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We investigate and characterize the emer-
gence of finite-component dissipative phase
transitions (DPTs) in nonlinear photon res-
onators subject to n-photon driving and dis-
sipation. Exploiting a semiclassical approach,
we derive general results on the occurrence
of second-order DPTs in this class of systems.
We show that for all odd n, no second-order
DPT can occur while, for even n, the com-
petition between higher-order nonlinearities
determines the nature of the criticality and al-
lows for second-order DPTs to emerge only for
n = 2 and n = 4. As pivotal examples, we study
the full quantum dynamics of three- and four-
photon driven-dissipative Kerr resonators, con-
firming the prediction of the semiclassical anal-
ysis on the nature of the transitions. The sta-
bility of the vacuum and the typical timescales
needed to access the different phases are also
discussed. We also show a first-order DPT
where multiple solutions emerge around zero,
low, and high-photon numbers. Our results
highlight the crucial role played by strong and
weak symmetries in triggering critical behav-
iors, providing a Liouvillian framework to study
the effects of high-order nonlinear processes in
driven-dissipative systems, that can be applied
to problems in quantum sensing and informa-
tion processing.

1 Introduction, motivations, and sum-
mary of the main results

Nonlinear bosonic systems, such as optical cavities,
polaritonic systems, optomechanical resonators, and
superconducting circuits, represent an extremely rich
and versatile tool to explore and simulate nonequilib-
rium quantum physics [1–3]. These systems are intrin-
sically open, meaning that particle, energy, and corre-
lations can be gained or lost through the coupling with
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the environment [4]. Drives are then applied to these
systems, bringing them out of their thermal equilib-
rium and compensating for the losses induced by the
environment. As a result, the complex interplay be-
tween driving, dissipation, and Hamiltonian terms dic-
tates the system’s dynamics and determines its steady
states, whose properties can differ from those of closed
quantum systems at equilibrium [5–7].

The symmetries of the drive and dissipators play
a fundamental role in determining both the nature
of the steady state and the dynamical properties of
a quantum system [8–10]. For instance, in a nonlin-
ear photonic cavity the possibility to exploit nonlinear
and engineered pumping schemes, in the presence of
moderate single-particle dissipation, opened venues to
the generation and stabilization of nonclassical states
[11–13]. A pivotal example in this field is the use of
two-photon drives to generate, stabilize, and control
photonic Schrödinger cat states [14, 15], that have
been proposed as a fundamental building block of
quantum computing devices [16]. Beyond their in-
terest in quantum information, parametric processes
have been at the center of intense research, leading
to the exploration of their properties both in classical
[17, 18] and quantum configurations [11, 19–21].

The study and characterization of dissipative phase
transitions (DPTs) and their peculiarities have been
the focus of a vast theoretical and experimental re-
search, especially concerning the connection of DPTs
to multimodality and metastability [22]. In this sce-
nario, two main distinctions have been drawn in char-
acterizing DPTs [10]. First-order DPTs are discontin-
uous changes in the properties of the system’s steady
state as a function of a control parameter [23]. These
have been associated with hysteresis and critical slow-
ing down [11, 24, 25], which allow one to observe the
emergence of metastable dynamics and to study its
competition with the other typical timescales of the
system. Key to understanding second-order DPTs –
where the steady state transitions continuously, but
it is characterized by a divergent response function –
are symmetries [11, 26, 27]. In particular, DPTs can
be associated with weak and strong symmetry break-
ing [28, 29]. Second-order DPTs are useful for several
technological tasks. The cross-fertilization between
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quantum information processing and open system crit-
icality led to innovative ideas to protect quantum in-
formation [28, 30], enhance quantum sensing [31–34],
and review laser theory [35–37].

In the panorama of DPTs, the parametrically-
driven (or two-photon) Kerr resonator has attracted
considerable interest [10, 11, 26, 27, 38]. Indeed,
it provided an ideal test model that displays both
first- and second-order criticalities in different regions
of the parameter space [11] and represents one of
the few cases for which a steady-state can be ana-
lytically found [39, 40]. Thus, DPTs of this model
were extensively studied [11, 19, 26, 38], in con-
nection with the spectral properties of the Liouvil-
lian [10] and more exotic phenomena, such as ex-
ceptional points and parity-time symmetry breaking
[41]. These findings represented the natural exten-
sion of the well-known results about first-order DPTs
in the coherently-driven (one-photon) Kerr resonator
[11, 24, 25, 42–45], pioneered by Drummond and Walls
[46], and showed how the presence of multi-photon
driving and dissipation can drastically modify the
physics of nonlinear bosonic resonators [11, 26, 28].
Remarkably, all these results obtained at the single-
resonator level provided a guideline to investigate
emergent phenomena in more complex lattice archi-
tectures [27, 47–50]. The fundamental theoretical in-
terest in studying the properties of single or few res-
onators [10, 24, 26, 51–54], but with n-photon driv-
ing schemes, is also strongly motivated by the recent
achievement of higher-order photon pumping exploit-
ing strong nonlinearities in superconducting circuits
[55–57].

1.1 Summary of the main results
In this work, we advance these ideas and explore the

DPTs of nonlinear photonic resonators in the presence
of parametric n-photon drive and losses, going beyond
the aforementioned n = 1, 2 cases. We provide a gen-
eral criterion for arbitrary n to argue the nature of
criticalities for this ubiquitous class of models in quan-
tum optics. To this aim, we prove a no-go theorem in
the semiclassical limit, predicting the emergence and
the nature of DPTs in this class of systems. We de-
rive a general recipe to connect the order of the DPTs
and the presence of certain Hamiltonian terms, high-
lighting the importance that strong and weak sym-
metry has in constraining the system dynamics, and
we point out the technical limitations in witnessing
second-order DPTs for n > 4 driving schemes.

We then test the semiclassical predictions by per-
forming a detailed numerical analysis of the full quan-
tum model for the n = 3 and n = 4 cases. We confirm
the role of symmetries predicted by the semiclassical
theory, and we analyze the DPTs within the theoret-
ical framework of the spectral properties of the Liou-
villian superoperator. For n = 3, we confirm the semi-

classical prediction and show that the system can only
undergo a first-order phase transition accompanied by
the symmetry breaking of the discrete weak Z3 sym-
metry, as the system parameters are scaled towards
the thermodynamic limit. For the 4-photon driven
resonator, we show that both a first- and second-order
DPT can occur, accompanied by a breaking of the Z4,
showing that 9 states can be stabilized across a first-
order DPT, making these systems possible candidates
for associative memories [21].

The paper is structured as follows. In Sec. 2, we in-
troduce the model, the master equation governing the
driven-dissipative dynamics, the symmetry properties
of the problem, and their consequences on the Liouvil-
lian spectrum. In Sec. 3, we discuss the emergence of
DPTs in the semiclassical limit, while in Secs. 4 and
5 we study the full quantum dynamics for n = 3, 4
resonators, respectively. Finally, in Sec. 6, we draw
our conclusions and discuss some future perspectives.

2 The model
We consider a bosonic n-driven nonlinear resonator

whose Hamiltonian reads

Ĥn =
mmax∑
m=1

Um

m

(
â†)m

âm + Gn

[
ân +

(
â†)n

]
, (1)

where â (â†) is the bosonic annihilation (creation) op-
erator. The interaction strengths Um sets the scale
of m-photon processes. For instance, U1 character-
izes the energy of one photon in the resonator (in the
frame rotating at the pump frequency) and rescales
the term â†â, U2 is a standard Kerr interaction, and
so on. As detailed also in Appendix A, for a n-photon
drive we should consider at least processes up to the
order mmax = ⌊n/2 + 1⌋, where ⌊A⌋ indicates the in-
teger part of the number A. As we will see in the
following, the high-order Ums play a fundamental role
in determining the nature of the DPTs and, for this
reason, need to be included in a minimal model. Gn,
instead, represents the n-photon drive amplitude.

