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The role of entanglement in determining the
non-classicality of a given interaction has gained
significant traction over the last few years. In
particular, as the basis for new experimental
proposals to test the quantum nature of the
gravitational field. Here we show that the rate
of gravity mediated entanglement between two
otherwise isolated optomechanical systems can
be significantly increased by modulating the
optomechanical coupling. This is most pro-
nounced for low mass, high frequency systems
– convenient for reaching the quantum regime
– and can lead to improvements of several or-
ders of magnitude, as well as a broadening of
the measurement window. Nevertheless, sig-
nificant obstacles still remain. In particular,
we find that modulations increase decoherence
effects at the same rate as the entanglement
improvements. This adds to the growing evi-
dence that the constraint on noise (acting on
the position d.o.f) depends only on the parti-
cle mass, separation, and temperature of the
environment and cannot be improved by novel
quantum control. Finally, we highlight the close
connection between the observation of quan-
tum correlations and the limits of measurement
precision derived via the Cramér-Rao Bound.
An immediate consequence is that probing su-
perpositions of the gravitational field places
similar demands on detector sensitivity as en-
tanglement verification.

1 Introduction
One of the central features in most attempts at com-
bining gravity and quantum theory is the assumption
that the gravitational field should be quantised. How-
ever, in contrast to the other known forces, there has
been no experimental evidence to motivate this ap-
proach. Instead the reliance is based largely on a com-
bination of aesthetic appeal along with a variety of
well known inconsistency arguments for coupling clas-
sical and quantum fields [1, 2, 3]. As such, the ques-
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tion of experimental verification, and indeed whether
this is in principle even possible, is of significant im-
portance.

In recent years one common approach is to focus
on identifying ways that phenomenological features,
such as a minimal length or modified dispersion rela-
tion, may be accessible in the low energy regime. Sur-
prisingly, this has led to a number of proposals for so-
called table-top experiments, in particular within the
framework of atomic, molecular and optical (AMO)
physics [4, 5, 6, 7, 8, 9], (see also [10] for a recent
review). In these approaches, one attempts to effec-
tively reach the quantum gravity regime through the
use of composite systems, provided that large mass
quantum states can be produced.

An alternative strategy is to bypass theory specific
predictions and instead tackle the question of nonclas-
sicality directly. Recently it has been argued that wit-
nessing the build up of quantum correlations through
only a gravitational interaction is sufficient to rule out
a purely classical description of gravity [11, 12, 13].
This observation rests on the fact that Local Op-
erations and Classical Communication (LOCC) can-
not increase entanglement between two systems [14].
From this perspective, entanglement verification can
be viewed as a higher level test of the underlying the-
ory.

One can expect that the detection of quantum fea-
tures should depend heavily on the sensitivity of the
test system to gravity. This requires not only that
the field is measurable, but that the precision should
be high enough to detect quantum fluctuations of
the source. It is well known that by employing res-
onant driving, measurement sensitivity can be sig-
nificantly improved. A promising setup is then pro-
vided by two disconnected optomechanical systems
placed in close proximity. Here, radiation pressure in-
duces oscillations in the mechanical elements, which
if sufficiently isolated will only be coupled through
their gravitational interaction. Individually, such sys-
tems serve as promising candidates for gravity sensors
[15, 16, 17, 18], and the fundamental limits on their
precision in the nonlinear regime have previously been
explored [19, 20]. An important observation is that
a much greater sensitivity can be achieved if, in ad-
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dition, the optomechanical coupling is modulated at
resonance with both the mechanical and driving fre-
quency [21].

This motivates an extension to an optomechanical
experiment first suggested by two of us to entangle
the motion of two movable mirrors through their mu-
tual gravitational field [13]. We show that if grav-
ity can be modeled by a quantised Newtonian inter-
action then modulations of the optomechanical cou-
pling close to the mechanical resonance can signifi-
cantly enhance the rate of entanglement generation.
Such modulations have been experimentally demon-
strated, for example, in nanomechanical setups [22]
or in levitated optomechanical systems by employing
hybrid-Paul traps [23, 24, 25]. In particular, we find
that entanglement can grow asymptotically with the
cube of the interaction time, and proportional to the
variance of the photon number operator of the initial
cavity state (corresponding to roughly the position
variance of the mirrors).

In fact, the link between measurement precision and
the generation of quantum correlations can be made
more concrete and we will show that the integration
time needed for an optomechanical sensor to achieve
a measurement precision to better than the quantum
variance of the corresponding operator (in our case the
mirror position or cavity photon number) is closely
related to the entanglement time. From this perspec-
tive, the development of (decoherence free) quantum
systems as sensors is as important as creating large
nonclassical states. In particular, this implies that
proposals to test the superposition principle for grav-
itational fields [7, 8] are operationally just as difficult
as entanglement verification. It also emphasises that
one does not always need to resort to strict gravita-
tional cat states in order to test for nonclassical fea-
tures of gravity.

In this paper we analyse the feasibility of perform-
ing such an experiment in a regime where entangle-
ment would be expected. We start by introducing
a model Hamiltonian which describes the low energy
gravitational interaction of two optomechanical sys-
tems in the nonlinear regime (sections 2 and 3). Solv-
ing the dynamics for arbitrary time dependent param-
eters leads to a coupling between the cavity fields pro-
portional only to the respective photon number oper-
ators. This allows for a simple estimate of the entan-
glement rate, provided measurements can made when
the combined field-field state is approximately pure
(section 4).

We then quantify the effects of extraneous couplings
through the use of a suitable entanglement witness
(section 5). This reveals a trade off between the
width of the viable measurement window and the ini-
tial cooling (previously noted for the interference vis-
ibility [26]), but also exposes additional demands on
frequency matching of the two mechanical elements.
For high photon numbers, these constraints can be

significant, though we show that at least for the first,
the temperature dependence can be reduced by using
purely oscillatory modulations.
On the other hand, decoherence requirements are

severe and cannot be mitigated through local control
of the dynamics. We recover known noise conditions
on the mechanical relaxation rate in the limit of per-
fect measurement sensitivity [27, 28], as well as the
more stringent bounds needed to keep the witness
within some fraction of its optimal value. In both
cases these depend only on the mass, equilibrium sep-
aration and the temperature of the environment and
suggest improvements of many orders of magnitude
are needed before such an experiment can be per-
formed.
Further experimental limitations due to Casimir ef-

fects, stray charges and restrictions on the mechanical
motion are then discussed in sections 6 and 7. Finally,
we contrast our results with those obtained through a
semi-classical analysis and highlight the connections
to quantum metrology in sections 8 and 9.

2 Low-energy gravitational interaction
For lab based experiments, where the typical energy
scale is small, a common approach is to start by quan-
tising the classical Newtonian potential [29, 27, 13, 30],

VG = −Gm1m2
r , where G is the gravitational constant

and mi are the masses of two particles separated by
distance r. Intuitively this can be done by introduc-
ing the quantised particle positions x̂1 and x̂2 as small
perturbations around an equilibrium distance d, such
that r → r̂ = d + x̂2 − x̂1. However a similar result
can also be obtained from the gravitational interac-
tion of two scalar fields in perturbative quantum grav-
ity when restricted to the two-particle sector (in the
non-relativistic limit)1 [29]. In both cases this leads
to a Hamiltonian term,

ĤG = − Gm1m2
|d+ x̂2 − x̂1|

. (1)

Provided the expected displacements are small, we
can expand to second order in x̂2 − x̂1,

ĤG ≈ −Gm1m2
d

(
1 − x̂2 − x̂1

d
+ (x̂2 − x̂1)2

d2

)
. (2)

The last term in particular leads to a quantised gravi-
tational interaction Ĥint = 2Gm1m2

d
3 x̂1x̂2, and enables

1The derivation becomes non-trivial if the composite nature
of the interacting systems has to be taken into account. For
example, a field theoretical treatment of a gravitationally self-
interacting BEC in a double-well potential has been presented
in [30]. Here, we simply assume that the strong interaction of
each mechanical element’s components (atoms, free electron gas
etc.) lead to the gravitational coupling being effectively via
their center-center-of-mass degrees of freedom in the form of
ĤG.
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the generation of entanglement between the two parti-
cles. In general this interaction will not commute with
the local dynamics, which in turn leads to non-trivial
evolution on the relevant timescale for entanglement
generation. The simplest example is given by two free
particles with Ĥ0,i = p̂2

i /2mi, where the additional
second order terms in (2) give rise to local Hamiltoni-
ans for (shifted) inverted harmonic oscillators,

Ĥ = p̂2
1

2m1
+ p̂2

2
2m2

− γx̂2
1 − γx̂2

2 + 2γx̂1x̂2 + γd(x̂2 − x̂1)

(3)
where γ = Gm1m2/d

3.
Here the behaviour of entanglement generation can

be markedly different if the sign of the potential is
reversed [31, 32], and in particular tends to be lower
(or indeed can return to zero) when the particles are
trapped in harmonic potentials. In practice, however,
it can be beneficial to maintain localisation through
the introduction of an additional potential (which can
be either time dependent [11] or independent [13]).
One can then attempt to offset the reduced entangle-
ment rate by transferring the correlations to a set of
ancilla states in such a way that they increase after
every cycle. The advantage of this approach is that en-
tanglement can often be more easily verified between
the ancilla degrees of freedom, either because they are
chosen to have a reduced dimension or because they
are easier to access in an experiment. This type of
setup forms the basis for the majority of proposals to
test gravitationally generated entanglement.

3 Model
A practical realisation of the above can be provided by
optomechanical systems, in which the entanglement
is transferred to optical degrees of freedom via a dis-
persive coupling of the form g(t)N̂ x̂ (where N̂ is the
photon number operator). We will now show that
for two coupled cavities, the gravity mediated photon-
photon coupling takes on a surprisingly simple form:

Û12(t) = eiD(t)N̂1N̂2 . The reduced complexity of the
interaction simplifies the analysis of the entanglement
rate, and motivates an optimal choice for the initial
cavity state. In practice however, this is not easily
achieved. Instead we argue that by tailoring the time
dependence of the optomechanical coupling g(t), one
can significantly improve the performance of less op-
timal (but easier to produce) cavity states.
We begin by assuming two optomechanical cavities

coupled only through the gravitational interaction of
their respective mechanical elements. This can be re-
alised, for example, in a Whispering Mode Gallery
system where the mechanical elements are made up of
fuse-silica microspheres. An alternate setup is shown
in Fig 1, using Fabry-Pérot cavities, but in principle
the analysis can be readily applied to a range of sys-
tems. In general, the precise form of the interaction

ω0

d

x1

L

00
x2

Figure 1: Two Fabry-Pérot cavities brought in close prox-
imity. The moving elements interact via their gravitational
fields. To second order this leads to an x̂1x̂2 coupling and
allows the generation entanglement between the mechanical
modes. This is exchanged back and forth with the cavity
fields, which themselves become entangled around multiples
of the mechanical period 1/ωm.

will depend on the geometry of the masses, m1 and
m2, however for simplicity we assume these to be by
point sources (2). If each cavity contains only a sin-
gle mode, then the total Hamiltonian describing this
system is given by,

Ĥ =
2∑
j=1

ℏω0,jN̂j +
p̂2
j

2mj

+ 1
2mjω̃

2
j x̂

2
j

+
2∑
j=1

(−1)j(gj(t)N̂j + Sj(t))x̂j + 2γx̂1x̂2 ,

(4)

where N̂j = â†
j âj are the number operators for the

respective cavity fields (with frequency ω0,j), ω̃
2
j =

ω2
m,j − 2γ

mj
are the mechanical frequencies shifted by

the inverted harmonic potential coming from (2), and
Sj(t) are arbitrary linear displacements. The latter
contain the first order gravitational contribution in
(2), but could also include effects from additional ex-
ternal potentials. Note that the relative minus sign
between cavities accounts for the opposite alignment.

The time evolution corresponding to (4) can most
easily be solved by first decoupling the mechanical
degrees of freedom. This can be achieved via the sym-
plectic transformations [31],

x̂1 = cx̂+ − bsx̂−; p̂1 = cp̂+ − 1
b
sp̂−,

x̂2 = cx̂− + 1
b
sx̂+; p̂2 = cp̂− + bsp̂+,

(5)

where c ≡ cos(a) and s ≡ sin(a), provided that the
parameters a and b satisfy,

tan 2a = 4γ
√
m1m2(ω̃2

1 − ω̃2
2)
, b =

√
m2
m1

. (6)

It is convenient to rewrite the transformed mechanical
degrees of freedom in terms of the mode operators, b̂±
and b̂†

± via x̂± = x0,±(b̂†
± + b̂±) (and similarly for p̂±),

where x0,+ =
√

ℏ
2m1ω+

, x0,− =
√

ℏ
2m2ω−

, and,

ω2
± = 1

2

ω̃2
1 + ω̃2

2 ±

√
16γ2

m1m2
+ (ω̃2

1 − ω̃2
2)2

 . (7)
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We note for later, that when ωm,1 = ωm,2 ≡ ωm
the frequencies simplify to ω2

+ = ω2
m and ω2

− =
ω2
m(1−4γg) where γg = 1

2
γ(m1+m2)
m1m2ω

2
m

. So far the param-

eter dependence in each cavity is arbitrary, however
we now impose the restriction gj(t) = g(t)ḡj . This
allows us to define time independent combinations of
the number operators associated to each plus/minus
mode. The Hamiltonian (4) can then be written as

Ĥ =
∑2
j=1 ℏω0,jN̂j + Ĥ+ + Ĥ− where,

Ĥµ(t) = ℏωµb̂
†
µb̂µ

− ℏωµ
(
kµ(t)N̂µ + D1,µ(t)

)(
b̂†
µ + b̂µ

)
,

(8)

(for index µ = +,−), with the transformed number
operators,

N̂+ =
√

2(ḡ1cN̂1 − ḡ2
s

b
N̂2),

N̂− = −
√

2(bsḡ1N̂1 + cḡ2N̂2),
(9)

and k±(t) = x0,±g(t)/(
√

2ℏω±). Similarly, the (po-
tentially) time dependent displacement terms are de-
fined by D1,+(t) = x0,+

ℏω+
(cS1 − s

bS2) and D1,−(t) =
−x0,−

ℏω−
(bsS1 + cS2). In general these terms do not con-

tribute to the entanglement, though they can play a
role in determining the allowable parameter regime
(see section 7).

We now observe that,

[Ĥµ(t), Ĥµ
′(t′)] = 0 = [N̂j , Ĥµ], (10)

for j = 1, 2; µ, µ′ = +,−; µ ̸= µ′, and so the the
evolution operator corresponding to (4) can be split
into,

Û(t) = e−i(ω0,1N̂1+ω0,2N̂2)tÛ+(t)Û−(t), (11)

where each Ûµ(t) corresponds to the individual evolu-
tion of the Hamiltonians (8). A general ansatz can be
found by considering the closed Lie-Algebra generated
by the terms in (8) [33],

Ûµ = e−iωµt b̂
†
µb̂µeiθµei(AµN̂µ+BµN̂

2
µ)D̂µ(Cµ+KN̂µ

N̂µ),
(12)

where D̂µ(α) = exp(αb̂†
µ − α∗b̂µ) is the displacement

operator acting on the transformed mechanical modes,
and the time dependence of the coefficients have been
suppressed for notational convenience. Transforming
back to the physical cavity field modes, we find the
total evolution operator takes the form,

Û(t) = eiθe−i(ω0,1N̂1+ω0,2N̂2)te−iω+b̂
†
+b̂+te−iω−b̂

†
−b̂−t

× ei(A1N̂1+A2N̂2)ei(B1N̂
2
1 +B2N̂

2
2 )eiDN̂1N̂2

× D̂+[C+ +KN̂+
N̂+]D̂−[C− +KN̂−

N̂−],
(13)

where,
θ = θ+ + θ−,

A1 =
√

2ḡ1(A+c−A−bs),

A2 = −
√

2ḡ2

(
A+

s

b
+A−c

)
,

B1 = 2ḡ2
1(c2B+ + b2s2B−),

B2 = 2ḡ2
2

(
c2B− + s2

b2B+

)
,

D = 4csḡ1ḡ2

(
bB− − 1

b
B+

)
.

