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In this paper we provide a framework for combining multiple quantum simulation
methods, such as Trotter-Suzuki formulas and QDrift into a single Composite channel
that builds upon older coalescing ideas for reducing gate counts. The central idea be-
hind our approach is to use a partitioning scheme that allocates a Hamiltonian term to
the Trotter or QDrift part of a channel within the simulation. This allows us to simu-
late small but numerous terms using QDrift while simulating the larger terms using a
high-order Trotter-Suzuki formula. We prove rigorous bounds on the diamond distance
between the Composite channel and the ideal simulation channel and show under what
conditions the cost of implementing the Composite channel is asymptotically upper
bounded by the methods that comprise it for both probabilistic partitioning of terms
and deterministic partitioning. Finally, we discuss strategies for determining partition-
ing schemes as well as methods for incorporating different simulation methods within
the same framework.

1 Introduction
The simulation of quantum systems remains one of the most compelling applications for future
digital quantum computers [1, 2, 3, 4, 5, 6]. As such, there are a plethora of algorithm options for
compiling a unitary evolution operator U(t) = e−iHt to circuit gates [7, 8, 9, 10, 11, 12, 13, 14].
Some of the simplest such algorithms are product formulas in which each term in a Hamiltonian
H =

∑
i hiHi is implemented as eiHit. A product formula is then a particular sequence of these

gates that approximates the overall operator U(t). Two of the most well known product formula
include Trotter-Suzuki Formulas [8, 15, 10, 16] and the QDrift protocol in which terms are sampled
randomly [14, 17]. These two approaches are perhaps the most popular ancilla-free simulation
methods yet discovered.

One of the main drawbacks of Trotter-Suzuki formulas is that each term in the Hamiltonian
has to be included in the product formula regardless of the magnitude of the term. This leads
to a circuit with a depth that scales at least linearly with the number of terms in H, typically
denoted L. QDrift avoids this by randomly choosing which term to implement next in the product
formula according to an importance sampling scheme in which higher weight terms have larger
probabilities. The downside to QDrift is that it has the same asymptotic scaling with t/ϵ as a
first-order Trotter formula, meaning it is outperformed at large t/ϵ by even a second-order Trotter
formula.

In this paper we present a framework for combining simulation channels in a way that allows
one to flexibly interpolate the gate cost tradeoffs between the individual channels. The primary
example we study is the composition of Trotter-Suzuki and QDrift channels. This is motivated
in some part as an effort to extend randomized compilers to include conditional probabilities and
in some part to encapsulate progress in chemistry simulations of dropping small weight terms or
shuffling terms around different time steps [18]. This latter concept was first developed with the
idea of “coalescing” terms into “buckets” by Wecker et al. [18] and further explored by Poulin et al.
[19]. They showed that grouping terms of similar sizes together to be skipped during certain Trotter
steps led to negligible increases in error and reduced gate counts by about a factor of 10. Similar
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improvements are also seen in the randomized setting of [20]. In this work we extend on these ideas
by placing a specific set of terms into a Trotter partition and the rest in a QDrift partition. This
simple division can then be studied analytically and we are able to provide sufficient conditions
on asymptotic improvements over completely Trotter or completely QDrift channels. Although we
are not able to develop the idea of conditional samples in QDrift protocols, our procedure can be
viewed as a specific subset of what a generic Markovian QDrift would look like. We briefly mention
these generalizations in Section 7.

Recent approaches have sought to use the advantages of randomized compilation as a subset
of an overall simulation, such as the hybridized scheme for interaction picture simulations [21].
What separates these two works is that our approach offers a more flexible approach for generic
time-independent simulation problems whereas the hybridized schemes are specifically tailored to
taking advantage of the time dependence introduced by moving to an interaction picture. As such,
the hybridized approach achieves asymptotic advantages when the size of the interaction picture
term dominates the overall Hamiltonian. This typically occurs in instances in which the size of an
operator is unbounded, which can occur in lattice field theory simulations or constrained systems.
The way the hybridized scheme in [21] works is via a “vertical” stacking of simulation channels,
for example one channel to handle the Interaction Picture rotations and then other channels on
top of this to simulate the time-dependence it generates on the remaining Hamiltonian terms. Our
work instead remains in the Schrodinger time evolution picture and we perform a “horizontal”
stacking of simulation techniques. By horizontal we mean for a given simulation time we split
the Hamiltonian up into (potentially) disjoint partitions and simulate each partition for the full
simulation time but with different techniques, such as Trotter or QDrift. These techniques allow
us to achieve asymptotic improvements over either method for a loose set of assumptions.

There are two other simulation techniques that have been proposed recently that have a simi-
lar interpolation behavior between QDrift and Trotter channels. The first of these methods is the
SparSto, or Stochastic Sparsification, technique by Ouyang, White, and Campbell [22]. The proce-
dure [22] randomly sparsifies the Hamiltonian and performs a randomly ordered first-order Trotter
formula on the sampled Hamiltonian. They construct these probabilities such that the expected
Hamiltonian is equal to the Hamiltonian being simulated. They then fix the expected number of
oracle queries of the form eiHit′

and give diamond distance bounds on the resulting channel error.
The claim for interpolation between Trotter and QDrift is that one can fix the expected number
of gates to be 1 for each time step, in which case the sparsification mimics QDrift, whereas if no
sparsification is performed then the channel is simply implementing Trotter. They show that this
allows for one to have reduced simulation error up to an order of magnitude on numerically studied
systems as compared to Trotter or QDrift. One downside to these techniques is that the number
of gates applied is a random variable, so making gate cost comparisons is rather difficult especially
considering that no tail bounds on high gate cost sampled channels are provided. In [22] they
prefer to fix the expected gate cost and analyze the resulting diamond norm error. In contrast, our
procedures directly implement both QDrift and Trotter channels and have a fixed, deterministic
gate cost.

The second method of note with both QDrift and Trotter behavior is that of Jin and Li [23].
They develop an analysis of the variance of a unitary consisting of a first-order Trotter sequence
followed by a QDrift channel. They focus on bounding the Mean Squared Error (MSE) of the
resulting channel and use a simple partition of the Hamiltonian terms based on spectral norm.
Their partitioning scheme places all terms below some cutoff into the first-order Trotter sequence
and all terms above the cutoff into the QDrift channel. Their main results show an interpolation
of the MSE between 0 when the partitioning matches a solely Trotter channel and matching upper
bounds for QDrift when all terms are randomly sampled. This work goes beyond the results from
Jin and Li by providing an analysis of the diamond distance between an ideal evolution and our
implemented channel, which is more useful analytically than the MSE, as well as providing upper
bounds on the number of gates needed in an implementation to meet this diamond distance. In
addition our work remains independent of specific partitioning schemes as much as possible and
instead places restrictions on which partitions achieve improvements. In the interest of practicality
we do show methods for partitioning that can be useful in both the first-order and higher-order
Trotter cases. Specifically for higher-order Trotter formulas we give a probabilistic partitioning
scheme that is easily computable and matches gate cost upper bounds in the extreme limits as our
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probabilities saturate the QDrift and Trotter limits.
The rest of the paper is organized as follows. We first provide a brief summary of the main

results in Section 2. After reviewing known results and notation in Section 3, we explore methods
for creating Composite channels using First-Order Trotter Formulas with QDrift in Section 4 as
a warmup. This is broken down into three parts in which we find the gate cost for an arbitrary
partition, we then give a method for producing a good partitioning, and then we analyze conditions
in which a Composite channel can beat either first-order Trotter or QDrift channels. In Section
5 we then extend this framework to more general higher-order Trotter Formulas. This section
mirrors the organization of the first-order Trotter section, namely we find the cost of an arbitrary
partition, we give a method for producing a partition efficiently, and then we analyze when one
could see improvements over the constituent channels. Finally, in Section 7 we discuss extensions
to this model that allow a flexible interpolation between various types of product formulas that
could be leveraged numerically.

2 Main Results
In this section we summarize the gate cost performance of a higher-order Composite channel, the
probabilistic partitioning scheme developed, and the conditions needed for a partitioning scheme
to satisfy in order to expect asymptotic improvements over QDrift or Trotter. These results are
motivated and proved throughout Section 5. We do not state the first-order Composite channel
results here as they are more specific and do not achieve as strong asymptotic improvements as
the higher-order channels.

Our first theorem, presented in Section 5.1, gives an upper bound on the number of queries
to oracles of the form eiHit′

to implement a Composite channel with desired error. We provide a
conceptually simple packaging of this bound in terms of the number of oracle queries that would
be needed to perform this same simulation if either Trotter or QDrift had been used alone.

Theorem 2.1 (Gate Cost for Higher-Order Composite Channel). Given a time t, error bound ϵ,
partitioned Hamiltonian H = A + B, and let Ũ (2k) denote the higher-order Composite channel to
approximate the exact unitary evolution U(t). By using r iterations of Ũ (2k)(t/r) we can satisfy the
error requirement

∣∣∣∣∣∣U(t) − Ũ (2k)(t/r)◦r
∣∣∣∣∣∣

⋄
≤ ϵ by using at most the following number of operator

exponentials

Ccomp(A,B, t, ϵ, 2k)

≤ Υ(ΥLA +NB)
⌈

(Υt)1+1/2k41/2k

ϵ1/2k

(
Υαcomm(A, 2k) + αcomm({A,B} , 2k)

2k + 1

)1/2k

+ 4Υλ2
Bt

2

NBϵ

⌉
.

(1)

By making the definition qB := αcomm(B,2k)
αcomm(H,2k) and utilizing the upper bounds from Theorems 2 and

4, where CT rott and CQD below are upper bounds on the number of operator exponentials required
in the Trotter and QDrift channels, we can write the cost upper bound as

Ccomp ≤ Υ(ΥLA +NB)
⌈
CT rott(H, t, ϵ, 2k) (1 − qB)1/2k

Υ1−1/2kL
+ CQD(H, t, ϵ) Υ

NB

λ2
B

λ2

⌉
. (2)

The next result, presented in Section 5.2, gives an easily computable probabilistic partitioning
scheme for an arbitrary Hamiltonian. It is based around a probability for each term to end up in
either the QDrift partition or the Trotter partition that can be viewed as an importance sampling
routine on the inverse spectral norms 1

hi
. This distribution was motivated by upper bounding

the expected QDrift error, which is expressed in terms of λB , in terms of the Trotter error as
intuitively Trotter formulas of higher-orders are more accurate than QDrift channels at smaller
times. One feature of note from this lemma is that it introduces a lower bound on the number of
QDrift samples which is required for the probabilities to remain nonnegative.
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Lemma 2.1 (Probabilistic Partitioning Scheme). For a composite simulation of H for time t and
error ϵ, let pi denote the probability of placing term hiHi into the Trotter partition of Composite
channel. we have that choosing

1 − pi = min

 λ

hiL

√NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
− 1

 , 1

 =: min
{
χ

hi
, 1
}
, (3)

along with choosing the number of QDrift samples NB to satisfy

NB ≥
(
λt

ϵ

)1−1/2k ( 2k + 1
2k + Υ

)1/2k 21−1/k

Υ1/2k
(4)

guarantees the following:

1. pi ∈ [0, 1],

2. the expectation value of the coefficients in the QDrift partition satisfies

E [λB ]
λ

≤ 1
2

√(
4k + 2Υ
2k + 1

)1/2k

(2Υ)1+1/2k

√
NB

( ϵ
λt

)1−1/2k

.

This bound follows from a rigorous interpretation of making the QDrift and Trotter errors
approximately equivalent.

Our final result, proved in Section 5.3.1, of significant importance are the conditions on the
parameters of a given partition to provide asymptotic cost improvements of a Composite channel
over it’s constituent channels, Trotter or QDrift. This theorem is relevant when one is considering
a family of Hamiltonians and has a provided partitioning scheme for each. We then study how
these partitions can give rise to asymptotically superior simulation techniques over Trotter and
QDrift as the number of terms in the Hamiltonian is taken to infinity. Although the situation of
an infinite family of Hamiltonians with a provided partitioning scheme may not arise in practice,
analyzing the performance of these families provides intuition as for when a Composite channel
should be able to yield significant savings.

Theorem 2.2 (Conditions for Composite Channel Improvements). Assume a Hamiltonian H
along with a partitioning scheme to generate A and B that varies with L. For a simulation time t
with a desired diamond distance error at most ϵ, let β > 0 be a number such that CQD = Cβ

T rott.
There exist asymptotic regimes for the parameters LA, λB , and NB such that

CComp ∈ o(min {CT rott, CQD}),

outlined below for the cases when CQD ≥ CT rott (β ≥ 1) and CQD < CT rott (0 < β < 1).
For the case when β > 1, indicating Trotter uses fewer queries than QDrift, if the parameters

λB, LA, and number of QDrift samples NB satisfy the following

1. LA(1 − qB)1/2k ∈ o(L) where qB = αcomm(B,2k)
αcomm(H,2k) ,

2. λB ∈ o

(
λ1/β

(√
ϵ

t

)1−1/β
)

,

3. NB ∈ Ω(LA) and NB ∈ o
(

L
(1−qB)1/2k

)
,

then we have that Ccomp ∈ o(CT rott).
If instead 0 < β < 1, indicating CQD < CT rott, and the parameters λB, LA and NB satisfy the

following

1. the total number of terms in the Trotter partition satisfies

LA ∈ o

L1/β

(
ϵ1−1/β

t(2k+1)(1−1/β)
α

1/β
comm(H)

αcomm(A) + αcomm({A,B})

)1/2k
 , (5)
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2. λB ∈ o(λ),

3. and NB ∈ Θ(LA),

then we have that Ccomp = o(CQD). Note that for β = 1 exactly, the conditions on λB and LA are
the same for both cases: LA ∈ o(L) and λB ∈ o(λ). The conditions for NB are satisfied by NB ∈
Θ(LA). If these conditions are satisfied for all ranges of β then Ccomp ∈ o (min {CQD, CT rott}).