Given the dissipative nature of the system, and
within the Born and Markov approximations, the sys-
tem’s dynamics is ruled by a (Gorini-Kossakowski-
Sudarshan) Lindblad master equation [58, 59] reading
(hereafter we set ℏ = 1)

∂tρ̂(t) = L[ρ̂(t)] = −i[Ĥn, ρ̂(t)]+γD[â]+ηnD[ân], (2)

with D[Ô] = Ôρ̂(t)Ô† −{Ô†Ô, ρ̂(t)}/2. The first term
in Eq. (2) rules the coherent (unitary) part of the
dynamics, and follows from Eq. (1), upon an appro-
priate rescaling of Um due to the dressing of the cav-
ity eigenmodes by the environment (Lamb-shift-like
terms [4]). The second and the third terms in Eq. (2)
account for the incoherent one- and n-photon losses,
respectively. While one-photon dissipation is an un-
avoidable feature in any photonic resonator, emerging
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from the coupling of the cavity modes with the electro-
magnetic vacuum, n-photon losses naturally emerge
as a byproduct of the engineered processes leading to
n-photon drive. Notice that other m-photon (with
m ≠ 1, n) dissipative processes can be safely ne-
glected, because their emergence is linked to the pres-
ence of engineered m-photon exchanges, and here we
are considering only a single drive acting at each time.
Although the Hamiltonian in Eq. (1) is quite general
and platform-independent, we provide a brief discus-
sion on how such terms can emerge in a superconduct-
ing circuit implementation in Appendix A.

2.1 Liouvillian spectrum, symmetries, and their
breaking

Our analysis will mainly focus on the steady states
ρ̂

(k)
ss , i.e., that density matrices that do not evolve any-

more under the action of the Lindblad master equa-
tion (2), defined by

∂tρ̂
(k)
ss = Lρ̂(k)

ss = 0. (3)

k is an index that labels these steady states and in the
present analysis will be solely tied to the presence of a
strong symmetry (see below). Otherwise, the steady
state is unique and will be simply called ρ̂ss.

DPTs occur when the steady state of an open quan-
tum system can display a nonanalytical behavior as a
function of a generic parameter ζ [10, 23]. As DPTs
cannot occur in a finite-size system, one needs to in-
vestigate the so-called thermodynamic limit, formally
defined as L → ∞. While in a lattice system, one can
think at L as the number of sites, in the case under
consideration scaling L towards the thermodynamic
limit implies a rescaling of the system parameters, as
detailed in Sec. 3.1. The non-analytical change of
the steady-state is then witnessed by the expectation
value of some operator ô as ζ crosses the critical point
ζc. As such, we say that there is a phase transition of
order M if [10]

lim
ζ→ζc

∣∣∣∣ lim
L→∞

∂M

∂ζM
Tr
[
ρ̂(k)

ss (ζ, L)ô
]∣∣∣∣ = +∞. (4)

The n-photon driven Kerr resonator explicitly dis-
plays a Zn symmetry 1. That is, the transformation

â → â ei2πk/n, k = 0, 1, . . . , n, (5)

leaves the master equation (2) unchanged. However,
one can define two types of symmetries in open quan-
tum systems [8, 9]. For the model under consideration,
these are defined according to the way the operator
Ẑn = ei2πâ†â/n acts. One speaks of strong symmetries

1We will use the notation Zn for the symmetry group, Ẑn

for the operator associated with such a symmetry, and Zn for
the corresponding superoperator.

if Ẑn commutes with both the Hamiltonian and the
jump operators, i.e.:

[Ẑn, Ĥ] = [Ẑn, â] = [Ẑn, ân] = 0. (6)

In this case, Zn implies the existence of a correspond-
ing conserved quantity ⟨Ẑn⟩t ≡ Tr[ρ̂(t)Ẑn] = const.
The system will display n independent steady states,
each one characterized by a different value of ⟨Ẑn⟩ss ≡
limt→∞⟨Ẑn⟩t. In our case, such a condition is fulfilled
if and only if γ = 0 (i.e., the photons are never lost
individually). The presence of a strong symmetry im-
plies that there exist two superoperators ZL

n = Ẑn • 1̂

and ZR
n = 1̂ • Ẑn

2, such that

[L, ZL, R
n ] = 0. (7)

A weak symmetry, instead, does not respect the con-
ditions in Eq. (6), and as such the symmetry of the
model does not entail a conserved quantity, meaning
that ⟨Ẑn⟩t changes in time [8, 9]. However, the super-
operator Zn = Ẑn • Ẑn commutes with the Liouvillian,
i.e.

[L, Zn] = 0. (8)

As a consequence of the conditions in
Eqs. (7) and (8), strong and weak symmetries
constrain the structure of the Liouvillian L and of
its spectrum. A compact and convenient way to
discuss symmetries and phase transitions is via the
spectral properties of the Liouvillian [10]. Given any
Liouvillian L, we can introduce its eigenvalues λi and
right eigenoperators ρ̂i, defined via the relation

Lρ̂i = λiρ̂i, (9)

where Re [λi] ≤ 0, ∀i represents the decay rates in-
duced by the dissipative dynamics [4, 61].

2.1.1 DPTs and weak symmetries

The presence of a weak symmetry allows for refining
the discussion on the spectral properties of the system.
The eigenvalues z

(k)
n of Zn are the n roots of the unity

[indeed, (Zn)n = 1], that is z
(k)
n = e2iπk/N for k =

0, 1, . . . n − 1. Since each eigenstate of L must also
be eigenstate of Zn, we can introduce the “quantum
number” k, such that, for a weak Zn symmetry,

Znρ̂
(k)
i = z(k)

n ρ̂
(k)
i , Lρ̂

(k)
i = λ

(k)
i ρ̂

(k)
i . (10)

We sort the eigenvalues in such a way that
|Re [λ0](k)| < |Re [λ1](k)| < . . . < |Re [λn](k)|. The
presence of a symmetry thus implies that the Liouvil-
lian does not mix eigenoperators with different values
of k, and therefore the Liouvillian can be partitioned

2The • notation for superoperators indicates that, if S = Â•Ĉ,
then SB̂ = ÂB̂Ĉ. Details can be found in Ref. [60].
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〈0| 〈3| 〈6| 〈9| 〈12| 〈15|
|0〉

|3〉

|6〉

|9〉

|12〉

|15〉

(a) 〈0| 〈4| 〈8| 〈12| 〈16|
|0〉

|4〉

|8〉

|12〉

|16〉

(b)
〈0| 〈3| 〈6| 〈9| 〈12| 〈15|

|0〉

|3〉

|6〉

|9〉

|12〉

|15〉

(c) 〈0| 〈4| 〈8| 〈12| 〈16|
|0〉

|4〉

|8〉

|12〉

|16〉

(d)

|ρ̂i,j|
0 0.05 0.1 0.15

|ρ̂i,j|
0 0.1 0.2 0.3 0.4

Figure 1: Sketch of the structure of (one of the) steady-state density matrix (matrices) ρ̂
(0)
0 (ρ̂(0,0)

0 ) for a weak (a, b) and a
strong (c, d) Z3 (a,c) and Z4 (b,d) symmetries. White indicates that the matrix element is zero. Comparing the weak and
strong symmetric cases, one notices the effect of one-photon dissipation: the breaking of the strong symmetry by γ results in
a mixing of the populations, and thus in more nonzero elements. Nonetheless, being an incoherent process, no coherences
between different symmetry sectors can be retained, thus resulting in a coarser steady-state structure. Hamiltonian parameters:
(a, c) U1 = 5η3, U2 = 3η3, G3 = 9η3; (b, d) U1 = 5η4, U2 = 3η4, U3 = η4/5, G4 = 20η4. Dissipation: (a) γ = η3, (b)
γ = η4.

