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Catalysts are quantum systems that open up
dynamical pathways between quantum states
which are otherwise inaccessible under a given
set of operational restrictions while, at the
same time, they do not change their quantum
state. We here consider the restrictions im-
posed by symmetries and conservation laws,
where any quantum channel has to be covari-
ant with respect to the unitary representation
of a symmetry group, and present two results.
First, for an exact catalyst to be useful, it has
to build up correlations to either the system of
interest or the degrees of freedom dilating the
given process to covariant unitary dynamics.
This explains why catalysts in pure states are
useless. Second, if a quantum system (“refer-
ence frame”) is used to simulate to high pre-
cision unitary dynamics (which possibly vio-
lates the conservation law) on another system
via a global, covariant quantum channel, then
this channel can be chosen so that the refer-
ence frame is approximately catalytic. In other
words, a reference frame that simulates uni-
tary dynamics to high precision degrades only
very little.

1 Introduction
When a quantum system C takes part in a physical in-
teraction with a different system S, its quantum state
typically changes. Moreover, the system C typically
becomes correlated to system S (if the two weren’t
correlated, to begin with). Indeed, suppose contrar-
ily that the joint time evolution of SC is given by a
unitary operator U and the two systems end up un-
correlated, and the state of C did not change:

UρS ⊗ σCU
† = ρ′

S ⊗ σC . (1)

Then there also exists a unitary V such that V ρSV † =
ρ′
S . Thus, the system C is not required to realize the

state-transition ρS → ρ′
S on S.

Once the operations we can implement in an ex-
periment are restricted to some strict subset O of
all conceivable quantum operations, however, there
may be situations where the state-transition ρS → ρ′

S

is impossible via operations in O, but the state-
transition ρS ⊗ σC → ρ′

S ⊗ σC is possible via op-

erations in O. Thus, the mere presence of system
C seems to allow for larger sets of state transitions
on S. The prototypical example is given by the set
OLOCC of local operations and classical communica-
tion (LOCC), where S = AB and C = CACB each
consist of two parts distributed between two players,
Alice and Bob. Alice and Bob each can only per-
form quantum operations on their local systems but
can communicate classically, for example, by a phone
call. It was observed in Ref. [30] that for some pure
quantum states |ψ⟩AB , |ψ′⟩AB and |ϕ⟩C the state-
transition |ψ⟩AB ⊗ |ϕ⟩C → |ψ′⟩AB ⊗ |ϕ⟩C is possible
even though |ψ⟩AB → |ψ′⟩AB is impossible via LOCC
protocols. Ref. [16] generalized this observation to
mixed states. In such a situation, system C plays the
role of a catalyst since it enables a state transition
without changing its state itself. In particular, it may
be re-used to implement the same state transition on
a new system S′ = A′B′.

In this work, we consider the role of catalysts when
the operational restrictions are due to a set of con-
servation laws that need to be obeyed [9, 22, 28, 60].
As a consequence (see below), every quantum system
S carries a unitary representation g 7→ WS(g) of a
connected Lie group G. The set of implementable op-
erations, which we denote by Osymm., corresponds to
covariant quantum channels T . A quantum channel
from system S to system S′ is said to be covariant if
it fulfills

T [WS(g)ρWS(g)†] = WS′(g)T [ρ]WS′(g)†. (2)

A quantum state ρ on S is called symmetric if ρ =
WS(g)ρWS(g)† for all g ∈ G. A covariant quantum
channel always maps symmetric states to symmetric
states. Since all the operations we can implement
are covariant, we can only prepare symmetric states.
In such a setting, states that are not symmetric are
valuable resources, as they can be used to implement
quantum channels that are not covariant: If ωE is an
asymmetric state on system E, and T is a covariant
quantum channel on SE, then the channel

ρ 7→ TrE [T [ρ⊗ ωE ]] (3)

is, in general, not covariant. In particular, a useful
catalyst must be asymmetric; otherwise, the induced
dynamics on S were covariant and would not require
the catalyst.
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In this context, asymmetric states are also called
quantum reference frames, since they break the un-
derlying symmetry and thereby allow to (partially)
distinguish symmetry operations: If ρ is asymmetric,
then at least for some group elements g ∈ G the state
ρ is (partially) distinguishable from WS(g)ρWS(g)†.
An example of a reference frame for rotations is a
collection of spins in strongly polarized states. A su-
perposition (in contrast to an incoherent mixture) of
energy eigenstates provides a reference frame for the
group of time translations (a phase-reference in the
case of equally spaced energy levels). A perfect quan-
tum reference corresponds to a quantum state ρ that
is perfectly distinguishable from WS(g)ρWS(g)†, i.e.
the trace-distance

D(WS(g)ρWS(g)†, ρ) := 1
2

∥∥WS(g)ρWS(g)† − ρ
∥∥

1

(4)

is equal to 1 unless g = 1. Perfect reference frames
cannot exist for continuous groups: IfWS is a strongly
continuous (possibly projective) unitary represen-
tation on a (possibly infinite-dimensional) Hilbert-
space, then g 7→ D(WS(g)ρWS(g)†, ρ) is a continu-
ous function on G and hence cannot be equal to the
discontinuous map g 7→ 1 − δ1g

1.
This paper aims to show two results about catalysts

in the context of conservation laws. First, we show
that a useful catalyst must build up correlations to
either the system of interest S or the environmental
degrees of freedom E (or both) that dilate the covari-
ant channel on SC to a covariant unitary channel.
In particular, if the process on SC is already unitary,
then C must become correlated to S. Since a quantum
system in a pure state is always uncorrelated to any
other system, catalysts must be mixed to be useful.
This is in strong contrast to the setting of LOCC. Our
result generalizes previous results showing that pure
catalysts are useless in the case where only energy is
preserved [15] or when the states of interest are pure
[41]. We discuss the role of correlations in catalysis
further below.

