Minimum Trotterization Formulas for a Time-Dependent Hamiltonian

Tatsuhiko N. Ikeda1,2,3, Asir Abrar4, Isaac L. Chuang5, and Sho Sugiura4,6

1RIKEN Center for Quantum Computing, Wako, Saitama 351-0198, Japan
2Department of Physics, Boston University, Boston, Massachusetts 02215, USA
3Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
4Physics and Informatics Laboratory, NTT Research, Inc.,940 Stewart Dr., Sunnyvale, California, 94085, USA
5Department of Physics, Department of Electrical Engineering and Computer Science, and Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


When a time propagator $e^{\delta t A}$ for duration $\delta t$ consists of two noncommuting parts $A=X+Y$, Trotterization approximately decomposes the propagator into a product of exponentials of $X$ and $Y$. Various Trotterization formulas have been utilized in quantum and classical computers, but much less is known for the Trotterization with the time-dependent generator $A(t)$. Here, for $A(t)$ given by the sum of two operators $X$ and $Y$ with time-dependent coefficients $A(t) = x(t) X + y(t) Y$, we develop a systematic approach to derive high-order Trotterization formulas with minimum possible exponentials. In particular, we obtain fourth-order and sixth-order Trotterization formulas involving seven and fifteen exponentials, respectively, which are no more than those for time-independent generators. We also construct another fourth-order formula consisting of nine exponentials having a smaller error coefficient. Finally, we numerically benchmark the fourth-order formulas in a Hamiltonian simulation for a quantum Ising chain, showing that the 9-exponential formula accompanies smaller errors per local quantum gate than the well-known Suzuki formula.

► BibTeX data

► References

[1] Dong An, Di Fang, and Lin Lin. Time-dependent unbounded Hamiltonian simulation with vector norm scaling. Quantum, 5: 459, 2021. https:/​/​​10.22331/​q-2021-05-26-459.

[2] S. Blanes and P.C. Moan. Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. Journal of Computational and Applied Mathematics, 142 (2): 313–330, 2002. https:/​/​​10.1016/​S0377-0427(01)00492-7.

[3] S. Blanes, F. Casas, J.A. Oteo, and J. Ros. The Magnus expansion and some of its applications. Physics Reports, 470 (5): 151–238, 2009. https:/​/​​10.1016/​j.physrep.2008.11.001.

[4] Sergey Bravyi, David P. DiVincenzo, and Daniel Loss. Schrieffer–Wolff transformation for quantum many-body systems. Annals of Physics, 326 (10): 2793–2826, 2011. https:/​/​​10.1016/​j.aop.2011.06.004.

[5] Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. Theory of Trotter Error with Commutator Scaling. Phys. Rev. X, 11: 011020, 2021. https:/​/​​10.1103/​PhysRevX.11.011020.

[6] Etienne Forest and Ronald D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena, 43 (1): 105–117, 1990. https:/​/​​10.1016/​0167-2789(90)90019-L.

[7] Naomichi Hatano and Masuo Suzuki. Finding Exponential Product Formulas of Higher Orders, pages 37–68. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-31515-5. https:/​/​​10.1007/​11526216_2.

[8] J Huyghebaert and H De Raedt. Product formula methods for time-dependent Schrodinger problems. Journal of Physics A: Mathematical and General, 23 (24): 5777, 1990. https:/​/​​10.1088/​0305-4470/​23/​24/​019.

[9] Tatsuhiko N. Ikeda and Keisuke Fujii. Trotter24: A precision-guaranteed adaptive stepsize trotterization for hamiltonian simulations. arXiv:2307.05406, 2023. https:/​/​​10.48550/​arXiv.2307.05406.

[10] A Iserles, A Marthinsen, and S P Nørsett. On the Implementation of the Method of Magnus Series for Linear Differential Equations. BIT Numerical Mathematics, 39 (2): 281–304, 1999. https:/​/​​10.1023/​A:1022393913721.

[11] Tobias Jahnke and Christian Lubich. Error Bounds for Exponential Operator Splittings. BIT Numerical Mathematics, 40 (4): 735–744, 2000. https:/​/​​10.1023/​A:1022396519656.

[12] Tosio Kato. On the Trotter-Lie Product Formula. Proceedings of the Japan Academy, 50 (9): 694–698, 1974. https:/​/​​10.3792/​pja/​1195518790.

[13] Guang Hao Low and Isaac L. Chuang. Optimal hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 118: 010501, 2017. https:/​/​​10.1103/​PhysRevLett.118.010501.