(block-diagonalized) into different symmetry sectors
Lk, i.e.,

L =
⊕

k

Lk. (11)

For this reason, the eigenvalues λj
(k) and eigenoper-

ators ρ̂
(k)
j describe the whole physics within each of

the Liouvillian symmetry sectors.
Weak symmetries fix the structure of the eigenop-

erators, which, on the number (Fock) basis, read

ρ̂
(k)
j =

∑
p,q

cp,q |p⟩ ⟨q| , mod(p − q, n) = k, (12)

where mod(p − q, n) indicates the modulo operation.
In other words, ρ̂

(k)
j must be an operator containing

only elements such that (m − n) is either k, or k ± n,
or k ± 2n, etc. For example, for a Z2 symmetry, this
implies (m − n) either even or odd, and therefore the
eigenoperators of the Liouvillian must be character-
ized by a checkerboard-like structure. We show a
typical steady-state structure for a weak Z3 and Z4
symmetries in Figs. 1(a) and (b), respectively. As
also demonstrated in Ref. [9], in the case of a weak
symmetry, ρ̂ss is generally unique and thus must be-
long to the k = 0 symmetry sector of the Liouvillian.
For this reason, for any finite number of photons in
the system, the n-photon-driven Kerr resonator with
weak Zn symmetry will admit a unique steady state
ρ̂ss ∝ ρ̂

(0)
0 .

Furthermore, the discontinuous behavior of the
steady state in Eq. (4) is signaled by the Liouvillian
spectral properties. In the thermodynamic limit, a
second eigenoperator, which is stationary under the
action of the Liouvillian, emerges. Accordingly, an
eigenvalue λ

(k)
m becomes exactly zero, both in its real

and imaginary parts, as a function of the parameter
ζ. In finite-size systems, phase transitions cannot be
observed, and λ

(k)
m ≠ 0 if m ≠ 0 and k ̸= 0. Neverthe-

less, the study of the Liouvillian spectral properties
provides much useful information about the scaling
and nature of the transition [47].

Within this formalism and notation, a first-order
phase transition can be seen as a change in the k = 0
symmetry sector, where the steady state ρ̂ss ∝ ρ̂

(0)
0

and the eigenoperator ρ̂
(0)
1 display level touching (de-

tail can be found in Ref. [10]). More specifically,
λ

(0)
1 = 0 at the critical point, and the minimum in λ

(0)
1

reaches zero as the system scales towards the thermo-
dynamic limit.

A spontaneous symmetry breaking of Zn, instead,
means the emergence of n − 1 states, each one be-
longing to a different k-symmetry sector, that does
not evolve anymore under the action of the Liouvil-
lian. In this case, the phase transition is associated
with λ

(1)
0 , . . . λ

(n−1)
0 becoming and remaining zero in

a whole region where the symmetry is broken. For
instance, in the case of a Z2 breaking, λ

(1)
0 = 0 after

the transition, while for Z3 one has λ
(1)
0 = λ

(2)
0 = 0.

The corresponding states ρ̂
(k)
0 , belonging to different

symmetry sectors with respect to ρ̂
(0)
0 , allow construct-

ing the symmetry-breaking steady states. Indeed,
by choosing the correct superposition of the form
ˆ̃ρj =

∑n−1
k ci,kρ̂

(k)
0 , one can obtain well-defined den-

sity matrices such that Zn ˆ̃ρj ̸= z
(k)
n ˆ̃ρj but L ˆ̃ρj = 0.

2.1.2 DPTs and strong symmetries

In the case of a strong symmetry, any eigenoperator
is characterized by two quantum numbers (kL, kR),
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such that ZL, R
n ρ̂

(kL,kR)
i = e±2iπkL, R/nρ̂

(kL,kR)
i , where,

again, kL, R = 0, 1, . . . n. We deduce that

ρ̂
(kL,kR)
i =

∑
p,q

cp,q |p⟩ ⟨q| ,

mod(p, n) = kL, mod(q, n) = kR.

(13)

Such a structure is shown in Figs. 1(c) and (d) for two
steady states of the (0, 0) symmetry sector for Z3 and
Z4 symmetries.

Notice now that we can define two different types of
eigenoperators: those which describe the evolution of
populations, for which kL = kR, and the coherences,
for which kL ̸= kR. Consequently, the symmetry sec-
tors are LkL,kR , i.e.,

L =
⊕

kL,kR

LkL,kR . (14)

For each of the population sectors, there must exist a
well-defined steady state ρ̂

(k)
ss ∝ ρ̂

(k,k)
0 (trace one, Her-

mitian, and positive semidefinite matrix which does
not evolve under the action of the Liouvillian), while
coherences are always traceless matrices. Accordingly,
the definition of the phase transition and the sponta-
neous symmetry breaking accounts for the presence
of multiple disconnected eigenspaces.

A first-order DPT occurs in the population sectors,
and it is associated with the presence of an eigen-
operator ρ̂

(k,k)
1 whose eigenvalue λ

(k,k)
1 becomes zero

in the thermodynamic limit. A spontaneous symme-
try breaking, instead, implies that the eigenoperators
ρ̂

(kL,kR)
0 acquire an eigenvalue λ

(kL,kR)
1 = 0. Sponta-

neous symmetry breaking thus implies that quantum
superpositions between the states composing ρ̂

(kL)
ss ∝

ρ̂
(kL,kL)
0 and ρ̂

(kR)
ss ∝ ρ̂

(kR,kR)
0 , i.e., two steady states

of different symmetry sectors, can be maintained in-
definitely. Indeed, not only the populations do not
evolve, but also the coherences remain stationary. In
this regard, DPTs accompanied by spontaneous break-
ing of strong symmetries bear a closer resemblance
with Hamiltonian transitions, and this is the reason
for their use in quantum information [28, 30].

3 Semiclassical analysis of the n-
photon driven resonator

The equation of motion for the expectation value
of the observable â evolving under Eq. (2) is

∂t⟨â⟩t = −i

mmax∑
m=1

Um⟨
(
â†)m−1

âm⟩t − inGn⟨
(
â†)n−1⟩t

− γ

2 ⟨â⟩ − nηn

2 ⟨
(
â†)n−1

ân⟩t.

(15)

Due to the presence of non-quadratic terms, these
equations of motion cannot be closed, leading to a
hierarchy of coupled equations.

3.1 The thermodynamic limit and finite-
component phase transitions

We now introduce the dimensionless parameter L
such that

Gn = G̃n/
√

Ln−2, Um = Ũm/Lm−1, ηn = η̃n/Ln−1,
(16)

and we will consider the thermodynamic limit L → ∞.
In such a limit (Gn)αUm and (Gn)βηn are constants
[for α and β such that (−n/2 + 1)α − m + 1 = 0
and (−n/2 + 1)β − n + 1 = 0], but the number of
excitations diverges. Such a rescaling of the system
parameters can be seen as the generalization of the
scaling proposed in Ref. [52] for the n = 1 case. The
semiclassical (coherent state) approximation amounts
to assuming that the state of the resonator is coherent,
i.e.,

ρ̂(t) = |α(t)⟩ ⟨α(t)| , (17)

where â |α(t)⟩ = α(t) |α(t)⟩. Accordingly, the equa-
tion of motion for the rescaled coherent field α̃(t) =
⟨â⟩ /

√
L leads to a generalized driven-dissipative

Gross-Pitaevskii-like equation

∂tα̃ =
[

−i
∑
m

Ũm|α̃|2(m−1) − n

2 η̃n|α̃|2(n−1)

−γ

2

]
α̃ − inG̃n (α̃∗)n−1

.