Our second result concerns the case where a quan-
tum reference frame C is used to locally implement
approximately unitary dynamics on S that may vio-
late the conservation laws. Such a situation is quite
common in a semi-classical limit, where, for example,
a laser (described by a classical field) is used to induce
a state transition of an atom from the ground state to
the superposition of the ground state and an excited
state, violating energy conservation. It is already
known that a quantum reference frame that allows
to locally implement approximately unitary dynamics
must be much larger than S and strongly asymmet-
ric [9, 23, 39–41, 44–46, 49, 56–59, 74]. In this sense

1This argument even works in operator algebraic settings:
If the system S is described by a von Neumann algebra M with
α : G → Aut(M) a (normal) action of G, then ∥αg(ρ) − ρ∥M∗

is continuous for all normal states ρ ∈ M∗.

it must be close to macroscopic. For example, a laser
described by a (quantum) coherent state with high ex-
pected photon number is of the right form. It is also
known that a quantum reference frame generically de-
grades in quality when it is used due to back-action
[1, 7, 8, 51]. We show that a quantum reference frame
that allows implementation of local unitary dynam-
ics to high precision can always be used so that it
is approximately catalytic: its quantum state is only
slightly perturbed. Therefore, such a quantum refer-
ence frame is also macroscopic in the sense of receiv-
ing little back-action. In particular, if it is initially
in a pure state, it only becomes weakly correlated to
S. The second result holds for covariant operations
with respect to projective unitary representation of
any group, not just connected Lie groups.

The paper is structured as follows: In section 2 we
provide the necessary background on the framework
that we work in, namely the resource theory of asym-
metry. We also introduce the closely related resource
theory of athermality as our first main result immedi-
ately transfers to that setting as well. In section 3
we then discuss the role of correlations for cataly-
sis and present our first main result and its proof,
which builds on Wiegmann’s theorem in matrix the-
ory. In section 4 we discuss how quantum reference
frames can be used to locally circumvent conservation
laws and present our second main result together with
its proof, which relies on the information-disturbance
tradeoff in quantum mechanics.

2 The resource theories of asymmetry
and athermality
We now introduce the resource theory of asymme-
try and then also the resource theory of athermal-
ity, which provides a model for thermodynamics. For
more background on the resource theory of asymme-
try, see Refs. [9, 22, 41, 44] and references therein and
for more background on the resource theory of ather-
mality, see Refs. [11, 12, 17, 21, 24, 27, 29, 73].

The resource theory of asymmetry formalizes the
consequences of symmetries and conservation laws for
the manipulation of quantum systems.

Symmetries are implemented in quantum physics
by projective unitary representations of a symme-
try group G on Hilbert-space 2. It is then required
that the Hamiltonian generating the time-evolution
commutes with this representation. If the symmetry
group G is a Lie group, then its Lie algebra g is the set
of infinitesimal generators of the group. We can view
an infinitesimal generator X as an abstract conserved
quantity because its representative XS on a system

2In fact, to be fully general, one should also consider anti-
unitary operators, but here we restrict to (projective) unitary
representations.
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S is a Hermitian operator commuting with the sys-
tem Hamiltonian HS . Notationally, we distinguish an
element X of the Lie algebra and its Hermitian repre-
sentative XS on a system S only by the label, so that
WS(eX) = e−iXS .

In the resource theory of asymmetry with respect
to a group G, it is assumed that every system S car-
ries a projective unitary representation g 7→ WS(g)
of G commuting with its Hamiltonian HS , with the
consistency condition that any two separate systems,
S1 and S2, carry jointly the tensor-product represen-
tation g 7→ WS1(g) ⊗ WS2(g) when considered as a
single system S = S1S2. Then any unitary U realiz-
ing a physical operation on a (possibly multi-partite)
system S must commute with the representation:

[U,WS(g)] = 0 ∀g ∈ G. (5)

In the case of a connected Lie group, this is equivalent
to

[U,XS ] = 0 ∀X ∈ g. (6)

Therefore, all XS , with X ∈ g, are indeed conserved
quantities. In the case of finite-dimensional Hilbert-
spaces and for a connected Lie group G, we can, with-
out loss of generality, assume that all systems are
equipped with proper unitary representations [6]. For
this, we pass to the universal covering group of G, i.e.
the unique simply-connected group generated by the
Lie algebra g. For a compound system S = S1S2 we
have

XS = XS1 ⊗ 1S2 + 1S1 ⊗XS2 X ∈ g. (7)

We may further enrich the set of possible opera-
tions Osymm by assuming that we can prepare “for
free” arbitrary systems E in an arbitrary symmetric
density matrix ωE , which fulfills [ωE ,WE(g)] = 0 for
all g ∈ G. Symmetric states may be interpreted as
those which can be prepared without access to a ref-
erence frame for the group [9]. By further being able
to discard subsystems (formally tracing them out), it
is then possible to implement any quantum channel
T between two systems S and S′ that is covariant :

T [WS(g)ρSWS(g)†] = WS′(g)T [ρS ]WS′(g)† ∀g ∈ G.
(8)

Indeed, the covariant Stinespring theorem states that
any covariant quantum channel T can be written as

T [ρ] = TrE [Uρ⊗ ωEU
†], (9)

where ωE is a symmetric state that, in fact, may be
assumed to be pure [31]. The preparation of a sym-
metric state on S can be seen as a covariant quantum
channel from a trivial system to S.

Summarizing, the resource theory of asymmetry
consists of quantum channels that are covariant with
respect to the (projective) unitary representations of

a symmetry group G. As already mentioned in the
introduction, any quantum state that is not sym-
metric can be understood as a reference frame for
the group G and may be utilized to implement non-
covariant quantum channels via a covariant unitary
U : If [ωE ,WE(G)] ̸= 0, then in general the quantum
channel

ρ 7→ Tr2[Uρ⊗ ωEU
†] (10)

is not covariant, even though U commutes with
WS(g) ⊗WE(g) for all g ∈ G.

