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Measurements take a singular role in
quantum theory. While they are often
idealized as an instantaneous process, this
is in conflict with all other physical pro-
cesses in nature. In this Letter, we adopt
a standpoint where the interaction with
an environment is a crucial ingredient for
the occurrence of a measurement. Within
this framework, we derive lower bounds
on the time needed for a measurement to
occur. Our bound scales proportionally
to the change in entropy of the measured
system, and decreases as the number of
of possible measurement outcomes or the
interaction strength driving the measure-
ment increases. We evaluate our bound
in two examples where the environment is
modelled by bosonic modes and the mea-
surement apparatus is modelled by spins
or bosons.

1 Motivation

Quantum measurements are one of the most
controversial and enigmatic aspects of quantum
theory. Although most agree on the end re-
sult of said measurements, the dynamics be-
hind them has been a subject of debate since
the initial ‘quantum-boom’ in the early twen-
tieth century [1–4]. The textbook description
of a quantum measurement is the ‘collapse of
the wave function’ [5, 6], which was later cod-
ified by von Neumann in his mathematical for-
mulation of quantum mechanics. In it, a quan-
tum measurement is defined as a probabilistic,
non-unitary, irreversible, and instantaneous pro-
cess [7]. This is in direct contention with an-
other postulate of quantum mechanics: that all

microscopic processes are unitary and reversible.
This peculiar exemption for measurements (along
with other concerns) is dubbed the ‘measurement
problem’ [8–12].

One of the most successful attempts to ad-
dress the measurement problem without chang-
ing the fundamental postulates of quantum me-
chanics is the decoherence mechanism introduced
by Zeh [13]. Decoherence can be viewed as the
practically irreversible generation of correlations
between a system of interest and a large environ-
ment. Although the global evolution of the sys-
tem and environment is unitary, the system fol-
lows a non-unitary dynamics that rapidly damps
coherence within the system, destroying quan-
tum interference effects, and driving the state to
a statistical mixture that, for all practical pur-
poses, can be described by a classical probabil-
ity distribution [9, 9, 11]. To what extent de-
coherence can solve the measurement problem is
still matter of debate [8, 14, 15]. However, it did
have a huge impact on current interpretations of
quantum mechanics and in the development of
many modern branches of quantum theory, moti-
vating carefully controlled experiments designed
to track the dynamics of a quantum measure-
ment [16–19].

In this Letter, we derive a general bound on
the minimum time it takes for a measurement
to occur in decoherence-based interpretations.
We stress that our results are not aimed at de-
ciding whether a measurement has occurred or
not. Instead, this Letter caters to those that fol-
low the school of thought in which a measure-
ment is facilitated by the interaction with an en-
vironment. Alternatively, whatever philosophy
the reader may have, the results we show im-
ply bounds on the decoherence timescales of the
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Figure 1: Our measurement scheme is composed of
three parts: a system Q and a measurement appara-
tus A in contact with an environment E . During the
pre-measurement stage, A interacts with the system Q,
correlating to the potential outcomes of a measurement.
At this stage, the process is still reversible. However,
the posterior interaction with an environment E drives
the system and apparatus to a state physically indis-
tinguishable from a statistical mixture of measurement
outcomes, in a process that is practically irreversible.

correlations of arbitrarily complex quantum sys-
tems, setting a saturable bound on the minimum
timescales needed for a quantum system to ef-
fectively behave classically due to the interaction
with an environment [10].

2 Measurement Model
We consider a setup where a quantum system Q
interacts with a measurement apparatus A capa-
ble of recording the outcome of the measurement.
Thereafter, an external environment E interacts
with the measurement apparatus [20]. Note that
the assumption of a mesoscopic measurement de-
vice ensures that outcomes are observable at a
macroscopic level. The apparatus consists solely
of the elements that interact with the measured
system, e.g. the free charges in an avalanche pho-
todiodes or the mean photon number in a su-
perconducting microwave resonator. All the re-
maining constituents that would conventionally
be considered part of the device are treated as a
thermal environment that conveys the informa-
tion related to the quantum state in the classical
world. In order to differentiate between a mea-
surement and a noisy process, we assume that Q
does not interact with E , see Fig. (1).