(18)

Equation Eq. (18) is independent of L and the pho-
ton number scales as N = |α|2 ∝ L confirming that
L → ∞ corresponds to a well defined thermodynamic
limit with an infinite number of photons. The param-
eter L allows introducing the idea of finite-component
phase transitions — where the thermodynamic limit
is replaced by a scaling of the system parameters
[11, 24, 36, 51, 52, 54, 62, 63]. In general, we ex-
pect the semiclassical approximation (17) to be valid
and predictive in the L → ∞ limit, and far from
the critical points where nonlinear processes induc-
ing quantum fluctuations cannot be neglected. This
assumption, corroborated by the previously-cited ex-
tensive literature corpus, bears resemblance to the
mean-field approximation in all-to-all connected two-
level systems, where a similar approximation becomes
valid in the limit of an infinitely large number of sys-
tems [64, 65].

3.2 Analysis of the transition properties

Given the invariance of Eq. (18) to the transforma-
tions in Eq. (16), in the following analysis we will work
with the bare quantities {Um, ηn, Gn}.

Despite the simplification introduced by the semi-
classical approximation, Eq. (18) cannot be yet ana-
lytically solved. At the steady state, i.e., ∂tα = 0,
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Eq. (18) reads(
mmax∑
m=1

UmNm−1 − i
γ + nηnNn−1

2

)
α = nGn (α∗)n−1

.

(19)
In general, Eq. (19) gives rise to multiple solutions
for the photonic field α. The onset of new stable so-
lutions of Eq. (19) can be associated with the emer-
gence of phase transitions. For example, when n = 1
the cubic equation for α (obtained by considering
mmax = 2) gives rise to the well-known S-shaped curve
for the photon number [46] signaling the presence of a
first-order phase transition (between a low- and high-
density state) accompanied by a hysteresis region with
multiple stable solutions in the thermodynamic limit
[11, 24, 52].

If n ≥ 2 Eq. (19) always admits the solution α =
αvac = 0. However, the other solutions α of Eq. (19)
cannot be analytically found. Our strategy is thus to
solve an inverse problem. Being interested in studying
the emergence of criticalities as the driving strength
is varied, by multiplying both sides by their complex
conjugate, one finally obtains the equation

Gn(N) =

√
4 (
∑

m UmNm−1)2 + (γ + nηnNn−1)2

4n2Nn−2 ,

(20)
where we selected the positive branch of the square
root since, up to a phase, one can always choose Gn ∈
R+ 3.

3.2.1 Second-order phase transitions and behavior
around α = 0

For the class of systems under consideration, a
second-order phase transition occurs when the state
changes from N = ⟨â†â⟩ = 0 to N > 0 continuously
as a function of the driving strength Gn [11]. In other
words, if a second-order DPT occurs, semiclassicaly
the critical point must correspond to a solution of
Eq. (20) where

G(c)
n ≡ lim

N→0+
Gn(N). (21)

We note that the limit N → 0+ must be taken since
Eq. (20) is defined only for N ≠ 0. At this specific
value of Gn the system is thus allowed to pass from
the semiclassical solution αvac = 0 to another stable
solution with α ̸= 0.

Notice that Eq. (20) admits at most three possible
behaviors around N = 0 as sketched in Fig. 2:

• The curve Gn intersects the zero with a positive
derivative (red line in Fig. 2). In this case, the
system can undergo a second-order DPT, passing
continuously from the zero solution to a nonzero
one.

3This amounts to a change in the initial condition by sending
â → âeiφ0
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Figure 2: (a) Possible different behaviors of Gn as a function
of N according to Eq. (20). The marker indicates the minima
of the function Gn, while the hatching indicates the unphysical
solutions N < 0. (b) By simply inverting the plot, we can
gain information on N as a function of Gn.

• The curve Gn intersects the zero with a nega-
tive derivative (blue line in Fig. 2). This resem-
bles the S-like shape of bistability in one-photon-
driven systems. Since the photon number should
monotonically increase by increasing the photon
drive, this solution can never be stable and there-
fore the system can only undergo a first-order
DPT.

• The curve Gn never intersect the zero for a finite
value of N (green line in Fig. 2). Also in this case
the system can never experience a second-order
DPT.

We conclude that a necessary (but not sufficient)
condition to observe second-order DPTs, according to
the semiclassical theory, is

(i) 0 < G(c)
n < ∞. (22a)

(ii) ∂Gn(N)
∂N

∣∣∣∣
Gn=G

(c)
n

≥ 0. (22b)

Notice that, in the case of a vertical-tangent point,
higher-order derivatives need to be computed.
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3.2.2 Universal features and a semiclassical no-go theo-
rem

From the remarks in the previous section and us-
ing Eqs. (22a) and (22b), we can already draw some
important conclusions about the nature of DPTs in
this class of systems. In particular, we formulate the
following no-go theorem.

Semiclassical no-go theorem. Consider a n-
photon driven-dissipative resonator, with nonvanishing
Kerr nonlinearity, governed by the Lindbladian (2).
Then, according to the semiclassical equations of mo-
tion: (a) a second-order DPT never occurs for odd n;
(b) If γ ̸= 0 (weak symmetry), n = 2 is the only case
with a second-order DPT; (c) If γ = 0, and U1 ̸= 0,
again n = 2 is the only cases where a second-order
DPT can emerge; (d) A DPT for n = 4 can be found
only if U1 = γ = 0. (e) For U2 ̸= 0, no second-order
DPTs can occur if n > 4.

Proof. The semiclassical solutions of the stationary
Gross-Pitaevskii equation (19) must satisfy Eq. (20).
The behaviour of this function around N = 0+ for
U1 ̸= 0 or γ ̸= 0 is given by

Gn(N) ≃ 1
2n

N
2−n

2

√
4U2

1 + γ2 [1 + O(N)] . (23)

The case where U1, γ = 0, the expansion leads to

Gn(N) ≃ |U2|
n

N
4−n

2 [1 + O(N)] . (24)

To prove (a), we consider odd-n, and from Eq. (23)
we get

G(c)
n =

{
0 if n = 1
∞ if n = 3, 5, . . .

(25)

and therefore the condition (22a) for the occurrence
of a second-order DPT is never satisfied. If U1, γ = 0,
instead, Eq. (24) gives

G(c)
n =

{
0 if n = 1, 3
∞ if n = 5, 7, . . .

. (26)

We have therefore proven the statement (a).
Let us now consider the case of even n. From

Eq. (23) we find that for U1 ≠ 0 or γ ̸= 0 a sec-
ond order DPT is possible only for n = 2, with a
critical point given by

G
(c)
2 =

√
4U2

1 + γ2

4 . (27)

Higher n results in G
(c)
n = ∞. Condition (22b) reads

∂G2(N)
∂N

∣∣∣∣
G2=G

(c)
2

= U1U2 + 4γη2

2
√

4U2
1 + γ2

(28)

and thus it can be satisfied for an appropriate choice
of the parameters. These equations proves (b) and (c).
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Figure 3: In a system with n = 6 photon drive, analysis of
the minimum possible jump in the photon number ∆n as
a function of U2 and U3. This is defined in the main text
as the stable semiclassical state with the smallest nonzero
amplitude for all values of G6. Parameters: γ = 0, U1 = 0,
and η4/U4 = 0.1.