Let us now discuss the resource theory of ather-
mality. It is closely related to the resource theory of
asymmetry for the group G = R of time translations,
which enforces strict energy conservation in the sense
that any unitary operation has to commute with the
full Hamiltonian. In this case, the group representa-
tion is simply given by unitary time-evolution with
the system’s Hamiltonian, t 7→ WS(t) = exp(−itHS).
In contrast to the resource theory of asymmetry where
arbitrary symmetric states can be prepared “for free”,
the resource theory of athermality only allows for
the Gibbs states at some fixed inverse temperature
β > 0, i.e. states of the form ωS = exp(−βHS)/Z
with Z = Tr[exp(−βHS)], instead of arbitrary sym-
metric states. The underlying idea is that such sys-
tems represent heat baths at some fixed environment
temperature. Therefore, we also only allow for those
covariant quantum channels T that can be realized
by appending a Gibbs state of an arbitrary Hamilto-
nian HE , applying an energy-conserving unitary and
tracing out a subsystem:

T [ρ] = TrE [Uρ⊗ ωEU
†], (11)

where ωE = exp(−βHE)/Z and [U,HS ⊗ 1E + 1S ⊗
HE ] = 0. We refer to the resulting quantum channels
as “thermal operations” [27]. Any thermal operation
has the Gibbs state at the fixed inverse temperature β
as a fixed-point: T [exp(−βHS)] = exp(−βHS). This
can be seen as enforcing the second law of thermody-
namics: without spending resources, we cannot pro-
duce a non-equilibrium state from thermal equilib-
rium. Any unitary quantum channel that is covariant
with respect to time translations automatically has
the Gibbs state as a fixed point and is a valid quan-
tum channel in this framework.

3 Correlations and catalysis
We now discuss the role of correlations for cataly-
sis and discuss our first main result. Traditionally,
catalysis in the context of quantum mechanics, in par-
ticular LOCC, always referred to a situation where
ρS → ρ′

S is impossible under the given set of oper-
ations O, but ρS ⊗ σC → ρ′

S ⊗ σC is possible. In
other words, no correlations between S and C were

Accepted in Quantum 2023-10-20, click title to verify. Published under CC-BY 4.0. 3



allowed. This assumption can be justified by con-
sidering several catalytic transformations. For exam-
ple, assume S interacts with C1 in such a way that
S and C1 became correlated, but C1 did not change
its state. Afterwards, S interacts with C2 in a similar
fashion. Then it will typically be the case that C1
and C2 become correlated. Therefore, while each is
catalytic on their own, the joint-system C1C2 is not
catalytic. Similarly, if a second system S′ interacts
with C1 in the same way as S did, then afterwards,
the reduced density matrix of S′ will be precisely the
same as that of S. However, the two will typically
be correlated [10, 61]. In other words, once we al-
low for the build-up of correlations, these correlations
will typically spread in an uncontrolled way (the only
way to completely prevent this is to demand that the
states of catalysts are pure).

However, assume now that the interaction of S and
C1 is not unitary so that auxiliary degrees of freedom
E are involved, as is typically the case in a resource
theory. Then even though these degrees of freedom
may be considered “for free”, they can similarly result
in uncontrolled spreading of correlations if C1 (or S
for that matter) becomes correlated to them. Hence,
if one does not restrict correlations with E, why re-
strict those between S and C? Moreover, E is typi-
cally treated implicitly so that the correlations to E
do not appear in the mathematical treatment.

On the other hand, it has recently been shown in a
number of works that it can be quite beneficial to al-
low for correlations between catalyst and system as
they can significantly enhance the set of reachable
states from a given initial state [10, 32, 35, 48, 52,
54, 67, 68], even if no auxiliary degrees of freedom
E are allowed for [10, 67, 68]. In fact, oftentimes
such correlated catalysis expands the set of reachable
states for a single system to the asymptotic set of
reachable states in the thermodynamic limit: Sup-
pose for any ϵ > 0 there exists a number n such that
the state transition ρ⊗n → ρ′

n,ϵ is possible without
a catalyst, where ρ′

n,ϵ approximates ρ′⊗n up to error
ϵ in trace-distance. It is quite common that such a
situation occurs even though the transition ρ → ρ′

is impossible with good accuracy. The asymptotic
limit of many uncorrelated copies therefore strongly
regularizes possible state-transitions. The same reg-
ularization can be achieved with correlated catalysis:
In the setting described above, for any ϵ > 0 a state-
transition ρ → ρ′

ϵ is possible with correlated catalysis,
where ρ′

ϵ is ϵ-close to ρ′ in trace-distance. Moreover,
often these beneficial effects are possible while build-
ing up arbitrary little correlations between S and C
as measured by the trace distance to the closes prod-
uct state. At the same time, it is typically unknown
how strongly C becomes correlated to E.

These considerations motivate our first main result.
It shows that a catalyst in the resource theories of
asymmetry and athermality can only be useful if it

either becomes correlated to S or E (or both).

Theorem 1 (Correlations are neccessary for catal-
ysis). Let G be a connected Lie group and let g 7→
WS(g), g 7→ W ′

S(g) and g 7→ WC(g) be finite-
dimensional unitary representations on systems S and
C, respectively. Let ρS , ρ′

S be density matrices on S
and σC a density matrix on C. Finally, suppose a
unitary U on SC fulfills

UρS ⊗ σCU
† = ρ′

S ⊗ σC (12)

and for all g ∈ G

UWS(g) ⊗WC(g) = W ′
S(g) ⊗WC(g)U. (13)

Then there exists a unitary V on S such that
V ρSV

† = ρ′
S and VWS(g) = W ′

S(g)V for all g ∈ G.