Conditions for Advantage for Simulations with Composite Channels
To help give an idea of when a Composite channel would be most effective we briefly and informally
discuss the intuition provided throughout the paper of when one should expect to see cost savings
from a Composite channel. The most straightforward tool to build intuition is the situation in
which t and ϵ are such that CT rott(H, t, ϵ) = CQD(H, t, ϵ). We will refer to this particular ratio of t
and ϵ as the cost crossover time. In this setting, all one has to do is find a partitioning scheme such
that the number of Trotter terms is much smaller than the total number of terms (LA ∈ o(L))
and that the spectral norm of the remaining terms is negligible compared to the overall sum
(λB ∈ o(λ)). Note that this last expression can be rewritten: λ−λA ∈ o(λ) =⇒ 1 −λA/λ ∈ o(1).
Combining these pieces of information tells us that the Composite framework should provide the
best improvements whenever a vanishingly small number of terms contain almost all of the “spectral
weight” of the Hamiltonian and have negligible commutator structure.

When considering the task of how to partition a given Hamiltonian we can unfortunately not
offer more insight beyond the intuition provided above. This is likely to be a very difficult problem
that will have to take advantage of domain specific knowledge in regards to the provided Hamilto-
nian. A possible starting point to constructing partitions could be gleaned from the effectiveness of
our provided probabilistic partitioning scheme when applied to an exponentially decaying Hamil-
tonian. This probabilistic scheme depends solely on the spectral norm of each term, so a useful
starting point for constructing deterministic partitions could be to pick a cutoff weight in which
stronger terms are assigned to Trotter and lighter ones to QDrift. If a cutoff can be found that is
small compared to the total norm λ and only has a small percentage of terms (roughly log2(L)/L
would align with Theorem 15), then this should be enough to see significant improvements in cost
for simulation times near the cost crossover time. We note that many “toy” chemistry and material
science models, such as Jellium [24] for interacting electrons and Hydrogen chains [1] for molecules,
exhibit these kinds of strong decays in spectral norms.

Another useful consideration is the question of when a given simulation is likely to not see
significant savings from a composite approach. When considering Hamiltonian norms and com-
mutator structure the worst case scenario is one in which each term has equal spectral norm and
there is a cyclic commutator behavior (e.g. angular momentum [Ji, Jj ] = ϵijkJk) that is the same
magnitude at any order. We also note that the ability to find useful partitions depends heavily
on the simulation time to error ratio t/ϵ. As this ratio tends to either 0 or ∞ the ability to find
an economical partitioning vanishes. For example if one needs a very accurate simulation (ϵ → 0)
then any terms that are put in a QDrift partition will require too many samples to meet the lower
error budget compared to just putting the term in a higher-order Trotter formula. At the other
extreme in which one has a higher error or very short time t, then any error savings by putting
terms into a Trotter partition are likely to waste gates when sampling these terms with QDrift
would suffice.

3 Preliminaries
In this section we will first introduce the necessary notation we will use and then state known results
about Trotter-Suzuki formulas and QDrift channels. We work exclusively with time-independent
Hamiltonians H in a 2n dimensional Hilbert space H . We also assume that H consists of L terms
H =

∑L
i=1 hiHi where hi represents the spectral norm of the term, Hi is a Hermitian operator

on H , and ||Hi|| = 1. Note without loss of generality we can always assume hi ≥ 0, as we can
always absorb the phase into the operator Hi itself. We use ||M || to refer to the spectral norm,
or the magnitude of the largest singular value of M . We use λ to refer to the sum of hi, namely
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λ =
∑

i hi. We will also use subscripts on lambda, such as λA to refer to sums of subsets of the
terms of H. For example, if H = 1H1 + 2H2 + 3H3 and G = 1H1 + 2H2, then λ = 6 and λG = 3.

We use U(t) to refer to the unitary operator eiHt and U(t) to refer to the channel U(t)ρU(t)†.
We will be particularly concerned with simulations of subsets of the terms of H, which we denote
as follows. We typically work with a partition of H into two matrices H = A + B, and we let
A =

∑
i aiAi and B =

∑
j bjBj , where we have simply relabeled the relevant hi and Hi into a’s, b’s,

A’s, and B’s. This allows us to define the exact unitary time evolution operators UA(t) = eiAt and
channels UA(t) = UA(t)ρUA(t)†, similarly defined forB. As we will be working with approximations
to these channels, any operator or channel with a tilde represents an “implemented” channel, for
example a first-order Trotter operator for A would look like ŨA(t) = eia1A1t . . . eiaLALt. We avoid
using E to represent an approximation or product formula as E will be used for error channels.

Although much of the literature for Trotter-Suzuki formulas is written in terms of unitary
operators U = eiHt acting on state vectors |ψ⟩ for our purposes it will prove most natural to consider
a product formula as a channel U = eiHtρe−iHt acting on a density matrix ρ. After reviewing known
results on unitary constructions of Trotter-Suzuki formulas we give a straightforward extension of
these bounds to channels.

3.1 Trotter-Suzuki Formulas
Definition 1 (Trotter-Suzuki Decomposition [25]). Given a Hamiltonian H, let U (1)

T S(ρ; t) denote
the first-order Trotter-Suzuki time evolution operator, which is defined as

U
(1)
T S(t) := eihLHLt . . . eih1H1t =

L∏
i=1

eihiHit. (6)

Note that the ordering of the factors in the notation
∏L

i=1 is defined to start from the rightmost
operator and end at the leftmost. Following this we can define the second-order Trotter-Suzuki time
evolution operator as

U
(2)
T S(ρ; t) := eih1H1

t
2 . . . eihLHL

t
2 eihLHL

t
2 . . . eih1H1

t
2 (7)

=
1∏

i=L

eihiHi
t
2

L∏
j=1

eihjHj
t
2 . (8)

This formula serves as the base case for the higher-order formulas which can be written as

U
(2k)
T S (t) := U

(2k−2)
T S (ukt)2 · U (2k−2)

T S ((1 − 4uk)t) · U (2k−2)
T S (ukt)2, (9)

where uk := 1/
(
4 − 41/(2k−1)). In addition we define Υ := 2 · 5k−1 as the number of ”stages” in

the higher-order product formula. We can now introduce the time evolution channels as

U (2k)
T S (ρ; t) := U

(2k)
T S (t)ρU (2k)

T S

†
(t), (10)

where for consistency we use the calligraphic U (2k)
T S to represent the applied channels.

Before we introduce the cost and error scaling for Trotter-Suzuki formulas we will make use of
the following notation that captures information about the commutator structure of a Hamiltonian
or subset of terms from a Hamiltonian. First used in Childs et. al [16] the sum of norms of
commutators αcomm (represented as α̃comm in [16]) is given by

αcomm(H, 2k) :=
∑

γi∈{1,...,L}

(∏
hγi

) ∣∣∣∣[Hγ2k+1 , [Hγ2k
, . . . [Hγ2 , Hγ1 ] . . .]

∣∣∣∣
∞ . (11)

Another variation we will make is the restriction of αcomm to subsets of H, for example if we can
form two subsets A,B of H such that H = A+B then we can write the following

αcomm(A, 2k) =
∑

γi∈{1,...L}

(∏
aγi

) ∣∣∣∣[Aγ2k+1 , [Aγ2k
, . . . [Aγ2 , Aγ1 ] . . .]

∣∣∣∣
∞ . (12)
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We can then define the commutator structure between the two subsets as all nested commutators
that contain at least one term from both A and B. This then allows for the expression

αcomm({A,B} , 2k) = αcomm(H, 2k) − αcomm(A, 2k) − αcomm(B, 2k), (13)

as any nested commutator with only terms consisting of A matrices is contained in αcomm(A, 2k)
and similarly for B.

Now we can state a summary of the performance of Trotter-Suzuki formulas as proved in [16].

Theorem 2 (Trotter-Suzuki Formulas). Given a Hamiltonian H, time t, and error bound ϵ, a
2kth-order Trotter-Suzuki channel as defined in 1 satisfies

∣∣∣∣∣∣U(t) − U (2k)
T S (t)

∣∣∣∣∣∣
⋄
< ϵ and uses the

following number of gates of the form eiHit′

CT rott(H, t, ϵ, 2k) = ΥLr ≤ ΥL
⌈

(Υt)1+1/2k

ϵ1/2k

(
4αcomm(H, 2k)

2k + 1

1/2k
)⌉

. (14)

Similarly, a first-order Trotter-Suzuki formula has the following cost

CT rott(H, t, ϵ, 1) = Lr ≤ L

 t
2

2ϵ
∑
i,j

hihj ||[Hi, Hj ]||∞

 (15)

Proof. We first upper bound the diamond distance between our implementation and the ideal time
evolution channels as follows.∣∣∣∣∣∣U(t) − U (2k)

T S (t)
∣∣∣∣∣∣

⋄
:=
∣∣∣∣∣∣(U(t) − U (2k)

T S (t)
)

⊗ 1

∣∣∣∣∣∣
1

(16)

= max
ρ:||ρ||1≤1

∣∣∣∣∣∣∣∣(eiHt ⊗ 1
)
ρ
(
e−iHt ⊗ 1

)
−
(
U

(2k)
T S (t) ⊗ 1

)
ρ

(
U

(2k)
T S

†
(t) ⊗ 1

)∣∣∣∣∣∣∣∣
1

(17)

≤ max
ρ:||ρ||1≤1

∣∣∣∣∣∣∣∣(eiHt ⊗ 1
)
ρ
(
e−iHt ⊗ 1

)
−
(
eiHt ⊗ 1

)
ρ

(
U

(2k)
T S

†
(t) ⊗ 1

)∣∣∣∣∣∣∣∣
1

(18)

+ max
ρ:||ρ||1≤1

∣∣∣∣∣∣∣∣(eiHt ⊗ 1
)
ρ

(
U

(2k)
T S

†
(t) ⊗ 1

)
−
(
U

(2k)
T S (t) ⊗ 1

)
ρ

(
U

(2k)
T S

†
(t) ⊗ 1

)∣∣∣∣∣∣∣∣
1

= max
ρ:||ρ||1≤1

∣∣∣∣∣∣∣∣ρ(e−iHt − U
(2k)
T S

†
(t)
)

⊗ 1

∣∣∣∣∣∣∣∣
1

+ max
ρ:||ρ||1≤1

∣∣∣∣∣∣(eiHt − U
(2k)
T S (t)

)
⊗ 1ρ

∣∣∣∣∣∣
1

(19)

≤2
∣∣∣∣∣∣eiHt − U

(2k)
T S (t)

∣∣∣∣∣∣
∞

max
ρ:||ρ||1≤1

||ρ||1 (20)

=2
∣∣∣∣∣∣eiHt − U

(2k)
T S (t)

∣∣∣∣∣∣
∞
. (21)

We can then make use of Eq. (189) and Theorem 10 from [16], which provides the following bound∣∣∣∣∣∣eiHt/r − U
(2k)
T S (t/r)

∣∣∣∣∣∣
∞

≤ 2αcomm(H, 2k)
2k + 1

(
Υt
r

)2k+1
. (22)

We note that this equation differs from Eq. (189) in [16] due to the different αcomm used. The
denominator of (2k + 1)! is replaced by 2k + 1 due to a factor of (2k)! from upper bounds on the
αcomm used in [16]. Note that this also leads to the extra factors of Υ2k, as opposed to just Υ in
Eq. (189) in [16].

For the first-order formula we will use the following upper bound which follows from an appli-
cation of the triangle inequality to Eq. (143) from [16]∣∣∣∣∣∣eiHt/r − U

(1)
T S(t/r)

∣∣∣∣∣∣
∞

≤ t2

2r2

∑
i,j

hihj ||[Hi, Hj ]||∞ (23)

Combining Eqs. (21) and (22), along with the inequality ||X◦r − Y ◦r||⋄ ≤ r ||X − Y ||⋄, yields∣∣∣∣∣∣U(t) − U (2k)
T S (t/r)◦r

∣∣∣∣∣∣
⋄

≤ r
∣∣∣∣∣∣U(t/r) − U (2k)

T S (t/r)
∣∣∣∣∣∣

⋄
(24)

≤ 4rαcomm(H, 2k)
2k + 1

(
Υt
r

)2k+1
. (25)

Accepted in Quantum 2023-07-17, click title to verify. Published under CC-BY 4.0. 7



We then can require the inequality in Eq. (25) to be less than ϵ and solve for r, yielding

r >
(Υt)1+1/2k

ϵ1/2k

(
4αcomm(H, 2k)

2k + 1

)1/2k

. (26)

By taking the ceiling of the RHS of (26) and plugging the result into CT rott(H, t, ϵ) = ΥLr yields
the expression in the statement. Similar results hold for the first-order case.

3.2 QDrift
We now shift our attention to the other main product formula we will make use of, that is QDrift.
Introduced by Campbell in [14], the main premise of QDrift is that one randomly picks a term
Hi from the overall set of terms according to the ratio of spectral norms hi/λ and then apply the
exponential gate eiHiτ , for some τ ∝ t. This is summarized in the following definition.

Definition 3 (QDrift Channel). Let pi = hi

λ , where λ =
∑

i hi, represent a probability distribution
over terms in a Hamiltonian H =

∑
i hiHi. We define the QDrift channel for a single sample from

this distribution as
UQD(t) : ρ 7→

∑
i

pie
iHiλtρe−iHiλt. (27)

Below we restate the main results from [14], in which multiple independent samples of the
above channel are studied, with only minor modifications to the allowable range of ϵ.