Let us now assume U1 = γ = 0. From Eq. (24)
follows that, for n = 4, a second-order DPT can can
place also for

G
(c)
4 = |U2|

4 . (29)

Therefore, condition (i) in Eq. (22a) is satisfied in the
case U1 = γ = 0. As for condition (ii) in Eq. (22b),
we have

∂G4(N)
∂N

∣∣∣∣
G4=G

(c)
4

= U3

4 Sign (U2) , (30)

which can be satisfied choosing U2 and U3 with the
same sign. Finally, one can easily show that for n >
4, Eq. (24) gives Gn(N) = ∞, demonstrating the
impossibility of a DPT, thus proving (e). ■

Before dealing with the analysis of the full quan-
tum results, let us remark that γ = 0 is impossible
to achieve in actual realizations. For many practical
purposes, however, one can consider system “sizes” L
where, to a reasonable approximation, the role of γ
can be neglected, and thus the approximation γ = 0
faithfully recovers the results of finite-time experi-
ments. Furthermore, the detuning terms can be easily
manipulated, therefore making it possible to approx-
imately fulfill the condition γ = U1 = 0 necessary to
witness the second-order DPT for the n = 4 case.

We also notice that the mechanism enabling second-
order DPTs for n = 4 (i.e., the fact that U2 and U3
have the same sign) is the same behavior displayed
by the two-photon Kerr resonator, where this role is
played by the detuning U1 and the two-photon inter-
action potential U2 in Eq. (28). Finally, we stress that,
although second-order DPTs could, in principle, also
emerge for even n > 4, these would require setting
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Figure 4: Multistability according to the semiclassical analysis
in a four-photon driven resonator (n = 4), where we fixed
U1 = 10γ, U2 = −25γ, U3 = 3γ, η4 = 0.1γ.

U2 = 0, which, contrarily to detuning U1, cannot be
easily manipulated.

To demonstrate this fact, we compute ∆n, defined
as the minimal possible jump between the vacuum and
a non-zero stable semiclassical solution, as a function
of both U2 and U3. To find that state, one spans
all values of Gn and finds the stable state with the
minimal number of photons. The results, reported in
Fig. 3 for n = 6, show that for all nonzero U2, the
system always displays a finite jump associated with
a first-order DPT, confirming that the system has no
second-order transition.

3.2.3 Stability of the vacuum across a first-order DPT
and convergence radius of the semiclassical solution

In this section, we show that, within the semiclassi-
cal picture, the solution αvac = 0 is always asymptot-
ically stable for n > 2 if γ ̸= 0 (i.e., in the presence of
a first-order DPT).

Consider α = αvac + δα, where δα ∈ C is a small
perturbation (|δα| ≪ 1) around the vacuum solution.
Plugging the above parametrization into Eq. (18), and
expanding it at the first order in δα, we get

∂t(δα⃗) = M · δα⃗, (31)

where δα⃗ = (Re[δα], Im[δα])⊺ and

M =
(

−γ/2 −2δn,2G2 + U1
−2δn,2G2 − U1 −γ/2

)
(32)

is the so-called stability matrix. The solutions of
Eq. (31) are given by δα⃗(t) = exp(−λ±t)δα⃗(0), where
λ± = −γ/2 ±

√
4δn,2(G2)2 − U2

1 are the eigenvalues
of M. Thus, it is straightforward to conclude that for
n > 2 the vacuum solution αvac = 0 is always stable
at a semiclassical level for finite single-photon losses
since

Re[λ±] = −γ

2 < 0. (33)

For n = 2 the vacuum gets unstable when

Re
[√

4(G2)2 − U2
1

]
>

γ

2 , (34)

which implies Re[λ+] > 0. Equation (34) has signif-
icant consequences since it implies that, contrary to
the n = 1, 2 case, the semiclassical dynamics never
triggers a transition from the vacuum to high-density
solutions if γ ̸= 0. However, as we will see in Secs. 4
and 5, quantum fluctuation in finite-size systems can
make the vacuum solution unstable and allow for the
onset of phase transitions.

Finally, we note that in the case of strong symmetry
γ = 0, the vacuum is marginally stable, and higher-
order perturbation theory is needed to assess the sta-
bility of the vacuum.

This stability analysis evaluates the stability of the
vacuum solution to a weak perturbation (within the
linear approximation) but provides no information
about the effect of non-infinitesimal perturbations of
the vacuum. To this extent, one can perform an ex-
plicit numerical study of Eq. (18) considering a set
of initial states α(t = 0) = r eiθ (with r ∈ R+ and
θ ∈ [0, 2π]), where we scan both r and θ. One then
studies the evolution of α(t), which can either con-
verge back to the vacuum or reach one of the other
stable solutions. One then defines the convergence
radius rmax as the maximal value of the radius r for
which the initial solution converges to the vacuum for
all the possible values of the phase θ (see Sec.4.2 for
an explicit example).

3.2.4 Multistability of solutions with different number
of photons

The solution around N = 0 predicts either a first-
or a second-order phase transition describing the pas-
sage of the system from the vacuum to a nonzero pop-
ulation phase. This analysis does not predict the be-
havior far from N = 0, and nothing prevents several
Hamiltonian terms from competing with each other,
thus resulting in multiple stable solutions. In particu-
lar, the presence of this multistability would imply an
overlap of “S-like” curves of the semiclassical solution,
so that for the same drive intensity, there are multiple
solutions with different photon numbers.

To understand which mechanism can enable multi-
stability, let us consider again Eq. (20). In the semi-
classical formalism, multistability implies the pres-
ence of multiple solutions at the semiclassical level
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Figure 5: Onset of a first-order phase transition for increasing
L (see legend) with symmetry breaking in the three-photon
Kerr resonator. Panel (a): mean number of photons in
the steady state ⟨â†â⟩, renormalized by scaling parameter
L. Panel (b): Real part of λ

(0)
1 , i.e., the Liouvillian gap

in the same symmetry sector as the steady state, inducing
the first-order transition. The three vertical lines indicate
the scaling values studied in Fig. 8. Panel (c): Real part of
λ

(1)
0 , i.e., the Liovillian eigenvalue signaling the spontaneous

symmetry breaking. Parameters: U1/γ = −20, U2/γ = 10,
η3/γ = 1. The cutoff Nc, also used in Figs. 6 and 8, is
chosen to ensure that, between the simulation with Nc and
Nc + 10, all quantities differ by less than 1%. The cutoffs
are: Nc = 30 for L = 1; Nc = 95 for L = 5; Nc = 140 for
for L = 10; Nc = 190 for L = 15.

with different photon numbers [c.f. Fig. 4 (b)]. This
translates in the presence of multiple local minima (or
maxima) of the function Gn(N), as shown in Fig. 4 (a).
Therefore, one can study the function

∂Gn(N)
∂N

= 0. (35)

The number of maxima and minima signals the pres-
ence of multiple semiclassical solutions. And following
Descartes’ rule of signs – i.e., the maximal number of

positive roots of a polynomial is the number of sign
changes between consecutive coefficients – we deduce
that a necessary condition to have multiple solutions
is the presence of alternating signs between the var-
ious Un. Physically speaking, the underlying mecha-
nism is quite straightforward: different Un terms can
compete with each other in determining the energy of
one photon in the system, while drive and dissipation
favor the solution with more or fewer photons. Since
the relevance of each interaction term can change
in different occupation regimes, several solutions can
emerge. The stability of the semiclassical solutions
in the presence of quantum fluctuations needs to be
numerically assessed.

4 Three-photon Kerr resonator
Having discussed the general properties of DPTs,

we turn now to specific examples to demonstrate the
validity of the semiclassical analysis and show the
quantum properties around criticality. Throughout
the next two sections, we will diagonalize the Liouvil-
lian superoperator. We take full advantage of the sys-
tem’s symmetry, as detailed in Appendix B, to reduce
the computational complexity and enhance the preci-
sion of the results. For the most numerically demand-
ing simulations, we resort to the recently-developed
Arnoldi-Lindblad method [66], in conjunction with
the algorithm detailed in Appendix B.