The non-trivial statement of the theorem is that
the unitary V can also be chosen to intertwine the
two group representations WS and W ′

S . The theorem
can be interpreted most clearly when we substitute
the system S in the statement of the theorem by a
bipartite system SE, where E contains the degrees of
freedom required to dilate a covariant quantum chan-
nel T on SC to a unitary channel:

T [ρS ⊗ σC ] = TrE [UρS ⊗ ωE ⊗ σCU
†]. (14)

Here, ωE is a general symmetric state in the resource
theory of asymmetry and a Gibbs state in the resource
theory of athermality. Theorem 1 then states that if
a system C takes part in a process but neither experi-
ences back-action (does not change its density matrix
σC) nor becomes correlated to SE, then the system
C was not necessary to realize the state transition on
S (and E). This is because the covariant quantum
channel T ′ defined by

T ′[ρS ] = TrE [V ρS ⊗ ωEV
†] (15)

has the same effect on S. Moreover, T ′ is also a ther-
mal operation if T was. In other words: For a cat-
alyst to be useful in realizing otherwise impossible
state transitions, it must become correlated to either
S, E, or both, and this statement holds both in the re-
source theory of asymmetry for connected Lie groups
and in the resource theory of athermality. Note that
the usual setting of uncorrelated catalysis allows for
correlations between S and E as well as between C
and E but not between C and S.

Therefore, a catalyst in a pure state is useless in
contrast to the setting of LOCC. While this statement
is known in the cases of either a single conserved quan-
tity (i.e. G = R) [15] or the case where ρS is pure [41],
our result shows that it holds for any finite number
of conserved quantities and any state ρS . More im-
portantly, it explains why this is true: A catalyst in a
pure state cannot be correlated to another system. If
we interpret C as a reference frame, this means that a
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reference frame that is actually used (even only once)
must either degrade or become correlated to other sys-
tems.

One may wonder whether there actually are situ-
ations where it is helpful to have a system C that
only becomes correlated to S but does not experience
back-action. This is indeed the case: There are state
transitions ρS → ρ′

S that can be realized in this way,
but that cannot be realized using only covariant op-
erations [15]. However, it is impossible to transform a
symmetric state to an asymmetric state in this way, as
shown by so-called no-broadcasting theorems [38, 43].
One can also construct examples in the resource the-
ory of athermality where an asymmetric (coherent)
catalyst that becomes correlated to S allows for state
transitions that are impossible to implement without
a catalyst [36].

It is important to emphasize that our results hold
for one particular choice of density matrices: We do
not require that σC remains unchanged and uncorre-
lated for all possible density matrices on S, but only
for the specific density matrix ρS . We have mentioned
above that a system C in a quantum state that is
not symmetric with respect to a group representa-
tion can be viewed as an (imperfect) reference frame
for the group: By interacting with it using only co-
variant quantum channels, one can implement some
non-covariant quantum channels on a system S. It is
already known that in this case, for at least some state
on S (including the maximally mixed state), the final
state on C cannot be brought back exactly to its ini-
tial state by a covariant quantum channel [42]. This
means that the reference frame “degrades” for such
inputs. Conversely, if the reference frame does not
degrade for any input on S, then the dynamics on
S is already covariant. The degradation of quantum
reference frames has been studied in several concrete
examples, see Refs. [1, 7, 8, 51].

Theorem 1 then can also be interpreted as show-
ing that whenever one uses a quantum reference ben-
eficially, it must either experience some back-action
(change its density matrix) or become correlated to
the system of interest S. In particular, back-action is
unavoidable if the reference is initially in a pure state.

In section 4 we will see a counter-point to this re-
sult: if a quantum reference frame is of such high qual-
ity that it allows implementing approximately unitary
dynamics on S, then it suffers only mild back-action.

The amount of correlations that the catalyst C es-
tablishes with the system and environment SE can be
measured in terms of the mutual information I(C :
SE). From the unitary invariance of the von Neu-
mann entropy H it then follows that

I(C : SE)UρSE⊗σCU† = H(ρ′
SE) −H(ρSE). (16)

Thus, in the context of the resource theory of asym-
metry, a catalyst is only useful if the entropy on SE
strictly increases. Similarly, one can check that the

rank of ρ′
SE cannot be smaller than that of ρSE . Re-

cently, it was shown in Refs. [10, 67, 68] that if ρS
and ρ′

S are two finite-dimensional density matrices
such that H(ρS) < H(ρ′

S) and rank(ρS) ≤ rank(ρ′
S),

then there exists a finite-dimensional density matrix
σC and a unitary U such that

Tr2[UρS ⊗ σCU
†] = ρ′

S , Tr1[UρS ⊗ σCU
†] = σC .

(17)

However, as far as we are aware, it is currently an
open problem to decide when U and σC exist under
the additional requirement that C carries a unitary
representation of a given group G, and U intertwines
the respective representations as in Theorem 1 (see
Refs. [3, 25, 41] for progress on the general state-
convertibility problem in the resource theory of asym-
metry).

The assumption of a connected Lie group in the
theorem is necessary. The theorem fails for any non-
connected Lie group G: Let G be a Lie group with
finitely many connected components, and letH be the
quotient group G/G0 w.r.t. the connected component
of the neutral element (which is always a normal sub-
group). Note that H is a finite group and consider the
Hilbert space HC = ℓ2(H). We may view the left reg-
ular representation of H, given by WC(x)|y⟩ = |xy⟩,
x, y ∈ H, as a unitary representation of G (with ker-
nel equal to G0). Given states, ρ and σ on any sys-
tem S which carries a representation WS of G with
G0 ⊂ kerWS , i.e., a system where WS is essentially a
representation of H, one can always find a covariant
quantum channel E on SC which maps ρ ⊗ |x⟩⟨x| to
σ ⊗ |x⟩⟨x| for some arbitrary but fixed x ∈ H. For
example, this channel could be given by [41]

E [X] =
∑
y∈H

Tr[(1 ⊗ |y⟩⟨y|)X] × . . .