Within the ideal measurement scheme devised
by Von Neumann [7], a quantum measurement is
partitioned into two distinct transformations: a
‘pre-measurement’ followed by a ‘collapse’. Dur-

ing the pre-measurement of an observable O =∑
j ojΠO

j , the apparatus A and system Q interact
in such a way that the ‘pointer states’ |aj⟩ of the
apparatus, become correlated with the projectors
ΠO

j [27]. More precisely, if the system is initial-

ized in |ψQ⟩, the state after the pre-measurement
stage is

|ψQA⟩ =
∑

j

(
ΠO

j |ψQ⟩
)

⊗ |aj⟩ . (1)

Since |ψQA⟩ is a pure state that can be undone
by applying local unitaries on the joint system of
Q and A, the pre-measurement does not consti-
tute a definite quantum measurement [11]. More-
over, without an additional physical process, one
cannot unambiguously identify the outcomes of a
measurement. The secondary phase of the mea-
surement, the ‘collapse’, resolves the ambiguity
by transforming |ψQA⟩ into the statistical mix-
ture

ρQA
M =

∑
j

ΠO
j |ψQ⟩⟨ψQ| ΠO

j ⊗ |aj⟩⟨aj | . (2)

This state is physically indistinguishable from a
classical probability distribution where outcome
state |aj⟩⟨aj |, corresponding to the outcome oj ,

occurs with probability Tr
(
ΠO

j |ψQ⟩⟨ψQ| ΠO
j

)
=

⟨ψQ|ΠO
j |ψQ⟩. Although Eq. (2) is conventionally

thought of as an instantaneous jump process [7],
decoherence theory introduces an environment E
which allows modelling this transition as a con-
tinuous transformation on the joint state of QAE .
A Hamiltonian which governs the transition

dynamics of |ψQA⟩ → ρQA
M can be expressed as

a sum of terms

H = HQA +HE +HAE , (3)

where the subscripts indicates which system(s) a
specific Hamiltonian affects, for example HE acts
exclusively on the environment. We assume that
the Hamiltonian commutes with the pointer ba-
sis, [H,ΠO

j |aj⟩⟨aj | ΠO
j ] = 0, which ensures that

measurement outcomes in the pointer basis are
stable under the evolution [9, 11]. Moreover,
given a large environment, the process |ψQA⟩ →
ρQA

M typically occurs rapidly1. Note that we have

1One may be concerned by a ‘fuzzy’ definition of mea-
surement that relies on the state of the system merely
becoming close to ρQA

M . More definite, objective notions
arise if quantum gravity implies fundamental uncertainties
in measurements [54]
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excluded interaction terms between Q and E in
Eq. (3), i.e. HQE and HQAE , this is to dis-
tinguish a measurement from a noisy process.
Thus the unique term driving the measurement
is HAE . Nevertheless, the results which follow in
the next sections are easily extended to Hamilto-
nians which contain an interaction term between
Q and E .
The exact amount of time it takes for the

process |ψQA⟩ → ρQA
M to occur could be com-

puted by solving the appropriate master equa-
tion. However, doing so often relies on a series of
assumptions. Further, this definition of measure-
ment time can bring about ambiguity due to the
fact that typical decoherence inducing Hamilto-
nians cause the state of QA to become arbitrarily
close to ρQA

M , but not necessarily equal. In what
follows, we derive a lower bound on the mini-
mum timescales needed for this ‘collapse’ stage of
the measurement process to occur, while circum-
venting solving the dynamics of a Master equa-
tion, and ambiguity of deciding ‘when’ a mea-
surement has concluded. We accomplish this by
applying techniques from quantum limits [21–25],
from which we obtain a bound which is solely de-
pendent on the relative entropy between |ψQA⟩
and ρQA, the number of measurement outcomes,
and the interaction Hamiltonian between the ap-
paratus and the environment HAE . In a similar
spirit, the authors of Ref. [26] derived bounds on
the timescale of the pre-measurement stage us-
ing quantum speed limit techniques. However,
Ref. [26] focuses on unitary dynamics, whereas
we take an open-system approach, resulting in
different bounds on the timescales of measure-
ments (see [21] and [22–24] respectively).

3 Bounding the Timescale of a Mea-
surement

Our bound is based on a simple premise: if a
car travels at a maximum speed of vmax, then
the time needed to travel a distance d must be
greater than d/vmax. In quantum theory, one can
consider the speed of a state or of an operator
instead of a car, and derive quantum speed lim-
its [21–25].

We aim for a bound on the time it takes
for the system and apparatus to reach the
post-measurement state ρQA

M . For that pur-
pose, we focus on the speed of the relative en-

tropy S
(
ρQA(t)

∥∥ρQA
M
)

:= Tr ρQA(t)
(

ln ρQA(t) −
ln ρQA

M
)

between the joint state of the sys-
tem and apparatus at a given time, ρQA(t),
and the post-measurement state, ρQA

M . Here,
S(t) := − Tr ρQA(t) ln ρQA(t) is the entropy of
ρQA(t). The relative entropy serves as a proxy of
distance between two states, characterizing the
probability to distinguish them [29]. In a hy-
pothesis testing scenario, the probability to con-
fuse two states ρ1 and ρ2 after K measurements
satisfies perror ∼ e−K·S(ρ1∥ρ2) [30].