Here, we consider the three-photon-driven Kerr res-
onator governed by the master equation

∂tρ̂(t) = −i
[
Ĥ3, ρ̂(t)

]
+ γD[â] + η3D[â3] (36)

with

Ĥ3 = U1â†â + U2

2
(
â†)2

â2 + G3

[
â3 +

(
â†)3]

. (37)

We focus on the γ ̸= 0 case, where the system displays
a Z3 weak symmetry. According to the semiclassi-
cal analysis, we expect a first-order dissipative phase
transition accompanied by the spontaneous breaking
of the weak Z3 symmetry.

4.1 Semiclassical vs quantum solution
First, we analyze the photon number as a function

of the driving strength G3. In Fig. 5, we show the re-
sults of the full quantum analysis (colored lines) and
compare them to the prediction of the semiclassical
analysis (dashed black line). For a weak drive G3, the
system is in the vacuum, and ρ̂ss ≃ |0⟩ ⟨0|. Increasing
the drive intensity, the system’s photon number devi-
ates from the vacuum and approaches the high-photon
number branch predicted by the semiclassical theory.
In this symmetry-broken phase, the stationary state
is well-approximated by a statistical mixture of three
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(0)
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parameters in Fig. 5. The solid black line is the result of
full quantum simulations. The semiclassical predictions are
the dotted light blue curve (few photon numbers, stable),
the dashed red curve (high-photon number, stable), and the
dashed black curve (unstable solution). The results of the
eigendecomposition are plotted with solid blue and dashed
red lines.

coherent states, i.e.,

ρ̂ss ≃ |α1⟩ ⟨α1| + |α2⟩ ⟨α2| + |α3⟩ ⟨α3|
3 , (38)

where |α1,2,3⟩ are coherent states with the same num-
ber of photons and a relative phase difference of
±2π/3, i.e.,

αj+1 = αj ei 2π
3 . (39)

The change in the steady state population becomes
more and more abrupt as we increase the parameters
L, demonstrating that, indeed, the phase transition is
of the first order.

4.2 Analysis of the first-order transition
To confirm the presence of a first-order phase tran-

sition, we plot in Fig. 5(b) the Liouvillian eigenvalue
λ

(0)
1 associated with the slowest relaxation rate in the

steady-state symmetry sector. This eigenvalue signals
hysteresis and critical slowing down, and the fact that
it tends to zero in the thermodynamic limit proves the
presence of a first-order DPT [10].

We then investigate the properties of the eigenop-
erator ρ̂

(0)
1 associated with such a state. According to

Ref. [10], in the critical region one can use the eigen-
decomposition of ρ̂

(0)
1 to recast

ρ̂
(0)
1 ≃ ρ̂+

1 − ρ̂−
1 , (40)

where ρ̂±
1 represent the density matrices of the

metastable states. As such, we expect that, in the
thermodynamic limit, ρ̂±

1 recover the two stable solu-
tions of the semiclassical theory. We show the eigen-
decomposition in Fig. 6. We indeed find that the semi-
classical approximation qualitatively recovers the re-
sults of the eigendecomposition.

2 4 6 8 10

G3

0.4

0.6

0.8

1.0

1.2

r m
ax

Figure 7: As a function of the drive amplitude, the conver-
gence radius rmax, numerically computed according to the
procedure in Sec. 3.2.3. The dashed vertical line indicates
where the high-photon solution becomes stable. Below this
value, the convergence radius becomes infinite. Parameters
as in Fig. 5.

As discussed in Sec. 3.2.3, the semiclassical analysis
predicts the presence of a stable vacuum in the whole
symmetry-broken region. This is also shown in Fig. 7,
where we plot the convergence radius rmax of the semi-
classical approximation. rmax remains finite for all val-
ues of the drive, despite it decreasing at larger drives.
Nonetheless, this decreases as a function of the pump
amplitude G3. Within this picture, it is the presence
of rare and collective quantum fluctuations that trig-
ger the jump between the otherwise semiclassically
stable solutions (faithfully representing the quantum
state at both sides of the first-order transition). This
phenomenology is typical of first-order DPTs (see, e.g.,
Refs.[25, 47]).

This analysis is confirmed both by the eigendecom-
position in Fig. 6 (the vacuum remains long-lived even
far from the transition point) and from the spectral
analysis in Fig. 5(b). Considering larger values of L
results in slower timescales. We confirm the scaling
towards the thermodynamic limit of the Liouvillian
gap λ

(0)
1 in Fig. 8. We consider a point before the

transition (red line), at the minimum of the gap (blue
line), and after the transition (green line). The same
three lines correspond to the vertical lines in Fig. 5(b).
In all the cases, after an initial transient, we see an
exponential closure of the gap as a function of L. The
green curve confirms the vacuum metastability pre-
dicted by the semiclassical theory.

4.3 Spontaneous symmetry breaking
The spontaneous symmetry breaking implies that,

for strong enough pumping, each of the state |αi⟩ ⟨αi|
in Eq. (38) becomes a steady state of the system, since
they are not eigenstates of Z3 [10]. We confirm this
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picture in Fig. 5(c), where we show that also λ
(1)
0 be-

comes zero. As expected, we obtain an identical result
for λ

(2)
0 (not shown). This implies that the system’s

coherent state has become metastable.

5 Four-photon Kerr resonator
Here, we consider the four-photon driven-

dissipative Kerr resonator, reading

∂tρ̂(t) = −i
[
Ĥ4, ρ̂(t)

]
+ γD[â] + η4D[â4] (41)

with

Ĥ4 = U1â†â + U2

2
(
â†)2

â2 + U3

3
(
â†)3

â3

+ G4

[
â4 +

(
â†)4]

.
(42)

5.1 Strong symmetry and second-order phase
transition

We start by considering the strong symmetric case
γ = 0 with U1 = 0. For this set of parameters, the
semiclassical analysis predicts a second-order phase
transition associated with the spontaneous breaking
of a Z4 strong symmetry. We analyze it in Fig. 9. We
recall that since the system has a strong Z4 symme-
try, the number of Liouvillian sectors is 4 × 4, being
characterized by the two quantum numbers kL and
kR. The 4 sectors with kL = kR describe the evolu-
tion of the populations, while the remaining 12 with
kL ̸= kR describe the evolution of the coherences.

First, we consider the re-scaled photon number of
the steady state for each of the symmetry sectors (j, j)
with j ∈ [0, 3] and increase the thermodynamic param-
eter L. Calling ρ̂

(j)
ss ∝ ρ̂

(j,j,)
0 the steady state in each

symmetry sector, ⟨â†â⟩j = Tr
[
â†âρ̂j

ss
]

are plotted in
Figs. 9(a-d). For low drive amplitudes, the system is
in the Zn symmetric vacuum. Indeed, the states need

to respect the strong symmetry condition in Eq. (13),
and thus

ρ̂(j)
ss = |vacj⟩ ⟨vacj | = |j⟩ ⟨j| , (43)

where j labels the symmetry sector and |j⟩ is the Fock
state with j photons. For large drive, instead, the
system transition towards

ρ̂(j)
ss ≃ |Kj⟩ ⟨Kj | (44)

where the Schrödinger cats |Ki⟩ are

|Kj⟩ = 1
N

3∑
n=0

eiπjn/2 |αn⟩ , (45)

where |αn⟩ are coherent states such that αn = eiπn/2α
and N is a normalization factor. Increasing the value
of L towards the thermodynamic limit, we observe
that the passage between the Zn vacua and the cat
states becomes sharper and sharper, but remains con-
tinuous. This analysis corroborates the semiclassical
one, and by appropriately taking into account the sys-
tem’s symmetry, we observe a second-order DPT. To
further demonstrate that, indeed, the transition is of
the second and not of the first order, we plot λ

(j,j)
1

in Figs. 9(e-h), i.e., the Liouvillian gap of the (j, j)
symmetry sector. We observe no closure of the Liou-
villian gap, indicating that no critical slowing down
or hysteresis occurs for the Liouvillian populations.