(14)

When (8) are time-independent, then the solution
(12) is well known [34, 35, 19, 20]. More recently, the
extension to arbitrary time dependence has be been
obtained in [33]. Here the solutions have the follow-
ing integral representation (note the additional ± no-
tation should not be confused with the transformed
modes, µ = +,−, appearing above),

θµ = −FB̂µ,+
FB̂µ,−

,

Aµ = −(FN̂µ
+ FB̂µ,+

FN̂µB̂µ,−
+ FB̂µ,−

FN̂µB̂µ,+
),

Bµ = −(F
N̂

2
µ

+ FN̂µB̂µ,+
FN̂µB̂µ,−

),

Cµ = FB̂µ,−
− iFB̂µ,+

,

KN̂µ
= FN̂µB̂µ,−

− iFN̂µB̂µ,+
.

(15)
where (see [33] for details),

FN̂µ
= − 2ω2

µ

∫ t

0
dt′D1,µ(t′) sin(ωmt

′)

×
∫ t

′

0
dt′′kµ(t′′) cos(ωµt

′′)

− 2ω2
µ

∫ t

0
dt′kµ(t′) sin(ωmt

′)

×
∫ t

′

0
dt′′D1,µ(t′′) cos(ωµt

′′),

F
N̂

2
µ

= − 2ω2
µ

∫ t

0
dt′kµ(t′) sin(ωµt

′),

×
∫ t

′

0
dt′′kµ(t′′) cos(ωµt

′′),

FB̂µ,+
= − ωµ

∫ t

0
dt′D1,µ(t′) cos(ωµt

′),

FB̂µ,−
= − ωµ

∫ t

0
dt′D1,µ(t′) sin(ωµt

′),

FN̂µB̂µ,+
= − ωµ

∫ t

0
dt′kµ(t′) cos(ωµt

′),

FN̂µB̂µ,−
= − ωµ

∫ t

0
dt′kµ(t′) sin(ωµt

′).

(16)

For our purposes, the most the relevant terms are
contained in the field-field interaction Û12(t) =
eiD(t)N̂1N̂2 , as well as the coefficients KN̂µ

, which de-

termine the coupling of the fields to the mechanics.
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The latter leads to a drop in purity of the combined
optical state which in turn reduces the observable en-
tanglement. While these terms in general will remain
finite at all times t > 0, for certain choices at least
one µ-mode can be made to decouple. For example,
in the case of a single time-independent optomechani-
cal system, a well known feature is that the field and
mechanics disentangle at multiples of the mechanical
period, t = 2π/ωm. In our model, this corresponds
to,

KN̂µ
= −kµ(1 − e−iωµt), (17)

however, a non-zero gravitational interaction means,
ω+ ≠ ω−, and so both cavity fields cannot simultane-

ously decouple2.
In principle this means that the entanglement gen-

erated between the fields will always have some de-
pendence on the initial states of the mechanical ele-
ments. We will asses the effect of this contribution in
section 5, however a simple estimate of the entangle-
ment rate can be made by temporarily ignoring the
field-mechanics interaction. The evolution operator
(13) then has a reduced part,

Ûred = Û1Û2Û12, where Û12(t) = eiD(t)N̂1N̂2 ,
(18)

acting only on the physical cavity field modes. For
interactions of this form, we can show that the linear
entropy, SL = 1−tr[ρ2

1], for an initially separable pure
state is given by,

SL = 2D(t)2(∆N̂1)2(∆N̂2)2 + . . . (19)

(see appendix A for details and the full expression).
A characteristic timescale, τe, can then be esti-

mated by considering the lowest order contributions
to the linear entropy. Ignoring the numerical factor
in (19), we will take this as the solution to,

|D(τe)| ∝ 1
∆N̂1∆N̂2

. (20)

Thus, the entanglement rate, at least when SL is
small, is enhanced by states with large initial vari-
ances. For fixed photon numbers, Np ≡ ⟨N̂j⟩, the
optimal choice is a superposition of Fock states, how-
ever generating these for large Np is difficult in op-
tomechanical systems. A much higher photon num-
ber variance can be achieved by using coherent states,
where (∆N̂j)

2 = Np (assuming equal photon num-
bers in each cavity). In this case, we observe that
the general form (20) approximately holds for SL ap-
proaching one, where the proportionality factor must
be determined numerically. A conservative choice is
to pick the point of maximum rate of change with D,
which corresponds to |D(τe)| ≈ 1

2
√

2Np

, see figure 2.

2Except at times when some multiple of the ratio of frequen-
cies is itself an integer.

0 1 2 3 4
0.0

0.2
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0.8
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0.0

0.2

0.4

0.6

0.8

Figure 2: The gradient of the linear entropy (divided by the
photon number), plotted as a function of DNp for Np = 10
(blue), Np = 20 (orange) and Np = 40 (green). For SL ≪ 1,
all three curves are almost identical (see inset plot). The
brown dashed line corresponds to D = 1

2
√

2Np
. Oscillations

for large DNp (visible for the blue curve) are a consequence
of periodicities in the linear entropy, which begin to appear
around the point it reaches its maximum. All plots we made
using (114).

4 Estimation of Entanglement Time:
Constant vs. Modulated Coupling
For (19) to be valid, one needs to evaluate D(t) at a
time when both the Kµ(t) coefficients are sufficiently
small. If the bare mechanical frequencies differ signifi-
cantly, this may not be possible (we address this issue
in section 5.2.2), and in practice the choice will largely
depend on whether one mode is easier to cool. For
reasonably symmetric cavities, a sensible approach is
to measure at a multiple of the average of the mode
decoupling times. In the example above, this corre-
sponds to tq = qπ( 1

ω+
+ 1
ω−

), where q ∈ Z+. However,

in general we will adopt the label tq to correspond to
the qth (chronologically occurring) optimal measure-
ment time for a given strategy.

4.1 Time Independent Systems
In the case of time-independent optomechanical sys-
tems, it is straightforward to calculate the relevant
coefficient in (12) necessary for estimating the entan-
glement rate. This is given by [34, 35],

Bµ = k2
µ(ωµt− sinωµt). (21)

In the ideal scenario, the mechanical frequencies
should be equal, ωm,j ≡ ωm, as this maximises the
viable measurement window. We then note from (7),
that the difference in mode decoupling periods is ap-
proximately ∆t = 4πγg/ωm. Therefore, provided the
number of mechanical periods q ≪ 1/γg, then D(t)
will vary slowly between the respective decoupling
times. Inserting the above into (14), we find to lowest
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Recurring functions/derived quantities
Symbol First appearance Meaning

D Eq.(13) controls non-separability of cavity states
KN̂µ

Eq.(13) controls non-separability of states of cavity and mechanics
tq above section (4.1) qth (chronologically occurring) optimal measurement time
τe Eq.(20) entanglement time
κµ Eq.(30) decoherence rates
δt above Eq.(46) size of measurement window

W1 Eq.(27) entanglement witness
γg below Eq.(7) gravitational coupling parameter

Table 1: Table of the most important recurring functions and derived quantities.

order in γg,

D(tq) =
6G√

m1m2k1k2tq

ωmd
3 ,

2πq
ω−

< tq <
2πq
ω+

,

(22)
where kj = x0,jgj

ℏωm
are the original coupling constants

for each cavity. From (20) we can then estimate that,
for coherent states, the characteristic entangling time
is given by,

τe = ωmd
3

6
√

2Gk1k2
√
m1m2Np

. (23)

In general, achieving coherence for large masses on
this timescale is a significant challenge and so the most
natural approach is to choose m1 = m2 ≡ m for the
largest viable m. Realistic parameter values are given
in Table 2, then assuming k1 = k2 ≡ k0, suggests an
entanglement timescale on the order of τe ∼ 106 s.
Thus we see that even with high numbers of pho-

tons, the entanglement time is still long in comparison
to typical noise timescales. A key result of the present
work is that τe can be further decreased by modulat-
ing the parameters of the system. In particular, we
will now show that driving the optomechanical cou-
pling at, or close to, resonance with the frequency ωm
can lead to cubic time dependence for D(t) in the long
time limit. This leads to a significant speedup in the
generation of correlations between the optical modes.

4.2 Entanglement Enhancement Through Mod-
ulated Optomechanical Coupling
We now assume that the light matter couplings are
modulated according to gj(t) = g0 + ϵ̄ cos(Ωt + ϕ1).
When resonant with one of the mode frequencies, this
continually drives the (expected) oscillation ampli-
tude, and position variance, of that mode [21]. As a
result, entanglement generation is increased through
the field-field channel. However, unlike in the con-
stant coupling scenario, the mechanical state will vary
after each oscillation and so no times t > 0 exist when
the field and mechanics factorise, i.e Kµ(t > 0) ̸= 0.
The solution is to instead modulate the coupling

at specific fractional frequencies of the form Ωn,µ =

(1 − 1/n)ωµ, where n ∈ Z. It was shown in [21] that
for times tq,µ = 2nqπ/ωµ the cavity and mechanical
states do indeed disentangle. Evaluating the F

N̂
2
µ
, and

FN̂µB̂µ,±
integrals in (16) we find that for an optimal

phase choice, ϕ1 = π/2, and for times tq,− < tq < tq,+,
the D coefficient is given by,

D(tq) ≈ 4nqπγg

(
3k2

0 + ϵ2
n2(1 + (2n− 1)2)

2(2n− 1)2

)
, (24)

to first order in γg = Gm/ω2
md

3, where k0 =
x0g0/(ℏωm) and ϵ = x0ϵ̄/(ℏωm). Note to this order,
the choice between Ωn,± is unimportant here.
While D(tq) grows linearly in q, the term cor-

responding to modulated optomechanical coupling
grows cubically in n. This suggests the most effective
strategy is to measure at the first optimal measure-
ment time (q = 1). It is then clear that for ωmt1 ≫ 1,
the second term will dominate (provided ϵ is not much
smaller than k0), that is, when multiple mechani-
cal periods are needed to entangle the systems. For
optomechanical cavities ωm is typically larger than
2π×10 rads−1, and so if entanglement can be reached
within t ∼ 10−2s, one would choose to work with un-
modulated systems. The reality however, is that even
for optimistic parameter choices, k2

0γgNp ≪ 1, and
so ωmt1 needs to be large. This leads to our main
result: in the long time limit, |D(t1)| ≈ 1

4π2 ϵ
2ω3

mγgt
3
1,

and so the entanglement time for cavities initialised
in coherent states is given by,

τe ≈

(
2
√

2π2d3

NpωmGmϵ
2

) 1
3

. (25)

By way of comparison, using the parameters in Ta-
ble 2 and setting ϵ = k0, modulation decreases the
entanglement time significantly to τe ≈ 2 s, which cor-
responds to an improvement by 6 orders of magni-
tude. In general, the modulated entanglement rate is

enhanced by a factor of 1
12 (ϵ/k3

0)2/3(πNpγg)
−2/3 com-

pared to the constant coupling case. This means it
is particularly advantageous in precisely the experi-
mental regimes which are most realistic: weak gravi-
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Example parameters
Parameter Symbol Value

Separation d 2 × 10−4m
Oscillator density ϱ 2 g cm−3

Oscillator masses m 10 ng
Oscillator radius R ∼ 11µm
Mechanical frequency ωm 2π × 103 rad s−1

Photon number Np 107

Optomechanical mode coupling k0 1
Environmental temperature T 1 mK

Table 2: Hypothetical experimental parameters: ϱ and ωm are similar to those achieved in [15], where a low-noise optomechanical
system based with a silica mass in the mg range was implemented. R is calculated assuming spherical mechanical elements.
For these values γg ≈ 2 × 10−18.

tational interaction, small light-matter coupling and
low photon numbers.
In practice, the restriction to fractional frequencies

does not significantly decrease the direct field-field
coupling over the resonant case. Similar calculations
for, e.g. Ω = Ω∞,+ = ωm, lead to,

D(tq) ≈

(
6k2

0 − 3
4ϵ (4k0 cosϕ1 + ϵ cos 2ϕ1)

+ ϵ2

2

)
γgωmtq − 1

12γgϵ
2ω3

mt
3
q . (26)

where we have taken tq = 2qπ/ωm. For ωmtq ≫ 1,
the last term in equation (26) dominates and so com-
pared to (24) at a given target time (choosing the
driving frequency as Ωn=q,±) we see that the modu-

lus differs by only a factor π2/3 ∼ 3. On the other
hand, the larger KNµ

(2qπ/ωm) values resulting from
the resonant coupling impose stricter cooling require-
ments for the mechanical modes.

5 Entanglement Verification and Noise
The results of the previous sections correspond to the
best case entanglement rate between the two cavity
fields. In reality, a combination of external deco-
herence along with other intra-system couplings will
mean that the final field-field state will not be pure.
In general, quantification (and measurement) of en-
tanglement in mixed states is typically challenging,
though there are notable exceptions – as an example,
in Appendix D we analyse the logarithmic negativity
for initial cavity states of the form |ψ⟩ = 1√

2 (|0⟩+|N⟩),
recovering the qualitative features outlined in the fol-
lowing sections. Instead it is often more practical to
resort to so-called entanglement witnesses, Ŵ, which
verify with certainty the presence of entanglement if
W = TrŴρ < 0, but can make no statement other-
wise [36].

From a technical perspective, this means one must
be careful when using such operators to infer an en-
tanglement rate. In particular, TrŴρ(t2) < TrŴρ(t1)
does not guarantee that entanglement has increased
in time. On the other hand, achieving W(t) < 0 to
begin with may impose a minimum constraint on the
allowable noise in the system, and this can have a
meaningful time dependent operational interpretation.
We will quantify this in the sections below.

In practice, however, one will also need a sufficiently
high signal-to-noise ratio3 in the measurement of W
on the state for entanglement to be observable. The
particular threshold needed (i.e. W < −thresh.) will
depend heavily on the experimental apparatus used.
As such, identifying this cut-off a priori is difficult,
but we can maximise the chances of verification by
performing the measurement when the witness func-
tion reaches its minimum value below zero.

In the following section we identify a witness that
not only detects entanglement in our system, but also
recovers approximately the same timescale (25) in the
limit that all field-mechanics interactions vanish (at
the chosen measurement time). More generally, this
scaling is preserved as long as the noise constraints
(which we will derive explicitly) are satisfied to within
roughly an order of magnitude. This holds both in
the case of extraneous intra-system couplings and for
thermal decoherence.

5.1 Entanglement Witness
In order to identify an appropriate entanglement wit-
ness it is useful to anticipate the ideal joint state of the
field modes. Intuitively, when the gravitational cou-
pling strength is large, then the mirrors effectively be-
come rigidly connected and so the system is analogous

3Here we are referring to noise on the measurement of the
optical state after leaving the system (e.g. from the detector),
and not on decoherence effecting the state during the build up
of entanglement. The latter will be addressed below.
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to a single cavity containing two modes [13]4. For cer-
tain parameter choices, it is known that these modes
can become entangled, forming the two-mode cat
state, |ψ⟩cav = (1+i) |α1⟩1 |α2⟩2+(1−i) |−α1⟩1 |−α2⟩2
[35]. However, many of the simplest continuous vari-
able entanglement criteria fail to witness entangle-
ment in these types of states. One of the first exam-
ples that does was provided by Shchuckin and Vogel
[37], and can be represented by the following determi-
nant,

W1(t) =

∣∣∣∣∣∣∣
1 ⟨a†

2⟩ ⟨a1a
†
2⟩

⟨a2⟩ ⟨a†
2a2⟩ ⟨a1a

†
2a2⟩

⟨a†
1a2⟩ ⟨a†

1a
†
2a2⟩ ⟨a†

1a1a
†
2a2⟩

∣∣∣∣∣∣∣ . (27)

This can be measured, in principle, using homodyne
correlation measurements [38].
In Appendix C we provide explicit evaluations of

the time dependent terms appearing in (27) assuming
an initial state of the form ρ(0) = |α1⟩⟨α1|⊗|α2⟩⟨α2|⊗
ρth+ ⊗ρth− , where |α⟩ is a coherent state and ρth

µ are ther-
mal states of the mechanical modes. For simplicity, we
will continue to work almost exclusively in the sym-
metric cavity approximation (though the extension to
arbitrary parameters will turn out to be straightfor-
ward). Under these conditions cos(a) = sin(a) = 1√

2
and b = 1. The minus and plus mode (see Eq.(5))
then reduce to the simpler stretch and center of mass
mode, respectively,

x̂s ≡ x̂2 − x̂1√
2

= x̂−

(
cos(a) = sin(a) = 1√

2
, b = 1

)
,

x̂c ≡ x̂2 + x̂1√
2

= x̂+

(
cos(a) = sin(a) = 1√

2
, b = 1

)
,

(28)
along with the associated number operators N̂s =
−(N̂1 + N̂2) and N̂c = N̂1 − N̂2. Similarly, D1,c = 0,
which implies θc = Ac = Cc = 0, and so adopting the
same labelling convention, equations (14) simplify to,

θ = θs,

Aj = −As ≡ A,

Bj = Bc +Bs ≡ B,

D = 2(Bs −Bc).