Substituting relative entropy in place of dis-
tance in the aforementioned car analogy, we ar-
rive at a precursor for the bound on the measure-
ment time

τ ≥ δS

max
∣∣∣ d

dtS(ρQA(t)
∥∥ρQA

M )
∣∣∣ , (4)

where δS = S
(

|ψQA⟩⟨ψQA|
∥∥ρQA

M
)
is the change

in relative entropy. Note that

S
(
ρQA(t)

∥∥ρQA
M

)
= −S(t) − Tr ρQA(t) ln ρQA

M ,

(5)
and since the post-measurement state is diagonal
in the pointer basis, so is the operator ln ρQA

M .
Therefore,

Tr dρ
QA(t)
dt

ln ρQA
M

= − i

ℏ
Tr
([
H, ρQAE(t)

]
ln ρQA

M ⊗ 1E
)

= − i

ℏ
Tr
([

ln ρQA
M ⊗ 1E , H

]
ρQAE(t)

)
=0,

(6)

where the final equality makes use of the fact that
ΠO

j |aj⟩⟨aj | ΠO
j commutes with the total Hamilto-

nian. Hence, it is enough to focus on the change
in entropy S(t) of combined state of Q and A to
compute the bound expressed in Eq. (4). How-

ever, determining the maximum of
∣∣dS(t)

dt

∣∣ often
requires solving complex dynamics. In order to
circumvent this challenging task, we make use of
the inequalities

ℏ
∣∣∣∣dS(t)
dt

∣∣∣∣ ≤ ℏ∆S
√
Id ≤ 2∆S∆HAE , (7)

proven in Ref. [25]. Here,

Id =
∑

j

1
λj

(
∂λj

∂t

)2
(8)
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is the incoherent portion of the quantum Fisher
information of ρQA(t) with eigenvalues {λj},(

∆S
)2 = Tr

(
ρQA(t) ln2 ρQA(t)

)
− S(t)2 (9)

is the varentropy of state ρQA(t), and(
∆HAE

)2 = Tr
(
ρQAE(t)H2

AE
)
−
[
Tr
(
ρQAE(t)HAE

)]2
(10)

is the variance of the interaction Hamiltonian
HAE

2. The quantities Id, ∆S and ∆HAE are
time-dependent, but their dependence is not
made explicit in Eq. (7), nor subsequent equa-
tions, for the sake of clarity. The final inequality
we employ is a bound on ∆S with respect to the
number of non-zero eigenvalues of ρQA(t) [32],
which is dictated by the number of distinct out-
comes A =

∣∣{ |aj⟩}
∣∣ that the apparatus can mea-

sure,

∆S ≤
√

1
4 ln2(A− 1) + 1 = fA. (11)

A proof can be found in the Appendix. Note that
fA = 1 for a measurement with a binary output
(such as the spin of a qubit), and fA ≈ 1

2 lnA for
a measurement with A ≫ 1.
Combining Eqs. (4), (7) and (11), we obtain

bounds on the minimum timescale of a measure-
ment

τ ≥ δS

max
(
∆S

√
Id

) ≥ ℏ δS
2fA · max

(
∆HAE

) . (12)

The tighter bound in Eq. (12) requires the
information-theoretic quantity ∆S

√
Id, typically

hard to calculate, whereas the looser bound only
requires knowledge of the uncertainty in the in-
teraction Hamiltonian.
The right-most bound in Eq. (12) can be fur-

ther simplified in the strong-coupling regime [33],
where HAE dominates the evolution and is time-
independent, since in this situation ∆HAE is (ap-
proximately) time-independent. Then, we obtain
the main result of this Letter,

τ ≥ ℏ δS
2fA∆HAE

. (13)

Henceforth, we assume the strong-coupling
regime and a time-independent HamiltonianHAE

2While alternative bounds on the entropy rate have
been derived [55–57], the main advantage of Eq. (7) is
that it involves standard deviations instead of operator
norms, which typically results in tighter bounds [25].

Figure 2: Plot of τmin = ℏ ln 2
2g

√
tanh(βω/2) (N = 1)

for a single environmental mode with coupling constant
g at T = 2mK. Current attophysics techniques might
allow to unravel the dynamics of a ‘slow’ measurement
up to 10−18s [34].

so that the right hand side of the bound solely in-
volves time-independent quantities. In this way,
our result provides a simple-to-evaluate expres-
sion for the minimum time needed for a mea-
surement to occur.