Theorem 4 (QDrift). Given a Hamiltonian H, time t, and error bound ϵ one can approximate the
ideal unitary dynamics of U(t) by taking N i.i.d samples of the QDrift channel from Definition 3.
To meet the error bound ϵ, namely

∣∣∣∣U(t) − UQD(t/N)◦N
∣∣∣∣

⋄ < ϵ, it suffices to choose N = 4t2λ2
/ϵ if

we restrict allowed values of ϵ to within the range (0, λt ln(2)/2). This gives the cost of the channel,
or the number of operator exponentials of the form eiHit′ that the channel requires, as

CQD(H, t, ϵ) ≤ 4λ2t2

ϵ
. (28)

Our minor modification follows from the proof of the following expression

∣∣∣∣U(t) − UQD(t/N)◦N
∣∣∣∣

⋄ ≤ 2λ2t2

N
e2λt/N , (29)

which was given in [14]. We upper bound the coefficient e2λt/N ≤ 2 by using N = 4λ2t2/ϵ and
restricting ϵ ∈ (0, λt ln(2)/2).

4 First-Order Trotter with QDrift
The most straightforward Composite channel to analyze is combining a first-order Trotter formula
with a QDrift channel. We proceed in four steps. First, we assume a partitioning H = A+B which
allows us to determine the diamond distance error scaling of the Composite channel. Next, we
formulate an upper bound on the number of exponential gates of the form eiHit needed to achieve
this error. Following this, we use the derived cost function to determine a useful partitioning
scheme for determining whether a term in a given Hamiltonian H should end up in the Trotter
channel or the QDrift channel. Finally, we give an instance in which a Composite channel can offer
asymptotic improvements over either a purely Trotter or QDrift channel.

4.1 Query Complexity
To analyze the error of our Composite channel we need to first reduce the overall time evolution
channel ρ 7→ e−iHtρe+iHt into the simpler pieces that we can analyze with our Trotter and QDrift
results. Assuming a partitioning H = A + B, where A consists of terms that we would like to
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simulate with Trotter and B has the terms we would like to sample from with QDrift. We now
introduce the “outer-loop” error E{A,B} induced by this partitioning, which is as follows

e−iHtρe+iHt = e−iBte−iAtρe+iAte+iBt + E{A,B}(t). (30)

We use the phrase “outer-loop” as this decomposition is done before any simulation channels are
implemented.

The rest of the error analysis is captured in the following lemma.

Theorem 5 (First-Order Composite Channel). Given a time t, error bound ϵ, and a partitioned
Hamiltonian H = A + B one can construct a first-order composite simulation channel Ũ(t) that
approximates the ideal channel U(t) within a diamond distance ϵ as follows. Let Ũ(t) = ŨB(t)◦ŨA(t)
represent the composition of a Trotter-Suzuki channel ŨA to simulate A and a QDrift channel ŨB

for B. By repeating Ũ(t/r) for r iterations, the diamond distance bound
∣∣∣∣∣∣U(t) − Ũ(t/r)◦r

∣∣∣∣∣∣
⋄
< ϵ

can be acheived by using no more than

CComp(A,B, t, ϵ) = (LA +NB)r (31)

= (LA +NB)

 t
2

ϵ

∑
i,j

aiaj ||[Ai, Aj ]||∞ +
∑
i,j

aibj ||[Ai, Bj ]||∞ + 4λ2
B

NB


(32)

gates of the form eiHit′ .

Proof. We will need to make use of the following minor result

||X◦r − Y ◦r||⋄ ≤ r ||X − Y ||⋄ , (33)

where X and Y are channels. This follows straightforwardly from subadditivity of the diamond
norm with respect to composition of channels. Now starting with the outer-loop decomposition
mentioned above we can reduce the overall channel distance to a per-iteration distance as follows∣∣∣∣∣∣U(t) − Ũ (t/r)◦r

∣∣∣∣∣∣
⋄

≤
∣∣∣∣∣∣(UB(t/r) ◦ UA(t/r) + E{A,B}(t/r)

)◦r −
(

ŨA(t/r) ◦ ŨB(t/r)
)◦r∣∣∣∣∣∣

⋄
(34)

≤ r
(∣∣∣∣∣∣UA(t/r) − ŨA(t/r)

∣∣∣∣∣∣
⋄

+
∣∣∣∣∣∣UB(t/r) − ŨB(t/r)

∣∣∣∣∣∣
⋄

+
∣∣∣∣E{A,B}(t/r)

∣∣∣∣
⋄

)
. (35)

This is now in a form where we can use the results from Section 3 for Trotter formulas and QDrift
channels. We use the QDrift results from Theorem 4 that

∣∣∣∣∣∣UB(t/r) − ŨB(t/r)
∣∣∣∣∣∣

⋄
≤ 4λ2

Bt2

NBr2 and Eqs

(16) - (21) from Theorem 2 to reduce
∣∣∣∣∣∣UA(t/r) − ŨA(t/r)

∣∣∣∣∣∣
⋄

≤ 2
∣∣∣∣∣∣eiAt/r − U

(1)
T S(t/r)

∣∣∣∣∣∣
∞

. The last
term we need to bound is the outer-loop error∣∣∣∣E{A,B}(t/r)

∣∣∣∣
⋄ = ||U(t/r) − UB(t/r) ◦ UA(t/r)||⋄ (36)

≤ 2
∣∣∣∣∣∣eiH(t/r) − eiB(t/r)eiA(t/r)

∣∣∣∣∣∣
∞

(37)

≤ t2

r2

∑
i,j

aibj ||[Ai, Bj ]||∞ (38)

Plugging in Theorems 4 and 2 into Eq. 35 yields

1
r

∣∣∣∣∣∣U(t) − Ũ(t/r)r
∣∣∣∣∣∣

⋄
≤
(
t

r

)2
∑

i,j

aiaj ||[Ai, Aj ]||∞ +
∑
i,j

aibj ||[Ai, Bj ]||∞

+ 4λ2
Bt

2

NBr2 ≤ ϵ

r
, (39)

where NB represents the number of samples used by QDrift to simulate eiBt. It is straightforward
to solve for r that satisfies the inequality in Eq (39) to plug into the expression CComp(A,B, t, ϵ) =
(LA +NB)r which yields the theorem statement.
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We now use a relaxation of the first-order Composite channel cost from Eq. (32) in which we
allow for non-integer values, which is given as

C̃Comp(A,B, t, ϵ) := (LA +NB) t
2

ϵ

∑
i,j

aiaj ||[Ai, Aj ]||∞ +
∑
i,j

aibj ||[Ai, Bj ]||∞ + 4λ2
B

NB

 . (40)

One unspecified quantity in the above expression is NB which is specifically left as a user-defined
parameter. This means we can optimize the non-integer cost C̃Comp with respect to NB , which is
done in the following lemma.

Lemma 6. Let C̃Comp(t, ϵ, A,B) denote the non-integer cost of a first-order Composite channel
approximation to U(t). Then C̃Comp can be optimized with respect to NB when

NB =

√√√√ 4λ2
BLA(∑

i,j aiaj ||[Ai, Aj ]||∞ +
∑

i,j aibj ||[Ai, Bj ]||∞
) , (41)

note that this expression is only defined if ||[Ai, Aj ]||∞ > 0 or ||[Ai, Bj ]||∞ > 0 for at least one Ai

or Bj.

Proof. The result follows from basic calculus with the additional assumption that we will treat the
above cost upper bound as exact

∂C̃comp

∂NB
= t2

ϵ

∑
i,j

aiaj ||[Ai, Aj ]|| +
∑
i,j

aibj ||[Ai, Bj ]|| − 4λ2
BLA

N2
B

 . (42)

Setting the above equal to zero and solving for NB yields the stated value. The second derivative
can be shown as

∂2C̃comp

∂N2
B

= 4t2λ2
BLA

ϵN3
B

≥ 0, (43)

which indicates the optima found is the minimal cost with respect to NB .

4.2 Hamiltonian Partitioning
Now that we have upper bounded the number of operator exponentials needed for a Composite

channel to satisfy
∣∣∣∣∣∣U(t) − Ũ(t)

∣∣∣∣∣∣
⋄
< ϵ with a predetermined partition we move on to the question

of how to decide a partition. There are many different ways one could determine a partitioning, for
example by using a greedy algorithm or a spectral norm based decider, and here we propose a new
method that is based on our derived cost function. Our method allows one to take into account
information about the commutation structure between terms and spectral norm information to
compute a cost function gradient that can be minimized in a gradient descent approach. We also
show an analytic minima of this gradient that allows for a greedy approach.

The first step we have to take is to determine how to parametrize our cost function C̃Comp.
We introduce new parameters wi which represent a weighting of each term Hi between the Trotter
and QDrift partitions. Starting with our Hamiltonian H =

∑
i hiHi we rewrite each term as

a parametrized sum, hiHi 7→ wihiHi + (1 − wi)hiHi. Then we place all terms wihiHi in the
Trotter partition A =

∑
i wihiHi and all the terms (1 − wi)hiHi into the QDrift partition B =∑

i(1 − wi)hiHi. Now instead of determining the discrete placement of each term into A or B we
only need to determine an appropriate weighting wi of each term between the two partitions. As
we would like the coefficients to remain positive after this remapping we require wi ∈ [0, 1]. We will
first work out the gradient of the cost with respect to each weight and then discuss its behavior.

First we write the non-integer cost function of the weighted partitioned Composite channel as

C̃comp = (LA+NB) t
2

ϵ

∑
i,j

wiwjhihj ||[Hi, Hj ]|| +
∑
i,j

wi(1 − wj)hihj ||[Hi, Hj ]|| +
4 (
∑

i(1 − wi)hi)2

NB

 ,

(44)

Accepted in Quantum 2023-07-17, click title to verify. Published under CC-BY 4.0. 10



note that we are leaving NB as a user-defined integer and not the optimized value as found before.
Now we can easily take the derivative of Eq. (44) with respect to the mth weight wm, which is

∂C̃comp

∂wm
= (LA +NB) t

2

ϵ

hm

∑
j

hj ||[Hj , Hm]||∞ −
8hm

∑
i(1 − wi)hi

NB

 . (45)

This is enough information to perform a gradient descent to find a optima from an initial parti-
tioning. However, it is relatively easy to find the exact optima for a single Hamiltonian term with
respect to the other weightings. We can set Eq. (45) equal to 0 and solve for wm which yields

∂C̃comp

∂wm
= 0 =⇒ wm = 1 −

∑
i ̸=m

hi

hm

(
||[Hi, Hm]||∞

8 − (1 − wi)
)
. (46)

There are a few pieces of intuition we can gather from these expressions. First, if a term
Hm commutes with every other term in the Hamiltonian then [Hi, Hm] = 0 and wm = 1 +∑

i ̸=m
hi/hm(1 − wi), which is always greater than 1. Since we restrict our weights to [0, 1] this

implies that the mth term should always be fully placed in the Trotter channel. The other piece
of intuition is that smaller terms are pushed more towards the QDrift side of the partitioning.
This can be seen from Eq. (46) while considering the limit as hm → 0. If we assume that
||[Hi, Hm]|| ≥ (1 −wi) on average, then the expression becomes wm → −∞ in this limit, which we
stop at 0.

One major drawback to the above expressions is the dependency of each optimal weight wm on
every other weight wi. As there does not seem to be a clear basis in which to decouple these weights,
this means that Eq. (46) can only be used to update individual weights given an initialization. This
is the same situation as the greedy approach as discussed above, but we note that our expression
gives us some intuition as for why which weights or partitionings are chosen.

4.3 Comparison with Trotter and QDrift
Now that we have analyzed the cost and given a partitioning scheme we would like to know under
what conditions this Composite channel can lead to comparable errors with lower gate cost. Instead
of aiming to show that a Composite channel will outperform either first-order Trotter or QDrift
for arbitrary Hamiltonians we instead illustrate a concrete setting in which we achieve guaranteed
asymptotic improvements. In later sections we are able to show more generic conditions on which
asymptotic improvements can be obtained for higher-order formulas.

The final case we consider for the first-order Trotter Composite channel is designed to take full
advantage of this richer commutator structure of the Composite channel over first-order Trotter.
Consider a Hamiltonian H that has a partitioning into A and B such that the following two
conditions hold

1. The number of non-zero commutators between terms in A scales with the square root of LA.
Mathematically,

|{(i, j) : ||[Ai, Aj ]|| ≠ 0}| := N2
nz ∈ o(LA). (47)

2. The strength of the B terms, λB =
∑

i bi, is asymptotically less than the the maximum
commutator norm divided by the number of terms in A

λ2
B ≤ a2

max

(
N4

nz/L
2
A

)
, (48)

where amax := maxi ai.

3. The number of terms in the A partition is vanishingly small compared to the total number
of terms LA ∈ o(L).

Next we can use the optimal NB value from Lemma 6 and (48) to show that

N−1
B ∈ O

(
1
λB

√
(N2

nza
2
max + LAamaxλB)

)
= O

(
Nnzamax

λB

)
. (49)
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Similarly we have

NB ∈ O

(
λB

√
LA

amaxNnz

)
. (50)

Thus Theorem 2 shows that the number of exponentials needed to perform the simulation is in

CComp ∈ O

(
t2

ϵ

(
LA + λB

√
LA

amaxNnz

)(
a2

maxN
2
nz + LAamaxλB + λBNnz

amax√
LA

))
∈ O

(
t2LA

ϵ

(
a2

maxN
2
nz

))
(51)

∈ o

(
t2

ϵ
L2

Aa
2
max

)
. (52)

Were we to use the lowest order Trotter formula for this simulation, the cost would be

Ctrot ∈ O

(
t2

ϵ

(
LN2

nza
2
max

))
(53)

∈ o

(
t2

ϵ
LLAa

2
max

)
(54)

⊆ ω(Ccomp). (55)

In contrast the cost for QDrift is

CQD = O

(
t2

ϵ

(
L2a2

max

))
⊆ ω(Ccomp). (56)

This shows that there exist circumstances where the cost of the Composite channel scales better
than either of the two methods that compose it.

