
ra

†
s, (3)

where ai and a†
i denote particle-annihilation and -creation operators on the i-th spin orbital,

the summation indices {p, q, r, s} run over a set of electronic spin-orbitals, and hpq and hpqrs

are coefficients that can be obtained by standard chemistry calculations. The goal of the
VQE experiments in this paper is to study the dependence of the ground state energy
on the positions of the nuclei, and reproduce the so-called potential energy surface of the
molecule (or a one-dimensional slice of it, commonly known as a disassociation curve).

In this paper, we employ the STO-3g basis set and the unitary coupled-cluster ansatz
with single- and double-excitations (UCC-SD) [6]. UCC-SD is a structured ansatz which
takes advantage of the details of the Hamiltonian and the physics describing the system,
associating to each variational parameter a particle excitation from a reference state, such
as the Hartree-Fock (HF) state, to capture additional electronic correlations not present in
HF. In contrast to unstructured ansatz, such as the hardware-efficient ansatz [8], UCC-SD
requires much fewer parameters, but requires additional circuit depth. This is preferable
for our purpose since it avoids energy errors caused by optimization failure due to the
number of parameters being too large – classical optimization with fewer parameters is
likely to result in more exact outcomes. For this ansatz, we choose an initial quantum
state which encodes the Hartree-Fock solution |ψHF⟩, and apply a quantum circuit which
approximates the state

|ψ(θ)⟩ = eT (θ)−T (θ)† |ψHF⟩ (4)

by Trotterization, where

T (θ) =
∑

i∈Svirt

∑
k∈Socc

θi,ka
†
iak +

∑
i,j∈Svirt

∑
k,ℓ∈Socc

θi,j,k,ℓa
†
ia

†
jakaℓ, (5)

where a†
i denotes a particle-creation operator on the i-th spin-orbital, and ak denotes a

particle-annihilation operator on the k-th spin-orbital. Here the sets Svirt and Socc denote
the subsets of occupied and unoccupied spin-orbitals in some reference Slater determinant,
which we take to be the Hartree-Fock state. The first term in eq. (5) denotes single-
particle excitation operators with amplitude θi,k, and the second term denotes two-particle
excitation operators with amplitude θi,j,k,l. We regard θi,k and θi,j,k,l as the parameters
for optimization. For example, when the target molecule is H2, there are two parameters
for single-particle excitation (which we denote θ0, θ1), and one parameter for two-particle
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excitation (which we denote θ2). Under the Jordan-Wigner transformation, a†
i and ak

is transformed to (1/2)Z0 · · ·Zi−1(Xi − iYi) and (1/2)Z0 · · ·Zk−1(Xk + iYk), respectively.
We employ Trotter decomposition to implement this Hamiltonian evolution eT −T † as a
quantum operation circuit.

A.2 Zero-noise extrapolation
Here we provide an overview of ZNE [16, 17, 18]. Suppose the gate error rate is ϵ, and the
expectation value calculated with the gate error ϵ is E(ϵ). We can magnify such gate error
to rϵ (where r > 1) by lengthening the duration of target operation or inserting operations
equivalent to identities (U †U) prior to the target operation (U). We suppose E(rϵ) can be
polynomial of rϵ:

E(rϵ) = E(0) + λ1rϵ+ λ2(rϵ)2 +O((rϵ)3) (6)

When we observe E with two noise magnification coefficients r1, r2 (typically r1 = 1), we
can do first-order correction of E:

E∗(0) = r2/(r2 − r1)E(r1ϵ) − r1/(r2 − r1)E(r2ϵ) +O(ϵ2) (7)

Such extrapolation method is valid when ϵ is sufficiently small. The accuracy of E∗(0)
naturally depends on that of E(r1ϵ) and E(r2ϵ), which technically depend on the number
of shots. Also, large absolute values of r2/(r2 − r1) and r1/(r2 − r1) increase the accuracy
of E∗(0).