(29)

In general, the resulting expectation values are func-
tions of the absolute values, |α1| and |α2| of the coher-
ent state parameters for the two cavity modes, and not
the relative phase. In the symmetric cavity scenario
a natural choice is to set these equal, α1 = α2 = α,
with |α|2 = Np. Even then, the full witness expres-
sion is still difficult to treat analytically, however, nu-
merical results suggest that the restriction to B = 0
at the measurement time provides a somewhat opti-
mal regime. While this term has no effect on the
entanglement, similar terms are known to influence

4Note that this corresponds ωs → 0.

the sensitivity of optomechanical sensors under cer-
tain POVMs (e.g. homodyne measurements, [21]).
For ϵ = 0, it is usually sufficient to consider only in-
teger values of k0, but more care must be taken in
the modulated scenario. In these cases, the witness is
given by the simpler expression (163),

W1(t) = N3
p

(
1 − e−4κc−4Np(1−cosD)

− 2e−κc−κs−2Np(1−cosD)

×
(

1 − e−2κc−2Np(1−cosD) cosD
))

,

(30)

which holds both when κµ describes the effects of
the traced out thermal mechanical modes and, as
we will see later, decoherence from an environment.
It is therefore convenient to write κµ = κth

µ + κdec
µ ,

where in the present section we will focus on the
first term, given by κth

µ = |KN̂µ
|2(n̄µ + 1/2), where

n̄µ = 1/(eℏωs/kBTµ − 1) is the occupation number for
temperature Tµ (see (146)).

In general, the optimal measurement time will lie
somewhere between what would be the individual
mode decouplings. For equal temperatures, this turns
out to be just the mean, tq = qnπ(1/ωc+1/ωs), where
to preserve symmetry we will from now on choose the
modulation frequency as Ωn = 1

2 (1 − 1
n )(ωc +ωs). To

lowest order in γg, and for large n, both κth
µ (tq) are

equal to (151),

κth(tq) ≈ 1
2(πqnγg)

2
(

4k2
0 + n2ϵ2

)
(n̄+ 1/2). (31)

Neglecting the decoherence contribution, we can then
set κµ = κ in the witness (30), which further simplifies
to

W1(tq) = 4N3
p e

−4y
(
e2y sinh2(y) − z2

)
, (32)

where y = 2Npz
2 + κ(tq) and z = sin(D(tq)/2).

We can now apply the requirement that W1(tq) < 0
to give an upper bound on the thermal noise term.
This leads to,

κ(tq) <
1
2 ln (1 ± 2z) − 2Npz

2. (33)

If an experiment is sensitive to small amounts of en-
tanglement, such that very early measurements are
viable (D(tq) ≪ 1/Np) then we can expand the right
hand side to first order in z,

κ(tq) ≲ |z| ≈ 1
2 |D(tq)|. (34)

This gives the highest acceptable noise for which en-
tanglement can be verified. We find a similar con-
dition for the logarithmic negativity when the initial
cavity fields are in superpositions of Fock states (see
(175)), suggesting the behaviour of the witness is rea-
sonably faithful for small amounts of entanglement.
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In particular, for κ = 0, entanglement can be immedi-
ately detected for any non-zero D(tq).
On its own, however, this is not especially useful,

at least in the case of purely thermal noise. This is
because κth(tq) and D(tq) have different time depen-
dencies, and indeed the former tends to grow faster
than the field-field coupling. As a result, (34) only
provides an upper bound on when entanglement can
be detected. To see this explicitly, it is convenient
to separately consider the constant and modulated-
dominant regimes. For later, we will also find it useful
to regard κ in general as a function of z ≈ D(tq)/2,
then using (31) and (24) we have

κth(tq) ≈


2n̄+1
36k2

0
z2, ϵ = 0

1
2 (n̄+ 1

2 )
(πqγg

ϵ

) 2
3 z

4
3 , ϵ ≫ k0

n , n ≫ 1
(35)

to lowest order in γg. Applying the inequality (34),
and inverting for tq we find that in both cases (up to
a small numerical difference), tq ≲ 12/(ωmγg(2n̄+1)).
Thus, thermal noise limits how long an experiment
can be performed. In fact, a finite measurement time
is a generic feature of our chosen witness – even for
κ = 0, the next order expansion of (33) leads to
|Dmax(tq)| ∼ 2|z| ≲ 2

1+2Np
, despite the fact that the

maximum entanglement has not yet been reached (see
figure 2).

A more useful indicator for the ideal measurement
time is to instead look for the point of maximum wit-
ness violation. This can seen in figure 3, where W1(tq)
reaches a minimum of −Np

4 in the limit κth → 0. We
can then use this as a reference point to determine the
maximum thermal noise for which the witness only
drops to some fraction of this value.

5.2 Optimal Measurement Time

To proceed, it will be convenient to take κ = κ(z),
then the minimum of (32) is achieved for zmin satisfy-
ing,

4z2
min + e2ymin = 1 + 2zmin

4Npzmin + κ′|zmin

. (36)

If κ varies slowly with respect to z (i.e. κ′(z) ≪ 4Npz)
we can ignore the noise gradient term in the denomi-
nator. Substituting for ymin we then have,

4Npz
2
min = ln

(
1 + 1

2Np
− 4z2

min

)
− 2κ(zmin). (37)

Now, for realistic values of γg, zmin must be small on
accessible timescales. This suggests Np ≫ 1 (which
we will assume from now on), and so expanding the
logarithm to first order, we have after a simple rear-

rangement5,

D(tq) ≈ 2zmin ≈
√

1 − 4Npκ√
2Np

. (38)

Thus, in the κ → 0 limit, the witness will take its
minimal value when D(tq) ≈ 1/

√
2Np. Substituting

into (32), we have,

W1,min(tq)|κ→0 ≈ −
Np
4 , (39)

as claimed.
At high temperatures, the slowly varying condition

is typically not satisfied, and so the derivative term in
(37) must be included. Following from (35), we can

write κth = Γth
0 z

2 and κth = Γz4/3, for the constant
and modulated optomechanical coupling regimes sep-
arately. The minimum conditions in the first case are
easily found by noting that (36) is equivalent to (37)

with the substitutions Np → Np + Γth
0 /2 and κ → 0.

We then find,

D(tq) ≈ 1
√

2(Np + Γth
0 /2)

, (40)

which implies the measurement time should satisfy,

tq ≈ 1
6
√

2k2
0γgωm(Np + Γth

0 /2)
, (41)

(where we have again used Np ≫ 1). Thus, just
as with Dmax, the optimal timescale shifts earlier at
higher temperatures. This is, of course, not an advan-
tage because the added noise leads to an increase in
the minimum value of the witness (see figure 3). At
the first optimal measurement time, this is given by,

W1,min(t1) ≈ −
N3
p

(2Np + Γth
0 )2 . (42)

In effect, it prevents the experiment from running long
enough to build up a highly entangled state. We
can characterise an acceptable level of noise by de-
manding that the magnitude of the witness decreases
by no more than some factor, a, of the idealised
(κth = 0) value. This amounts to solving W1,min =
aW1,min|κ→0, for which we find Γth

0 ≲ 2
(

1√
a

− 1
)
Np.

Therefore, to keep the witness below, for example, half
its absolute minimum (for a given set of experimen-
tal parameters), the mechanical modes must both be
cooled to,

n̄max,ϵ=0 < 36k2
0

(√
2 − 1

)
Np − 1/2. (43)

5Alternatively (37) can be formally solved in terms of the
Lambert-W function. An asymptotic expansion in the large Np

limit recovers the same result without explicitly assuming small
z.
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AsNp will typically be very large, this should not pose
a significant obstacle.
For modulated optomechanical couplings, the anal-

ysis proceeds along similar lines though it is conve-
nient to first make a suitable expansion of (36) (see
appendix C for details). In this case we find (to first
order in 1/Np),

zmin(t1) ≈ 1
2
√

2Np
(1 − v)3/2

, and

t1 ≈

(
2
√

2π2

Npω
3
mϵ

2γg

) 1
3 √

1 − v,

(44)

where v = 5
18

n̄+ 1
2

N
1/3
p

(πγg

ϵ

) 2
3 . It is immediately clear that

for all but very large n̄, the minimal witness time is
very close to that for κ = 0. Indeed, substituting into
(32), and choosing a = 1/2, eventually leads to the
bound,

n̄max ≲ 0.66
(

ϵ

πγg

) 2
3

N1/3
p − 1

2 . (45)

Thus, for realistic experimental parameters (where
γg ≪ 1) modulated couplings significantly improve
tolerance to thermal noise. Indeed, for the values in
table 2 and ϵ = k0, n̄ ≲ 4 × 1013, which corresponds
to a mode temperature of T ≤ 2 × 106 K.

5.2.1 Thermal Dependence of the Measurement Win-
dow

The constraints above are valid when the measure-
ments are localised to within a very short window
around tq (which we can expect is less than the de-
coupling time difference, δt ∼ 2γgtq). It is impor-
tant, however, to know the extent of the usable mea-
surement window, both because such processes are
not instantaneous and because reducing the signal
to noise ratio will rely on obtaining long integration
times. The easiest way to estimate this is via the con-
dition (33), along with expressions for D(tq ± δt) and

κth(tq ± δt).
This approach will only be viable provided B(t1 ±

δt) ≈ 0, otherwise the full witness expression must be
used. In general, however, the window will be small
on the timescale of the mean mechanical period τ̄m =
π(1/ωc + 1/ωs). Expanding in terms of δt = ζτ̄m and
assuming γg≪ζ ≪ 1, it can be shown that,

B(tq + ζτ̄m) ≈ B(tq) + 4
3k

2
0π

3ζ3, (46)

(where additional ϵ terms only enter at order γ2
gζ

2).
Similarly we can find,

κth(tq + ζτ̄m) ≈ κth(tq) + 2k2
0π

2(n̄+ 1/2)ζ2, (47)

and,

D(tq + ζτ̄m) ≈ D(tq) − 4qk0ϵ(nπ)2γgζ . (48)

The first of these expressions tells us that even at zero
temperature, B will be much smaller than κth, and so
we can reasonably expect (30) to hold. We also note

that for κth the variation in ζ does not depend on γg,
and so thermal noise grows much faster than the cou-
pling D. This means the measurement window will
be much smaller than τ̄m (as D(tq) ∼ O[γg]), and we
therefore take D to be effectively constant over this
timescale. Moreover, when n̄ ≪ n̄max, we can also
ignore the first term in (47) and so around the decou-

pling time, κth is independent of D. This immediately
allows us to determine both the conditions and size of
the maximum measurement window: from (33), the

maximum κth for which the witness is exactly zero
occurs around tq satisfying,

D(tq) = 2 sin−1

(
−1

4 ± 1
4

√
1 + 2

Np

)
, (49)

where for small D, we take the positive solution, and
so,

D(tq) ≈ 1
2Np

, (50)

with a corresponding κth
max(tq + ζτ̄m) ≈ 1

8Np
. Sub-

stituting in (47) when n̄ ≪ n̄max, we find that the
maximal size of the measurement window is6,

δt ≈ 1

2ωmk0

√
Np(n̄+ 1

2 )
. (51)

At zero temperature, this equates to around ±36ns
for the system outlined in table 2, which is approach-
ing the bandwidth limits of state of the art detectors.
We note that in this case the window size is dominated
by the constant component of the optomechanical cou-
pling. If one can instead engineer k0 = 0, ϵ > 0, then
the next nonzero contribution to κth is 4th order in ζ,

κth
|k0=0

(tq+ζτ̄m) ≈ κth
|k0=0

(tq)+2ϵ2π4(n̄+1/2)ζ4, (52)

and so the maximum δt is instead given by,

δt|k0=0
≈ 1
ωm(Np(n̄+ 1

2 )ϵ2)1/4 . (53)

By comparison, the zero temperature window is in-
creased to ±3.4µs, while making no change to the
measurement time.

More generally, we can estimate the measurement
window at an arbitrary decoupling time by evaluating
(33) using (47) and D(tq). In the physically relevant
regime, it is enough to expand (33) to second order in
D(tq). We then have,

δt ≈

√
D(tq)(1 −NpD(tq))
k2

0ω
2
m(n̄+ 1/2)

, (54)

6Thus within the window, B(t) ≪ D(t) ∼ 1/Np, and so
from (149) we are justified in setting B(t) = 0 in the analysis
above.
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where again we have taken Np ≫ 1. At the witness

minimum, we typically have D(tq) ∼ 1/
√

2Np, and
so the window at this time is still around 91% of its
maximum value. Surprisingly, the estimates (51) and
(54) appear to work well even at temperatures where
the analysis breaks down, see figure 3.

5.2.2 Frequency mismatch

The results of the previous sections are reasonably
tolerant to most sources of asymmetry. However, the
most obvious exception is when there are mismatches
in the mechanical frequencies. This is because the
separation between mode periods grows and so it be-
comes much harder to find a time when both κth

µ are
small.
As the analysis in this case is significantly more

complicated, we estimate the dependence only in the
unmodulated scenario. Using the general frequencies
ωµ (7), we insert the Bµ coefficients from (21) into
(14) and expand D(t) to lowest order in the (sum of
the) relative frequency shifts in ω̃µ, i.e.

∑
j

2γ
mjωm,j

.

Assuming ωm,1 ≥ ωm,2 (wlog), we find after some
work,

D(t) ≈
4Gk1k2

√
m1m2

d3√
ωm,1ωm,2

(55)

×

t+
ω

2
m,2
ωm,1

sin(ωm,1t) − ω
2
m,1
ωm,2

sin(ωm,2t)

ω2
m,1 − ω2

m,2

 ,

where kj = x0,jg0ḡj

ℏωm,j
, with g(t) = g0, are the original

coupling constants for each cavity. In deriving the

above it is useful to adopt k+ = (ωm,1
ω+

)3/2k1/(
√

2ḡ1)
and k− = (ωm,2

ω+
)3/2k2/(

√
2ḡ2).