5 Higher-Order Trotter Formulas
We now move on from first-order Trotter formulas to arbitrary higher-order Trotter formulas. To
analyze this case there are a few distinct differences with the first-order channels. The first is that
we now have a choice for what order formula we would like to use for the outer-loop decomposition
of Ũ . For example, a first-order decomposition would be Ũ(t) = ŨB(t) ◦ ŨA(t) and a second-order

decomposition would be Ũ(t) = ŨA(t/2) ◦ ŨB(t/2) ◦ ŨB(t/2) ◦ ŨA(t/2). In general, we can choose
any order formula we like but it is analytically convenient to match the innermost Trotter formula.
The next difference is that the time scaling between QDrift, Trotter, and the outer-loop errors
could all be of different orders in t/r which leads to a non-analytically solvable polynomial in r.
The last issue that we address is that the commutator structure is no longer quadratic with respect
to the Hamiltonian spectral norms, so we cannot follow the term weighting partitioning scheme
from the first-order case. We will follow the same organizational structure as the first-order case
and first set up our definitions and bound the diamond distance error, then compute the number of
eiHit queries, followed by developing a partitioning scheme, and finally discuss the cost comparisons
between our Composite channel and its constituents.

5.1 Query Complexity
We first need to determine an error equation for the Composite channel which we will then use
to bound the number of iterations needed. In the first order Trotter formula we simply used the
following overall evolution Ũ = ŨB ◦ ŨA, but this is not sufficient for the higher-order case. We
now introduce a generalization of this which mimics the Trotter formula recursion.

Definition 7 (Higher-Order Outer-Loop). Let U(t) = UB(t) ◦ UA(t) denote the first-order outer-
loop decomposition. We define the second-order outer-loop decomposition as

U (2)(t) := UA(t/2) ◦ UB(t/2) ◦ UB(t/2) ◦ UA(t/2). (57)
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This forms the base case for the recursive strategy for higher-order outer-loops defined as

U (2k)(t) := U (2k−2)(ukt)2 ◦ U (2k−2)((1 − 4uk)t) ◦ U (2k−2)(ukt)2, (58)

where uk := 1/
(
4 − 41/(2k−1)) and Υ := 2 · 5k−1. Note that we use the same recursive strategy

to define approximations to the overall time evolution channel where we put tildes on each of the
implemented channels.

To analyze the overall error we need to break down the overall channel into individual channels
that we have known results for. We specifically use the approach of using the same decomposition
order for the outer-loop that we use for the innermost Trotter formula.

Lemma 8. Let U denote the exact unitary time evolution channel and Ũ2k denote an implemented
product formula according to Definition 7 for a partitioning of H into A,B. Then we have the
following diamond distance upper bound∣∣∣∣∣∣U(t) − Ũ (2k)(t)

∣∣∣∣∣∣
⋄

≤ Υ
∣∣∣∣∣∣UA(t) − ŨA(t)

∣∣∣∣∣∣
⋄

+ Υ
∣∣∣∣∣∣UB(t) − ŨB(t)

∣∣∣∣∣∣
⋄

+ 2
∣∣∣∣∣∣eiHt − U

(2k)
T S ({A,B} , t)

∣∣∣∣∣∣ .
(59)

Proof. The proof follows from repeated applications of the triangle inequality as well as subaddi-
tivity of the diamond norm with respect to channel composition∣∣∣∣∣∣U(t) − Ũ (2k)(t)

∣∣∣∣∣∣
⋄

≤
∣∣∣∣∣∣U(t) − U (2k)(t)

∣∣∣∣∣∣
⋄

+
∣∣∣∣∣∣U (2k)(t) − Ũ (2k)(t)

∣∣∣∣∣∣
⋄

(60)

≤ 2
∣∣∣∣∣∣eiHt − U

(2k)
T S ({A,B} , t)

∣∣∣∣∣∣+
∣∣∣∣∣∣U (2k)(t) − Ũ (2k)(t)

∣∣∣∣∣∣
⋄

(61)

= 2
∣∣∣∣∣∣eiHt − U

(2k)
T S ({A,B} , t)

∣∣∣∣∣∣
+
∣∣∣∣∣∣UB(tΥ) ◦ UA(tΥ) ◦ . . .UB(t1) ◦ UA(t1) − ŨB(tΥ) ◦ ŨA(tΥ) ◦ . . . ŨB(t1) ◦ ŨA(t1)

∣∣∣∣∣∣
⋄

(62)

≤ 2
∣∣∣∣∣∣eiHt − U

(2k)
T S ({A,B} , t)

∣∣∣∣∣∣+ max
ti

Υ
(∣∣∣∣∣∣UA(ti) − ŨA(ti)

∣∣∣∣∣∣
⋄

+
∣∣∣∣∣∣UB(ti) − ŨB(ti)

∣∣∣∣∣∣
⋄

)
.

(63)

Note that each ti is a constant multiple of t, at each layer in the recursive formula t picks up either
a factor of 1 − 4uk, uk or 1/2. Since uk ≤ 1/2 we can say that |1 − 4uk| ≤ 1. This implies that we
can upper bound each time interval as ti ≤ t, which is sufficient for our purposes. Plugging this in
to the previous equation yields the expression in the statement.

Now that we have derived a basis for the Composite channel error we can provide an upper
bound on the number of operator exponentials needed to accurately approximate the ideal time
evolution channel.

Theorem 2.1 (Gate Cost for Higher-Order Composite Channel). Given a time t, error bound ϵ,
partitioned Hamiltonian H = A + B, and let Ũ (2k) denote the higher-order Composite channel to
approximate the exact unitary evolution U(t). By using r iterations of Ũ (2k)(t/r) we can satisfy the
error requirement

∣∣∣∣∣∣U(t) − Ũ (2k)(t/r)◦r
∣∣∣∣∣∣

⋄
≤ ϵ by using at most the following number of operator

exponentials

Ccomp(A,B, t, ϵ, 2k)

≤ Υ(ΥLA +NB)
⌈

(Υt)1+1/2k41/2k

ϵ1/2k

(
Υαcomm(A, 2k) + αcomm({A,B} , 2k)

2k + 1

)1/2k

+ 4Υλ2
Bt

2

NBϵ

⌉
.

(1)

By making the definition qB := αcomm(B,2k)
αcomm(H,2k) and utilizing the upper bounds from Theorems 2 and

4, where CT rott and CQD below are upper bounds on the number of operator exponentials required
in the Trotter and QDrift channels, we can write the cost upper bound as

Ccomp ≤ Υ(ΥLA +NB)
⌈
CT rott(H, t, ϵ, 2k) (1 − qB)1/2k

Υ1−1/2kL
+ CQD(H, t, ϵ) Υ

NB

λ2
B

λ2

⌉
. (2)
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Proof. We first note that by using prior arguments, namely Eq. (33) and Lemma 8, it is sufficient
to show that

∣∣∣∣∣∣U(t/r) − Ũ(t/r)
∣∣∣∣∣∣

⋄
≤ ϵ/r to satisfy the total diamond distance error bound of ϵ. Using

Lemma 8 as well as the Trotter and QDrift errors from Eqs (25) and (29)∣∣∣∣∣∣U(t/r) − Ũ(t/r)
∣∣∣∣∣∣

⋄
≤ Υ

∣∣∣∣∣∣UA(t/r) − ŨA(t/r)
∣∣∣∣∣∣

⋄
+ Υ

∣∣∣∣∣∣UB(t/r) − ŨB(t/r)
∣∣∣∣∣∣

⋄
+ 2

∣∣∣∣∣∣eiHt/r − U
(2k)
T S ({A,B} , t/r)

∣∣∣∣∣∣
(64)

≤ 2Υ
∣∣∣∣∣∣eiAt/r − U

(2k)
T S (A, t/r)

∣∣∣∣∣∣+ 2
∣∣∣∣∣∣eiHt/r − U

(2k)
T S ({A,B} , t/r)

∣∣∣∣∣∣+
(
t

r

)2 4Υλ2
B

NB

(65)

≤
(
t

r

)2k+1 4Υ2k+1

2k + 1 (Υαcomm(A, 2k) + αcomm({A,B} , 2k)) +
(
t

r

)2 4Υλ2
B

NB
.

(66)

It will prove useful for brevity to define the following quantities

P (t) := t2k+1 4Υ2k+1

2k + 1 (Υαcomm(A, 2k) + αcomm({A,B} , 2k)) (67)

Q(t) := t2
4Υλ2

B

NB
(68)

(69)

where P represents the “product formula” error and Q captures the QDrift error. We can
then use results from Theorems 2 and 4, as well as the upper bound αcomm({A,B} , 2k) ≤
Υαcomm({A,B} , 2k) to write the following expressions

P (t)1/2k

ϵ1/2k
≤ CT rott(H, t, ϵ)

(1 − qB)1/2k

Υ1−1/2kL
(70)

Q(t)
ϵ

= CQD(H, t, ϵ) Υλ2
B

λ2NB
. (71)

This gives our error as
∣∣∣∣∣∣U(t/r) − Ũ(t/r)

∣∣∣∣∣∣
⋄

≤ P (t)
r2k+1 + Q(t)

r2 . We now pivot to finding a good value
for r that satisfies this inequality. Since there are no generic analytic solutions to polynomials of
the form axn + bx2 = c for an arbitrary positive integer n we have to resort to lower bounds on r.
In other words, we would like to have a computable lower bound rmin < r such that the following
inequalities are satisfied

P (t)
r2k+1 + Q(t)

r2 ≤ P (t)
r2k+1

min

+ Q(t)
r2

min

≤ ϵ

r
≤ ϵ

rmin
. (72)

We can make use of the above by finding expressions relating rmin to Q and P . The first expression
we will make use of is

P (t)
r2k+1 + Q(t)

r2 ≤ P (t)
r2r2k−1

min

+ Q(t)
r2 ≤ ϵ

r
(73)

1
ϵ

(
P (t)
r2k−1

min

+Q(t)
)

≤ r, (74)

which reduces our task to finding a bound on rmin using just P alone. This is feasible if we revisit
Eq. 72 and use the assumption that Q(t) ≥ 0 for all possible inputs

P (t)
r2k+1

min

+ Q(t)
r2

min

≤ ϵ

rmin
(75)

P (t)
r2k+1

min

≤ ϵ

rmin
(76)(

P (t)
ϵ

)1/2k

≤ rmin. (77)
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Plugging 77 into 74 yields (
P (t)
ϵ

)1/2k

+ Q(t)
ϵ

≤ r. (78)

Now that we have a lower bound for r this gives us an expression for the query cost as

Ccomp(A,B, t, ϵ) = Υ(ΥLA +NB)r (79)

= Υ(ΥLA +NB)
⌈
P (t)1/2k

ϵ1/2k
+ Q(t)

ϵ

⌉
, (80)

plugging in equations (67) and (67), along with their simplifications in terms of CT rott and CQD

yields the expressions in the statement.

5.2 Probabilistic Partitioning
As mentioned in Section 4.2 there are multiple ways to go about determining a partition. In
this section we develop a novel probabilistic approach that can be used to compute expectation
values of necessary parameters in our composite cost function. Importantly the probabilities are
computable in time Θ(L) and require only simple constants to be evaluated. We first discuss why
we cannot simply adapt the methods from Section 4.2 before developing our approach.

The main difficulty with adopting our weighting approach from before is the combinatorial

landmine ∂αcomm({A,B},2k)
∂wm

. When considering ∂αcomm({A,B},2k)
∂wm

note that αcomm has 2k+1 factors
of variously indexed wγ with nested commutators. Taking the derivative with respect to one of
the innermost commutator terms leaves for a sum over all possibilities in where this term could
be placed and over the remaining operators in the nested commutator. For feasibility one would
have to upper bound αcomm with spectral 1-norms, such as αcomm(A, 2k) ∈ O

(
λ2k+1

A

)
, which

we do following this discussion. Unfortunately, these upper bounds do not help analytically as
αcomm({A,B} , 2k) ∈ O

(∑
l λ

l
Aλ

2k+1−l
B

)
. The resulting derivative is a polynomial over all possible

powers of wi and (1−wi), which as we have seen before does not have analytically solvable roots in
general. This however could be used as the basis for a numeric approach, where one could compute
these gradients as a subroutine in an optimization scheme, but it is not useful for our discussion.

The approach we consider is by reinterpreting the weights wi from Section 4.2 as probabilities pi

for each term to end up in Trotter or QDrift. This means that the expected Hamiltonian we simulate
with Trotter is E [A] =

∑
i pihiHi and the expected QDrift partition is E [B] =

∑
i(1 − pi)hiHi.

We also introduce the indicators variables IA
i which is 1 if the ith term ends up in Trotter and 0

if it is in QDrift. Similarly we can define IB
i = 1 − IA

i . One main benefit is that this now gives
us a probability over all possible partitions, which allows us to compute expectation values for
quantities such as Ccomp, P, and Q. We remark that computing the expected value of the cost
E [Ccomp(A,B)], which is our main priority, is different than computing the cost of the expected
partition Ccomp(E [A] ,E [B]). The expected partition is computationally no different than the
weighting scheme mentioned above so we instead compute the expectation of costs over partitions,
which is clearly defined and computationally tractable.

The first task we have is to find a useful distribution for each of the pi’s. To do so we start
with our cost function and introduce a heuristic that will allow us to find computable values for
pi. The first objects we introduce bounds for are the αcomm terms, which will be of additional use
later on.

Lemma 9. Let αcomm({A,B} , 2k), αcomm(A, 2k) be defined as in Eq. (11). Then it holds that

αcomm({A,B} , 2k) ≤ 22k
2k∑

l=1
λl

Aλ
2k+1−l
B (81)

αcomm(A, 2k) ≤ 22kλ2k+1
A . (82)
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These inequalities can be used to upper bound P (t) as

P (t) ≤ t2k+1 22k+2Υ2k+1

2k + 1

(
Υλ2k+1

A +
2k∑

l=1
λl

Aλ
2k+1−l
B

)
(83)

≤ 22k + Υ
2k + 1 (2Υλt)2k+1 =: Pmax(t), (84)

where we introduce the upper bound Pmax(t) for P which will be of use later.