×WC(yx−1)σWC(x−1y) ⊗ |y⟩⟨y|. (18)

The reason why such a construction is possible is that
the states |x⟩ for x ∈ H are perfect reference frames
for H: ⟨x|y⟩ = δxy for all y ∈ H. For general finite
groups G, any quantum channel on S can be realized
by a covariant quantum channel on SC if C carries the
left regular representation of G. Concretely, let T [·] =
TrE [V σE ⊗ (·)V †] be the channel to be implemented.
Define Vy := (1E ⊗ WS(y))V (1E ⊗ WS(y)†). Then
the covariant channel

E(X) =
∑
y

TrE [(Vy ⊗ ⟨y|)σE ⊗X(V †
y ⊗ |y⟩)] ⊗ |y⟩⟨y|

fulfills

E [ρ⊗ |1⟩⟨1|] = T [ρ] ⊗ |1⟩⟨1|. (19)

3.1 The proof
We will now prove Theorem 1. The important obser-
vation is that since we consider connected Lie groups
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G, the infinitely many equations (13) reduce to a finite
set of equations. Namely, let {X(i)}dim(G)

i=1 be a (Her-
mitian) basis for the Lie algebra of G (corresponding
to conserved quantities). The X(i) are represented
on the systems S and C by the given representations
as X(i)

S , Y (i)
S and X

(i)
C , respectively. (That is, Y (i)

S

represents X(i) on system S as induced by the repre-
sentation W ′

S .) We also introduce the strictly positive
matrices

ω
(i)
S ⊗ ω

(i)
C := exp(−X(i)

S ) ⊗ exp(−X(i)
C ),

ω̂
(i)
S ⊗ ω

(i)
C := exp(−Y (i)

S ) ⊗ exp(−X(i)
C ).

Up to normalization, we may interpret the opera-
tors ω(i)

S/C as Gibbs states of the associated conserved
quantities at temperature T = 1. The eqs. (12) and
(13) are equivalent to the dim(G) + 1 equations

Uρ⊗ σU† = ρ′ ⊗ σ (20)

Uω
(i)
S ⊗ ω

(i)
C U† = ω̂

(i)
S ⊗ ω

(i)
C . (21)

To arrive at this result, simply observe that [U,X] = 0
if and only if [U, exp(X)] = 0 for a unitary U and
a Hermitian matrix X. Thus, we have a system of
m+ 1 = dim(G) + 1 equations of the form

UA(i) ⊗ C(i)U† = B(i) ⊗ C(i), (22)

where A(i), B(i) and C(i) are positive operators.
Theorem 1 is now an immediate consequence of the

following proposition:

Proposition 1. Let {Ai = A(i) ⊗C(i)}mi=0 and {Bi =
B(i) ⊗ C(i)}mi=0 be two sets of positive semi-definite
matrices such that all matrices with i ≥ 1 have full
rank. Then if UAiU† = Bi for a unitary U there
exists a unitary V such that V A(i)V † = B(i).

The main technical tool we will make use of is
Wiegmann’s theorem [65], which is a generalization
of Specht’s theorem [55] (see the survey by Shapiro
[53] for more results on unitary invariance). To state
it, we define a word w(x0, . . . , xm) as a monomial in
the m+ 1 non-commuting variables xi. For example,
one possible word for m = 2 is given by x0

0x
2
2x

1
1x

4
0 (we

do not assume that x0 = 1).

Theorem 2 (Wiegmann [65]). Let (A0, . . . , Am) and
(B0, . . . , Bm) be two tuples of complex d×d-matrices.
Then there exists a unitary matrix U such that
UAiU

† = Bi for all i = 0, . . . ,m if and only if

Tr[w(A0, A
†
0, A1, A

†
1, . . . , Am, A

†
m)]

= Tr[w(B0, B
†
0, B1, B

†
1, . . . , Bm, B

†
m)] (23)

for every word w in 2(m+ 1) variables.

Since only positive operators appear in our case, we
restrict ourselves to words in m+1 variables. Now we

fix an arbitrary word w(x0 . . . , xm) of (m+1) variables
and show that the conditions of the proposition imply

Tr[w(A(0), . . . , A(m))] = Tr[w(B(0), . . . , B(m))]. (24)

Then Wiegmann’s theorem implies that the required
unitary V exists.

We now define the length L of the word w as follows:
We write out the word in the form ℓn1

1 · · · ℓnL

L , where
each letter ℓj is taken from (x0, . . . , xm) and no two
adjacent letters are the same. To give an example,
if m = 2 and our word is w(x0, x1, x2) = x2

0x
3
1x

4
0 we

have

x2
0x

3
1x

4
0 = xn0

0 xn1
1 xn3

0 , (25)

so that the word has L = 3 letters.

Definition 3. Given a word w of length L and a tu-
ple of m positive semi-definite matrices (A0, . . . , Am)
we define a function fw(s|A0, . . . , Am) : RL → C by
replacing each exponent nj with a real variable sj in
the word w(A0, . . . , Am) and taking the trace.

In the definition, we need to specify how we take
real powers of positive semi-definite matrices, which
is done by functional calculus (with 00 = 0). Note
that well-definedness of s 7→ Xs for a normal matrix
X requires positivity of all eigenvalues, i.e., positive
semi-definiteness of X.

If we consider our previous example w(x0, x1, x2) =
x0

0x
2
2x

1
1x

4
0, then the function we now consider is given

by

R4 ∋ s 7→ fw(s|A0, A1, A2) = Tr[As1
0 A

s2
2 A

s3
1 A

s4
0 ].