[14] Guang Hao Low and Nathan Wiebe. Hamiltonian simulation in the interaction picture. arXiv:1805.00675, 2018. https:/​/​​10.48550/​arXiv.1805.00675.

[15] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. Grand Unification of Quantum Algorithms. PRX Quantum, 2: 040203, 2021. https:/​/​​10.1103/​PRXQuantum.2.040203.

[16] Kaoru Mizuta and Keisuke Fujii. Optimal Hamiltonian simulation for time-periodic systems. Quantum, 7: 962, 2023. https:/​/​​10.22331/​q-2023-03-28-962.

[17] I P Omelyan, I M Mryglod, and R Folk. Optimized Forest–Ruth- and Suzuki-like algorithms for integration of motion in many-body systems. Computer Physics Communications, 146 (2): 188–202, 2002. https:/​/​​10.1016/​S0010-4655(02)00451-4.

[18] Johann Ostmeyer. Optimised trotter decompositions for classical and quantum computing. Journal of Physics A: Mathematical and Theoretical, 56 (28): 285303, 2023. https:/​/​​10.1088/​1751-8121/​acde7a.

[19] David Poulin, Angie Qarry, Rolando Somma, and Frank Verstraete. Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space. Phys. Rev. Lett., 106: 170501, 2011. https:/​/​​10.1103/​PhysRevLett.106.170501.

[20] J. R. Schrieffer and P. A. Wolff. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev., 149: 491–492, 1966. https:/​/​​10.1103/​PhysRev.149.491.

[21] Andrew T Sornborger, Phillip Stancil, and Michael R Geller. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions. Quantum Information Processing, 17 (5): 106, 2018. https:/​/​​10.1007/​s11128-018-1878-x.

[22] Masuo Suzuki. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Physics Letters A, 146 (6): 319–323, 1990. https:/​/​​10.1016/​0375-9601(90)90962-N.

[23] Masuo Suzuki. General Decomposition Theory of Ordered Exponentials. Proceedings of the Japan Academy, Series B, 69 (7): 161–166, 1993. https:/​/​​10.2183/​pjab.69.161.

[24] H. F. Trotter. On the Product of Semi-Groups of Operators. Proceedings of the American Mathematical Society, 10 (4): 545–551, 1959. https:/​/​​10.2307/​2033649.

[25] Jacob Watkins, Nathan Wiebe, Alessandro Roggero, and Dean Lee. Time-dependent Hamiltonian Simulation Using Discrete Clock Constructions. arXiv:2203.11353, 2022. https:/​/​​10.48550/​arXiv.2203.11353.

[26] Nathan Wiebe, Dominic Berry, Peter Høyer, and Barry C Sanders. Higher order decompositions of ordered operator exponentials. Journal of Physics A: Mathematical and Theoretical, 43 (6): 065203, jan 2010. https:/​/​​10.1088/​1751-8113/​43/​6/​065203.

[27] Haruo Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150 (5): 262–268, 1990. https:/​/​​10.1016/​0375-9601(90)90092-3.

[28] Hongzheng Zhao, Marin Bukov, Markus Heyl, and Roderich Moessner. Making trotterization adaptive and energy-self-correcting for nisq devices and beyond. PRX Quantum, 4: 030319, 2023a. https:/​/​​10.1103/​PRXQuantum.4.030319.

[29] Hongzheng Zhao, Marin Bukov, Markus Heyl, and Roderich Moessner. Adaptive trotterization for time-dependent hamiltonian quantum dynamics using instantaneous conservation laws. arXiv:2307.10327, 2023b. https:/​/​​10.48550/​arXiv.2307.10327.

Cited by

[1] Luis Hidalgo and Patrick Draper, "Quantum simulations for strong-field QED", Physical Review D 109 7, 076004 (2024).

[2] Hongzheng Zhao, Marin Bukov, Markus Heyl, and Roderich Moessner, "Adaptive Trotterization for time-dependent Hamiltonian quantum dynamics using instantaneous conservation laws", arXiv:2307.10327, (2023).

[3] Pooja Siwach, Kaytlin Harrison, and A. Baha Balantekin, "Collective neutrino oscillations on a quantum computer with hybrid quantum-classical algorithm", Physical Review D 108 8, 083039 (2023).

[4] Tim Möbus, "On Strong Bounds for Trotter and Zeno Product Formulas with Bosonic Applications", arXiv:2404.01422, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-26 15:49:24) and SAO/NASA ADS (last updated successfully 2024-05-26 15:49:24). The list may be incomplete as not all publishers provide suitable and complete citation data.