We now assume a small frequency mismatch,
ωm,1 = (1 + ξf )ωm,2, where ξf is a positive constant.
Around a measurement time tq = πq(1/ω+ + 1/ω−),
we have,

D(tq + ζτ̄m) = D(tq)(1 − ξf )
(

1 − 2π2ζ2

3

)
, (56)

where D(tq) is as given in (22) (for ωm,2 = ωm). Pro-
vided ξf ≪ 1, we again see that D(t) varies slowly
around tq. A similar analysis can be performed for

κth
µ terms, making use of (17). For ξf much larger

than the relative frequency shifts, we find

κth
+ (tq + ζτ̄m) ≈ k2

1π
2

2

(
n̄+ + 1

2

)
× (q2ξ2

f + 4qζξf + 4ζ2),

κth
− (tq + ζτ̄m) ≈ k2

2π
2

2

(
n̄− + 1

2

)
× (q2ξ2

f − 4qζξf + 4ζ2),

(57)

where again we are considering only the n̄µ ≪ n̄max
limit so that κth

µ (tq) can be neglected in comparison
to D(tq). Note that the expressions above do not
depend on the gravitational field, which could have
already anticipated from (47). Thus τ̄m can effectively
be taken as the mean of the bare mechanical periods,
which makes the calculation significantly easier. For
the sake of simplicity, we assume kj = k0, n̄µ = n̄ and

ζ ∼ ξf then in the long time limit (large q), κth
+ ≈ κth

−
is dominated by the ξf term. Using the analysis of
the previous section, we immediately find,

ξf ≲
1

2πqk0

√
Np(n̄+ 1

2 )
. (58)

Thus we see the trade-off between controlling thermal
noise and the matching of mechanical frequencies –
even for perfectly localised measurement times, a non-
zero ∆ωm can severely limit the upper bound on n̄.
Note, the difficulties highlighted in the previous two

sections are not inherent to optomechanical systems
alone. Recall that the noise term κth(t) is directly
proportional to |KN̂µ

(t)|2, which itself is related to

the total displacement in phase space (as can be seen
from (13)). Thus the measurement window acts as
a proxy for the level of control needed to return the
mechanical degrees of freedom to close to their initial
state.

5.3 Thermal Decoherence
The relative insensitivity to the initial mechanical
state arises because KN̂s

(t1) can still be very close to
zero even at the center of mass mode decoupling time
(or vice-versa). A more significant experimental chal-
lenge comes from external (open-system) noise pro-
cesses, which in general cannot be avoided by choice
of the measurement time. These can be broadly split
into those acting directly on either the optical or me-
chanical degrees of freedom7. Optical losses, for ex-
ample, can be expected to reduce the visibility of
the signal [40], while mechanical decoherence will pre-
vent the initial build up of entanglement between the
masses.

The latter in particular is well known for limit-
ing the generation of macroscopic (spatial) superpo-
sitions. In a typical analysis, one modifies the usual
von Neumann evolution equation by the inclusion of
additional superoperators describing the effects of the
environment (along with a corresponding renormali-
sation of the system Hamiltonian). If the tempera-
ture of the environment is assumed to be high (with
an ohmic spectral density) then it is usually suffi-
cient to consider only the decoherence term, L[ρ] =
− Υ

ℏ2 [x̂, [x̂, ρ(t)]]. In this limit the coefficient is time

7Though for strong optomechanical couplings, there can be
an interplay between these [39].
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Figure 3: The (rescaled) witness as a function of discrete tq times for constant optomechanical coupling (n = 1), at both
n̄ = 0 (a) and the predicted n̄max given by (43) (b). Here we choose the more optimistic parameters, ωm = 2π × 102Hz and
m = 2.4 × 10−8kg, with Np = 106, leading to γg = 5 × 10−13. Between any two tq’s, the witness can only verify entanglement
within a small measurement window |t− tq| ≲ δt (see insets). Numerical results agrees well with the theoretical value (54),
even beyond its apparent regime of validity. However, at high temperatures, the tq with maximal measurement window no
longer follows (50). Note, there exists a maximum verification time (see (70)), after which the witness is effectively always
positive, even though entanglement may still be expected.

independent, and given explicitly by Υ = 2mkBTγR
where γR is the relaxation rate and T is the temper-
ature of the environment [41]. The extension to mul-
tiple mechanical modes is straightforward as long as
the intra-system couplings are weak. In this case a
good approximation to the dynamics can be found by
adding additional L[ρ] terms for each system degree
of freedom [42]. Neglecting optical noise, our optome-
chanical model can then be described by the following
equation,

dρ(t)
dt

= 1
iℏ

[Ĥren, ρ(t)] + L1[ρ] + L2[ρ], (59)

where Ĥren is the renormalised system Hamiltonian
(which for simplicity we will set equal to H, as this
typically amounts to a shift in the mechanical frequen-
cies), and γR = ωm/Q is the relaxation rate for an
optomechanical cavity with quality factor Q.

In order to evaluate the witness (27), we only need
to solve for the reduced total optical state. For the
single cavity (time-independent) setting, a convenient
approach has been presented in [43] where the ana-
logue of the master equation (59) is first projected
out in terms of the operator ρD(t) = ⟨p, q|ρ(t)|m,n⟩,
where |m,n⟩ were Fock states of two arms of an inter-
ferometer. This can be solved exactly when making
use of the partial trace over the mechanical modes,
leading directly to the reduced field-field density ma-
trix ρcavp,q,m,n(t) = TrM [ρD(t)].
The extension to two cavities is largely straightfor-

ward once we move to the decoupled mode picture,
in particular where we note that for identical cavi-
ties, L1[ρ] + L2[ρ] = Lc[ρ] + Ls[ρ]. For completeness
we provide full details in appendix B, where an ex-
plicit solution is given by (134). This can be com-

pared directly to the noiseless cavity reduced state
(170), where we find that the modifications can be
completely described by formally replacing the initial
thermal occupation numbers, n̄µ, at time t, by

n̄µ(t) = n̄µ(0) +
κdec
µ (t)

|KN̂µ
|2
, (60)

where

κdec
µ (t) = 8Υ

ℏ2 x
2
0,µ

∫ t

0
ℜ[e−iωµ(s−t)KN̂µ

(s− t)]2ds.

(61)
As these terms always appear multiplied by an addi-
tional |KN̂µ

|2 factor, (such that the thermal decay co-

efficient κµ → κth
µ + κdec

µ ) any potential divergence in
the second term is of no concern. Hence, while KN̂µ

(t)
can in principle be zero, κdec

µ (t) is not in general. We
also stress that n̄µ(t) should not be interpreted as the
current temperatures of the mechanical modes, but
rather only as an effective model for the decoherence
induced loss of purity of the cavity state (which occurs
even for perfect decoupling).

At zeroth order in γg, and for n̄ ≪ n̄max we find that

for identical cavities, κdec
µ (tq) = κdec(tq) ≫ κth(tq),

where

κdec(tq) = 4Υ
ℏ2 x

2
0,m

qnπ

ωm

(
3k2

0 + ϵ2
n2(1 + (2n− 1)2)

2(2n− 1)2

)

≈
Υx2

0,m

ℏ2ωmγg
D(tq),

(62)
Thus, from (34) one immediately sees that entangle-
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ment can only be witnessed when,

γRkBT ≲
ℏGm
2d3 , (63)

which is independent of both the local dynamics and
Np. A similar behaviour is found for initial cavity
states of the form |ψ⟩ = 1√

2 (|0⟩ + |N⟩), where |0(N)⟩
are Fock states. In this case entanglement can be cal-
culated directly using the logarithmic negativity (see
Appendix D), which shows this result is not unique to
our chosen witness. In fact an identical expression has
also been found in the linearised regime for Gaussian
initial states [28] (in the constant coupling scenario),
where it was conjectured that the bound is a generic
consequence of the master equation (59). Thus the
‘size’ of the superposition created does not matter as
both the entanglement and decoherence rates are en-
hanced in the same way. Note, we have not considered
any decoherence on the optical modes. That is, “shift-
ing” the entanglement to an apparently protected de-
gree of freedom does not help, as the mechanism used
to transfer the correlations also provides a channel for
the decoherence to act.

In practice, however, other noise timescales will
mean it is still highly desirable to reduce the entangle-
ment/verification time. Thus a large photon number,
or more generally photon number variance, is advan-
tageous. On the other hand, the cavities themselves,
along with their relative positioning, limits the ex-
tent to which the mechanical elements can be driven.
These restriction will be discussed in section 7.

The analysis for the optimal witness time is straight-
forward, and we leave the details for Appendix C.1.
Writing κdec(z(tq)) = Γdecz(tq), where from (62)

Γdec = 2Υx2
0,m

ℏ2
ωmγg

, the minimum is found to occur at,

Dmin(tq) ≈ 1√
2Np

(
1 − 3

2
√

2
Γdec

)
, Γdec ≪ 1.

(64)
Similarly, the condition for the corresponding witness
value to be at least a times the theoretical minimum
(κ = 0) is given by,

Γdec ≤
√

2
5
(
2 −

√
5a− 1 + . . .

)
. (65)

Choosing a = 1/2 then requires Γdec ≲ 0.219, and
so γRkBT ≲ 0.11ℏGm/d3. As before, increasing the
noise shifts the minimum earlier in time until above
Γdec = 1 when no entanglement can be verified.

For the cavities listed in Table 2 satisfying the
bound (63) requires a quality factor Q ∼ 1023. This
is some 15 orders of magnitude higher than what has
currently been achieved (see for example [15]), and
poses a severe obstacle to witnessing gravitational en-
tanglement.

5.3.1 Measurement Window

Given the close connection between κdec(tq) and

D(tq), one may also suspect that κdec varies slowly
around the measurement time tq. Indeed, we find

κdec
µ (tq + ζτ̄m) ≈ κdec(tq) (66)

+
8Υx2

0,µ

ℏ2
4(n− 1)2(qπ)3n4γ2

gϵ
2ζ

(2n− 1)2ωm
,

where the dependence on the constant (i.e. k0) com-
ponent enters at order γ2

gζ
2. This means the measure-

ment window is dominated by the initial temperature
of the state, even if n̄ is very small. We can then
substitute

κ(tq + ζτ̄m) ≈ ΓdecD(tq) + 2k2
0π

2(n̄+ 1/2)ζ2, (67)

into (33), where the second term arises from thermal

contribution (47), and we have assumed κth(tq) is
small (i.e. n̄ ≪ n̄max). Expanding to second order
leads to,

δt ≈

√
D(tq)(1 −NpD(tq) − 2Γdec)

k2
0ω

2
m(n̄+ 1/2)

, (68)

which generalises (54).

6 The Casimir effect and Stray Charges
In order to maximise the gravitational interaction, the
mean separation between mechanical elements should
be kept as small as possible. This gives the best
chance of satisfying (63). On the other hand, at small
distance scales the Casimir force [44] becomes signif-
icant and can readily dominate over gravity. A di-
rect comparison can be made via the dimensionless
coupling parameter γC := 1

2∂dFc/mω
2
m, which should

be small compared to γg. In general, the Casimir
interaction will depend strongly on both the geome-
try and material properties of the mechanical compo-
nents. However when the masses are assumed to be
spheres, a straightforward estimate can be made in
the zero temperature regime, provided the separation
is much larger than the radii, d ≫ R. Using equation
(21) of [45], one finds that,

γC = 161ℏcR6

πmω2
md

9 . (69)

The requirement that γg ≪ γC immediately implies

m ≫
√

161
π

(
R
d

)3
mp, where mp =

√
ℏc/G ≈ 2.176 ×

10−8kg is the Planck mass. This suggests that the
masses in general should be (relatively) large, oth-
erwise the separation must increase to compensate.
Indeed, for the parameters in Table 2, this leads to
γC ∼ 1 × 10−17 and γg ∼ 2 × 10−18, and so Casimir
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mediated entanglement would dominate over gravita-
tional effects. On the other hand, a large mass will
also be harder to cool which can lead to shortening of
the available measurement window, c.f. (68).

To get around this problem, we can adopt an ap-
proach frequently used in small distance tests of grav-
ity. This involves introducing a suitable shielding ma-
terial, for example gold [46], between a driven source
and detector. If the material is rigid enough, then
the only oscillating signal is that from the gravita-
tional interaction, which can be identified over the
stronger (constant) Casimir/electrostatic background.
A similar screening effect has been proposed for entan-
glement generation [13, 47], where the transmission
of quantum correlations are effectively suppressed be-
cause any induced motion in the shield, including its
position variance, will be small. In this sense, we
can consider the shield as restricting non-gravitational
forces to only a classical channel.

It is worth pointing out that the witness (27) it-
self also provides some limited protection against false
positives. We note that our previous results can be
immediately generalised to γg → γtot, where γtot =
1
2
∑
i ∂dFi/mω

2
m now accounts for all x̂1x̂2 couplings

in the system. For example, electrostatic interactions
can be included via the Coulomb force, FQ, leading
directly to the parameter γQ = q1q2

4πε0md
3
ω

2
m

, where q1

and q2 are charges on the mechanical oscillators, and
ε0 is the vacuum permittivity. Thus, in the absence of
significant shielding, we can write γtot = γg+γC +γQ.
Now as D(tq) ∝ γtot, if one of the additional interac-
tion parameters is comparable to γg, then D(tq) will
double, leading to a higher than expected entangle-
ment rate. However, as can be seen from figure 3,
beyond a certain time the witness is positive. We can
estimate this from (33) along with the relevant κ(tq).
For example, in the case of constant optomechanical
coupling (35) (and neglecting thermal decoherence),
a second order expansion in z leads to the condition,

z(tq) ≲ ± 1
1 + 2Np + Γth

0
. (70)

This tells us that above |D(tq)| ∼ 1/(Np + Γth
0 /2) the

witness is positive, and so from (40), if γtot is larger
than expected by ∼

√
2 an experiment aiming to mea-

sure at the optimal time will fail to detect entangle-
ment, even if it is present. For the parameters in table
2 this would already happen for only 0.006 stray elec-
trons on each mass (ignoring the Casimir interaction).
Of course, as z(t) = sin (D(t)/2), there are further pe-
riodic solutions, for example when D(tq) is shifted to

D̃(tq) = 2π ±D(tq). However, in this case γtot would
need to be larger by a factor ∼ Np. It then also be-
comes much harder to satisfy κ < z (from (33)), as

κth(tq) grows quadratically in γtot. Thus, in principle,
it should be possible to engineer an experiment such
that if entanglement is witnessed, we can be reason-

ably confident it did not emerge from an undesired
interaction.

7 Limitations due to the mechanical
motion
In equation (4), we started from a Hamiltonian de-
scription of the light-matter coupling based on a per-
turbative treatment of the motion of the mechanics
[48, 49, 50]. This means our results can only be
seen as reliable if the motion of the mechanical el-
ements is small. For example, in Fabry–Pérot cavi-
ties the displacement of the end mirror must be much
smaller than the cavity length, while in levitated sys-
tems the relevant lengthscale is set by the wavelength
of the light modes [51]. Similarly, the gravitational
interaction between the mirrors was described by a
second order expansion of the Newtonian potential,
which requires their displacements to be much smaller
than their mean separation. In principle, higher or-
der treatments can be possible (see, for example [52]),
however the dynamics will always be limited by the
physical dimensions of the experiment.

As the gravitational interaction is weak, by far the
strongest effects on the mechanics comes from the
radiation pressure of the cavity fields. This shifts
not only the equilibrium position, but also increases
the oscillation amplitudes of the mechanical elements.
The average radiation pressure force, however, can
be cancelled using an appropriately tailored external
potential (which enters through the Cµ coefficients,
(16)). Thus the mean position can be set to zero (see
(177)), and all that remains are the quantum fluctu-
ations of the mechanical motion. The corresponding
variances for the center of mass mode and the stretch
mode are (see appendix E)

(∆x̂c)
2 = (∆x̂ωc

)2

+ 4x2
0,cℜ[e−iωstKN̂c

]2
(

∆(N̂2 − N̂1)
)2
,

(∆x̂s)
2 = (∆x̂ωs

)2 (71)

+ 4x2
0,sℜ[e−iωstKN̂s

]2
(

∆(N̂2 + N̂1)
)2
,

where

x̂ωµ
(t) = x0,µ

(
eiωµtb̂†

µ + e−iωµtb̂µ

)
, (72)

is the co-rotated position operator of the mode k and
for a thermal state (∆x̂ωµ

)2 = (2n̄µ + 1)x2
0,µ.

Imposing the condition ∆x̂c,∆x̂s ≪ d (and simi-
larly for the cavity length L) implies a limit on the
thermal occupation and the photon number variance.
The former has to be minimized in any case to de-
tect entanglement generation, however it is generally
advantageous to maximise the latter and so its restric-
tion needs to be accounted for when choosing system
parameters.
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For the modulated optomechanical coupling at fre- quency Ωn = (1 − 1/n)(ωc + ωs)/2, (ϕ1 = π/2), we
find at zeroth order in γg,

ℜ[e−iωstKN̂s
(t)]2 ≈

(
k0(2n− 1)(1 − cos(ωmt)) + ϵn(n− 1) sin(ωmt) − ϵn2 sin((1 − 1/n)ωmt)

)2

2(2n− 1)2 ≤ (2k0 + ϵn)2

2 .