Note how the quantities that define the lower
bound are naturally linked to the problem at
hand. The further away the initial state is to
the post-measurement state, as quantified by δS,
the larger the lower bound on τ is. In contrast,
a stronger coupling to the environment, as quan-
tified by ∆Hint, leads to potentially faster mea-
surement processes.

4 Measurement times in the spin-
boson model
Let us consider the spin-boson, often used as
a toy model to study environmental decoher-
ence [11, 12, 35]. In it, spins representing the
apparatus interact with a bosonic environment
represented by a collection of harmonic oscilla-
tors in a state

ρE =
⊗

k

1
Zk
e−βωka†

k
ak . (14)

The subscript k spans through the environmen-
tal modes, ωk is the energy of the kth mode,
β = 1/(kBT ) is the inverse temperature, and
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Zk are normalization constants. The environ-
ment is assumed to be large such that ρQAE(t) =
ρQA(t) ⊗ ρE .

We assume Q to be a two-level system in an
initial state |ψQ⟩ = x |0⟩ + y |1⟩, and that the
state of QA after the pre-measurement is

|ψQA⟩ = x |0⟩ |↓⟩⊗N + y |1⟩ |↑⟩⊗N . (15)

Here, we assume that the apparatus is composed
of N distinct spin systems (N ≈ 1 corresponds to
microscopic apparatus, and N ≫ 1 corresponds
to a macroscopic apparatus). If we are inter-
ested in measuring the state of the system Q
in the computational basis { |0⟩ , |1⟩}, the post-
measurement state will be

ρQA
M = |x|2 |0⟩⟨0|⊗ |↓⟩⟨↓|⊗N +|y|2 |1⟩⟨1|⊗ |↑⟩⟨↑|⊗N .

(16)
Finally, the apparatus and environment interac-
tion is modeled via the Hamiltonian [20, 35]

HSB
AE =

N∑
i=1

∑
k

σ
(i)
Z ⊗ gk(a†

k + ak), (17)

where the local Hamiltonian σ
(i)
Z = |↓⟩⟨↓| − |↑⟩⟨↑|

acts as such exclusively on the ith spin and iden-
tity on all the others, the ladder operators ak and
a†

k act on the kth environmental modes degrees
of freedom and gk is a positive coupling constant.

It holds that

(∆HSB
AE)2 = N2∑

k

g2
k coth(βωk/2)

= N2
∫ ∞

0
J(ω) coth(βω/2)dω,

(18)

where J(ω) is the spectral density of the coupling
constants [11]. Then, Eq. (13) implies that the
measurement time satisfies

τSB ≥ ℏ δS
2N

(∫ ∞

0
J(ω) coth(βω/2)dω

)−1/2
, (19)

with δS = −|x|2 ln |x|2 − |y|2 ln |y|2 ≤ ln 2. De-
creasing the coupling constants gk or the ‘size’ N
of the measurement apparatus leads to necessar-
ily larger measurement times.

The bound is illustrated in Fig. (2) with a mi-
croscopic apparatus (N = 1) and a single envi-
ronmental mode, in which the predominant or-
der of magnitude is in the range of nanoseconds
up to zeptoseconds. Current technologies might

be able to witness a carefully engineered mea-
surement, which in principle could be used as a
test-bed to benchmark against objective collapse
theories [19, 36, 37] or fundamentally non-unitary
dynamics [38–40].
Even though the bound Eq. (13) is ex-

tremely general, Eq. (19) correctly captures the
timescales on the spin-boson model for a small
apparatus. By solving the master equation in
the Born-Markov approximation, one finds that
the off-diagonal terms of the state acquire an ex-
ponentially decaying factor r(t) = e−Γ, with [12]

Γ = 4N
∫ ∞

0

J(ω)
ω2 (1 − cos(ωt/ℏ)) coth(βω/2)dω.

(20)

With this, we can find the time it takes for
the relative entropy to fall to ε ≪ 1. In an
experiment, ε would be set, for instance, as a
function of the precision with which the state
can be estimated from tomography. Assuming
|x| = |y| = 1/

√
2 for simplicity, we get

2ε = (1 + e−Γ) ln
(
1 + e−Γ

)
+
(
1 − e−Γ

)
ln
(
1 − e−Γ

)
.

(21)

which simplifies to ε ≈ e−2Γ by using that

ln
(
1 ± e−Γ

)
≈ ±e−Γ. Assuming that the mea-

surement timescale is much shorter than the dy-
namical timescales imposed by the environmental
modes, t ≪ ℏ/ωk, we obtain the analytic solution

t ≈ ℏ
√

ln(1/ε)
2
√
N

( ∫ ∞

0
J(ω) coth(βω/2)dω

)−1/2
.