A.3 Randomized compiling
As briefly described in Section 1, RC is a quantum error mitigation technique that utilizes
Pauli twirling. To execute randomized compiling properly, we describe the overall quantum
operation U as

Uρ = CnDnCn−1Dn−1Cn−2 · · · C1D1C0ρ (8)

by employing Pauli transfer matrix representation, where ρ is a 4N ×1 vector which denotes
the initial quantum state (N : the number of qubits) and D1, · · · ,Dn and C0, C1, ..., Cn

are 4N × 4N matrices which denote the ideal quantum gate operations. We assume that
D1, · · · ,Dn causes more noise than C0, C1, · · · , Cn when implemented. As a typical approach
to satisfy this assumption, we categorize D1, · · · ,Dn ∈ D as the operations with entangling
gates, and C0, C1, · · · , Cn ∈ C as the operations with single-qubit gates [21]. To execute RC,
we make several equivalent circuits with Pauli twirling, where we change Ck to C′

k ∈ C while
Dk is unchanged. To do this, for each k ∈ {1, · · · , n}, we insert random Pauli operation Tk

prior to Dk and compensation operation T ′
k posterior to Dk so that Dk = TkDkT ′

k . When
we make a new quantum circuit equivalent to the original one with Pauli twirling, we can
describe it as

Uρ = CnTnDnT ′
nCn−1Tn−1Tn−1Dn−1T ′

n−1Cn−2 · · · C1T1D1T ′
1 C0ρ

= C′
nDnC′

n−1Dn−1C′
n−2 · · · C′

1D1C′
0ρ, (9)

where we denote C′
k = T ′

k+1CkTk(k = 1, · · · , n − 1), C′
0 = T ′

1 C0, and C′
n = CnTn. The

requirement that C′
k ∈ C for any k and Tk is satisfied if Dk is an operation composed of

Clifford entangling gates.
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When we describe noisy version of the quantum circuit, it can be written as

Ũρ = C̃nD̃nC̃n−1D̃n−1C̃n−2 · · · C̃1D̃1C̃0ρ

= CnNCnNDnDnCn−1NCn−1 · · · C1NC1ND1D1C0NC0ρ (10)

where NCk
(k = 0, · · · , n) and NDk

(k = 1, · · · , n) denote the noise operators corresponding
to Ck and Dk, and C̃k = CkNCk

and D̃k = NDk
Dk. Here, we can set NCk

= NC for any
Ck ∈ C with the assumption that the noise amplitude fluctuations among Ck ∈ C are
negligible compared to the noise amplitudes of ND1 , · · · ,NDn .

We can similarly describe the noisy version of Pauli-twirled circuit (eq. (9)) as

ŨPTρ = C′
nNCNDnDnC′

n−1NC · · · C′
1NCND1D1C′

0NCρ

= CnTnNCNDnDnT ′
nCn−1Tn−1NC · · · C1T1NCND1D1T ′

1 C0NCρ. (11)

By approximating the resultant quantum states for all possible twirling operations T1, . . . , Tn ∈
T , we obtain

1
|T n|

∑
T1,...,Tn∈T

ŨPT
T (ρ) = 1

|T n|

 ∏
k=n,...,1

Ck

 ∑
Tk∈T

TkNCNDk
Tk

 Dk

 C0NCρ. (12)

This means that every noisy operator NCNDk
is twirled by Tk so that the noise corre-

sponding to Dk is converted to stochastic Pauli noise. Although eq. (12) means applying
RC requires |T |n compiled circuits, we can obtain such effect with fewer compiled circuits
[22, 23, 24] by sacrificing the precision of the resultant expectation values [23].

In this study, we compile the ansatz circuits so that all Dk are composed of CNOT gates
for the following reasons: (i) CNOT is one of the Clifford gates, so if Tk is an operation with
Pauli gates, T ′

k is also one with Pauli gates. (ii) CNOT is Hermitian, so, for applying ZNE,
we can magnify the gate noises by inserting two CNOT as an identity. We can also choose
Clifford but non-Hermitian gates (such as iSWAP) as Dk. In this case, we need more than
two gate insertions to magnify gate noises (for example, four iSWAPs are needed to insert
as an identity).
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B Simulation results with more realistic noise models
In the main text, the simulation data with only coherent noises which are affected on
entangling gates are shown. However, the realistic noise model can be including (i) single-
qubit gate noise and (ii) incoherent noise. In this section, we examine how our error-
mitigation protocol works in the condition above.