(73)

This implies the conditions
√

2x0(2k0+ϵn)∆N̂1,2 ≪
d, or formulated as a constraint on the photon number
standard deviations: ∆N̂1,2 ≪ d/(

√
2x0(2k0 + ϵn)).

For the values in Table 2, we find ∆N̂1,2 ≪ 3 × 106.

Since for coherent states, ∆N̂2 = ⟨N̂⟩, this condition
is fulfilled.

8 Comparison to Semi-Classical Analy-
sis
For ancilla based entanglement tests, an alternative
approach for analysing the entanglement rate is to
work in a semi-classical approximation. This has the
advantage that the full, coupled, dynamics need not
be solved (in fact, an explicit Hamiltonian is not even
required). In the case of optomechanical systems, this
turns out to be remarkably accurate when only second
order perturbations are included.
We start by constructing a model for two massive

particles, where each exists in superpositions of ap-
proximately classical trajectories x1,n(t) and x2,n(t).
These paths are labelled by sets of orthonormal quan-
tum states, |un⟩ and |vn⟩, respectively, encoded on
two additional (external or internal) degrees of free-
dom. We can write the total state of each system
as,

|ψ1⟩ =
∑

an |un⟩ |Φ1,n(t)⟩ , and

|ψ2⟩ =
∑

bn |vn⟩ |Φ2,n(t)⟩ , (74)

where |Φi,n⟩ are the mechanical states corresponding
to the trajectories xi,n(t) = ⟨x̂i⟩|Φi,n(t)⟩. The gravi-
tational interaction between the two particles can be
modelled by assuming the potential energy difference
between each localised superposition gives rise to an
accumulating phase,

ϕnm(t) = Gm2

ℏ

∫ t

0

dt′

x2,m(t′) − x1,n(t′)
, (75)

and so after some time, the total state of the combined
system is,

|ψ(t)⟩ =
∑
n,m

anbme
iϕnm |un⟩ |vm⟩ |Φ1,n(t)⟩ |Φ2,m(t)⟩ .

(76)

Note that entanglement only enters at the second
order expansion (and above) of (75). We now make
the assumption that after a period tq the mechanical
and label states disentangle, such that the reduced
state of the total ancilla system is pure,

|ψred(tq)⟩ =
∑
n,m

anbme
iϕnm |un⟩ |vm⟩ . (77)

For low dimensional systems, the entanglement can
be calculated directly from the above. However, the
phases ϕnm can also be viewed as the eigenvalues of a
suitable operator with eigenstates |un⟩ |vm⟩. The for-
mer is dependent on the difference between classical
trajectories, which suggests a natural construction is
to first define two local operators,

Ô1 =
∑
n

un |un⟩⟨un| , and Ô2 =
∑
n

vn |vn⟩⟨vn| .

(78)
If the paths can be written as functions of the label
eigenvalues un, and vm, then the desired operator can
be found from ∆x(t, Ô1, Ô2), where ∆x(t, un, vm) :=
x2,m(t) − x1,n(t). Thus the time evolution of label
states (at the decoupling time) is of the form,

Û = Û1Û2e
iGm

2
ℏ

∫ t

0
∆x(t,Ô1,Ô2)−1

dt
′

. (79)

By expanding ∆x(t, Ô1, Ô2)−1 to lowest order such
that the time evolution operator can be expressed as

Û = ˆ̃U1
ˆ̃U2Û12 = ˆ̃U1

ˆ̃U2e
−iDÔ1Ô2 , (80)

we can make direct use of (19) and the results of Ap-
pendix A.

Example 1: Interferometry. One of the simplest
examples has been presented in [11], where each par-
ticle is instantaneously driven into a cat-state super-
position with separation ι, and then returned to its
original state after time t. We can define label states
|u±⟩ = |v±⟩ ≡ |± ι

2 ⟩, then the interaction operator is
given by,

U12(t) = e
−i 2Gm

2

ℏd
3 Ô1Ô2t, (81)

where Ô1 and Ô2 are constructed from (78). For a
two level system, the linear entropy is a function of

only ∆Ô1∆Ô2 = ι
2

4 and so from (109) the condition
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for maximal entanglement is [11],

Gm2

2ℏd

( ι
d

)2
t = π. (82)

A characteristic time scale for more general initial
states (at least to reach small levels of entanglement)
can easily be found from the analogue of (20) or, to
higher order (98).

Example 2: Optomechanical systems. In this case
the difference between classical trajectories is given by
∆x(t, un, vm) = d +

√
2xs(t, un, vm), which for ther-

mal mechanical states can be readily found from (see
Appendix E),

xs(t, un, vm) = 2x0,s

(
ℜ[e−iωstCs] − ℜ[e−iωstKN̂s

]

×
(

⟨N̂1⟩|un⟩ + ⟨N̂2⟩|vm⟩

))
. (83)

As this depends on the photon number of the ancilla
(cavity) state, we set Ôi = N̂i. A second order expan-
sion of ∆x(t, Ô1, Ô2)−1 then leads to the time evolu-
tion operator,

U = Ũ1Ũ2e
−i 16Gm

2

ℏd
3 x

2
0,s

∫ t

0
ℜ[e−iωst

′
KN̂s

(t′)]2
dt

′
N̂1N̂2 ,

(84)
where we can identify,

D(t) = 16Gm2

ℏd3 x2
0,s

∫ t

0
ℜ[e−iωst

′

KN̂s
(t′)]2dt′. (85)

For both modulated and unmodulated optomechani-
cal couplings we find that D(tq) evaluates to (22) and
(24) to first order in γg. The entanglement rate esti-
mates of section 4 then follow immediately. Note how-
ever, that at higher order in γg, deviations between
the fully quantum and semi-classical treatments begin
to appear.

9 Quantum Metrology
We can gain further intuition for the observed initial
state dependence by making use of techniques from
quantum metrology. In this framework, we consider
the two cavities as a sensor-source pair. Then a pre-
requisite for any experiment is that its sensitivity to
gravity is high enough to resolve quantum features in
the source. In our case, fluctuations of the photon
number.
Formalising this perspective is complicated by the

fact that there is no parameter corresponding to the
superposition size in the evolution operator (13), even
within the semiclassical model discussed in section 8.
This prevents a direct application of the usual meth-
ods from metrology. One solution is to first charac-
terise the measurement precision for the case that
|ψsource(0)⟩ is an eigenstate of one of the quantum de-
grees of freedom, i.e. N̂source. Then we can effectively
replace the operator by its eigenvalue, λN , in Û and

treat this as a parameter for estimation. The quan-
tum Fisher information (QFI) of the evolved state
then sets the ultimate lower limit on the variance of
an unbiased estimator λ̃N via the Cramér-Rao bound,

(∆λ̃N )2 ≥ 1
N QFI . (86)

where N is the number of measurements. We then ar-
gue that resolving quantum fluctuations in the source
photon number is only possible when ∆N̂source ≥
∆λ̂N .

The QFI is most easily evaluated when the cavity
field states are pure. While this will strictly never be
true, it is comparable to the approximations used in
section 4 where we assumed KN̂µ

(tq) ≈ 0. In this case

it takes the simple form,

QFI = 4(⟨ψ′
λN

|ψ′
λN

⟩ − |⟨ψ′
λN

|ψλN
⟩|2), (87)

where |ψλN
⟩ = Û |ψ(0)⟩ is the field state of the de-

tector at tq, and |ψ′
λN

⟩ is its derivative with respect

to the parameter λN . Denoting N̂2 = N̂detector and
N̂1 → λN in (13), a straightforward calculation leads
to,

QFI(tq) = 4D(tq)
2(∆N̂detector)

2, (88)

(neglecting KN̂µ
contributions). This is a di-

rect consequence of the approximation, Û12(tq) =
Û1Û2e

iD(tq)N̂1N̂2 . It then follows from (86), and the

condition ∆N̂source ≥ ∆λ̂N , that,

|D(tq)| ≥ 1
2∆N̂source∆N̂detector

. (89)

Thus we see that metrology predicts a timescale that
is broadly in line with that needed for entanglement
generation (20). This should come as no surprise as
the semiclassical model above tells us that entangle-
ment is only possible when (at least some of) the
phases ϕnm are different. On the other hand, to dis-
tinguish between them, we should be able to resolve
differences in the corresponding trajectories, which in
turn depend on fluctuations of the photon number.
To make this link more apparent, we can instead

derive bounds explicitly for the mirror position. The
result turns out to be essentially the same whether
we use expectation values or eigenvalues to identify a
suitable estimator. Note, while our focus has been on
entanglement generation, we could equally interpret
the sensitivity requirements as those needed to test
whether gravity respects the superposition principle8.
The latter can be traced back to proposals by Feyn-
man [53], but has also received renewed attention in
recent years [7, 8, 30].
To begin, we consider measuring the classical po-

sition xsource of a particle (of mass m) using a single

8in fact we can ignore the quantum back-action entirely
from the analysis.
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optomechanical system. In the rotating frame, the de-
tector Hamiltonian takes the form (8), (µ → detector)
where by analogy with (3), the displacement due to
the gravitational interaction is given by

Ddetector(t) =
γg

2x0,detector
(d− 2xsource). (90)

It has been shown in [21] and [54] that the QFI of
the local (pure) field state, with respect to the param-
eter x is given by

QFI = 4W 2
x1

(∆N̂detector)
2, (91)

where

Wx1
= −∂x1

FN̂2
− 2FN̂2B̂2,−

∂x1
FB̂2,+

, (92)

(for notational convenience we abbreviate source and
detector labels to 1 and 2 respectively). The F -
coefficients can be determined by substituting (90)
into formally identical equations to (16). Note, in our
case the position (as an estimation parameter) has a
time dependence, t, which is independent of the actual
measurement time, tq. Indeed, if xsource(t) ≡ ⟨x̂1(t)⟩,
then for a thermal state (see appendix 177)

xsource(t) = 2x0,1(ℜ[e−iωmtC1] + ℜ[e−iωmtKN̂1
])⟨N̂1⟩,

(93)
which can also be zero. Thus, it is convenient to
adopt the new parameter N1 ≡ ⟨N̂1⟩ and writeWx1

=
(∂N1/∂x1)WN1

. The calculation can be simplified fur-
ther if we ignore any displacement of the source due
to the detector (i.e. setting D1(t)) = 0), which means
C1(t) = 0. Then evaluating WN1

when both source
and detector systems are identical, we find to first or-
der in γg,

WN1
(tq) ≈ 4πnqγg

(
3k2

0 + ϵ2
n2(1 + (2n− 1)2)

2(2n− 1)2

)
≈ D(tq), (94)

which is not a function of the time t. Thus the Cramér-
Rao bound for an unbiased estimate of xsource(t) using
measurements at decoupling time tq = 2πnq/ωm is
given by,

(∆x̃source(t))2 ≳
4x2

0ℜ[e−iωmtKN̂source
(t)]2

4D2(tq)(∆N̂detector)
2 . (95)

We now argue that superpositions of the gravita-
tional field can only be resolved when the detector
precision, (95), is smaller than the variance of the po-
sition operator x̂source,

(∆x̂source(t))2 = 4x2
0ℜ[e−iωmtKN̂source

(t)]2(∆N̂source)2

+ (∆x̂ω(t))2,
(96)

where,

x̂ω(t) = x̂source(0) cosωmt+ 1
mωm

p̂source(0) sinωmt.

(97)
If we are interested in the entanglement between cav-
ity fields, then the important correlations are those
arising between the respective number operators. We
can therefore ignore the second term above, and the
condition ∆x̂source(t) ≥ ∆x̃source(t) immediately re-
covers (89).

10 Conclusions
The application of the LOCC framework to tests of
quantum gravity has gained significant traction over
the last few years. In particular, because direct access
to the state of the gravitational field – for example, by
probing the existence of gravitons – is almost certainly
unachievable. Instead, it is hoped that correlations
arising from the collective interactions of macroscopic-
scale quantised masses may provide indirect evidence
for the nature of gravity.

Such tests are exceptionally difficult, requiring
highly non-classical states or very long integration
times. This poses a challenge for traditional optome-
chanical implementations, where generating large cat-
states requires superpositions of very different photon
numbers. Instead one must typically resort to a com-
bination of low mechanical frequencies and high cou-
pling strengths.

In contrast we have shown that the entanglement
rate can be significantly increased if the optomechan-
ical coupling can instead be modulated close to reso-
nance 9. For k0 = ϵ, this advantage scales as roughly

1
12

(
ω

2
md

3

GmπNp

) 2
3
– i.e. the benefit is greatest precisely

in the most accessible parameter regime. This can be
traced back to the position response of the differential
mode, which to a good approximation governs the co-
efficient D(t) which controls the non-separability of
the cavity states (see first appearance in Eq.(13)),
and not the initial cavity state. The latter can of
course be leveraged for further improvements. For ex-
ample, (20) can also be readily applied to squeezed
coherent states [55], where for squeezing amplitude r
and coherent state parameter α, the photon number
and its variance are given by Np = |α|2 e2r + sinh2(r)
and (∆N̂j)

2 = |α|2e4r + 1
2 sinh2(2r), respectively (for

appropriately chosen phases) [21]. For squeezing of
around 10 dB [56], corresponding to r ∼ 1.73, the
requirement on D(τe) would be decreased by an addi-
tional factor of 30.
In the absence of noise, modulations would there-

fore suggest that entanglement timescales compara-

9In principle, it is also possible to use modulations of the
mechanical frequency or the interaction strength to enhance the
growth of entanglement. We leave this to future work.
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ble to proposals based on mechanical cat-states, (e.g.
[11]) may be realistic. However, even with these
improvements, significant obstacles remain. First,
the measurement window for witnessing entanglement
is extremely sensitive to the initial temperature of
the mechanical modes. Similar behaviour is well
known for the single photon interference visibility
width in a Michelson style optomechanical interfer-
ometer [26, 57], which scales roughly as

√
1/n̄. In

our case, the additional photon number dependence
in (51) is particularly problematic if entanglement is
to be achieved on short timescales. To some extent,
this can be alleviated through purely oscillatory cou-
plings (i.e. k0 = 0), which reduces the dependence to

∼ 1/(Npn̄)1/4. However, in practice this still means
that the system must be cooled far below the limits set
by (45), even for state of the art detector bandwidths.
Secondly, in a two cavity system, the relative dy-

namics must be matched to extremely high precision.
This guarantees that both mirrors simultaneously dis-
entangle from the optical modes (at least approx-
imately), maximising the measurable entanglement.
Provided both cavities are initialised at the same time,
the main determiner is whether the mechanical fre-
quencies are equal, see section 5.2.2. Even for instan-
taneous measurements, the agreement should still be

better than one part in 2πk0

√
Np(n̄+ 1

2 ), which is a

significant challenge.
The most serious issue, however, comes from en-

vironmental decoherence. For both modulated and
unmodulated couplings, we find that the relaxation
rate must be bounded by γR ≤ ℏ

2kBT
Gm

d
3 . This agrees

with results previously reported in other scenarios, for
example in two free oscillators [27], linearised optome-
chanics [28] and levitated nano systems [58], which
supports the expectation that this is inherently a prop-
erty of the noise model (59). That is, the constraint
is independent of both the local dynamics and initial
conditions – it cannot be improved upon with novel
quantum control. To put this in context, even using
the highest density materials (2.2 × 104kg/m3) and
milliKelvin temperatures, the relaxation time needs
to be longer than γ−1

R = Q/ωm ≈ 1014s. The require-
ment on the Q factor can be reduced with low fre-
quency mirrors, however cooling then becomes more
demanding.
There are two caveats here. In practice, equa-

tion (59) is likely to be too simplistic a description,
and there is evidence that, at least in some optome-
chanical systems, the environment turns out to be
non-Markovian [59]. This is likely to have a further
negative impact entanglement generation [60]. On
the other hand, there are also suggestions that the
steady state limit of the full quantum Brownian mo-
tion model is more protected against loss of coher-
ence [61]. Whether this holds in the non-linear regime
and for sufficiently short timescales – particularly in
macroscopic systems where the discounted terms will

typically be much smaller than those in (59) – remains
to be seen. Alternatively, one may also look to weaker
quantum correlations. However, in this case the moti-
vation is less clear, as one no longer has the guarantee
of monotonicity under LOCC (e.g. Discord [62]).
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sary and sufficient condition for nonzero quan-
tum discord”. Physical review letters 105,
190502 (2010).