(26)

Note that a word of k variables may only in-
volve a smaller number of variables. For example
w(x0, x1, x2) = x1. We call the variables that actually
appear in a word the participating variables.

Lemma 4. Let w be a word of length L and of 2(m+
1) variables. Then the function fw(s|A0, . . . , Am) has
the following properties:

1. Factorization: fw(s|A0 ⊗ C0, . . . , Am ⊗ Cm) =
fw(s|A0, . . . , Am)fw(s|C0, . . . , Cm)

2. Analyticity: s 7→ fw(s|A0, . . . , Am) is analytic.

3. fw(0, . . . , 0|A0, . . . , Am) ≥ rank(A0) if Ai has
full rank for i ≥ 1.

Proof. The first property (factorization) follows from
Tr(X⊗Y ) = TrX TrY and from (X⊗Y )s = Xs⊗Y s,
which only makes sense for positive X and Y . Ana-
lyticity follows from the fact that s 7→ As is an ana-
lytic function (in contrast to the function A 7→ As).
Writing out fw(s|A0, . . . , Am) in terms of the spec-
tral decompositions of the involved matrices shows
that it is a finite sum of finite products of analytic
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functions and hence analytic. For the last prop-
erty, there are two cases: If A0 participates in the
word w(A0, . . . , Am), then fw(0, . . . , 0|A0, . . . , Am) =
rank(A0), since A0

i = 1 for i ≥ 1 and A0
0 = Psupp(A0).

Otherwise, fw(0, . . . , 0|A0, . . . , Am) coincides with the
dimension d of the matrices since all participating ma-
trices have full rank.

Now fix an arbitrary word w of length L. By taking
appropriate (real) powers of the eqs. UA(i)⊗C(i)U† =
B(i)⊗C(i), multiplying them appropriately and taking
the trace, we find

fw(s|A(0) ⊗ C(0), . . . , A(m) ⊗ C(m))
= fw(s|B(0) ⊗ C(0), . . . , B(m) ⊗ C(m)). (27)

By the factorization property in Lemma 4, we find[
fw(s|A(0), . . . , A(m)) − fw(s|B(0), . . . , B(m))

]
× fw(s|C(0), . . . , C(m)) = 0. (28)

Since all involved functions are analytic by Lemma 4,
we have a product of two analytic functions that van-
ishes identically. This implies that at least one of the
factors needs to vanish identically. But by property 3
in Lemma 4 and the requirement that C(i) has full
rank for i ≥ 1, we know that fw(s|C(0), . . . , C(m))
cannot vanish identically. Therefore

fw(s|A(0), . . . , A(m)) = fw(s|B(0), . . . , B(m)) (29)

for all s ∈ RL. Hence, in particular, we have

Tr[w(A(0), . . . , A(m))] = Tr[w(B(0), . . . , B(m))]. (30)

which we wanted to show.
We close this section with a remark about The-

orem 1. One may wonder whether the condition
that the C(i) have full rank for i ≥ 1 is neces-
sary. Indeed at least some requirement on the sup-
port of the matrices is necessary. For example, let
A(0) = σx, B

(0) = σy, A
(1) = σx, B

(1) = σz. Then
for each i = 1, 2 there exist distinct unitaries Ui such
that UiA(i)U†

i = B(i) but not a single unitary that
works for both i = 1 and i = 2. However, by choos-
ing C(i) = |i⟩⟨i| and U =

∑
i Ui ⊗ |i⟩⟨i|, all condi-

tions of the proposition apart from the condition on
the rank would be fulfilled. It is also not sufficient
that all the C(i) have pairwise overlapping supports:
One can come up with examples of three pairs of
Hermitian matrices (A(i), B(i)) such that every two
pairs of the matrices are jointly unitarily equivalent,
but not all three of them at once, and at the same
time there exists three positive matrices with pair-
wise overlapping supports C(i) and a unitary U such
that UA(i) ⊗ C(i)U† = B(i) ⊗ C(i) for i = 1, 2, 3. An
example is given in the Appendix.

4 Good quantum reference frames de-
grade little
Theorem 1 implies that a quantum reference frame in
a pure state that is used beneficially necessarily de-
grades by building up correlations. In this section,
we show a counter-statement: if the quantum refer-
ence frame can be used to implement approximately
unitary dynamics on S, then it can be used in such a
way that it hardly degrades (of course, one can always
use it in a non-optimal way as well). Before coming
to the Theorem, let us explain heuristically why we
can expect this to be true. Label the reference frame
by C and suppose that the joint dynamics on SC is
unitary. Let the initial state of C by |ϕ⟩ and consider
two orthogonal states |ψ1⟩ and |ψ2⟩ on S. Then if the
induced dynamics on S is approximately given by the
unitary V , we must have:

U |ψ1⟩|ϕ⟩ ≈ (V |ψ1⟩)|ϕ′
1⟩ (31)

U |ψ2⟩|ϕ⟩ ≈ (V |ψ2⟩)|ϕ′
2⟩. (32)

But by linearity, we must also have

U(α|ψ1⟩ + β|ψ2⟩)|ϕ⟩ ≈ α(V |ψ1⟩)|ϕ′
1⟩ + β(V |ψ2⟩)|ϕ′

2⟩
≈ (αV |ψ1⟩ + βV |ψ2⟩)|ϕ′

3⟩.
(33)

This is only possible if |ϕ′
1⟩ ≈ |ϕ′

2⟩ ≈ |ϕ′
3⟩, i.e. the

final state of C only depends little on the initial state
on S (up to global phases). We see here a particu-
lar example of the information-disturbance trade-off
in quantum mechanics [19, 20, 33]: If only little in-
formation can be gained about the initial state on S
by measuring C, then the disturbance must be small.
Conversely, if there is little disturbance on S, then
only little information about the initial state of S can
be gained by measuring the final state of C.