(22)
This expression is remarkably similar to the

lower bound in Eq. (19), with the exception of
the scaling in N . Notably, the Born-Markov ap-
proximation allows one to maximize ∆S

√
Id and

thus make use of the tighter bound in Eq. (12).
By doing so, one recovers the

√
N scaling

τSB ≥ ℏ δS
2
√
N

(∫ ∞

0
J(ω) coth(βω/2)dω

)−1/2
.

(23)
A derivation is included in the Appendix.

5 Measurement times in the boson-
boson model
Here, we consider a bosonic apparatus interacting
with a bosonic environment. This was the the-
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oretical framework used in [16]. The apparatus
is represented by a cat state with pointer states
|α⟩ and |−α⟩, where |α|2 is the mean number of
excitations. At t = 0 the state of QA is

|ψQA⟩ = x |0⟩ |α⟩ + y |1⟩ |−α⟩ , (24)

while the post-measurement state is

ρQA
M = |x|2 |0⟩⟨0|⊗ |α⟩⟨α|+ |y|2 |1⟩⟨1|⊗ |−α⟩⟨−α| .

(25)
We label the creation and annihilation operators
of the environment and the apparatus by {ak, a

†
k}

and {b, b†}, respectively.
The interaction Hamiltonian

HBB
AE =

∑
k

gk(ba†
k + b†ak), (26)

results in { |α⟩ , |−α⟩} as approximate pointer
states [41, 42]. Once more, we assume that the
environment is in thermal equilibrium, Eq. (14).
In this example, when |α| ≫ 1, we find that

(∆HBB
AE )2 = |α|2

∑
k

g2
k coth(βωk/2)

= |α|2
∫ ∞

0
J(ω) coth(βω/2)dω.

(27)

Then, the measurement time satisfies

τBB ≥ ℏδS
2|α| · max(∆S)

( ∫ ∞

0
J(ω) coth(βω/2)dω

)−1/2
.

(28)
We have explicitly left the varentropy depen-
dence in the denominator, as opposed to using
the inequality in Eq. (11), because the pointer
basis only commutes with the Hamiltonian ap-
proximately. Moreover, |α⟩ and |−α⟩ are not
exactly orthogonal. In any case, upon solving
the master equation and using the Born-Markov
approximation, one finds these corrections to be
negligible [20, 41], so that under a good approx-
imation it holds that ∆S ≲ fA

3.
Then, the bound is very similar to the spin-

boson example, Eq. (19), so one can refer to
Fig. (2) for insight on the dependencies with g
for a single environmental mode. The most note-
worthy difference is the scaling of 1/|α| = 1/

√
M ,

3Alternatively, one could have chosen an alternative
HBB

AE to avoid the commutativity issue, e.g. HBB
AE =

b†b
∑

k
gk(a†

k+ak) [41], however said Hamiltonian is repre-
sentative of coupling the Fock states to the environmental
modes, which is unrealistic and thus not typically used.

where M is the average number of excitations,
which differs with the scaling of 1/N in the spin-
boson model4 This model can be generalized to
include more measurement outcomes, A > 2, by
assigning additional phases to a coherent state
for the additional measurement outcomes. For
example if A = 4 one could use |α⟩, |iα⟩, |−α⟩
and |−iα⟩ [45].

6 Discussion
There is an uncomfortable dissonance between
continuous physical processes in nature and the
often-assumed instantaneous jump of a state dur-
ing a quantum measurement. One proposed reso-
lution relies on the fact that the interaction with
an environment drives a measurement apparatus
to a state that is, in practice, indistinguishable
from a statistical mixture of definite measure-
ment outcomes [11].

Within this framework, we derived a general
bound on the minimum timescale of a quantum
measurement. The bound is based on the princi-
ple that a measurement involves a change in en-
tropy δS in the system and measurement appara-
tus, and that this change takes a finite amount of
time [25]. Crucially, the bound on the minimum
measurement time, which depends on the energy
variance of the apparatus-environment coupling,
can be calculated without needing to solve for the
exact complex dynamics induced by the environ-
ment. When the dynamics is simple enough, e.g.,
as in the spin-boson model with the Born-Markov
assumption, the tighter bound Eq. (23) can be
obtained by exploiting the information-theoretic
bound in Eq. (12).

While we focused on the time needed for an en-
vironment to drive the system and apparatus to
the post-measurement state ρQA

M , an expression
like Eq. (13) also bounds the time needed for a
correlated quantum system to decohere.