[63] A.O. Caldeira and A.J. Leggett. “Quantum
tunnelling in a dissipative system”. Annals of
Physics 149, 374–456 (1983).

[64] B. L. Hu, J. P. Paz, and Y. Zhang. “Quan-
tum brownian motion in a general environment:
Exact master equation with nonlocal dissipation
and colored noise”. Phys. Rev. D 45, 2843–
2861 (1992).

[65] M. B. Plenio. “Logarithmic negativity: A full en-
tanglement monotone that is not convex”. Phys.
Rev. Lett. 95, 090503 (2005).

Accepted in Quantum 2023-10-15, click title to verify. Published under CC-BY 4.0. 20

https://dx.doi.org/10.1103/PhysRevLett.95.230502
https://dx.doi.org/10.1103/PhysRevA.72.043808
https://dx.doi.org/10.1103/PhysRevA.72.043808
https://dx.doi.org/10.1103/PhysRevA.98.052123
https://dx.doi.org/10.1103/PhysRevA.98.052123
https://dx.doi.org/10.1103/PhysRevD.102.106021
https://dx.doi.org/10.1103/RevModPhys.75.715
https://dx.doi.org/10.1103/RevModPhys.75.715
https://dx.doi.org/10.1088/1367-2630/12/11/113032
https://dx.doi.org/10.1088/1367-2630/12/11/113032
https://dx.doi.org/10.1088/0305-4470/38/12/013
https://dx.doi.org/10.1088/0305-4470/38/12/013
https://dx.doi.org/10.1103/PhysRev.73.360
https://dx.doi.org/10.1103/PhysRevB.84.075431
https://dx.doi.org/10.1103/PhysRevB.84.075431
https://dx.doi.org/10.1103/PhysRevLett.90.151101
https://dx.doi.org/10.1103/PhysRevA.102.062807
https://dx.doi.org/10.1103/PhysRevA.51.2537
https://dx.doi.org/10.1103/PhysRevA.83.013803
https://dx.doi.org/10.1103/PhysRevA.83.013803
https://dx.doi.org/10.1201/9781315118727
https://dx.doi.org/10.1088/1361-6633/ab6100
https://dx.doi.org/10.1088/1361-6633/ab6100
https://dx.doi.org/10.1063/1.5121397
https://dx.doi.org/10.1063/1.5121397
https://dx.doi.org/10.1103/PhysRevA.101.033834
https://dx.doi.org/10.1103/PhysRevA.101.033834
https://dx.doi.org/10.1038/306141a0
https://dx.doi.org/10.1038/306141a0
https://dx.doi.org/10.1364/OE.21.013572
https://dx.doi.org/10.1364/OE.21.013572
https://dx.doi.org/10.1103/PhysRevLett.97.250404
https://dx.doi.org/10.1103/PhysRevLett.97.250404
https://dx.doi.org/10.1088/1367-2630/abf3eb
https://dx.doi.org/10.1088/1367-2630/abf3eb
https://dx.doi.org/10.1038/ncomms8606
https://dx.doi.org/10.1038/ncomms8606
https://dx.doi.org/10.1103/PhysRevA.82.012333
https://dx.doi.org/10.1103/PhysRevA.82.012333
https://dx.doi.org/10.1088/2058-9565/ac1adf
https://dx.doi.org/10.1088/2058-9565/ac1adf
https://dx.doi.org/10.1103/PhysRevLett.105.190502
https://dx.doi.org/10.1103/PhysRevLett.105.190502
https://dx.doi.org/https://doi.org/10.1016/0003-4916(83)90202-6
https://dx.doi.org/https://doi.org/10.1016/0003-4916(83)90202-6
https://dx.doi.org/10.1103/PhysRevD.45.2843
https://dx.doi.org/10.1103/PhysRevD.45.2843
https://dx.doi.org/10.1103/PhysRevLett.95.090503
https://dx.doi.org/10.1103/PhysRevLett.95.090503


A Linear Entropy for restricted interaction
In order to estimate an upper limit to the entanglement rate, we will find it convenient to work with the
linear entropy, SL = 1 − tr[ρ2

1], where ρ1 = tr2ρ is the reduced state of a bipartite system (in our case, the
joint cavity state for the two field modes). A characteristic entanglement timescale can then be defined as the
time, τe, for SL to reach some fixed value, typically chosen based on the achievable signal to noise ratio of
the measurement. Here we will show that for pure separable states, ρ0 = ρ1 ⊗ ρ2, the linear entropy after the

evolution Û = Û1Û2e
iDÔ1Ô2 is given by,

SL = −
∞∑
k=1

(−1)kD2k

(2k)!

2k∑
s=0

(
2k
s

)
(−1)s⟨Ô2k−s

1 ⟩⟨Ôs1⟩
2k∑
r=0

(
2k
r

)
(−1)r⟨Ô2k−r

2 ⟩⟨Ôr2⟩, (98)

where Ôj (Ûj) are arbitrary Hermitian operators (unitaries) acting on the local systems, and the expectation
values are taken with respect to the initial states ρ1 and ρ2.

The first step is to write ρj = |ψj⟩⟨ψj |, then the purity of the reduced state of subsystem one is given by,

tr[ρ2
1] =

∑
r,s

|⟨ψ1, ψ2|Û†|wr⟩⟨ws|Û |ψ1, ψ2⟩|2, (99)

where {|wr⟩} is any complete basis of H2. We now expand |ψ1⟩ =
∑
p ap |up⟩ in terms of the eigenstates, |up⟩,

of the operator Ô1 (note the spectra can be continuous). For the form of Û above, the terms on the right hand
side can be written as,

⟨ws| Û |ψ1, ψ2⟩ =
∑
p

apÛ1 ⟨ws| Û2e
iDÔ1Ô2 |ψ2⟩ |up⟩ , (100)

and so the purity is given by,

tr[ρ2
1] =

∑
r,s

∣∣∣∣∣∑
p

|ap|
2⟨ψp|U

†
2 |wr⟩⟨ws|U2|ψp⟩

∣∣∣∣∣
2

, (101)

where we have defined |ψp⟩ = eiDupÔ2 |ψ2⟩ ∈ H2. The factors appearing after the summation are now all
c-numbers, and so by expanding the square, we can remove the sums over r and s to leave,

tr[ρ2
1] =

∑
p,q

|ap|
2|aq|

2|⟨ψp|ψq⟩|
2. (102)

Now, writing |ψ2⟩ =
∑
m bm |vm⟩ in terms of the eigenstates of Ô2, we have,

|⟨ψp|ψq⟩|
2 =

∑
m,n

|bm|2|bn|2eiD(vm−vn)(up−uq)

=
∑
m,n

|bm|2|bn|2 cos
(
D(vm − vn)(up − uq)

)
,

(103)

where simplification in the last line arises because imaginary parts of the exponential must cancel in order for
the right hand side to be real. Inserting into (102), the linear entropy can be expressed as,

SL = 1 −
∑

p,q,m,n

|ap|
2|aq|

2|bm|2|bn|2 cos
(
D(vm − vn)(up − uq)

)
. (104)

We now note that expectation values of powers of the operator Ô1 are given by,

⟨Ôr1⟩ψ1
=
∑
n

|an|2urn, (105)

and similarly for Ô2. Thus, expanding the cosine appearing in (104) as the power series cos(x) = 1 +
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∑
k=1

(−1)k
x

2k

(2k)! requires evaluating terms of the form,

yj =
∑
p,q

|ap|
2|aq|

2(up − uq)
j

=
∑
p,q

|ap|
2|aq|

2
j∑
s=0

(
j

s

)
uj−sp (−1)susq

=
j∑
s=0

(
j

s

)
(−1)s⟨Ôj−s1 ⟩⟨Ôs1⟩.

(106)

Similar terms can also be found for the eigenvalues vj , and so finally we have (98),

SL = −
∑
k=1

(−1)kD2k

(2k)!

2k∑
s=0

(
2k
s

)
(−1)s⟨Ô2k−s

1 ⟩⟨Ôs1⟩
2k∑
r=0

(
2k
r

)
(−1)r⟨Ô2k−r

2 ⟩⟨Ôr2⟩.

Ideally, the measurement scheme should be sensitive to small amounts of entanglement, then it is sufficient
to consider only the lowest order expansion in D,

SL ≈ 2D2(∆Ô1)2(∆Ô2)2. (107)

In this case, the time needed to generate verifiable entanglement can be found by solving the equation

|D(τe)| ≈ c

∆Ô1∆Ô2
, (108)

where the constant, c, depends on the limits imposed by detector noise (we address the separate question on
noise in the quantum state in section 5). Thus, for a fixed sensitivity, the entanglement rate is enhanced by
engineering initial states with large variances for the coupling operators. For some states, the scaling in (108)
effectively extends to all values of the linear entropy. Setting Ôj = N̂j , then one can readily confirm that for
Fock state superpositions of the form |ψ⟩j = 1√

2 (|0⟩j + |N⟩j), the linear entropy in (98) is given exactly by,

SL = 1
4 (1 − cosDN2)10. Therefore (20) is satisfied with c = 1

4 cos−1(1 − 4SL), for 0 ≤ SL ≤ 1
2 , and in particular

the maximum entanglement scales as D = π/N2. For fixed photon numbers, Np ≡ ⟨N̂j⟩ = N/2, these states
maximise the variance and can be considered optimal. This should come as no surprise – under the evolution
(13) they lead to a superposition of two different displaced motions for the mechanical elements (i.e. oscillating
cat states). The enhancements with N/2 from each cavity (equal to the standard deviations ∆N̂j) are then
roughly proportional to the maximum separation of the superposition (see also Example 1. in section 8).
Note in this case, one can also readily calculate the entanglement through the von Neumann entropy of one of

the reduced states, S = −Trρ1 ln ρ1 = −
∑
j λj lnλj , where λj are the eigenvalues of ρ1. Under the assumptions

above, it is straightforward to show,

ρ1 = Û1

∑
r,l

ara
∗
l

∑
µ

|bµ|2eiDvµ(ur−ul) |ur⟩⟨ul|

 Û†
1 . (110)

For a two level system, ρ1 corresponds to a 2 × 2 matrix, and so the eigenvalues are given by the well known
formula,

λ± = 1
2

(
trρ1 ±

√
[trρ1]2 − 4 det ρ1

)
, (111)

where from (110),

trρ1 = 1,

det ρ1 = |a1|2|a2|2
(

1 −
[
|b1|4 + |b2|4 + 2|b1|2|b2|2 cosD(u1 − u2)(v1 − v2)

])
.

(112)

As the entropy is maximised (but not necessarily maximal) when the separation between eigenvalues is largest,
we again have the condition cosD(u1 − u2)(v1 − v2) = π.

10More generally, for normalised states |ψ1⟩ = a1 |m⟩ + a2 |n⟩ and |ψ2⟩ = b1 |p⟩ + b2 |q⟩ the linear entropy is given by,

SL = 4|a1|2|a2|2|b1|2|b2|2(1 − cosD(m− n)(p− q)). (109)
So while the reduced state may not always be maximally mixed, the condition for the linear entropy to be maximised is still
D(m−n)(p− q) = π. This also shows that not all couplings lead to a maximally entangled state, for which SL = 1 − 1

dimension = 1
2 .

Accepted in Quantum 2023-10-15, click title to verify. Published under CC-BY 4.0. 22



In optomechanical systems, however, generating Fock state superpositions with large N is extremely difficult
and a much higher photon number variance can be achieved by using coherent states. In this case, (20) does
not extend all the way up to the point of maximum entanglement. This is already clear from the next term in
(107), which can be expanded to arbitrary order using the identity ⟨α|N̂n|α⟩ = Bn(Np), where Bn(x) is a Bell
polynomial. While this form can be valid for largeNp (smallD), its accuracy typically grows slowly for increasing

SL. An alternative expansion can be found starting from the purity (102) with |ψ1⟩ = e− 1
2 |α|2 ∑∞

p=0
α

p√
p!

|p⟩
(and similarly for |ψ2⟩ = |β⟩). Then setting X = D(p− q), with n = 0 in the identity (147) (see below) leads to,

tr[ρ2
1] = e−2|α|2

∞∑
p,q=0

|α|2p

p!
|α|2q

q! e2|β|2[cosD(p−q)−1], (113)

which can alternatively be recast in the slightly more computationally convenient form,

SL = 1 − e−2|β|2
∞∑
r=0

r∑
k=0

e2|α|2[cosD(r−2k)−1] |β|2r

k!(r − k)! . (114)

As long as Np is not too large, this allows a reasonably accurate evaluation of the linear entropy up to SL ∼ 1.
We find that for most values, this turns out to be approximately a function of DNp only (assuming (∆N̂j)

2 = Np
is identical in each cavity). In practise, this means that we can still use (20) to estimate the entanglement time.
A conservative choice for the measurable entanglement threshold is to assume SL = O(1), where now the pro-
portionality constant needs to be determined numerically. For concreteness we choose the point corresponding
to the maximum rate of increase the linear entropy, which is found to be at approximately |D(τe)| = 1

2
√

2Np

,

see figure 2. Beyond τe, entanglement gains become less significant, with the linear entropy changing only very
slowly above DNp ≈ 4.

B Noise
The evolution equation (59) used in section 5.3 is the limiting case of the standard quantum Brownian motion
master equation applied to two interacting systems. It can be derived from first principles by introducing a
position-position coupling between the system variables and an infinite bath of harmonic oscillators [63, 64].
For a single system, this is given in operator form by [41],

dρ(t)
dt

= 1
iℏ

[Ĥren, ρ(t)] − iγR(t)
ℏ

[x̂, {p̂, ρ(t)}] − f(t)
ℏ

[x̂, [p̂, ρ(t)]] − h(t)[x̂, [x̂, ρ(t)]] , (115)

where {·, ·} is the usual anticommutator and Ĥren corresponds to the renormalised system Hamiltonian (for
example, a frequency shift for a free harmonic oscillator), while the γR(t), f(t) and h(t) terms describe damping
and anomalous and normal diffusion, respectively. In general these coefficients are difficult to calculate explicitly,
but exact forms are known in special cases. The most well studied is the high temperature limit, which is
valid when kBT is the highest energy scale in the system. This nevertheless still gives good results for low
temperatures, particularly in the macroscopic limit relevant here [41].
If the system-bath couplings are distributed according to an ohmic spectral density, with suitable cut-off, the

normal diffusive term is much larger than f(t) and quickly settles to a constant value h(t) = 2mkBTγR

ℏ2 . One

then notes that in the macroscopic limit the second term in (115) can be ignored, leading to

dρ(t)
dt

= 1
iℏ

[Ĥren, ρ(t)] − 2mkBTγR
ℏ2 [x̂, [x̂, ρ(t)]]. (116)

This equation is Markovian, and could in principle have also been derived within the Lindblad framework. For
two weakly interacting systems, each with their own bath, we can expect that the indirect coupling of one
system to the other’s environment will be very small. In the proposal considered here, this should hold for any
realistic experiment, where γg ≪ 1, and so it is reasonable to suppose a master equation of the form (59),

dρ(t)
dt

= 1
iℏ

[Ĥren, ρ(t)] − Υ1

ℏ2 [x̂1, [x̂1, ρ(t)]] − Υ2

ℏ2 [x̂2, [x̂2, ρ(t)]], (117)

where Υj = 2mjkBTjγR,j is the normal diffusion coefficient associated to each cavity, and for convenience we

take Ĥren = Ĥ. This is justified as the mechanical frequency shifts in the expected regimes will typically be very
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small and therefore not greatly effect the entanglement dynamics. The extension from (116) to (117) has been
validated both from first principles derivations, and numerically, for simple systems, such coupled harmonic
oscillations [42], and shows good agreement in the small coupling limit. Furthermore, in the case of equal
temperature baths, (117) leads to essentially identical results to the strong coupling description, if positivity
is enforced via the secular approximation. It should be noted that the same may not be true for the optical
modes, where in particular we aim to work in the strong optomechanical coupling regime. In the present work,
however, we will not address combined optical and mechanical noise.
For our purposes, it is sufficient to solve (117) for the reduced cavity state alone. Here we make use of a

straightforward generalisation of the approach in [43]. For completeness, we repeat the relevant steps below.
First, we transform to the the c.o.m. and stretch modes so that Ĥ is diagonalised. When the cavities are
identical, i.e. Υ1 = Υ2 then (117) can be rewritten as,

dρ(t)
dt

= 1
iℏ

[Ĥ, ρ(t)] − Υ
ℏ2 [x̂c, [x̂c, ρ(t)]] − Υ

ℏ2 [x̂s, [x̂s, ρ(t)]], (118)

where Υ = 2mkBTγR. We then define the density matrix,

ρD(t) = ⟨p, q| ρ(t) |m,n⟩ , (119)

where |m,n⟩ = |m⟩1 |n⟩2 are field states of the two optical cavities. Thus the components of the reduced cavity
state are given simply by,

ρcavp,q,m,n(t) = TrM [ρD(t)]. (120)

Using the projection (119), we can re-write (118) as,

dρD(t)
dt

= − i

ℏ
Ĥp,qρD(t) + i

ℏ
ρD(t)Ĥm,n − Υ

ℏ2 [x̂c, [x̂c, ρD(t)]] − Υ
ℏ2 [x̂s, [x̂s, ρD(t)]], (121)

where we have used that Ĥ is diagonal in the photon number basis and we defined Ĥm,n = ⟨m,n|Ĥ|m,n⟩ as
the effective Hamiltonians acting on the normal mode subspace,

Ĥm,n = ℏω0(m+ n) + ℏωcb̂
†
cb̂c + ℏωsb̂

†
sb̂s − λm,nc (t)(b̂†

c + b̂c) − λn,ms (t)(b̂†
s + b̂s), (122)

with,
λm,nc (t) = ℏωckc(t)(m− n),
λm,ns (t) = ℏωs

(
−ks(t)(m+ n) + D1,s(t)

)
.