B.1 Simulations with noisy single-qubit gates
While error rates on single-qubit gates are typically much smaller than that of entangling
gates in most types of hardware, their overall contribution will not be negligible when the
number of single-qubit gates becomes large. Furthermore, since randomized compiling will
introduce additional single-qubit gates, it is important to investigate how our error miti-
gation strategy performs when the single-qubit gates are themselves noisy. In this section,
we include simulation results that show the resilience of the proposed error mitigation
method with noisy single-qubit gates subject to crosstalk. As shown in Figure 7, the error
mitigation effect with our protocol is still significant when the error rate of single-qubit
gates is at most 1/2 that of entangling gates. As the error rate of single-qubit gates gets
larger, we find that the resulting energy error cannot be reduced with RC and ZNE.

B.2 Simulations with incoherent noise
In the main text, we show simulation results with coherent noise only. In this section we
include simulations with incoherent noise, in the form of a generalized qubit relaxation
process described by a Choi matrix

C =


1 − p(1 − e−t/T1) 0 0 e−t/T2

0 (1 − p)e−t/T1 0 0
0 0 pe−t/T1 0

e−t/T2 0 0 1 − (1 − p)e−t/T1

 (13)

with T1 = 10, T2 ∈ [1.73, 5.00] and p = 0. In these simulations we choose gate times
t = 6 × 10−4. Since RC works only on coherent noise, we expect less error-reduction effect
by employing RC alone when the contribution of coherent noises gets smaller. To confirm
this, we show the simulation results under the existence of both coherent (crosstalk) and
incoherent (generalized relaxation) noise. As shown in Figure 8, when we employ only ZNE,
the resulting errors are reduced as the contribution of coherent noise decreases. However,
the results show that the error mitigation effect with both RC and ZNE exists even when
the contribution of coherent noise is only 10% of the overall error rate.
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Figure 7: VQE simulation results for the H2 molecule with the Powell optimizer. The figure shows the
energy errors with the coherent crosstalk affected on both single-qubit gates and two-qubit gates. We
assume four cases: (i) No single-qubit gate noise, (ii-iv) existance of single-qubit gate noises whose
error rate is 1/10, 1/2, and 1/1 of that of entangling gate noises, respectively. We fixed the error
rate of entangling gates to 10−3. We apply four error mitigation strategies discussed in the text. The
energy error is defined as Evqe −Eexact. Red diamonds (green stars) denote median (minimum) energy
estimates among 60 trials for each molecular configuration. Raw data are shown as open circles, and
the their distribution for each molecular configuration is shown in a violin plot.
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Figure 8: VQE simulation results for the H2 molecule with the Powell optimizer. The figure shows the
energy errors with the relaxation noise as well as the coherent crosstalk, both affected on entangling
gates. We assume various ratios of contributions of these error models: (i) 100%-0%, (ii) 36%-64%,
(iii) 10%-90%, (iv) 5%-95%. We fixed the overall error rate of entangling gates to 10−3. We apply
four error mitigation strategies discussed in the text. The energy error is defined as Evqe −Eexact. Red
diamonds (green stars) denote median (minimum) energy estimates among 60 trials for each molecular
configuration. Raw data are shown as open circles, and the their distribution for each molecular
configuration is shown in a violin plot.
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C Figures and simulation results

Figure 9: VQE simulation results for the H2 molecule with the Powell optimizer. The figure shows the
energy errors for the four different error models and error mitigation strategies discussed in the text.
The energy error is defined as Evqe − Eexact. Red diamonds (green stars) denote median (minimum)
energy estimates among 35-60 trials for each molecular configuration. Raw data are shown as open
circles, and the their distribution for each molecular configuration is shown in a violin plot. Unlike
Figure 4, where the cost function in the VQE simulation is computed using linear algebra, in the above
simulation the cost function in VQE is computed by simulated sampling for measuring each of the 14
Pauli term in the H2 Hamiltonian.
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Figure 10: (a-d) Heatmaps estimated via noisy quantum operation under XI-rotation noise (ϕ = 3.6◦),
(a) without any quantum error mitigation scheme, (b) with only RC, (c) with only ZNE, and (d) with
both RC and ZNE. (e-h) Deviation heatmaps from the ideal heatmap in Figure 12(a) for (a-d). The
first two parameter θ1, θ2 are vairable while θ0 is fixed at 8.6◦.