Proof. The bounds on the αcomm factors are straightforward and computed as follows from the
triangle inequality and submultiplicativity of the spectral norm. First we compute the commutator
for just the A terms

αcomm(A, 2k) ≤
LA∑

γ2k+1=1
. . .

LA∑
γ1=1

||[Aγ2k+1 , . . . , [Aγ2 , Aγ1 ] . . .]|| (85)

≤
LA∑

γ2k+1=1
. . .

LA∑
γ1=1

22k ||Aγ1 || . . .
∣∣∣∣Aγ2k+1

∣∣∣∣ (86)

= 22kλ2k+1
A , (87)

which is easily generalized to the commutator structure between the A and B terms as

αcomm({A,B} , 2k) ≤
2k∑

l=1

LA∑
i1,...,il=1

LB∑
il+1,...,i2k+1=1

∣∣∣∣[Ai1 , [Ai2 , . . . , [Bi2k
, Bi2k+1 ] . . .]

∣∣∣∣ (88)

≤
2k∑

l=1

LA∑
i1,...,il=1

LB∑
il+1,...,i2k+1=1

22k ||Ai1 || ||Ai2 || . . . ||Bi2k
||
∣∣∣∣Bi2k+1

∣∣∣∣ (89)

≤ 22k
2k∑

l=1
λl

Aλ
2k+1−l
B , (90)

and we note that at least one power of λA and λB must be present in each term as there must be a
minimum of one term from A and a minimum of one term fromB in the original nested commutator.
We can then use the simple bounds λA ≤ λ and λB ≤ λ to get partition independent bounds.
Plugging these into the definition of P (t) from Eq. (67) yields the bounds in the statement.

Returning to the original task of finding useful probabilities pi, we now discuss what heuristics
we can introduce to help us towards this goal. The cost of a Composite channel was computed as

Ccomp ≤ (ΥLA +NB)
(

P (t)1/2k

ϵ1/2k + Q(t)
ϵ

)
, which we can use to give an upper bound on the expected

cost as

E [Ccomp(A,B, t, ϵ, 2k)] ≤ E
[
(ΥLA +NB)

(
P (t)1/2k

ϵ1/2k
+ Q(t)

ϵ

)]
(91)

≤ (ΥL+NB)
(
E
[
P (t)1/2k

]
ϵ1/2k

+ E [Q(t)]
ϵ

)
, (92)

where we upper bounded LA with L and the number of gates performed during the QDrift channel
as NB . This latter point is a bit more subtle than it first appears, as there could be a non-zero
probability of having 0 or 1 terms in B, which would mean no matter how many QDrift samples
NB we take we only need to apply either 0 or 1 exponential gate to implement them.

This expression makes clear that the Composite channel cost is a balancing act between higher-
order product scaling and QDrift scaling. The heuristic we introduce is that we would like these
expected quantities to be somewhat of the same magnitude. This is motivated by the observation
that if one simulation method has much higher cost than another method we can simply start our
partitioning off completely in the smaller cost method. We can then shift probability mass to the
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higher cost channel until the two contributions to the Composite channel are comparable. By mak-
ing E

[
P (t)1/2k

]
ϵ−1/2k ≈ E [Q(t)] ϵ−1 rigorous we will get useful expressions for the probabilities

pi. This is done in the following lemma.

Lemma 2.1 (Probabilistic Partitioning Scheme). For a composite simulation of H for time t and
error ϵ, let pi denote the probability of placing term hiHi into the Trotter partition of Composite
channel. we have that choosing

1 − pi = min

 λ

hiL

√NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
− 1

 , 1

 =: min
{
χ

hi
, 1
}
, (3)

along with choosing the number of QDrift samples NB to satisfy

NB ≥
(
λt

ϵ

)1−1/2k ( 2k + 1
2k + Υ

)1/2k 21−1/k

Υ1/2k
(4)

guarantees the following:

1. pi ∈ [0, 1],

2. the expectation value of the coefficients in the QDrift partition satisfies

E [λB ]
λ

≤ 1
2

√(
4k + 2Υ
2k + 1

)1/2k

(2Υ)1+1/2k

√
NB

( ϵ
λt

)1−1/2k

.

This bound follows from a rigorous interpretation of making the QDrift and Trotter errors
approximately equivalent.

Proof. We begin by making rigorous our notion that E
[
P (t)1/2k

]
ϵ−1/2k ≈ E [Q(t)] ϵ−1. To do

so we will equate an upper bound for E [P (t)] with a lower bound for E [Q]. As we know that
E
[
P (t)1/2k

]
≤ Pmax(t)1/2k from Lemma 9, we only need to lower bound E [Q]. This is rather

straightforward

E [Q(t)] =
4ΥE

[
λ2

B

]
t2

NB
≥ 4E [λB ]2 t2

NB
, (93)

which is given from the definition of Q along with Jensen’s Inequality and convexity of f(x) = x2.
To enforce our heuristic of approximately equal we set the lower bound on E [Q] /ϵ to be less than
the upper bound on E

[
P 1/2k

]
/ϵ1/2k. This is straightforward as

4ΥE [λB ]2 t2

NBϵ
≤ Pmax(t)1/2k

ϵ1/2k
(94)

E [λB ] ≤ 1
2t

√
Pmax(t)1/2kNBϵ1−1/2k

Υ . (95)

As λB is simply the sum of the spectral norms for each term in the B channel, we can write it
as
∑

i E
[
IB

i hi

]
. By plugging in the expectation of IB

i and Pmax from Eq. (84) into the above we
arrive at the following

∑
i

(1 − pi)hi ≤ λ

√
NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
. (96)

It is now be apparent that we would like 1 − pi to be proportional to the RHS of the above. There
are a few adjustments that need to be made for consistency, such as introducing a minimum,
dividing by L and subtracting a factor of λ, and including these gives us our final definition as

1 − pi := min

 λ

hiL

√NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
− 1

 , 1

 . (97)
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For convenience, we define

χ := λ

L

√NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
− 1

 (98)

such that 1 − pi = min
{

χ
hi
, 1
}

. We will also define

S := {i : 1 − pi < 1} (99)

which consists of the indices of terms that have a non-zero probability of being in the Trotter
channel. The complement of S, denoted SC , contains the remaining indices of {1, 2, . . . , L} S
that are guaranteed to be placed in the QDrift channel. We now show that the definition of our
probabilities leads to the correct bound in (96)∑

i

(1 − pi)hi =
∑
i∈S

χ

hi
hi +

∑
i∈SC

hi (100)

= χ|S| + λSC (101)

= λ|S|
L

(
1
2

(
4k + 2Υ
2k + 1

)1/4k
√
NB21+1/2kΥ1/2k

( ϵ
λt

)1−1/2k

− 1
)

+ λSC (102)

≤ λ

2

(
4k + 2Υ
2k + 1

)1/4k
√
NB21+1/2kΥ1/2k

( ϵ
λt

)1−1/2k

+ (λSC − λ) (103)

≤ λ

√
NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
(104)

as desired. In the step from (102) to (103) we assumed that the innermost term is positive. This
is necessary for our probabilities to be greater than 0, but is not necessarily true as ϵ

λt → 0 for
fixed NB . Therefore by requiring 1 − pi > 0 we introduce the following lower bound on NB

NB ≥
(
λt

ϵ

)1−1/2k ( 2k + 1
2k + Υ

)1/2k 21−1/k

Υ1/2k
. (105)

We have therefore satisfied both guarantees as outlined in the statement of the Theorem, which
completes the proof.

There are a few comments to be made about the behavior of some of the quantities introduced

in the above lemma. First we look at the lower bound on NB , which scales as Θ
((

λt
ϵ

)1−1/2k
)
.

If we assume that t, ϵ are independent of L then this overall scaling is sublinear with respect to
L as λ ≤ maxi hiL, which indicates that by moving a term from Trotter to QDrift we do not
automatically lose out in gate cost. If t, ϵ are dependent on L then we cannot make the same
guarantee. Second, if we parametrize NB to be within a constant factor of this lower bound

NB = (1 + c)2 (λt
ϵ

)1−1/2k
(

2k+1
2k+Υ

)1/2k
21−1/k

Υ1/2k , we can then simplify the expression for χ as

χ = λ

L

√NB

( ϵ
λt

)1−1/2k
(

2k + Υ
2k + 1

)1/2k Υ1/2k

21−1/k
− 1

 (106)

= c
λ

L
. (107)

This is a nice simplification that we will use later and shows χ can be thought of as an “average
strength” of the overall Hamiltonian. This then gives the intuition that our probability definitions
are somewhat analogous to an inverse importance sampling procedure with respect to the spectral

norms hi. We note that as c → ∞, 1 − pi = min
{

cλ
Lhi

, 1
}

→ 1, which implies that pi → 0. This

means that as we increase the number of QDrift samples the probability distribution will put more
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probability mass into the QDrift partition. Intuitively, the resulting partition takes advantage
of having a low-error QDrift simulation by placing more terms into it’s partition. Contrast this
behavior with the opposite limit, c → 0. In this case we have a very noisy QDrift partition, due
to the QDrift error scaling as 1/NB , and we see that the distribution in this case properly places
more probability mass into the Trotter partition.

5.3 Comparison with Trotter and QDrift
In this section we shift our focus to analyzing when a two term Composite channel can outper-
form a simulation of just a Trotter or QDrift channel. The first result we show gives asymptotic
bounds on certain quantities that result from a partitioning, such as λB , that yield asymptotic
improvements for the overall Composite channel query cost over either Trotter or QDrift. After
analyzing the asymptotic cost for a predetermined partition we then investigate when the proba-
bilistic partitioning scheme introduced above can yield gate cost improvements. We find that in
the extremal cases for the probabilities (i.e pi → 0 or pi → 1 for all i) our resulting Composite
channel exactly matches the QDrift and second-order Trotter costs, with minor constant factors
for higher-order Trotter channels. Finally, in the case where a Hamiltonian has spectral norms
that decay exponentially, i.e. hi = 2−i, in expectation our partitioning meets the requirements
for the asymptotic improvements shown in Theorem 2.2 under the condition that t/ϵ is such that
CT rott = CQD.

5.3.1 Deterministic Partitioning Improvements

We first investigate the asymptotic bounds that a partition must satisfy in order to offer asymptotic
improvements over either Trotter or QDrift.

Theorem 2.2 (Conditions for Composite Channel Improvements). Assume a Hamiltonian H
along with a partitioning scheme to generate A and B that varies with L. For a simulation time t
with a desired diamond distance error at most ϵ, let β > 0 be a number such that CQD = Cβ

T rott.
There exist asymptotic regimes for the parameters LA, λB , and NB such that

CComp ∈ o(min {CT rott, CQD}),

outlined below for the cases when CQD ≥ CT rott (β ≥ 1) and CQD < CT rott (0 < β < 1).
For the case when β > 1, indicating Trotter uses fewer queries than QDrift, if the parameters

λB, LA, and number of QDrift samples NB satisfy the following

1. LA(1 − qB)1/2k ∈ o(L) where qB = αcomm(B,2k)
αcomm(H,2k) ,

2. λB ∈ o

(
λ1/β

(√
ϵ

t

)1−1/β
)

,

3. NB ∈ Ω(LA) and NB ∈ o
(

L
(1−qB)1/2k

)
,

then we have that Ccomp ∈ o(CT rott).
If instead 0 < β < 1, indicating CQD < CT rott, and the parameters λB, LA and NB satisfy the

following

1. the total number of terms in the Trotter partition satisfies

LA ∈ o

L1/β

(
ϵ1−1/β

t(2k+1)(1−1/β)
α

1/β
comm(H)

αcomm(A) + αcomm({A,B})

)1/2k
 , (5)

2. λB ∈ o(λ),

3. and NB ∈ Θ(LA),
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then we have that Ccomp = o(CQD). Note that for β = 1 exactly, the conditions on λB and LA are
the same for both cases: LA ∈ o(L) and λB ∈ o(λ). The conditions for NB are satisfied by NB ∈
Θ(LA). If these conditions are satisfied for all ranges of β then Ccomp ∈ o (min {CQD, CT rott}).

Proof. We start with the expression for the Composite channel cost from Theorem 2.1

Ccomp ≤ Υ(ΥLA +NB)
⌈
CT rott(H, t, ϵ, 2k) (1 − qB)1/2k

Υ1−1/2kL
+ CQD(H, t, ϵ) Υ

NB

λ2
B

λ2

⌉
, (108)

where 1 − qB quantifies the contribution of the A partition to the overall nested commutator
structure αcomm(H, 2k). The most straightforward way to proceed is to split this expression based
on our two cases, β > 1 and 0 < β < 1.

We first examine the case when β > 1, which implies CT rott < CQD. Our composite cost
expression then can be written as

Ccomp ≤ CT rott

(
Υ1+1/2k(1 − qB)1/2kLA

L
+ Υ3λ

2
B

λ2
LA

NB
C

1−1/β
QD + Υ1/2k(1 − qB)1/2kNB

L
+ Υ2λ

2
B

λ2 C
1−1/β
QD

)
.

(109)
Our goal is to show that if each of the terms above are in o(1), then the sum is in o(1) which
implies Ccomp ∈ o(CT rott). Starting with the simplest term

Υ1+1/2k (1 − qB)1/2kLA

L
∈ o(1), (110)

which holds when LA(1 − qB)1/2k ∈ o(L). The second term we analyze is the QDrift only term

Υ2λ
2
B

λ2 C
1−1/β
QD =

(
t2

ϵ

)1−1/β
λ2

B

λ1/β
∈ o(1), (111)

where we used the assumption that λB ∈ o

(
λ1/2β

(√
ϵ

t

)1−1/β
)

to reduce the expression to o(1).