However, what the discussion so far hasn’t shown
is why the final state on C is close to its initial state.
C could be rotated unitarily as well. One could hope
this unitary to be covariant so that it could be un-
done by a (unitary) covariant quantum channel. But
the whole point of using the reference frame is to be
able to implement on S a unitary that is not covari-
ant, so why should the effective unitary on C be co-
variant? Nevertheless, we will show that C can be
brought back close to its initial state using a covari-
ant quantum channel. The intuitive explanation for
why this is the case is the following: Since the unitary
on S is not covariant, it must fail to commute with
at least some conserved quantity, meaning that the
quantity is, in fact, not conserved under the dynam-
ics induced by U . Implementing the unitary there-
fore requires a coherent source or sink with which
the quantity can be exchanged. However, our con-
siderations above show that the final state on S is
essentially independent of how much of the conserved
quantity is exchanged with S. This is possible only if
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the amount of the conserved quantity in C is highly
uncertain, to begin with (which in turn requires C to
be much larger than S in the sense that it can store
much larger amounts of the conserved quantity). But
in this case, any unitary rotation induced by S on
C must leave the state approximately invariant. This
explanation leaves many open questions, in particular,
if there are several non-commuting conserved quanti-
ties, but it provides a rough idea. Let us now come to
our theorem. To state it, we use the diamond-norm
for quantum channels, which is defined as:

∥T1 − T2∥♢ := sup
n∈N

sup
ρ

∥(T1 ⊗ Idn)[ρ] − (T2 ⊗ Idn)[ρ]∥1 ,

where Idn denotes the identity quantum channel on
an n-dimensional quantum system and ρ denote ar-
bitrary quantum states on the joint system. The
diamond-norm quantifies the distinguishability of two
channels on a given system taking into account pos-
sible correlations to other systems.

Theorem 5. Consider quantum systems S and C
with projective unitary representations of some (ar-
bitrary) group G, a covariant quantum channel T on
SC and a state σC on C such that the induced channel
on S

TS [ρS ] = TrC [T [ρS ⊗ σC ]] (34)

is close to unitary:
∥∥TS − V (·)V †

∥∥
♢

≤ ϵ. Then there
exists a covariant quantum channel T ′ on SC with
identical induced dynamics on S, T ′

S = TS, but such
that

D(TrS [T ′[ρS ⊗ σC ]], σC) ≤ 2
√

2ϵ, (35)

for all states ρS on S.

In contrast to Theorem 1, this result does not trans-
fer to the resource theory of athermality since even if
T is a thermal operation, we currently cannot guaran-
tee that T ′ also is. We leave this as an open problem.

The fact that the system C can be used in such a
way that it changes little is reminiscent of the phe-
nomenon of embezzlement in the theory of entangle-
ment [63]. There, a suitable resource state (the em-
bezzler) may be used to implement, via local unitary
operations, arbitrary state-transitions between pure
states on a finite dimensional bipartite quantum sys-
tem while experiencing arbitrary little back-action.
Embezzlers also exist in other resource theories, in-
cluding asymmetry and athermality, see for example
[37] for a comprehensive discussion. From this point
of view, Theorem 5 shows that if a quantum refer-
ence frame is sufficiently good to implement arbitrary
unitaries to high precision, then it must be an em-
bezzler. However, we emphasize that embezzlement
is usually concerned with the ability to enable arbi-
trary state transitions with little back-action, whereas
Theorem 5 is concerned with implementing arbitrary
unitary quantum channels with little back-action.

A particularly interesting obstruction arising from
conservation laws is the impossibility of measuring ex-
actly (in the sense of von Neumann) an observable
that does not commute with a conserved quantity.
This statement is known as Wigner-Araki-Yanase
(WAY) theorem [4, 66, 70], and has recently been
re-interpreted and generalized in several ways (see,
for example, [2, 13, 34, 40, 46, 47, 49, 50]). From
the point of view of the resource theory of asymme-
try, the theorem may be understood as saying that
the measurement apparatus implementing an approx-
imate measurement of an observable that does not
commute with a conserved quantity must include a
subsystem that serves as a quantum reference frame.
Our theorem then implies that a measurement appa-
ratus that can be used to implement such a measure-
ment to very high accuracy can also be used so that its
internal quantum reference frame hardly degrades. In
particular, the measurement apparatus may be used
again once its pointer is reset.

4.1 The proof of theorem 5
The proof consists of several steps: First, we restrict
to the case where T is a unitary quantum channel, and
σC is pure. Second, we use the quantitative version of
the information-disturbance tradeoff from Ref. [33] to
argue that the final state on C is almost independent
of the input ρS on S and still approximately pure.
Third, since the final state on C barely depends on
ρS , we consider the situation in which ρS = 1S/dS
is maximally mixed. In this case, the dynamics on C
is covariant as well and doubly stochastic. We then
show that when a doubly stochastic, covariant channel
maps a pure state close to a pure state, there exists
a covariant recovery map R that maps the final state
on C close to the initial state σC . The channel T ′ can
now be chosen as (IS ⊗R) ◦ T (with IS denoting the
identity channel on S). Finally, we use the covariant
Stinespring theorem to generalize the result to the
case where T is not unitary, and σC is mixed.

We now go through the steps in detail. So in
the following, we assume that T = U(·)U† is a uni-
tary, covariant quantum channel and σC = |ϕ⟩⟨ϕ|.
Refs. [33, 64] then shows that if

∥∥TS − V (·)V †
∥∥
♢

≤ ϵ
for some unitary V , then there exists a unitary W
such that

sup
∥|ψ⟩S∥=1

∥U |ψ⟩S |ϕ⟩C − V |ψ⟩SW |ϕ⟩C∥2 ≤ 2ϵ (36)

We now make use of the fidelity of quantum states,
defined as F (ρ, σ) =

∥∥√
ρ
√
σ

∥∥
1 = Tr[

√√
ρσ

√
ρ].