Figure 11: (a-d) Heatmaps estimated via noisy quantum operation under IZ-rotation noise (ϕ = 3.6◦),
(a) without any quantum error mitigation scheme, (b) with only RC, (c) with only ZNE, and (d) with
both RC and ZNE. (e-h) Deviation heatmaps from the ideal heatmap in Figure 12(a) for (a-d). The
first two parameter θ1, θ2 are vairable while θ0 is fixed at 8.6◦.
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Figure 12: Heatmaps of the H2 expected energy at different values of the variational parameters. The
first two parameter θ1, θ2 are vairable while θ0 is fixed at 8.6◦, (a) without noise and (b-d) under over-
rotation noise (ϵ = 0.02) without quantum error mitigation: (b) original circuit, (c) noise-magnified
version with (CNOT 7→ CNOT3), and (d) noise-magnified version with (CNOT 7→ CNOT5). (e-g) Deviation
heatmaps from the ideal heatmap (a) for (b-d).

Figure 13: Heatmaps of the H2 expected energy at different values of the variational parameters.
The first two parameter θ1, θ2 are vairable while θ0 is fixed at 8.6◦, (a) without noise and (b-d)
under over-rotation noise (ϵ = 0.02) with RC: (b) original circuit, (c) noise-magnified version with
(CNOT 7→ CNOT3), and (d) noise-magnified version with (CNOT 7→ CNOT5). (e-g) Deviation heatmaps
from the ideal heatmap (a) for (b-d).
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Figure 14: Comparison between the POWELL and BOBYQA optimizers for simulating the disassociation
curve of LiH under the over-rotation noise discussed in the main text. Here randomized compiling is
performed with 20 random compilations. Red diamonds (Green stars) indicate the median (minimum)
amongst 35 VQE trials with random initial points.

Figure 15: Comparison between the POWELL and BOBYQA optimizers for simulating the disassoci-
ation curve of LiH under over-rotation noise. Here randomized compiling is performed with infinite
randomizations by replacing noise sources with their Pauli channel counterparts under twirling [21].
Red diamonds (Green stars) indicate the median (minimum) amongst 35 VQE trials with random initial
points.
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Figure 16: Histograms of energy errors from ideal values in simulations of H2 with the ansatz circuit
with θ0, θ1, θ2 = 8.6◦, 0◦, 0◦. (a-c) Results with various over-rotation amplitudes and fixed number
of random circuits for RC, (d-f) Results with various numbers of random circuits for RC and a fixed
over-rotation amplitude (ϵ = 0.02).

Figure 17: Histograms of energy errors from ideal values in simulations of H2 with the ansatz circuit
with θ0, θ1, θ2 = 8.6◦, 0◦, 0◦. (a-c) Results with various XI-rotation magnitudes (1.8◦, 3.6◦, 5.4◦) and
the fixed number (20) of random circuits for RC, (d-f) Results with various numbers of random circuits
for RC and the fixed XI-rotation amplitude (3.6◦).
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Figure 18: Histograms of energy errors from ideal values in simulations of H2 with the ansatz circuit
with θ0, θ1, θ2 = 8.6◦, 0◦, 0◦. (a-c) Results with various IZ-rotation magnitudes (1.8◦, 3.6◦, 5.4◦) and
the fixed number (20) of random circuits for RC, (d-f) Results with various numbers of random circuits
(10, 20, 40) for RC and the fixed IZ-rotation amplitude (3.6°).

Figure 19: Expectation values of 14 terms of the H2 Hamiltonian in the final quantum state created
by one particular ansatz circuit under over-rotation noise (ϵ = 0.02). The CNOT infidelity is varied by
replacing a CNOT gate with n CNOT gates for n ∈ {1, 3, 5, 7}.
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Figure 20: Expectation values of 14 terms of the H2 Hamiltonian in the final quantum state created by
one particular ansatz circuit under XI small-rotation noise (θ = 3.6◦). The CNOT infidelity is varied by
replacing a CNOT gate with n CNOT gates for n ∈ {1, 3, 5, 7}.

Figure 21: Expectation values of 14 terms of the H2 Hamiltonian in the final quantum state created by
one particular ansatz circuit under IZ small-rotation noise (θ = 3.6◦). The CNOT infidelity is varied by
replacing a CNOT gate with n CNOT gates for n ∈ {1, 3, 5, 7}.
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