We now move on to the remaining terms involving NB . The first we can simplify is

Υ1/2k(1 − qB)1/2kNB

L
∈ o(1), (112)

by the assumption that NB(1 − qB)1/2k ∈ o(L). The second term involving NB is

Υ3C
1−1/β
QD λ2

B

λ2
LA

NB
∈ o(1), (113)

where we used the fact that C
1−1/β

QD
λ2

B

λ2 ∈ o(1) and the assumption that NB ∈ Ω(LA). Given that
all four terms in the cost function expression 108 are o(1), we have shown that Ccomp ∈ o(CT rott)
for β > 1.

We can now move on to the case when 0 < β < 1, which essentially repeats the above logic. In
this situation the cost expression from Eq (108) reduces to

Ccomp ≤ CQD

(
Υ1+1/2k (1 − qB)1/2kC

1−1/β
T rott LA

L
+ Υ3λ

2
B

λ2
LA

NB
+ Υ1/2k(1 − qB)1/2kNB

L
C

1−1/β
T rott + Υ2λ

2
B

λ2

)
.

(114)
Starting with the rightmost term we have

Υ2λ
2
B

λ2 ∈ o(1), (115)

which is guaranteed by the assumption λB ∈ o(λ). We then look at the only other term that does
not include a factor of NB , which reduces to

Υ1+1/2k(1−qB)1/2kLA

L
C

1−1/β
T rott = Υ2+1/2k

(
t1+1/2k

ϵ1/2k

)1−1/β
LA

L1/β

(
αcomm(A, 2k) + αcomm({A,B} , 2k)

α
1/β
comm(H, 2k)

)1/2k

.

(116)
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This can be shown to be in o(1) given Assumption 1 for 0 < β < 1. We can utilize the fact that
this term is vanishing to reduce one of the other terms involving CT rott as

Υ1/2kNB
(1 − qB)1/2kC

1−1/β
T rott

L
= NB

LA
· o(1) ∈ o(1), (117)

where we use the assumption that NB ∈ O (LA) for the last step. The last remaining term is
rather straightforward

Υ2λ
2
B

λ2
LA

NB
= LA

NB
· o(1) ∈ o(1), (118)

where we used NB ∈ Ω(LA) as well as λB ∈ o(λ). Taken together, we have shown that Ccomp =
CQD · o(1), implying Ccomp ∈ o(CQD) for 0 < β < 1.

This combined with the above proof for β > 1 implies that Ccomp ∈ o(min {CQD, CT rott}) if
the assumptions in the statement are met, completing the proof.

CQD > CT rott CQD < CT rott

LA ∈ o
(

L
(1−qB)1/2k

)
o

(
L1/β

(
ϵ1−1/β

t(2k+1)(1−1/β)
α1/β

comm(H)
αcomm(A)+αcomm({A,B})

)1/2k
)

λB ∈ o

(
λ1/β

(√
ϵ

t

)1−1/β
)

o(λ)

(Lower Bound) NB ∈ Ω(LA) Ω(LA)
(Upper Bound) NB ∈ o

(
L

(1−qB)1/2k

)
O (LA)

Table 1: Summary of asymptotic requirements for parameters of interest when CQD = Cβ
T rott to yield CComp ∈

o(min {CQD, CT rott}).

Now that we have given bounds on a partitioning that can yield asymptotic improvements, we
turn to the problem of finding a good value of NB that can satisfy these necessary assumptions. We
first show a straightforward generalization of the first-order optimal value of NB to the higher-order
Trotter case.

Lemma 10. Given a Hamiltonian H with fixed partitions A and B, the optimal number of QDrift
samples NB is given as

NB = 2λB

√(
Υt
ϵ

)1−1/2k

LA

(
2k + 1

Υαcomm(A) + αcomm({A,B})

)1/2k

(119)

Proof. This is a rather straightforward result which follows the logic of the first-order results in
section 4.3 so we will simply show some of the intermediate steps. Starting with the upper bound
on CComp

C ≤ Υ(ΥLA +NB)
(
P (t)1/2k

ϵ1/2k
+ Q(t)

ϵ

)
, (120)

we then require that the upper bound be an optima with respect to NB , namely that ∂
∂NB

CComp =
0. Computing the derivative using the expressions for Q(t) and P (t), given in Eqs. (68) and (67)
respectively, we find

0 = Υ
(
P (t)1/2k

ϵ1/2k
+ Q(t)

ϵ

)
− Υ(ΥLA +NB)Q(t)

N2
B

(121)

P (t)1/2k

ϵ1/2k
N2

B = ΥLA
4λ2

Bt
2

ϵ
(122)

NB = 2λB

√
ΥLAt2

ϵ1−1/2kP (t)1/2k
. (123)

Plugging in the expression for P (t) yields the stated result.
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Now that we have given an expression for an optimal value of NB given a partitioning, we
briefly show that this NB value satisfies the assumptions from Theorem 2.2 for the case when
CQD = CT rott. As mentioned in the theorem statement, for this situation we note thatNB ∈ ω(LA)
andNB ∈ o(L) is sufficient to satisfy the requirements. The equal cost condition yields the equation

CQD = CT rott (124)(
t

ϵ

)1−1/2k

= Lα
1/2k
comm(H, 2k)

λ2 ·O(1). (125)

This then simplifies the optimal value for NB as

NB = 2λB

√(
Υt
ϵ

)1−1/2k

LA

(
2k + 1

Υαcomm(A, 2k) + αcomm({A,B} , 2k)

)1/2k

(126)

= λB

λ

√
LAL(1 − qB)1/2k ·O(1). (127)

This last expression is clearly seen to lie in both ω(LA) and o(L) if λB ∈ o(λ) and LA ∈ o(L). This
shows that at times t and errors ϵ where QDrift and Trotter have equal query cost the optimal
value of NB leads to a Composite channel that has asymptotic improvements over either of the
channels it composes.

5.3.2 Probabilistic Partitioning Performance

We now focus on showing that a Composite channel with a probabilistic partitioning scheme
according to Lemma 2.1 can lead to gate cost savings compared to either Trotter or QDrift channels
alone. The main expression we will be working with is

E [Ccomp(H, t, ϵ,NB)] ≤ E
[
(LA +NB)

(
P (t)1/2k

ϵ1/2k
+ Q(t)

ϵ

)]
(128)

≤

√
E [L2

A]
E
[
P (t)1/k

]
ϵ1/k

+

√
E [N2

B ]
E
[
P (t)1/k

]
ϵ1/k

+
√
E [L2

A] E [Q(t)2]
ϵ2

+
√
E [N2

B ] E [Q(t)2]
ϵ2

(129)

≤
(√

E [L2
A] +

√
E [N2

B ]
)(

E
[
P (t)1/2k

]
ϵ1/2k

+
√
E [Q(t)2]
ϵ

)
, (130)

which follows from repeated applications of the Cauchy-Schwarz inequality and Jensen’s inequality
for f(x) = x1/k for positive x. The approach we take is to first give useful upper bounds on
this expression and then show that these bounds saturate to the costs for Trotter and QDrift
as we shift our probability mass towards either 0 or 1 for each term. Finally, we investigate a
specific Hamiltonian that in expectation satisfies the assumptions for asymptotic improvements
from Theorem 2.2.

In this section we will present some lemmas that provide useful upper bounds to the quantities
used in the above expected cost expression. Since these proofs are relatively straightforward
applications of the definitions given above we leave the proofs to appendix A.

Lemma 11. Let LA denote the number of terms simulated with a higher-order Trotter formula in
a Composite channel with the assumptions as defined in section 3. Using a probabilistic partitioning
scheme as defined in 2.1, then the second moment of LA obeys

E(L2
A) ≤ |S|2 − |S|

∑
i∈S

χ

hi
,

where χ is given in 98 and S is the set of pi such that 1 − pi < 1 as given in 99.
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This result makes intuitive sense, as LA can be no larger than |S| as this is the set of terms
that have non-zero probability of ending up in the Trotter partition. This expression then adjusts
this upper bound by |S|

∑
i∈S(1 − pi), which can be thought of as the expected number of terms

that will end up being placed in QDrift from S.
We know move on to bounding the expected contribution from the QDrift channel due to the

error, namely Q(t).

Lemma 12. Let Q denote the contribution to the error of a Composite channel, where Q is defined
in 68, with the standard assumptions from Section 3 and a probabilistic partitioning scheme as
outlined in 2.1. The following upper bounds hold on the first two moments for Q

E [Q(t)] ≤ 4t2

NB

(
χλS + (χ|S| + λSC )2

)
(131)

E
[
Q(t)2] ≤ 4t2λ2

NB
E [Q(t)] ≤ 16t4λ2

N2
B

(
χλS + (χ|S| + λSC )2

)
(132)

The main intuition to be gained from here is that as |S| → 0 the dominant contribution comes
from λSC which is to be expected as this is the set of terms that are guaranteed to be placed in
QDrift.

We now move on to the last term we need to bound, which is P .

Lemma 13. Let P (t) denote the product formula error scaling as defined in 67 for a Composite
channel with the standard assumptions as defined in 3. Using a probabilistic partitioning scheme
as defined in 2.1 then the following upper bounds hold for the expected value of P (t)

E [P (t)] ≤ (2Υ)2+2k

2k + 1 t2k+1λ2k (λS − χ|S|) . (133)

Even though this upper bound on P is not tight at all we can still capture interesting edge
case behavior. Note that as S → ∅ this indicates that all of our terms are in the set SC , meaning
the probability they are in the Product Formula channel tends to 0, which is reflected as λS → 0
and |S| → 0 which implies that E [P (t)] → 0 appropriately. We will investigate the other regime
in which 1 − pi → 0 shortly.

Now that we have workable upper bounds we would like to make some direct comparisons
between a Composite channel and both Trotter and QDrift. However before showing that this
expression can outperform known upper bounds on Trotter or QDrift, we first would like to perform
some consistency checks. What we need to show is that as we shift the probability mass over our
partitions, the Composite channel cost should tend towards Trotter or QDrift, based on which
direction we shift the mass. In other words, as pi → 0 for all i, we would like E [CComp] → CQD

and as pi → 1 we would like E [CComp] → CT rott. In the following Theorem we verify this intuition
precisely for the QDrift regime and second-order Trotter formulas. For higher-order formulas we
are able to show that as pi → 1 the Composite channel cost is at most 1.12 times worse than the
Trotter cost.

Theorem 14 (Expected Cost reduction to Trotter and QDrift in proper limits). Assume as inputs
a Hamiltonian H, time t, and error ϵ. Let pi denote the probability of assigning term Hi of H to
the Trotter partition of a composite simulation channel, given by Lemma 2.1. Then as we vary the
number of QDrift samples NB the expected cost of the Composite channel, E [CComp], saturates
towards the Trotter and QDrift gate costs in the respective limits for NB. Specifically, as NB

approaches its lower bound in Eq. (105) then E [CComp] →
(
Υ1/2k/21−1/2k

)
· CT rott ≤ 1.12CT rott

and as NB → ∞ then E [CComp] → CQD exactly. Note that for k = 1, or a second-order Trotter
formula, Υ1/2k/21−1/2k = 1.

Proof. The first limit we tackle is the QDrift regime. Dropping the specific probabilities that were
defined in Lemma 2.1 we consider adjusting each probability pi → 0 for all i. We have three pieces
we then need to upper bound: P , Q, and LA. We can ignore

√
E [N2

B ] as there is no probability
we do not have an empty or near-empty QDrift channel. The first observation is that as each
pi → 0 and as we set more and more probabilities to 1 − pi = 1 then the size of |S| will decrease
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accordingly. We consider the case where |S| → 0 as this represents the QDrift only channel. This
limit then implies that λS → 0 and λSC → λ. This allows us to vastly simplify many of our bounds

E
[
L2

A

]
≤ |S|2 − |S|

∑
i∈S

χ

hi
→ 0 (134)

E
[
P (t)1/2k

] (2Υ)1+1/k

(2k + 1)1/2k
λ(λS − χ|S|)1/2k → 0 (135)

E
[
Q(t)2] ≤ 16t4λ2

N2
B

(
χλS + (χ|S| + λSC )2

)
→ 16t4λ4

N2
B

. (136)

By plugging these into the cost expression from Eq. 130 we get the following limit

E [Ccomp(H, t, ϵ,NB)|pi → 0 ∀i] ≤
(√

E [L2
A] +

√
E [N2

B ]
)(

E
[
P (t)1/2k

]
ϵ1/2k

+
√
E [Q(t)2]
ϵ

)
(137)

→ 4t2λ2

ϵ
, (138)

which exactly matches the upper bounds on the cost of a QDrift only channel. We remind the
reader of the extraneous factor of 2 that we incur from restricting ϵ ∈ (0, ln(2)λt) as opposed to
Campbell’s original result [14].

Next we look at the limit in which pi → 1 and we are performing a Trotter only channel. By
using the probability distributions from Lemma 2.1 it is most straightforward to consider this limit
by using a parametrized value for NB

NB(c) = (1 + c)2
(
λt

ϵ

)1−1/2k 1
4(2Υ)1+1/2k

(
2k + 1

4k + 2Υ

)1/2k

, (139)

which was shown to lead to χ = c λ
L . For probabilities which are in S, we can say pi = 1 − c λ

Lhi
.