Bounds on the timescale of a quantum mea-
surement have also been considered recently in
Refs. [26, 46, 47]. However, the bounds in the lit-
erature assume particular models of open quan-
tum dynamics or require solving the associated
master equation for the density matrix of the

4The scaling of 1/|α| in our bounds seemingly disagrees
with the one found in Refs. [16, 42], where they found a
decoherence time that scales as 1/|α|2. The difference is
due to the different choice of interaction Hamiltonian [42].
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system of interest. In contrast, we derive bounds
that rely on few assumptions on the measurement
model. We showcased our bound in two simple
models. Remarkably, under the right regime, the
bounds on the measurement times are within ex-
perimental reach, as illustrated in Fig. (2). It
would be fascinating to devise an experiment,
perhaps similar to [16], to probe these fundamen-
tal bounds. This may require exploring more re-
alistic measurement models.

Note that Eq. (13) is reminiscent of the
Bremmerman-Bekenstein bound, which provides
an upper limit on the rate at which information
can be transferred given an energy constrain [48].
The original derivation of this bound is based on
heuristic arguments, but more rigorous versions
of it have been explored [25, 49]. Our bound
provides a formal version that applies to the dy-
namics during a quantum measurement, provid-
ing new insights into the physics of information
processing. Finally, it would be interesting to
study the relationship between our bound on the
timescale of a measurement and the energetic
constraints and resource costs of performing a
measurement [50–53].
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Schoelkopf, M. Mirrahimi, H. J. Carmichael,
and M. H. Devoret, To catch and reverse a
quantum jump mid-flight, Nature 570, 200
(2019).

[19] M. Carlesso, S. Donadi, L. Ferialdi, M. Pa-
ternostro, H. Ulbricht, and A. Bassi,
Present status and future challenges of non-
interferometric tests of collapse models, Na-
ture Physics 18, 243 (2022).

[20] H.-P. Breuer, F. Petruccione, et al., The the-
ory of open quantum systems (Oxford Uni-
versity Press on Demand, 2002).

[21] N. Margolus and L. B. Levitin, The maxi-
mum speed of dynamical evolution, Physica
D: Nonlinear Phenomena 120, 188 (1998).

[22] M. M. Taddei, B. M. Escher, L. Davidovich,
and R. L. de Matos Filho, Quantum speed
limit for physical processes, Physical review
letters 110, 050402 (2013).

[23] A. del Campo, I. L. Egusquiza, M. B. Plenio,
and S. F. Huelga, Quantum speed limits in
open system dynamics, Phys. Rev. Lett. 110,
050403 (2013).

[24] S. Deffner and E. Lutz, Quantum speed limit
for non-markovian dynamics, Physical re-
view letters 111, 010402 (2013).
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A Bound on the varentropy
In this appendix we report the proof of ∆S ≤ fA, as taken from [32]. Note that the entropy, S(ρ),
and varentropy, (∆S)2, depend both only on the non-zero eigenvalues of the density matrix ρ. In [32],
the bound is given as a function of the dimension of the system, assuming that all eigenvalues of the
density matrix are non-null and are distributed according to

spec[ρ] =
(

1 − rd,
rd

d− 1 , . . . ,
rd

d− 1

)
, (A1)

where d is the dimension of ρ and rd is a constant which maximizes the varentropy (and is dependent
on d).

In our case, the bound is given as a function of the number of possible outcomes of the meter A.
This is because, although the dimension of the Hilbert space associated to the measurement apparatus
can be significantly larger than A, the interaction with the environment preserves the non-vanishing
eigenvalues. This is due to the definition of the pointer basis |aj⟩, as

[ΠO
j |aj⟩⟨aj | ΠO

j , H] = 0. (A2)

Note that in the strong-coupling regime this simplifies to [ΠO
j |aj⟩⟨aj | ΠO

j , HAE ] = 0.
It then follows that we can bound the varentropy using a bound with respect to a Hilbert space of

dimension d = A. We include a proof for completeness.

Proof. For fixed A ≥ 2, we maximize the expression of the varentropy over all probability distributions
{pi} (i.e., the non-null spectra of ρ), which leads to the Lagrange function

L({pi}, ν) :=
∑

i

pi(ln pi)2 −
(∑

i

pi ln pi
)2 + ν

∑
i

pi , (A3)

with the Lagrange multiplier ν corresponding to the normalization tr{ρ} = 1. Assume now that {p̂i}
(corresponding to the state ρ̂) attains the maximum over all probability distributions {pi} (due to
continuity and compactness, this maximum is attained). We now view Eq. (A3) as a function of those
variables pi for which p̂i > 0, in which there are A such variables, and fixing the other elements pi to
be zero. Then, due to the extremality of {p̂i} and having components in the interior of the domain of
L, the method of Lagrange multipliers guarantees the existence of ν̂ ∈ (−∞,+∞) such that