Finally, we plot the smallest Liouvillian eigenvalue
λ

(j,j+1)
0 for the sectors (j, j + 1) (where j + 1 = 0 if

j = 3) in Figs. 9(i-l). These represent the decay rate
of coherences between the sector j and j +1, and their
closure indicates the possibility of retaining everlast-
ing coherences. In this case, we observe that, after
the critical point, these eigenvalues progressively be-
come smaller, indicating that the system undergoes
a second-order phase transition. We obtain similar
results for the other (j, k) sectors with j ̸= k (not
shown). This is associated with a spontaneous break-
ing of the strong Z4 symmetry, because it results in

ρ̂ ∝ (|Kj⟩ + |Kk⟩) (⟨Kj | + ⟨Kk|) ,

Lρ̂ = 0 but ZL,R
4 ρ̂ ̸= zL,R

4 ρ̂.
(46)

5.2 Weak symmetry and multistability
We now consider a weakly symmetric case in the

presence of detuning U1 and with competing terms
giving rise to multistability according to the semi-
classical solution. First, in Fig. 10(a), we compare
the results of the semiclassical analysis with those of
the full quantum simulation. We find that, although
the semiclassical solution has three stable solutions,
the full quantum simulation is characterized by a sin-
gle first-order DPT, from the vacuum to the highest-
populated manifold. Indeed, if we analyze the Liou-
villian gap λ

(0)
1 in Fig. 10(b) we see the closure of the
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Figure 9: Study of the strongly-symmetric four-photon Kerr resonator, and the onset of a second-order dissipative phase
transition. For different values of the thermodynamic rescaling parameter L: (a-d) photon number in the (j, j) symmetry
sector; (e-h) Liouvillian gap in the (j, j) symmetry sector; (e-h) smallest Liouvillian eigenvalue in the (j, j + 1) symmetry sector.
Parameters: γ = U1 = 0, U2 = 10η4, U3 = η4. The cutoff Nc is chosen to ensure that, between the simulation with Nc and
Nc + 10, all quantities differ by less than 1%. The cutoffs are: Nc = 45 for L = 1; Nc = 75 for L = 2; Nc = 150 for for
L = 5; Nc = 290 for L = 10.

Liouvillian gap associated with a first-order DPT. If,
however, we also consider the second eigenvalue λ

(0)
2

as in Fig. 10(c), we see that a second slow timescale
emerges. That is, despite the presence of a single
phase transition, the dynamics of the population of
the system are characterized by two slow timescales.

We corroborate this phenomenon by analyzing the
symmetry sectors responsible for spontaneous symme-
try breaking. In Fig. 10(c), we plot λ

(1)
0 showing that,

indeed, this phenomenon is accompanied by the break-
ing of the weak Z4 symmetry. Noticeably, the spon-
taneous symmetry breaking takes place before the oc-
currence of the first-order transition. Furthermore, we
also observe a second slow timescale for this symmetry
sector, i.e., λ

(1)
1 in Fig. 10(d). These slow timescales

represent the fact that there exist multiple symmetry-
broken states, and there is a slow rate at which the

system switches between them. We observe similar
results for the other symmetry sectors (not shown).

The picture we derive is one in which, although
there are only two real steady states of the dynamics,
either the vacuum or the one at large photon number,
there exists a third metastable state to which the sys-
tem can be initialized. Such a state is characterized
by a broken symmetry, but it cannot be reached by
quantum fluctuation alone.

To further demonstrate this picture, in Fig. 11(a)
we use the eigendecomposition to express the eigenop-
erators associated with the slowest eigenvalues as

ρ̂
(0)
1 = ρ̂

(0),+
1 − ρ̂

(0),−
1 , ρ̂

(0)
2 = ρ̂

(0),+
2 − ρ̂

(0),−
2 . (47)

As one can see, these metastables density matrices
recover the results of the semiclassical analysis, and
the region in which there is a closure of these Liouvil-
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Figure 10: Analysis of the classically multistable system. (a) Photon number as a function of the drive for different values
of the thermodynamic scaling parameter L. The black dashed line represents the semiclassical solution. (b) Liouvillian gap
and (c) second Liouvillian eigenvalue in the k = 0 sector, demonstrating the presence of two slow timescales. (d) Smallest (e)
and second smallest Liouvillian eigenvalues in the k = 1 sector, demonstrating the presence of SSB and of a slow timescale.
Parameters: U1 = 10γ, U2/γ = −25γ, U3 = 3γ, η4 = 0.1γ. The cutoff Nc, also used in Fig. 11, is chosen to ensure that,
between the simulation with Nc and Nc + 10, all quantities differ by less than 1%. The cutoffs are: Nc = 40 for L = 1;
Nc = 60 for L = 2; Nc = 100 for L = 5; Nc = 190 for L = 10; Nc = 280 for L = 15; Nc = 320 for L = 20.

lian eigenvalues roughly corresponds to the region of
multistability according to the semiclassical analysis.

Overall, the system displays 9 metastable coherent-
like states, approximated by |αvac⟩, |αloweiϕj ⟩, and
|αhigheiϕj ⟩, with |αvac| < |αlow| < |αhigh| and ϕj ∈
jπ/4.

6 Conclusions and outlook
In this work, we explored the critical properties

of n-photon driven-dissipative nonlinear quantum res-
onators. We found that the symmetries of the model,
fixed by driving and dissipation, determine the nature
of the phase transitions in the steady state. We char-
acterize such criticalities providing general results for
this class of models.

We attack the problem using a semiclassical ap-
proach valid in a well-defined thermodynamic limit
with an infinite number of excitations. In such a limit
the state of the system approaches a coherent state
and quantum fluctuations are suppressed leading to
a generalized version of the driven-dissipative Gross-
Pitaevskii equation. Studying its stationary proper-
ties we formulate and prove a no-go theorem stating
that no second-order phase transitions are possible
when n is odd, while, for even n, second-order transi-

tions can take place only for n = 2 and n = 4.

We then perform a full quantum analysis of the
three- and four-photon-driven Kerr resonators. We
find that quantum fluctuations trigger the transition
between semiclassical solutions in the thermodynamic
limit validating the results obtained in the semiclassi-
cal limit. While the semiclassical approximation has
been proved to be reliable for n = 1, 2, for higher n
there are no strong arguments supporting its valid-
ity. Indeed the systematic inclusion of small quantum
fluctuation on top of the mean-field semiclassical solu-
tion can be obtained via truncated Wigner methods
[67, 68] and Gaussian expansions [49]. This is not the
case for n > 2 because the drive and n-photon dissi-
pation can, in principle, introduce non-Gaussian cor-
relation above the coherent-state solution [53]. The
emergence of these dissipative phase transitions is un-
derstood and characterized within the spectral theory
of Liouvillian highlighting the role of weak and strong
symmetries.