This then implies that by sending c → 0 we appropriately have χ → 0 and pi → 1. We can use
this to compute the limiting upper bound on E

[
L2

A

]
as

E
[
L2

A

]
≤ |S|2 − |S|

∑
i

χ/hi → L2. (140)

The contribution due to the QDrift error is also straightforward in the limiting case as c → 0

E
[
Q(t)2] ≤ 16t4λ2

N2
B

(
χλS + (χ|S| + λSC )2

)
→ 0, (141)

as χ → 0 and λSC → 0. The remaining simple upper bound is for P which is as follows

E
[
P (t)1/2k

]
≤ (2Υ)1+1/k

(2k + 1)1/2k
t1+1/2kλ(λS − χ|S|)1/2k → (2Υ)1+1/k

(2k + 1)1/2k
(λt)1+1/2k. (142)

The last quantity we have to bound is
√

E [N2
B ], which up until now has been harmlessly upper

bounded by NB . However we now have a very high probability, tending to 1, of not having any
terms in our QDrift channel. This means that the expected number of exponential gates performed
during the QDrift sampling procedures should tend to 0. We make this rigorous through a simple
definition of expectation

E
[
N2

B

]
= Pr [|B| = 0] · 0 + Pr [|B| = 1] · 1 + Pr [|B| > 1] ·N2

B (143)

=
∑

i

∏
j ̸=i

(1 − pi)pj + (1 − Pr [|B| = 0] −
∏
j ̸=i

(1 − pi)pj) ·N2
B (144)

→ 0 + (1 −
∏

i

pi) ·N2
B (145)

→ 0. (146)
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Intuitively, the above is simply a result of Pr [|B| = 0] → 1 as pi → 1, resulting in all other terms
tending to 0. This gives the final upper bound on our expected cost as

E [Ccomp(H, t, ϵ,NB)|pi → 1 ∀i] ≤
(√

E [L2
A] +

√
E [N2

B ]
)(

E
[
P (t)1/2k

]
ϵ1/2k

+
√
E [Q(t)2]
ϵ

)
(147)

→ (Lλt)1+1/2k

ϵ1/2k

(2Υ)1+1/k

(2k + 1)1/2k
. (148)

We note that by using similar upper bounds on the factor of αcomm for the Trotter gate cost yields
the following

CT rott ≤ Lt1+1/2k

ϵ1/2k
α1/2k

comm(H, 2k)Υ1+1/2k41/2k

(2k + 1)1/2k
(149)

= L(λt)1+1/2k

ϵ1/2k

Υ1+1/2k22+1/2k

(2k + 1)1/2k
. (150)

The simple ratio E [Ccomp] /Ctrott = Υ1/2k2−1+1/2k = 2−1+1/k51/2−1/2k shows that for k = 1 we
exactly match the Trotter cost. For higher-orders this constant factor is negligible and is upper
bounded by 1.12.

5.3.3 Exponentially Decaying Hamiltonian Terms

Now that we have shown that the probabilistic partitioning scheme leads to a composite cost that
saturates to CT rott and CQD in the appropriate regime, we will analyze a situation in the middle
of these two limits. This is rather difficult to do in generality, so we will restrict our attention to
Hamiltonians that have exponentially decaying spectral norms for each term, i.e. hi = 2−i when
sorted by spectral norm, and at the crossover time t such that CQD = CT rott. For this analysis
we would like to show that the parameters of the partitioning, namely LA, NB , and λB , satisfy
the constraints for asymptotic improvements given by Theorem 2.2. At the crossover time these
constraints are simply LA ∈ o(L), λB ∈ o(λ) and NB ∈ Θ(LA). We prove that in expectation
these parameters will satisfy these constraints, then by using simple tail bounds we show that the
probability the parameters fall into an asymptotically bad regime is vanishingly small.

Theorem 15. Given a Hamiltonian H =
∑

i hiHi with exponentially decaying spectral norms
hi = 2−i, a small commutator structure αcomm ∈ Θ

(
log2 L

L

)
, time t, and error ϵ such that

CT rott(H, t, ϵ) = CQD(H, t, ϵ), then the probabilistic partitioning scheme given by Lemma 2.1 yields
a partition that satisfies the asymptotic requirements of Theorem 2.2 with high probability.
Proof. The outline of the proof is to first provide a parametrization of NB that simplifies the
calculation, then use this to bound expectations of LA and λB , then finally to use tail bounds to
show that the expectation values are sufficient to work with. We first resolve a conundrum involving
NB . As we have seen in Section 5.3.2, the value of NB essentially determines the partitioning,
however in Theorem 2.2 we see that NB has to satisfy certain asymptotic requirements that depend
on the partitioning! To get around this we introduce the following parametrization

NB(c) = (1 + 2−c)2
(
λt

ϵ

)1−1/2k ( 2k + 1
2k + Υ

)1/2k 21−1/k

Υ1/2k
, (151)

where c ∈ Θ(1) is a constant and can be negative. This specific form of (1 + 2−c)2 leads to many
simplifications, the first of which is χ = 2−cλL−1, following the definition of χ from Eq. (3). This
allows us to compute the size of the sampling set of indices |S| as we just need to determine which
j leads to 1 − pj < 1. This is shown as

1 − pj < 1 (152)
χ

hj
< 1 (153)

2j < 2cL

λ
(154)

j < c+ log2 L− log2 λ. (155)
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We next compute λ =
∑

i hi =
∑

i 2−i = 1−2−L to yield a value for E [LA]. Since log(1−x) ∈ O (x)
for x → 0, it is easy to see that |S| is asymptotically small compared to L:

|S| = ⌊j⌋ ≤ c+ log2(L) +O
(
2−L

)
∈ Θ (log2 L) .

This shows that E [LA] satisfies it’s asymptotic requirements:

E [LA] =
∑
i∈S

E [Ii] (156)

=
∑
i∈S

pi (157)

=
∑
i∈S

1 − (1 − pi) (158)

= |S| −
∑
i∈S

χ

hi
(159)

= |S| − 2−cλ

L

∑
i∈S

2−i (160)

∈ Θ(|S|) (161)
= Θ(log2 L) ⊂ o(L). (162)

The next task is to show that LA does not deviate from E [LA] in an asymptotically significant way
with high probability. As LA is the sum of Bernoulli random variables we can use the multiplicative
Chernoff bound

Pr [|LA − E [LA] | > δE [LA]] ≤ 2e−δ2E[LA]/3 (163)

∈ Θ
(

1
Lδ2

)
. (164)

We see that this vanishes even for constant deviations δ ∈ O(1) of LA from E [LA], implying that
any asymptotically significant deviations, such as δ ∈ O(La), vanish even quicker.

We now move on to bounding E [λB ]. The first thing we need to do is provide an upper bound
on |SC |, which is done via a lower bound on |S|. For this we can use the simple bound ⌊x⌋ ≥ x−1.
This allows us to compute the required sums for E [λB ]:

E [λB ] =
∑
i∈S

(1 − pi)hi +
∑

i∈SC

hi (165)

≤ χ|S| +
L∑

i=c+log2 L−log2 λ−1
2−i (166)

≤ 2−cλ

L
(c+ log2 L− log2 λ) + 21−c−log2(L)+log2(λ)+1 − 2−L (167)

= 2−cλ

L
(c+ log2 L− log2 λ) + 22−cλ

L
− 2−L (168)

≤ 2−cλ

L
(4 + c+ log2 L− log2 λ) (169)

∈ O

(
(1 − 2−L)(4 + c+ log2 L+

∑∞
k=1 2−kL/k)

L

)
(170)

⊆ Õ
(
L−1) (171)

⊆ o(1). (172)

For the tail bound necessary on λB we need to show that with high probability it will be in o(1).
For this a straightforward application of Markov’s inequality to bound the probability that λB is
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greater than some constant suffices:

Pr [λB ≥ x] ≤ E [λB ]
x

(173)

≤ 2−cλ

xL
(4 + c+ log2 L− log2 λ) (174)

∈ Õ

(
1
xL

)
, (175)

which can be clearly seen to approach 1 as L → ∞ for any constant value x ∈ Θ(1). Note that
Markov’s inequality is applicable due to our assumption that hi ≥ 0 for all i.

The last expression we need to satisfy is NB ∈ Θ(LA). To do so we will use the bounds on t, ϵ
to find a useful expression for NB

CQD = CT rott (176)
4λ2t2

ϵ
= Υ2+1/2kL

t1+1/2k

ϵ1/2k
αcomm(H, 2k)1/2k(4/2k + 1)1/2k (177)(

λt

ϵ

)1−1/2k

= Υ2+1/2k

41−1/2k(2k + 1)1/2k

Lαcomm(H, 2k)1/2k

λ1/2k
. (178)

Now we plug this in to the parametrization of NB given in Eq. (151)

NB = (1 + 2−c)2
(

2k + 1
2k + Υ

)1/2k 21−1/k

Υ1/2k

Υ2+1/2k

41−1/2k(2k + 1)1/2k

Lαcomm(H, 2k)1/2k

λ1/2k
(179)

∈ Θ
(
Lαcomm(H, 2k)1/2k

λ1/2k

)
. (180)

Since λ → 1, we can drop it from the denominator in the asymptotic limit. It is then straightforward
to see that if

αcomm(H, 2k)1/2k ∈ Θ
(

log2 L

L

)
,

then NB ∈ Θ(log2 L) = Θ(LA), meaning that NB satisfies its asymptotic requirements from
Theorem 2.2. This completes the proof.

6 General Composite Channels
Now that we have gone over the details of how to apply a Composite simulation for the particular
case of Trotter and QDrift, let us now consider how one could generalize this exact same idea to
any combination of known simulation methods. This approach, we will see, provides a broader
perspective within which LCU, multiproduct, Trotter and QDrift can be seen to be special cases
of the larger framework.

Claim 16. Assume a Hilbert space of the form HA ⊗ Hsys where HA is the Hilbert space of an
ancillary system. Specifically, let Nt represent the number of different individual exponentials that
are called in a single step and let Wj and Vj be for each j ∈ 1, . . . , Nt be unitary operations acting on
disjoint subspace HA,j such that

⋃
j HA,j = HA. Next let Selj |p⟩j |ψ⟩sys = |p⟩je

−iHjt|ψ⟩sys select a
particular time evolution based on the index stored in the jth register then any Composite channel
consisting of randomized Trotter formulas, determistic Trotter formulas, multiproduct formulas
and QDrift can be thought of as special cases of the following template

Ucomp : |0⟩⟨0| ⊗ ρ 7→ TrA

 Nt∏
j=1

(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †
j ⊗ 1)Sel†j(V †

j ⊗ 1)
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Proof. First let us show that a segment of QDrift can be thought of as a special case of this
template. In this case let us take Vj = 1 and Wj to be a unitary such that for a Hamiltonian of
the form HB =

∑L−1
k=0 hkHk with

∑
k hk = λB and hk ≥ 0, then

Wj |0⟩ =
N−1∑
k=0

√
hk

λB
|k⟩. (181)

We then have from some elementary algebra that

TrAj
(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †

j ⊗ 1)Sel†j(V †
j ⊗ 1) =

∑
k

hk

λB
e−iλBHktρeiλBHkt = UQD(HB , t) ◦ ρ.

(182)
As each Hilbert space Aj is assumed to be disjoint, we then have that this also holds for the
multi-segment case as well. Specifically, let us assume that for some positive integer Q that the
channel maps

|0⟩⟨0| ⊗ ρ 7→ TrA

 Q∏
j=1

(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †
j ⊗ 1)Sel†j(V †

j ⊗ 1)

 = UQD(HB , t)◦Q ◦ ρ (183)

We then have using the fact that each of the Vj and Wj act on disjoint Hilbert spaces that

TrA

Q+1∏
j=1

(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †
j ⊗ 1)Sel†j(V †

j ⊗ 1)


= TrAQ+1Tr⋃Q

q=1
Aq

Q+1∏
j=1

(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †
j ⊗ 1)Sel†j(V †

j ⊗ 1)


= TrAQ+1

(
(VQ+1 ⊗ 1)SelQ+1(WQ+1 ⊗ 1)

× Tr⋃Q

q=1
Aq

 Q∏
j=1

(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †
j ⊗ 1)Sel†j(V †

j ⊗ 1)


× (W †

Q+1 ⊗ 1)Sel†Q+1(V †
Q+1 ⊗ 1)

)
(184)

We then have from (183) and (184) that

TrA

Q+1∏
j=1

(Vj ⊗ 1)Selj(Wj ⊗ 1)ρ(W †
j ⊗ 1)Sel†j(V †

j ⊗ 1)

 = UQD(HB , t)◦Q+1 ◦ ρ, (185)

and thus the claim holds for all positive integer Q by induction since we already demonstrated the
Q = 1 case.

Next we wish to show that any randomized Trotter formula can be thought of as a special
case of this framework. While we have solely focused on deterministic Trotter formulas in this
paper, we generalize to randomly ordered formulas in this section, as developed in [10], because
the formalism required is the same as the deterministic case. We define the first-order Trotter
channel given by a permutation σ ∈ SL, where SL is the symmetric group on L elements, as

U (1)
σ (H, t) : ρ 7→

L∏
i=1

eiHσ(i)tρ

1∏
i=L

e−iHσ(i)t. (186)

The first-order Randomized Trotter-Suzuki channel is then given as 1
L!
∑

σ∈SL
U (1)

σ ◦ ρ . Our goal
is to show that this is clearly encodable within the framework developed here.
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We start by noting that for a single iteration a single ancilla register is sufficient. For a
Hamiltonian HA we then take VRT S = 1, WRT S |0⟩ =

∑
σ∈SLA

1√
LA! |σ⟩, where |σ⟩ can be an

arbitrary binary encoding of an index of SLA
. Then define the action of the Select operator as

Selσ (|σ⟩⟨σ| ⊗ ρ) Sel†σ = |σ⟩⟨σ| ⊗ U (1)
σ ◦ ρ. This then gives the overall action of the channel as

TrA

(
(VRT S ⊗ 1)Selσ(WRT S ⊗ 1)|0⟩⟨0| ⊗ ρ(W †

RT S ⊗ 1)Sel†σ(V †
RT S ⊗ 1)

)
= 1
LA!

∑
σ∈SLA

U (1)
σ (HA, t)◦ρ,

(187)
which matches the first-order randomized Trotter-Suzuki formula as given in [10]. It is a straight-
forward process to extend this mapping to higher-order randomized formulas.