0 = dL

dpj

∣∣∣∣∣
{p̂i},ν̂

= (ln p̂j)2 + 2 ln p̂j − 2
(∑

i

p̂i ln p̂i

)
(1 + ln p̂j) + ν̂

= (S({p̂i}) + 1 + ln p̂j)2 − (S({p̂i}))2 + ν̂ − 1 ∀j with p̂j > 0 ,
(A4)

where the quantity S({p̂i}) = S(ρ̂) denotes the entropy of the distribution {p̂i} and in particular does
not depend on the index j. Thus, the equality Eq. (A4) implies that

ln p̂j = ±
√

(S(ρ̂))2 − ν̂ + 1 − S(ρ̂) − 1 ∀j with p̂j > 0 , (A5)

so that strict monotonicity of the logarithm yields that there can be at most two distinct non-zero
elements in {p̂i}.

Thus, leaving off hats again, an optimal ρ = ρ̂ has the form

ρ = diag
(1 − r

m
, . . . ,

1 − r

m
,
r

n
, . . . ,

r

n
, 0, . . . , 0

)
(A6)

with m+ n = A, and r ∈ [0, 1]. Without loss of generality we can assume r ≤ 1/2 by permuting the
entries of ρ. For such states, the varentropy is simple to compute,

(∆S)2 = r(1 − r)
(

ln 1 − r

r
+ ln n

m

)2
. (A7)
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The above expression is subjected to two maximizations; the first yields that for any r ∈ [0, 1], the
optimal choice is n = A− 1 and m = 1, whereas the second yields an optimal value r = rA satisfying

2 = (1 − 2rA) ln (1 − rA)(A− 1)
rA

. (A8)

Using the above in tandem with the inequalities

x(1 − x) ≤ 1/4 ∀x ∈ [0, 1/2], (A9)

and

2x(1 − x)
1 − 2x ln 1 − x

x
≤ 1 ∀x ∈ [0, 1/2], (A10)

we arrive at the inequality

(∆S)2 ≤ 1
4 ln(A− 1)2 + 1. (A11)

B Calculations for the spin-boson model

In the main text, we focus on the setting of a single qubit measurement. For the sake of generality,
we perform the calculation for an m qubit quantum state. Recall that the environment is modeled as

ρE =
⊗

k

1
Zk
e−βωka†

k
ak , (B1)

where the subscript k indicates a property or operator unique to the kth mode. In this generalization,
each of them qubits correlate to a measurement apparatus composed ofN spins; the overall interaction
Hamiltonian is

HSB
AE =

m∑
i=1

N∑
j=1

∑
k

hi,j ⊗ gk(a†
k + ak), (B2)

where hi,j is the Hamiltonian which has the form σZ = |↓⟩⟨↓| − |↑⟩⟨↑| when acting on the jth spin
associated with the ith qubit and identity on all other spins, and gk is the positive coupling constant
of the kth environmental mode. Notice that we can write HSB

AE = H1 ⊗H2 with

H1 =
m∑

i=1

N∑
j=1

hi,j , (B3)

and

H2 =
∑

k

gk(a†
k + ak). (B4)

To compute the variance of HSB
AE , i.e(

∆HSB
AE
)2 = Tr

(
H2

1ρ
QA(t)

)
Tr
(
H2

2ρ
E)− Tr

(
H1ρ

QA(t)
)2 Tr

(
H2ρ

E)2, (B5)

we make use of the fact that

Tr
(
ae−βωa†a

)
= Tr

(
a†e−βωa†a

)
= Tr

(
aae−βωa†a

)
= Tr

(
a†a†e−βωa†a

)
= 0. (B6)
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This greatly simplifies the expression to(
∆HSB

AE
)2 = Tr

(
H2

1ρ
QA(t)

)∑
k

|gk|2 Tr
(
(a†

kak + aka
†
k)ρE)

= Tr
(
H2

1ρ
QA(t)

)∑
k

|gk|2
(
1 + 2

Zk
Tr
(
a†

kake
−βωka†a))

= Tr
(
H2

1ρ
QA(t)

)∑
k

|gk|2
(
1 + 2

Zk

∞∑
m=0

me−mβωk

)
= Tr

(
H2

1ρ
QA(t)

)∑
k

|gk|2
(
1 + 2

eβωk − 1
)

= Tr
(
H2

1ρ
QA(t)

)∑
k

|gk|2 coth
(βωk

2
)
.