(123)

The next step is to move to the interaction picture by defining ρ̂ID(t) = Ûp,q†(t)ρD(t)Ûm,n(t), where the
Ûm,n(t) are defined through,

iℏ
∂

∂t
Ûm,n(t) = Ĥm,nÛm,n(t) , (124)

and since Ĥ is photon number conserving, Ûm,n(t) = ⟨m,n|Û(t)|m,n⟩. Thus we have,

dρID(t)
dt

= − Υ
ℏ2 Û

p,q†(t)[x̂c, [x̂c, ρD(t)]]Ûm,n(t) − Υ
ℏ2 Û

p,q†(t)[x̂s, [x̂s, ρD(t)]]Ûm,n(t), (125)

We now multiply from the left and right by Ûp,q(u) and Ûm,n†(u), respectively and take the partial trace over
the mirror modes,

TrM

{
Ûp,q(u)dρ

I
D(t)
dt

Ûm,n†(u)
}

= − Υ
ℏ2 TrM

{
Ûp,q†(t− u)[x̂c, [x̂c, ρD(t)]]Ûm,n(t− u)

}
− Υ

ℏ2 TrM
{
Ûp,q†(t− u)[x̂s, [x̂s, ρD(t)]]Ûm,n(t− u)

}
= − Υ

ℏ2 TrM
{

[x̂c, [x̂c, Û
m,n(t− u)Ûp,q†(t− u)]]ρD(t)

}
− Υ

ℏ2 TrM
{

[x̂s, [x̂s, Û
m,n(t− u)Ûp,q†(t− u)]]ρD(t)

}
,

(126)

where we have used the cyclic property of the trace in the second line. The double commutators can be evaluated
using

[x̂µ, [x̂µ, Û
m,n(t)Ûp,q†(t)]] = [ˆ̃x2

µ(t) + ˆ̃x2
µ(0) − 2ˆ̃xµ(0)ˆ̃xµ(t)]Ûm,n(t)Ûp,q†(t), (127)
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where,
ˆ̃xµ(t) = ˆ̃U†(t)x̂µ ˆ̃U(t), (128)

and,
ˆ̃U(t) = Ûp,q(t)Ûm,n†(t)

= e−i(ω0t−A)(p+q−m−n)eiB(p2+q2−m2−n2)eiD(pq−mn)×

× D̂c[−e
−iωctKN̂c

(q − p+m− n)]D̂s[−e
−iωstKN̂s

(p+ q −m− n)],

(129)

The first set of phase factors do not contribute to ˆ̃xµ(t), and so we find,

ˆ̃xc(t) = ˆ̃xc(0) − 2x0,cℜ[e−iωctKN̂c
](q − p+m− n),

ˆ̃xs(t) = ˆ̃xs(0) − 2x0,sℜ[e−iωstKN̂s
](q + p−m− n),

(130)

and so the double commutators become,

[x̂c, [x̂c, Û
m,n(t)Ûp,q†(t)]] = 4x2

0,cℜ[e−iωctKN̂c
]2(q − p+m− n)2Ûm,n(t)Ûp,q†(t),

[x̂s, [x̂s, Û
m,n(t)Ûp,q†(t)]] = 4x2

0,sℜ[e−iωstKN̂s
]2(q + p−m− n)2Ûm,n(t)Ûp,q†(t) .

(131)

Substituting into (126) we find,

d

dt
TrM

{
Ûp,q(u)ρID(t)Ûm,n†(u)

}
= −Γ(t, u)TrM

{
Ûp,q(u)ρID(t)Ûm,n†(u)

}
, (132)

where,

Γ(t, u) = 4Υ
ℏ2 x

2
0,cℜ[e−iωc(t−u)KN̂c

(t− u)]2(q − p+m− n)2

+ 4Υ
ℏ2 x

2
0,sℜ[e−iωµ(t−u)KN̂s

(t− u)]2(q + p−m− n)2,

(133)

This can be solved by a simple integration, and so (setting u = t) we find,

ρcavp,q,m,n(t) = e
−
∫ t

0
Γ(s,u)ds

∣∣
u=tTrM

{
Ûp,q(t)ρD(0)Ûm,n†(t)

}
= e

−
∫ t

0
Γ(s,u)ds

∣∣
u=tTr

{
Ûp,q(t)ρM (0)Ûm,n†(t)

}
⊗ ⟨p, q| ρcav(0) |m,n⟩ ,

(134)

where ρID(0) = ρD(0) = ⟨p, q| ρ(0) |m,n⟩. This leads to an effective heating of the mechanical modes and a
thermal contribution to reduced cavity state which no longer vanishes at the respective decoupling times of the
optical and mechanical states. To see this explicitly we note from Appendix D that under unitary evolution,
the components of the (reduced) cavity state when the mechanics is initially in a thermal state are given by,

ρcavp,q,m,n(t) = apa
∗
mbqb

∗
ne

−i(ω−A)(p+q−m−n)teiB(m2+n2−p2−q2)eiD(pq−mn)e
− 1

2 |KN̂c
|2(n̄s+ 1

2 )(q−p+m−n)2

× e
− 1

2

(
|KN̂s

|2(n̄s+ 1
2 )(p+q−m−n)2−(CsK

∗
N̂s

−C∗
sKN̂s

)(p+q−m−n)
)
.

(135)

for arbitrary initial cavity states |ψ1(0)⟩ =
∑
am |m⟩, |ψ2(0)⟩ =

∑
bm |m⟩. This implies we can formally replace

the thermal occupation n̄µ by a time dependent term,

n̄µ(t) = n̄µ(0) +
κdec
µ (t)

|KN̂µ
|2
, (136)

where,

κdec
µ (t) =

∫ t

0

8Υ
ℏ2 x

2
0,µℜ[e−iωµ(s−t)KN̂µ

(s− t)]2ds. (137)

For the modulation frequency Ωn = (1 − 1/n)(ωc +ωs) and ϕ1 = π/2, κdec
µ (tq) can be evaluated to zeroth order

in γg as,

κdec
µ (tq) = 4Υ

ℏ2 x
2
0,m

qnπ

ωm

(
3k2

0 + ϵ2
n2(1 + (2n− 1)2)

2(2n− 1)2

)

≈
Υx2

0,m

ℏ2ωmγg
D(tq),

(138)

for µ = c, s.
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C Evaluation of Determinant-based Entanglement Witnesses for Continuous Vari-
able States
In section 5.1 it was noted that the idealised limiting state of the final (entangled) optical fields will be of
the form (1 + i) |α1, α2⟩ + (1 − i) |−α1,−α2⟩. While many of the simplest continuous variable criteria fail to
identify entanglement in states of this form, Shchukin and Vogel [37] introduced an infinite series of inequalities
for which the violation of any is sufficient to witness entanglement. These can be conveniently written as the
determinant of a matrix of moments of the state, where negativity implies the violation of one set of inequalities.
The simplest which is suitable for our purposes is given by,

W1(t) =

∣∣∣∣∣∣∣
1 ⟨a†

2⟩ ⟨a1a
†
2⟩

⟨a2⟩ ⟨a†
2a2⟩ ⟨a1a

†
2a2⟩

⟨a†
1a2⟩ ⟨a†

1a
†
2a2⟩ ⟨a†

1a1a
†
2a2⟩

∣∣∣∣∣∣∣ . (139)

For convenience we move to the Heisenberg picture, Ô(t) = Û†ÔÛ , where in the symmetric cavity limit the
evolution operator is given explicitly by (13) and (29),

U(t) = ei(−ω0t+A)(N̂1 + N̂2)e−iωcb̂
†
c b̂cte−iωsb̂

†
sb̂steiθeiB(N̂2

1 +N̂2
2 )eiDN̂1N̂2×

×Dc[−KN̂c
(N̂2 − N̂1)]Ds[Cs −KN̂s

(N̂1 + N̂2)],
(140)

with ωs = ωm
√

1 − 4γg and ωc = ωm. Using the relation,

D(C −K(N̂2 + (−1)kN̂1)) = D(C)D(−KN̂2)D((−1)k+1KN̂1)e+ 1
2 (CK∗−C∗

K)(N̂2+(−1)k
N̂1), (141)

Together with D†
µ(XN̂j)âjDµ(XN̂j) = Dµ(X)âj , and e

−XN̂2

âeXN̂
2

= eX(2N̂+1)â we find,

â1(t) = eiϕ0 B̂1e
i(DN̂2+2BN̂1)â1 ,

â2(t) = eiϕ0 B̂2e
i(DN̂1+2BN̂2)â2 ,

(â1â
†
2)(t) = B̂12â

†
2e
i(2B−D)(N̂1−N̂2)â1 ,

(â†
j âj)(t) = â†

j âj ,

(â1â
†
2â2)(t) = â1(t)â†

2â2 = eiDâ†
2â1(t)â2 .

(142)

Where ϕ0 = −ω0t+A+B and,

B̂j = e
+ 1

2 (CsK
∗
N̂s

−C∗
sKN̂s

)
Dc(−(−1)jKN̂c

)Ds(−KN̂s
) ,

B̂2
j = e

+(CsK
∗
N̂s

−C∗
sKN̂s

)
Dc(−(−1)j2KN̂c

)Ds(−2KN̂s
) ,

B̂12 = B̂1B̂†
2 = Dc(+2KN̂c

) ,

B̂1B̂2 = e
+(CsK

∗
N̂s

−C∗
sKN̂s

)
Ds(−2KN̂s

)

(143)

are operators acting on the mechanical modes. Here we consider two scenarios: 1) The mechanical modes
initially in a coherent state βµ, and 2) The mechanical modes initially in a thermal state ρth,µ. For each case
the expectation value of the displacement operator is given by,

⟨Dµ(X)⟩β = e− 1
2 |X|2

eXβ
∗−X∗

β ,

⟨Dµ(X)⟩ρth
= e− 1

2 |X|2

e−(ℜ[X]2+ℑ[X]2)n̄µ = e−|X|2(n̄µ+ 1
2 ) .

(144)

So we have,

⟨Bj⟩β = e
− 1

2

(
|KN̂c

|2+|KN̂s
|2)
e

+ 1
2 (CsK

∗
N̂s

−C∗
sKN̂s

)
e(−1)j

β̃c+β̃s ,

⟨B2
j ⟩β = e

−2
(

|KN̂c
|2+|KN̂s

|2)
e

+(CsK
∗
N̂s

−C∗
sKN̂s

)
e2[(−1)j

β̃c+β̃s],

⟨B12⟩β = e
−2|KN̂c

|2

e−2β̃c ,

⟨B1B2⟩β = e
−2|KN̂s

|2

e
+(CsK

∗
N̂s

−C∗
sKN̂s

)
e2β̃s ,

(145)
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where β̃µ = −(KN̂µ
β∗
µ −K∗

N̂µ
βµ) and,

⟨Bj⟩ρth
= e

− 1
2

(
|KN̂c

|2(n̄c+ 1
2 )+|KN̂s

|2(n̄s+ 1
2 )
)
e

+ 1
2 (CsK

∗
N̂s

−C∗
sKN̂s

)
,

⟨B2
j ⟩ρth

= e
−2
(

|KN̂c
|2(n̄c+ 1

2 )+|KN̂s
|2(n̄s+ 1

2 )
)
e

+(CsK
∗
N̂s

−C∗
sKN̂s

)
,

⟨B12⟩ρth
= e

−2|KN̂c
|2(n̄c+ 1

2 )
,

⟨B1B2⟩ρth
= e

−2|KN̂s
|2(n̄s+ 1

2 )
e

+(CsK
∗
N̂s

−C∗
sKN̂s

)
,

(146)

The final ingredient are the expectation values with respect to the cavity states, which we take to be coherent
with parameters α1 and α2 for the two cavities, respectively. Using

⟨eiXN̂j ânj ⟩αj
= αnj e

−|αj |2(1−eiX
)
, (147)

we have,

⟨â1(t)⟩ = α1e
iϕ0⟨B1⟩e−|α1|2(1−e2iB

)
e

−|α2|2(1−eiD
)
,

⟨â2(t)⟩ = α2e
iϕ0⟨B2⟩e−|α2|2(1−e2iB

)
e

−|α1|2(1−eiD
)
,

⟨(â1â
†
2)(t)⟩ = α1α

∗
2⟨B12⟩e−|α1|2(1−e−i(D−2B))

e
−|α2|2(1−ei(D−2B))

,

⟨(â†
j âj)(t)⟩ = |αj |

2,

⟨(â1â
†
2â2)(t)⟩ = α1|α2|2eiDeiϕ0⟨B1⟩e−|α1|2(1−e2iB

)
e

−|α2|2(1−eiD
)
,

⟨(â†
1â1â

†
2â2)(t)⟩ = |α1|2|α2|2.

(148)

These expressions are generally too complicated to gain much insight. However, by considering the form of
the determinant (139) we observe that the phase ϕ0 ultimately vanishes together with the imaginary exponential
terms in (145) and (146). Similarly, only the modulus of α1 and α2 is important and so from symmetry of the
set-up this implies that the optimal choice of initial cavity states is α1 = α2 ≡ α and |α|2 = Np. With these
restrictions, the determinant witness (139) can be written as,

W1(tq) = N3
p

(
1 − e−4κth

c −4Np(1−cos (D−2B)) − 2e−κth
c −κth

s −2Np(2−cosD−cos 2B)

+2e−3κth
c −κth

s −2Np(3−cosD−cos 2B−cos (D−2B)) cosD
)
,

(149)

where κth
µ = |KN̂µ

|2(n̄µ + 1/2).
We note, however, that the B terms should not in principle contribute to the entanglement, even though they

have a non-trivial effect on the witness. An analogous situation arises in the estimation of the gravitational field
by a single optomechanical cavity, where it is known that the quantum Fisher information (QFI) is independent
of the corresponding B coefficient at the decoupling time, however certain POVMs only saturate the QFI when
this is an integer multiple of 2π [21]. This is occurs when using homodyne measurements, for example, and
typically require k0 ∈ Z. Interestingly, we find from a numerical analysis, that the optimal values of B(tq) for
the witness are integer multiples of π. Considering a measurement time tq = qnπ/(1/ωc + 1/ωs), with the
optomechanical coupling modulated at frequency Ωn = 1

2 (1 − 1/n)(ωc + ωs), we find from B = Bc +Bs that,

B(tq) = 2qnπ(1 + 3γg)
(
k2

0 + n2

2(2n− 1)ϵ
2

)
. (150)

Thus in the large n limit, we also see that approximately integer values of k0 and ϵ are favourable11. Adopting
these B(tq) values leads to immediately to the witness in the main text (30). The prefactor (generically N3

p )
should not be attributed to the entanglement scaling estimated in section 4.2. Instead this term acts like a
signal gain, which should be offset against a proper noise analysis of measurements of the moments used in
(139).