The final case that fits within this framework is the multi-product formula. The primary
difference between this case and the probabilistic Trotter formula is that a quantum superposition
of the Trotter formulas is used [26, 12, 27]. Specifically, this method finds a set of N coefficients,
cσ, such that

∥
N∑

σ=1
cσ(

LA∏
q=1

exp(−i[HA]qt/kσ))kσ − e−iHAt∥ ∈ O(t2N+1) (188)

To implement multiproduct formulas within our formalism, we define

WMP F |0⟩ :=
N∑

σ=1

√
|cσ|/

√∑
j

|cσ||σ⟩,

with V †
MP F = WMP F . The coefficients c are chosen such that they are the solutions to the

Vandermonde system of equations for some sequence of positive integers kj [26]
1 k−1

1 k−2
1 · · · k−N+1

1
1 k−1

2 k−2
2 · · · k−N+1

2
...

. . .
...

1 k−1
N k−2

N · · · k−N+1
N


T 

c1
c2
...
cN

 =


1
0
...
0

 (189)

We take Selσ|σ⟩|ψ⟩ = |σ⟩UTS(HA, t)|ψ⟩ = |σ⟩(
∏LA

q=1 exp(−i[HA]q/kσt))kσ |ψ⟩. This encapsulates
the select operation needed in [15, 12]. The LCU Lemma [26, 9] then implies that this channel will
map,

(⟨0|⊗1)Λ(|0⟩⟨0|⊗ρ)(|0⟩⊗1) = κ−2
N∑

σ′=1

N∑
σ=1

cσ(
LA∏
q=1

exp(−i[HA]qt/kσ))kσρcσ′(
LA∏
q=1

exp(−i[HA]qt/kσ))−kσ ,

(190)
where κ−1 is a constant needed to block encode the formula within a larger unitary matrix. Thus
multiproduct formulas can also be considered as special cases of a Composite channel.

Finally, following the exact same arguments used above since the registers used to block encode
each of these individual channels are taken to be disjoint, any composition of the channels applied
in this manner forms a Composite channel as we defined it above. This proves our claim.

Note that above we do not discuss the complications of using oblivious amplitude amplification
to prevent the success probability of multiproduct formulas shrinking exponentially with the num-
ber of segments [28]. This generalization is straightforward though and simply requires wrapping
the evolution within a larger unitary transformation that resembles Grover’s search. Further, it is
also clear that the exact same ideas used for multi-product formulas could be used to implement a
linear combinations of unitaries approach such as [9] or [11]. For simplicity, we choose our language
above to focus on the case of composite Trotter-like channels but this approach also falls within
our framework. [29] Qubitization is somewhat of an awkward fit within this approach [13], as it
involves a sequence of rotations as opposed to simple linear expressions, and so it remains the one
major simulation method that falls outside of the generalization of the Composite channel that we
present above. We hope that this provides a compact framework for future analysis of composite
simulations with more involved simulation techniques.
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7 Discussion
This work has presented a new framework to analyze and design quantum simulation algorithms
that have a compositional character. In particular, we examine mixing Trotter-Suzuki methods
and QDrift and find evidence that the whole is greater than the sum of its parts. The central
new concept behind this work is the idea of term partitioning, both in a deterministic as well as
a randomized setting, which allows us to selectively apply a simulation algorithms to the parts
of the Hamiltonian that benefit from high accuracy while relegating less sensitive parts of the
Hamiltonian to a low-accuracy approximation.

We show for low order formulas that in cases where there are a small number of large terms that
are (mostly) mutually commuting and a large number of smaller terms in the Hamiltonian, then a
deterministic partitioning exists such that the lowest order Trotter formula combined with QDrift
provides an asymptotic advantage over either model. For higher-order Trotter formulas we provide
a set of asymptotic regimes for parameters of a predetermined partition, namely the number of
terms in the Trotter partition and the sum of the spectral norms for the QDrift partition, that
yield asymptotic improvements over Trotter or QDrift individually. Moreover we provide a method
for producing partitions probabilistically that is easy to compute and exactly matches the operator
exponential cost for second-order Trotter formulas and QDrift in the relevant limits.

To showcase how each of these results can be used to analyze a Hamiltonian we specifically
examined the case where a given H has exponentially decaying spectral norms (hi = 2−i) and a
small commutator structure (αcomm(H; 2k) ∈ Θ(log2 L/L)). We show that by using the proba-
bilistic scheme provided that we can produce partitions that satisfy the asymptotic requirements
in Theorem 2.2 with probability approaching 1 as L → ∞. We note that although this example
Hamiltonian is contrived for the purposes of demonstrating our techniques there are many Hamil-
tonians, such as electronic structure Hamiltonians, that are dominated by a handful of large terms
with many more small terms. Commutator structures are highly dependent on specific Hamilto-
nians but our techniques give an asymptotic scaling that leads to provable advantage. This gives
strong evidence that optimized partitions that take advantage of information about the Hamilto-
nian could lead to significant empirical improvements.

Looking forward, while this framework shows a way that we can think about combining several
disparate Hamiltonian simulation methods, this contribution is by no means the end of this line
of inquiry. Firstly, this work was inspired to no small extent by the coalescing scheme presented
in [19] wherein a factor of 10 improvement was found numerically by decreasing the frequency
with which low importance Hamiltonian terms are applied when looking at chemical simulations.
Our framework provides a much more general way of thinking about such partitioning and further
numerical work would be useful to understand the impact that these ideas will have on systems of
interest, such as chemical compounds or lattice gauge theories.

More broad approaches within our framework can also be considered specifically, multiple or-
ders of Trotter formulas could be considered and further randomization over the ordering of terms
can also be performed easily within the randomization part of our algorithm. Incorporating further
gradations in the accuracy of the underlying formula could lead to further practical improvements
and pave the way for more highly optimized compilers. In systems where commutator or spec-
tral norm information about subsets of the Hamiltonian is known these techniques could bring
significant circuit depth reductions for simulations on quantum computers.
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A Moment Bounds for Higher-Order Formulas
We now return to proving the moment bounds from Section 5.3.1.

Lemma 11. Let LA denote the number of terms simulated with a higher-order Trotter formula in
a Composite channel with the assumptions as defined in section 3. Using a probabilistic partitioning
scheme as defined in 2.1, then the second moment of LA obeys

E(L2
A) ≤ |S|2 − |S|

∑
i∈S

χ

hi
,

where χ is given in 98 and S is the set of pi such that 1 − pi < 1 as given in 99.

Proof. Given that the simplest definition of our probabilities is for 1 − pi we will try to work with
expressions for the B channel as much as possible. It is easy to convert between the two as

E
[
L2

A

]
= E

[
(L− LB)2] = L2 − 2LE [LB ] + E

[
L2

B

]
. (191)

The expectation value of LB then follows from plugging in the definitions

E [LB ] =
∑

i

E
[
IB

i

]
=
∑

i

1 − pi = χ
∑
i∈S

1
hi

+ |SC |. (192)

Now we find a relatively simple upper bound for E
[
L2

B

]
if use the two facts that IB

i and IB
j
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are independent for i ̸= j and that
(
IB

i

)2 = IB
i

E
[
L2

B

]
= E

(∑
i

IB
j

)2
 (193)

=
∑

i

E
[
IB

i

]
+
∑
i ̸=j

E
[
IB

i

]
E
[
IB

j

]
(194)

=
∑

i

(1 − pi) +
(∑

i

(1 − pi)
)2

−
∑

i

(1 − pi)2 (195)

= χ
∑
i∈S

1
hi

+ |SC | +
(
χ
∑
i∈S

1
hi

+ |SC |

)2

−
∑
i∈S

χ2

h2
i

− |SC |. (196)

Combining equations (192) and (196) we get the following expression for an upper bound on L2
A

E
[
L2

A

]
= L2 − 2L(χ

∑
i∈S

1
hi

+ |SC |) + χ
∑
i∈S

1
hi

+
(
χ
∑
i∈S

1
hi

+ |SC |

)2

−
∑
i∈S

χ2

h2
i

(197)

= L2 − 2L|SC | + |SC |2 +
(
−2L+ 1 + 2|SC |

)∑
i∈S

χ

hi
+
(∑

i∈S

χ

hi

)2

−
∑
i∈S

χ2

h2
i

(198)

=
(
L− |SC |

)2 + (1 − 2|S|)
∑
i∈S

χ

hi
+

∑
i ̸=j∈S2

χ

hi

χ

hj
(199)

≤ |S|2 + (1 − 2|S|)
∑
i∈S

χ

hi
+ (|S| − 1)

∑
i∈S

χ

hi
(200)

= |S|2 − |S|
∑
i∈S

χ

hi
. (201)

Note that we only used the following inequality χ
hi

= 1 − pi ≤ 1 for i ∈ S.

Lemma 12. Let Q denote the contribution to the error of a Composite channel, where Q is defined
in 68, with the standard assumptions from Section 3 and a probabilistic partitioning scheme as
outlined in 2.1. The following upper bounds hold on the first two moments for Q

E [Q(t)] ≤ 4t2

NB

(
χλS + (χ|S| + λSC )2

)
(131)

E
[
Q(t)2] ≤ 4t2λ2

NB
E [Q(t)] ≤ 16t4λ2

N2
B

(
χλS + (χ|S| + λSC )2

)
(132)

Proof. E [Q(t)] can be computed very similarly to LA above, since E [Q(t)] ∝ E
[
λ2

B

]
. This second

moment for λB mostly follows from the definitions but we first will get an easier expression involving
the indicator variables

E
[
λ2

B

]
= E

(∑
i

hiI
B
i

)2
 (202)

=
∑

i

h2
iE
[
IB

i

]
+
∑
i ̸=j

hihjE
[
IB

i I
B
j

]
(203)

=
∑

i

h2
iE
[
IB

i

]
+
∑
i ̸=j

hiE
[
IB

i

]
hjE

[
IB

j

]
(204)

=
∑

i

h2
iE
[
IB

i

]
+
(∑

i

hiE
[
IB

i

])2

−
∑

j

h2
jE
[
IB

j

]2
, (205)
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where we used the fact that IB
i is independent from IB

j for all i ̸= j. Now we can utilize our
probability distributions as E

[
IB

i

]
= 1 − pi, which yields

E
[
λ2

B

]
=
∑
i∈S

hiχ+
∑

i∈SC

h2
i + (χ|S| + λSC )2 −

∑
j∈S

h2
j (1 − pj)2 −

∑
j∈SC

h2
j (1 − pj)2 (206)

= λSχ+
∑

i∈SC

h2
i + χ2|S|2 + 2χ|S|λSC + λ2

SC − χ2|S| −
∑

j∈SC

h2
j (207)

≤ χ2|S|2 + χ (λS + 2λSC |S|) + λ2
SC (208)

= χλS + (χ|S| + λSC )2
. (209)

The only inequality comes from dropping the correction term χ2|S|, which is subleading to χ2|S|2.
Our expression for a upper bound on E [Q(t)] is then proportional to the above expression (209)

E [Q(t)] ≤ 2t2

NB

(
χλS + (χ|S| + λSC )2

)
. (210)

To compute E
[
Q(t)2] we can reduce it to our prior results. Since E

[
Q(t)2] = 4t4

N2
B

E
[
λ4

B

]
, we will

use the following upper bound

E
[
λ4

B

]
=
(∑

i

hiI
B
i

)4

≤

(∑
i

hi1
)2(∑

i

hiI
B
i

)2

= λ2E
[
λ2

B

]
. (211)

This means we can re-use the above computation as

E
[
Q(t)2] ≤ 2t2λ2

NB
E [Q(t)] . (212)

Lemma 13. Let P (t) denote the product formula error scaling as defined in 67 for a Composite
channel with the standard assumptions as defined in 3. Using a probabilistic partitioning scheme
as defined in 2.1 then the following upper bounds hold for the expected value of P (t)

E [P (t)] ≤ (2Υ)2+2k

2k + 1 t2k+1λ2k (λS − χ|S|) . (133)

Proof. To simplify this we will use intermediate steps from the calculation of Pmax(t) that bound
the αcomm factors, namely equations (87), (90) which are repeated below

αcomm(A, 2k) ≤ 22kλ2k+1
A (213)

αcomm({A,B} , 2k) ≤ 22k
2k∑

l=1
λl

Aλ
2k+1−l
B (214)

P (t) = 22(tΥ)2k+1

2k + 1 (Υαcomm(A, 2k) + αcomm({A,B} , 2k)) (215)

We will use these to compute a useful upper bound on E [P (t)]. Since our random variables are
more easily described for the IB

i variables, we will convert all powers of λA into functions of L and
λB as well as upper bound both by λA and λB by λ. This results in an upper bound on E [P (t)]
as

E [P (t)] ≤ 22+2k(tΥ)2k+1

2k + 1 E

[
Υλ2k+1

A +
2k∑

l=1
λl

Aλ
2k+1−l
B

]
. (216)
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We will simplify the expectation value using the facts that λA, λB ≤ λ and that in
∑2k

l=1 λ
l
Aλ

2k+1−l
B

each term has at least one factor of λAλB . This results in the following simplifications

E

[
Υλ2k+1

A +
2k∑

l=1
λl

Aλ
2k+1−l
B

]
≤ λ2k−1E

[
Υλ2

A + (2k)λAλB

]
(217)

≤ Υλ2k−1E
[
λ2

A + λAλB

]
(218)

= Υλ2k−1E [λA(λA + λB)] (219)
= Υλ2k (λ− E [λB ]) (220)
= Υλ2k (λS − χ|S|) , (221)

where we used an exact expression for E [λB ] that is a straightforward computation in addition
to the fact that 2k ≤ Υ for k ≥ 1. Combining the above expressions (221) and (216) our final
expression for an upper bound on E [P (t)] is

E [P (t)] ≤ (2Υ)2+2k

2k + 1 t2k+1λ2k (λS − χ|S|) (222)
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