(B7)

Typically, when assuming a continuum of modes, one makes the substitution
∑

k |gk|2 →
∫∞

0 J(ω)dω,
where J(ω) is the spectral density of the coupling constants, hence

(
∆HSB

AE
)2 = Tr

(
H2

1ρ
QA(t)

) ∫ ∞

0
J(ω) coth

(βω
2
)
dω. (B8)

Finally, recall that all of the spins assigned to a qubit are correlated with each other, thus for any j1
and j2

Tr
(
hi1,j1hi2,j2ρ

QA(t)
)

= Tr
(
hi1,1hi2,1ρ

QA(t)
)
. (B9)

Using this innate symmetry with the spins of the apparatus, one obtains the expression

(
∆HSB

AE
)2 = χN2

∫ ∞

0
J(ω) coth

(βω
2
)
dω, (B10)

where

χ =
m∑

i1,i2=1
Tr
(
hi1,1hi2,1ρ

QA(t)
)

(B11)

is a time-independent pre-factor dependent on the initialization of the quantum state; note that χ = 1
for a single qubit measurement (m = 1). Therefore, the timescale of a measurement can be bounded
via

τ ≥ ℏ δS
2N√

χ

( ∫ ∞

0
J(ω) coth(βω/2)dω

)−1/2
. (B12)

In the single-qubit case, a tighter bound can be obtained by employing the Born-Markov approxi-
mation and maximizing ∆S

√
Id. As stated in the main text, the off-diagonal terms of ρQA(t) acquire

a decay term e−Γ, with

Γ = 4N
∫ ∞

0

J(ω)
ω2 (1 − cos(ωt/ℏ)) coth(βω/2)dω ≈ 2Nt2

ℏ2

∫ ∞

0
J(ω) coth(βω/2)dω, (B13)

thus if the state after the pre-measurement is

|ψQA⟩ = x |0⟩ |↓⟩⊗N + y |1⟩ |↑⟩⊗N , (B14)

the eigenvalues of the decohering state are

λ± = 1
2
(
1 ±

√
1 − 4|xy|2(1 − e−2Γ)

)
. (B15)

It is straightforward to compute

(∆S)2 = λ+(lnλ+)2 + λ−(lnλ−)2 −
(
λ+ lnλ+ + λ− lnλ−

)2 = λ+λ− ln
(
λ+
λ−

)2
, (B16)
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and therefore

Id = 1
λ+

(
∂λ+
∂t

)2
+ 1
λ−

(
∂λ−
∂t

)2
= 1
λ+λ−

16|xy|4

(λ+ − λ−)2
Γ2

t2
e−4Γ = 16|xy|2Γ

t2
1

(λ+ − λ−)2
Γe−4Γ

1 − e−2Γ ,

(B17)
where we use the approximation in Eq. (B13) and note that Γ/t2 is thus time-independent. By
combining the above two equations, one obtains

(∆S)2Id = 8|xy|2Γ
t2

(√
λ+λ−

lnλ+ − lnλ−
λ+ − λ−

)2
(

2Γe−4Γ

1 − e−2Γ

)
, (B18)

which can be bounded above by employing the inequalities(√
λ+λ−

lnλ+ − lnλ−
λ+ − λ−

)2
≤ 1, (B19)

and
2Γe−4Γ

1 − e−2Γ ≤ 1. (B20)

Therefore,

∆S
√
Id ≤

√
8|xy|2Γ
t2

≤

√
2Γ
t2

= 2
ℏ

√
N
( ∫ ∞

0
J(ω) coth(βω/2)dω

)1/2
(B21)

from which it follows that under the Born-Markov approximation, the measurement time of a single
qubit is bounded by

τ ≥ ℏ δS
2
√
N

( ∫ ∞

0
J(ω) coth(βω/2)dω

)−1/2
. (B22)

C Calculations for the boson-boson model
The boson-boson example calculations are very similar to the spin-boson calculations. For a multi-
qubit example, we could consider m qubits, each coupled to a measurement apparatus with outputs
|α⟩ and |−α⟩. This generalization leads to a similar pre-factor of χ, Eq. (B11). Thus, for compactness,
we only consider a single qubit in this set of calculations.
Using

HBB
AE =

∑
k

gk(ba†
k + b†ak), (C1)

the only non-vanishing terms in the variance are(
∆HBB

AE
)2 =

∑
k

g2
k Tr

(
(bb†)(a†

kak) + (b†b)(aka
†
k)ρQAE). (C2)

From b |α⟩ = α |α⟩, it follows that

(
∆HBB

AE
)2 =

∑
k

g2
k

(
(1 + |α|2) Tr

(
a†

kakρ
E)+ |α|2 Tr

(
aka

†
kρ

E))
≈ |α|2

∑
k

g2
k Tr

(
(a†

kak + aka
†
k)ρE)

= |α|2
∑

k

g2
k coth

(
βωk

2

)

→ |α|2
∫ ∞

0
J(ω) coth

(
βω

2

)
dω,

(C3)

where we assume that |α|2 ≫ 1, hence 1 + |α|2 ≈ |α|2.
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