When the initial mode temperatures are equal, we find that κth
c (tq) = κth

s (tq) to first order in γg,

κth
µ (tq) ≈

(2πnγg)
2
(
k2

0(2n− 1)2 + (n− 1)2
n2ϵ2

)
2(2n− 1)2 (n̄µ + 1/2)

≈ 1
2(πnγg)

2
(

4k2
0 + n2ϵ2

)
(n̄µ + 1/2),

(151)

11On the other hand, heterodyne measurements achieve the same scaling as the QFI (up to a factor of 2) independent of this
constraint, and so we may hypothesize that a heterodyne-based witness could be more convenient from an experimental perspective.
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where in the second line we have assumed n large. Thus,

W1(tq) = 4N3
p e

−4y
(
e2y sinh2(y) − z2

)
, (152)

where y = 2Npz
2 + κth(tq) and z = sin(D(tq)/2). Taking the derivative with respect to z, the minimum will

satisfy (36),

4z2
min + e2ymin = 1 + 2zmin

4Npzmin + κth′|zmin

. (153)

For κth′|zmin
≈ 0, a formal solution for zmin can be written as,

zmin =

√
1 + 2Np − 2W (e

1
2 +Np+2κth

Np)
2
√

2Np
, (154)

where W (x) is the Lambert-W function defined as the solution to W (x)eW (x) = x. For large x, we can
approximate W (x) asymptotically as,

W (x) = ln
(

x

W (x)

)
≈ ln

( x

ln x

)
, (155)

then to first order in 1/Np, the term W (e
1
2 +Np+2κth

Np) = 1
2 +Np − 1

2Np
[1 − 4(Np − 1)κth], and so

zmin ≈

√
1 − 4(Np − 1)κth

2
√

2Np
≈

√
1 − 4Npκ

th

2
√

2Np
, (156)

which agrees with the simple analysis provided in the main text.
When κ′|zmin

is significant, it is convenient to first write κ explicitly as a function of z. For ϵ = 0, κth(z) ≈
Γth

0 z
2, with Γth

0 = 2n̄+1
36k2

0
(see (35)), which immediately leads to (40) under the substitutions Np → Np + Γth

0 /2

and κth → 0. However, for modulated coupling, where κth = Γz4/3, finding a formal solution to the minimum
condition is difficult, and so we instead resort to an expansion of (153) under the assumption zmin, Npz

2
min ≪ 1,

and Np ≫ 1 (which are all consistent with the expected experimental regimes). In order to preserve the correct

behaviour as κth → 0, it is convenient to first multiply (153) by (3/2)(4Npzmin +κ′|zmin
)/zmin, before expanding

the resulting expression to second order in zmin. A slight rearrangement leads to,

4(6N2
p + Γ3)w3 + 20NpΓw

2 + 4Γ2w − 3 = 0, (157)

where Γ = 1
2 (n̄ + 1

2 )
(πqγg

ϵ

) 2
3 , and we have made the substitution zmin → w3/2. The solution for w up to first

order in 1/Np is given by,

w = 1 − v

2N2/3
p

, where v = 5Γ
9N1/3

p

= 5
18
n̄+ 1

2

N1/3
p

(πqγg
ϵ

) 2
3
. (158)

Transforming back to zmin leads to (44) in the main text. This corresponds to an optimal entanglement time
of,

t1 =
(

2
√

2π2

Npω
3
mϵ

2γg

) 1
3 √

1 − v. (159)

We now expand the exponential terms in W1(t1) in powers of 1/Np, ignoring overall terms proportional to any
inverse powers of Np (which is consistent with our final bound on Γ). This leads to,

W1(zmin) ≈ 3
8 −

Np
4 + 1

2N
2/3
p Γ − 4

9N
1/3
p Γ2 + 35Γ3

162 . (160)

In the limit Np ≫ 1 the first term can be neglected, and so we again recover the asymptotic noiseless witness
minimum of −Np/4. The solution for Γ such that (160) is half the optimal value is then approximately,

Γ ≲ 0.33N1/3
p . (161)
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C.1 Decoherence
The comparatively slower scaling of the temperature bound is a direct result of measuring close to (or at) the
cavity-mechanics decoupling time. This highlights the advantage of the fractional frequencies introduced in [21].
On the other hand mechanical noise depends on integrating over the full motion and therefore always contains
a term independent of γg. In Appendix B we saw that thermal decoherence effects can be formally included by
rewriting expectation values of the mechanical mode operators as (see equation (136)),

⟨Bj⟩ρth
= e

− 1
2

(
|KN̂c

|2(n̄c+ 1
2 )+|KN̂s

|2(n̄s+ 1
2 )+κdec

c +κdec
s

)
e

+ 1
2 (CsK

∗
N̂s

−C∗
sKN̂s

)
,

⟨B2
j ⟩ρth

= e
−2
(

|KN̂c
|2(n̄c+ 1

2 )+|KN̂s
|2(n̄s+ 1

2 )+κdec
c +κdec

s

)
e

+(CsK
∗
N̂s

−C∗
sKN̂s

)
,

⟨B12⟩ρth
= e

−2|KN̂c
|2(n̄c+ 1

2 )
e−2κdec

c ,

⟨B1B2⟩ρth
= e

−2|KN̂s
|2(n̄s+ 1

2 )
e−2κdec

s e
+(CsK

∗
N̂s

−C∗
sKN̂s

)
,

(162)

where κdec
µ (t) is defined in equation (137). We find,

W1(t1) = N3
p

(
1 − e−4κc−4Np(1−cosD) − 2e−κc−κs−2Np(1−cosD) + 2e−3κc−κs−4Np(1−cosD) cosD

)
, (163)

where κµ = κdec
µ + κth

µ . To zeroth order in γg, κ
dec
c (tq) ≈ κdec

s (tq) ≫ κth
s (tq) and so from (138) we can set

κµ(tq) = κ(z(tq)) ≈ Γdecz(tq), with Γdec = 2Υx2
0,m

ℏ2
ωmγg

. In this case the analysis proceeds in a similar fashion to the

above. Substituting for κ(z), we find the analogue of (157) as,

2(12N2
p + Γ4

dec + 12Np(1 + Γ2
dec))z2

min + 3Γdec(6Np + Γdec)zmin + 3(Γdec − 1) = 0. (164)

Expanding to first orders in 1/Np, followed by Γdec, the solution is given by,

zmin = 1
2
√

2Np

(
1 − 3

2
√

2
Γdec

)
, (165)

while to second order in Γdec, the corresponding value of the witness is,

W1(zmin) = −
Np
4

(
1 − 2

√
2Γdec + 5

2Γ2
dec

)
. (166)

Now, solving min W1 = min aW1|Γdec=0
gives,

Γdec ≤
√

2
5
(
2 −

√
5a− 1

)
, (167)

so for a = 1/2, Γdec ≲ 0.219, which is typically accurate to within a little over 1% of the (numerical) exact
bound. In contrast, the absolute bound for this decoherence model (i.e. when infinitesimal negative values of
W1 can be measured) is given by Γdec ≤ 1. We then have,

γRkBT ≲

{
ℏGm
2d3 , Verify any entanglement

0.11ℏGm
d

3 , Achieve half the minimum possible value of the witness.
(168)

D Logarithmic negativity for optical Fock state superpositions
In the case of finite dimensional bipartite systems, a convenient entanglement measure for mixed states is given
by the logarithmic logarithmic negativity,

LN(ρ) = log ||ρT2 ||1, (169)

where ρT2 is the partial transposition of ρ with respect to subsystem one and ||ρ||1 = Tr
√
ρ†ρ denotes the

trace norm [65]. Here we compare the entanglement behaviour when the cavity fields are prepared in equally
weighted superpositions of Fock states, |ψ1,2⟩ = 1√

2 (|0⟩ + |N⟩). It is useful to first give the general expression

for the time dependent reduced joint cavity state ρcav = Trs,c[ρ] when the mechanical modes are initially in
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the thermal states ρs,th ⊗ ρc,th. Writing the light fields (which we assume to be pure) in the number basis,
|ψ⟩1 =

∑
am |m⟩ and |ψ⟩2 =

∑
bn |n⟩, the reduced density matrix after the evolution (13) can be found using

(144) and the composition of displacement operators D̂(α)D̂(β) = e
1
2 (αβ∗−α∗

β)D̂(α+ β). This is given by,

ρcav (t) =
∑

m,n,p,q

Mmpnq |m⟩⟨p| |n⟩⟨q| , (170)

where,

Mmpnq = ama
∗
pbnb

∗
qe

−i(ω0t−A)(m+n−p−q)eiB(m2+n2−p2−q2)eiD(mn−pq)e
− 1

2 |KN̂c
|2(n̄c+ 1

2 )(n−m+p−q)2

× e
− 1

2

(
|KN̂s

|2(n̄s+ 1
2 )(m+n−p−q)2−(CsK

∗
N̂s

−C∗
sKN̂s

)(m+n−p−q)
)
,

(171)

and n̄µ = 1/(eℏωµ/kBT − 1) is the average thermal occupation of the transformed mechanical modes. Note that
as entanglement is invariant under local operations, we can equivalently consider the state ρ̃cav(t) defined by
the coefficients,

M̃mpnq = ama
∗
pbnb

∗
qe
iD(mn−pq)e

− 1
2 |KN̂c

|2(n̄c+ 1
2 )(n−m+p−q)2

e
− 1

2 |KN̂s
|2(n̄s+ 1

2 )(m+n−p−q)2

, (172)

where the local actions on the optical states in (13) have been ignored. Further simplifications can also be made
if we restrict our attention to short times around the optimal measurement time, tq − ∆t ≤ t ≤ tq + ∆t. This
is consistent with our expectation of a small measurement window, and for n̄c = n̄s = n̄, an optimal strategy is
to choose the modulation frequency Ωn = (1 − 1/n)(ωc + ωs)/2, with tq = qnπ(1/ωc + 1/ωs). The difference

between |KN̂s
(t)|2 and |KN̂c

(t)|2 is then proportional to γg∆t, and so to lowest order in γg, we can assume that

M̃mpnq ≈ ama
∗
pbnb

∗
qe
iD(mn−pq)e−κ((m−p)2+(n−q)2), (173)

where κ = κth
c = |KN̂c

|2(n̄+ 1
2 ).

For initial states described by am = bm = (δ0
m + δNm)/

√
2, we can map the partial transpose of the cavity

state,

ρ̃T2
cav (t) =

∑
m,n,p,q∈{0,N}

M̃mpqn |m⟩⟨p| |n⟩⟨q| , (174)

to its 4 × 4 matrix representation (ρ̃T2
cav(t))(m,n),(p,q) = M̃mpqn, where the indices run over (j, k) =

(0, 0), (N, 0), (0, N), (N,N). The trace norm is then found from the sum of the eigenvalues of (ρ̃T2
cav(t))†(ρ̃T2

cav(t)),
leading to,

LN(ρcav(t)) ≈

 0 : sinh(κN2) ≥ sin
(
DN

2

2

)
log
[
e−κN2 (

cosh(κN2) + sin
(
DN

2

2

))]
: else

. (175)

This expression shows that the logarithmic negativity is non-vanishing only in regions where sinh(κN2) <

sin
(
DN

2

2

)
. These define the available measurement windows in which entanglement can be detected by mea-

surements on the optical fields. In particular, for small arguments of the sinh and sin functions, the condition
takes the form κ ≤ D/2 which coincides with equation (34). A repeat of the analysis leading to (51) is straight-

forward, though in this case κth
max ≈ sinh−1(1)/N2 and so from (47),

δt ≈

√
2 sinh−1(1)

ωmk0N
√
n̄+ 1/2

. (176)

Note that as one can expect the optimal measurement time now scales as tq ∼ 1/N2 (see Appendix A), for both
coherent states and Fock state superpositions the measurement window is inversely proportional to the square
root of t, i.e. its behaviour is relatively insensitive to the initial state.
The above analysis can be repeated to include decoherence via the substitution κµ → κµ = κth

µ + κdec
µ in

(172). Just as with the thermal contributions, for small times around tq the difference between κdec
s and κdec

c is
proportional to γg, thus (173) is again fulfilled in this regime, which immediately recovers equation (175) with

κ = κth
c + κdec

c .
Figure 4 shows plots of the logarithmic negativity close to t1 for the analytic result above. These agree with

numerical evaluations to within a relative error of less than 10−4 everywhere up to regions close to the boundary
of the measurement windows (where the numerical errors becomes significant). For the case of decoherence, we
find that the measurement window closes as Γdec approaches 1.
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(a) (b)

Figure 4: The logarithmic negativity of initial cat states |ψ1,2⟩ = 1√
2 (|0⟩ + |10⟩) for optomechanical couplings modulated at

the fractional frequency Ωn = (1 − 1/n)(ωc + ωs)/2, n = 1000 (and phase ϕ1 = π/2) as a function of the time-difference
to the measurement time t1 = nπ(1/ωc + 1/ωs), in units of τm = 2π/ωm. Here we choose the more optimistic parameters,
ωm = 2π × 102Hz and m = 2.4 × 10−8kg, leading to γg = 5 × 10−13. Plot a) shows LN for different values of the thermal
occupation of the mechanical system n̄ and plot b) shows LN for different decoherence rates quantified by the parameter Γdec
for n̄ = 10.

E Displacement and Variance of the Mechanical Modes
The time dependent position operators for the c.o.m. and stretched modes can be calculated as in Appendix B.
We find,

x̂c(t) = x̂ωc
(t) + 2x0,cℜ[e−iωstKN̂c

](N̂1 − N̂2),

x̂s(t) = x̂ωs
(t) + 2x0,s

(
ℜ[e−iωstCs] − ℜ[e−iωstKN̂s

](N̂1 + N̂2)
)
,

(177)

where,

x̂ωµ
(t) = x0,µ

(
eiωµtb̂†

µ + e−iωµtb̂µ

)
= x̂µ(0) cosωµt+ 1

mωm
p̂µ(0) sinωµt .

(178)

The stretched mode gives information of the separation of the two mechanical elements via x̂2 −x̂1 =
√

2x̂s ≡ δx̂.
For thermal states, we have that the separation expectation value is simply,

d+ ⟨δx̂⟩ = d+ 2
√

2x0,s

(
ℜ[e−iωstCs] − ℜ[e−iωstKN̂s

](⟨N̂1⟩ + ⟨N̂2⟩)
)
. (179)

Similarly, the variance in the mode operators is given by,

(∆x̂c)
2 = (∆x̂ωc

)2 + 4x2
0,cℜ[e−iωstKN̂c

]2
(

∆(N̂1 − N̂2)
)2
,

(∆x̂s)
2 = (∆x̂ωs

)2 + 4x2
0,sℜ[e−iωstKN̂s

]2
(

∆(N̂1 + N̂2)
)2
.

(180)

Now, for a thermal state, (∆x̂ωµ
)2 = (2n̄µ + 1)x2

0,µ, thus the variance in separation is,

(∆(d+ δx̂))2 = 2x2
0,s

[
1 + 2n̄s + 4ℜ[e−iωstKN̂s

]2
(

∆(N̂1 + N̂2)
)2
]
. (181)
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