These results could also be relevant in the field of
quantum technologies and quantum information en-
coding. Symmetry breaking in second-order DPTs
has been demonstrated to be a resource to improve the
sensitivity of quantum measurement protocols [34, 38].
Our work proves that such kind of enhancement can
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Figure 11: Eigendecomposition and comparison with the
semiclassical solution. (a) Photon number of the full quan-
tum solution (black solid line) compared to the semiclassical
solution (black dashed line) and the results of the eigende-
composition [red and blue markers correspond to the red and
blue curves in panel (b)]. (b) The two smallest Liouvillian
eigenvalues, whose behavior across the transition has been
reconstructed using the continuity of the associated eigenop-
erators. Parameters as in Fig. 10 for L = 20.

only be attained for n = 2 or n = 4. Further-
more, our results may pose constraints for the ex-
ploitation of nonlinear-driven resonators for the en-
coding of bosonic codes. As it has been recently pro-
posed [28, 30], detuning and critical phenomena may
play a key role in storing quantum information. The
metastability of the vacuum may also prove an ob-
stacle to a rapid and reliable initialization of bosonic
qubits.

This work paves the way for future intriguing re-
search directions. Among them, we mention the study
of the dynamical properties of these systems in con-
nection with quantum trajectories approaches, and
the emergence of chaotic behavior in highly nonlinear
quantum resonators.
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A Interaction, nonlinearities, and n-
photon drives in superconducting circuits

Let us consider a standard LC resonator character-
ized by the Hamiltonian:

Ĥcav = ωâ†â, (48)

where ω is the resonator frequency.
Non-quadratic (i.e., interaction) terms can emerge

by considering the action of nonlinear elements. For
instance, nonlinearity can be obtained by quantizing
the flux in Josephson junctions potentials of the form

EJ cos
(

ϕ

ϕ0

)
≃ EJ

(
1 − ϕ2

2ϕ2
0

+ ϕ4

24ϕ4
0

− ϕ6

720ϕ6
0

)
+. . . ,

(49)
where ϕ is the flux coordinate of the circuit at the
junction and ϕ0 is the magnetic flux quantum. In
most implementations, the expansion in Eq. (49) can
be stopped at the ϕ4 order. If the Josephson junction
belongs to a single resonator, by substituting ϕ/ϕ0 ∝
â + â†, and discarding counter-rotating terms, which
are out of resonance, one obtains the Kerr resonator
Hamiltonian, reading

ĤKerr = Ũ1â†â + U2

2
(
â†)2 (â)2

. (50)

In n-photon-driven systems, photons are coherently
exchanged between the resonator and a set of exter-
nal fields, n at the time. While single-photon drive
(i.e., of the form â + â†) can emerge by, e.g., capaci-
tive coupling an incoming wave-guide with the cav-
ity, higher order drive requires to be mediated by
nonlinear elements. For instance, such n-drive terms
can be derived from the expansion in Eq. (49) if the
Josephson junction is shared by several modes, so that
ϕ =

∑
k ϕk, where ϕk represents the flux coordinate

of each one of the modes. For instance, two-photon
drives can be achieved by standard four-wave mixing,
rewriting ϕ = ϕa + ϕb + ϕc, where ϕa ∝ â + â† is
the field within the resonator, and ϕb ∝ b̂ + b̂† and
ϕc ∝ ĉ + ĉ† are auxiliary modes. If the mode b (c)
is driven and evolves on a timescale much faster than
the typical time scales of the a mode, one can substi-
tute the operators b̂ (ĉ) with a c-number oscillating at
the driving frequency ωb (ωc) via an adiabatic elimi-
nation, reading b̂ → beiωbt (ĉ → ceiωct ). All in all,
discarding again out-of-resonance terms, the Hamilto-
nian for the resonator resulting from the fourth-order
expansion of the potential cos(ϕ) would result in a
nonlinear Hamiltonian ĤNL, reading

ĤNL = ĤKerr + G2

[
â2e2iωpt +

(
â†)2

e−2iωpt
]

. (51)
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By passing in the frame rotating at the drive fre-
quency and re-absorbing the contribution to the en-
ergy frequency in the term U1 = Ũ1 − ωp = −∆, the
Hamiltonian finally reads

Ĥn=2 = U1â†â+ U2

2
(
â†)2

â2 +G2

[
â2 +

(
â†)2]

. (52)

Through similar procedures, high-order expansion
of nonlinear terms (k-wave mixing with k > n), can
result (in principle) in n-photon drives. By including
such terms, one needs to include also the correspond-
ing nonlinearities. As detailed in the main text, such
nonlinearities can play a fundamental role in deter-
mining the nature of the transition.

B An efficient algorithm for block-
diagonalizing the Liouvillian in the pres-
ence of Zn symmetries

We introduce here a simple algorithm to block diag-
onalize system displaying a Zn symmetry. Although
we describe it for a weakly symmetric case, its exten-
sion to a strong symmetry is straightforward.

The Liouvillian admits an abstract definition of its
spectrum via Eq. (9). To numerically obtain the eigen-
values and eigenoperators one needs to explicit the
matrix form of L. For a finite-dimensional Hilbert
space, one can construct such a matrix via

L = −i
(

Ĥ ⊗ 1̂− 1̂⊗ ĤT
)

+
3∑

j=1

(
L̂j ⊗ L̂∗

j −
L̂†

jL̂j ⊗ 1̂+ 1̂⊗ L̂T
j L̂∗

j

2

)
,

(53)

where L̂T
j represents the transpose of L̂j . The spec-

trum of the Liouvillian can then be directly obtained
by diagonalizing the matrix representation of L. For
infinite dimensional spaces (i.e., those of bosonic sys-
tems), one needs to introduce a cutoff in the Hilbert
space Nc. That is, one projects the true infinite-
dimensional Hamiltonian and jump operators onto the
space spanned by the Fock states |n⟩ for n ∈ [0, Nc),
and assumes that the matrix elements of any operator
for n ∈ [Nc, ∞) are zero.

Since [Zn, L] = 0, all the ρ̂i are eigenoperators of
ZN . And since Zn admits n different eigenvalues, it
is always possible to block-diagonalize the Liouvillian
into (at least) n smaller blocks. Each block Ln de-
scribes completely the physics of each symmetry sec-
tor of the full Liouvillian L. Normally, to put the
Liouvillian in its block-diagonal form one would con-
struct the basis of a symmetry sector determining the
eigenoperators ζ̂i of Zn and project the Liouvillian
onto the correct symmetry sector obtaining the ma-
trix elements

Li,j = Tr
[
ζ̂†

i

(
Lζ̂j

)]
. (54)

Even if, in principle, correct, this process is extremely
slow and inefficient since the Liouvillian is a very
sparse and large matrix.

Instead of applying Eq. (54), we notice that the
Fock basis is already the basis of eigenstates of Zn, as
it follows from Eq. (12). That is, when using Eq. (53),
we are using the correct basis to obtain the block-
diagonal form of the Liouvillian, simply we are consid-
ering the basis in the wrong order. Hence, the Liouvil-
lian is a permutation of rows and columns away from
being block diagonal, and the algorithm that we seek
is one that efficiently finds the correct permutation
matrix P which transforms L into its block diagonal
form, whenever such a transformation is possible.

The main idea is to model the block diagonalization
problem as an equivalent graph-theoretic problem.

1. L is written as the adjacency matrix of an undi-
rected graph;

2. Each block in the block diagonal form is a sin-
gle connected component in the graph; thus, the
problem boils down to finding each connected
component in the graph.

3. We then use the Breadth First/Depth First
search algorithm consecutively to obtain the per-
mutation matrices and the indices of the blocks.
The time to perform this task (i.e., its compu-
tational complexity) is linear in the number of
nodes in the graph.

4. We use the permutation matrix to produce each
block Li such that L = P diag{L1 . . . Ln}PT.

The key factor in the numerical speedup comes from
the fact that obtaining the permutation matrix P re-
quires a number of operations linear in the number of
nonzero elements of the Liouvillian, which is a very
sparse matrix [c.f. Eq. (53)].
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