It is non-decreasing under partial traces, so that
F (ρSC , σSC) ≤ F (ρC , σC) for any two density ma-
trices ρSC and σSC . Moreover, for pure states, we
have

F (Ψ,Φ) ≥ 1 − 1
2 ∥|Ψ⟩ − |Φ⟩∥2 (37)
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where we use the short-hand notation Ψ = |Ψ⟩⟨Ψ|.
For a given state ρ on S let

T̂ρ[σC ] = TrS [Uρ⊗ σCU
†] (38)

be the final state on C. Then for a pure state
ρ = |ψ⟩⟨ψ| the information-disturbance tradeoff (36)
implies

F (T̂ψ[σC ],WσCW
†) ≥ 1 − ϵ. (39)

However, if ρ =
∑
i pi|ψi⟩⟨ψi|, then T̂ρ[σC ] =∑

i piT̂ψi
[σC ]. Since the fidelity is concave in its ar-

guments, we, therefore, find

F (T̂ρ[σC ],WσCW
†) ≥ 1 − ϵ (40)

for all density matrices ρ on S. We now make use of a
simple observation regarding the fidelity and so-called
doubly stochastic quantum channels, i.e. quantum
channels T such that T [1] = 1. For a doubly stochas-
tic quantum channel, its Hilbert-Schmidt dual T ∗, de-
fined by Tr[AT [B]] = Tr[T ∗[A]B] for all A,B, is also
a quantum channel. Moreover, if T is covariant, then
so is T ∗. Now, if Ψ = |Ψ⟩⟨Ψ| and σ is an arbitrary
density matrix, then F (Ψ, σ)2 = ⟨Ψ|σ|Ψ⟩ = Tr[Ψσ].
Using the definition of the Hilbert-Schmidt dual, we
thus get

F (T ∗[Ψ],Φ)2 = Tr[T ∗[Ψ]Φ] = Tr[ΨT [Φ]] = F (Ψ, T [Φ])2

for any two pure states Ψ = |Ψ⟩⟨Ψ| and Φ = |Φ⟩⟨Φ|.
The channel T̂1S/dS

is doubly stochastic because it
has a dilation in terms of a maximally mixed state.
Therefore its dual R := (T̂1S/dS

)∗ is a covariant quan-
tum channel and fulfills

F (σC , R[WσCW
†]) = F (T̂1S/dS

[σC ],WσCW
†)

≥ 1 − ϵ. (41)

In the following, we make use of the Fuchs-van de
Graaf inequality [18]

D(ρ, σ) ≤
√

1 − F (ρ, σ)2. (42)

Together with (40) and (41), it implies

D(T̂ρ[σC ],WσCW
†) ≤

√
2ϵ (43)

as well as

D(σC , R[WσCW
†]) ≤

√
2ϵ. (44)

Then using a triangle-inequality and the data-
processing inequality for the trace-distance yields

D(R ◦ T̂ρ[σC ], σC) ≤ D(R ◦ T̂ρ[σC ], R[WσCW
†])

+D(R[WσCW
†], σC) (45)

≤ D(T̂ρ[σC ],WσCW
†)

+D(σC , R[WσCW
†]) (46)

≤ 2
√

2ϵ. (47)

This finishes the proof in the case of unitary T and
pure σC by setting T ′ = (IdS⊗R)◦T . We now use this
result to prove the general case, where T need not be
unitary and σC need not be pure. By the covariant
Stinespring theorem, there exists a symmetric pure
state ωE = |χ⟩⟨χ|E and a covariant unitary channel
T̃ on SCE such that

T [ρSC ] = TrE [T̃ [ρSC ⊗ ωE ]]. (48)

Now consider a purification |Φ⟩CC′ of σC on a sys-
tem C ′. Then the channel T̃ ⊗ IdC′ is a covariant
unitary channel on SCEC ′ implementing V (·)V † on
S using a pure reference frame on CEC ′ in the state
|Φ⟩⟨Φ|CC′ ⊗ |χ⟩⟨χ|E . Since T̃ ⊗ IdC′ does not act on
C ′ and since this property is preserved when going to
the Hilbert-Schmidt dual, by the previous reasoning,
there is a covariant channel R̃ = R̃CE⊗IdC′ on CEC ′

such that the covariant quantum channel

T̃ ′ = (IS ⊗ R̃) ◦ (T̃ ⊗ IdC′) = [(IdS ⊗ R̃CE) ◦ T̃ ] ⊗ IdC′

= T̃ ′
SCE ⊗ IdC′ (49)

leaves CEC ′ approximately invariant and does not act
on C ′ while implementing V (·)V † with the same pre-
cision. Because trace-distance is non-increasing under
partial traces, the state on C is also approximately in-
variant with at most the same error. We can therefore
define T ′ by

T ′[ρSC ] = TrE
[
T̃ ′
SCE [ρSC ⊗ ωE ]

]
, (50)

which is covariant because ωE is symmetric and T̃ ′
SCE

is covariant. This finishes the proof in the general
case.

5 Discussion and outlook
Our first result shows that a catalyst in the context
of the resource theories of asymmetry and athermal-
ity must become correlated to some other degrees of
freedom to be of any use. The amount of correlations
measured in terms of mutual information is precisely
the change of entropy of system and environment com-
bined, but our results do not say anything about how
these correlations can be distributed. It is known in
the resource theory of athermality that it can be quite
beneficial to allow the catalyst to become (even only
slightly) correlated to S, see Refs. [21, 48, 52, 54, 69].
But do the same results hold if one bounds also the
correlations with the thermal environment E, or is
there a tradeoff, so that correlations to E have to in-
crease as those to S decrease?

Our second result shows that a good quantum ref-
erence frame can be used in such a way that its state
hardly changes. In particular, the result shows that
a quantum reference frame that can implement any
unitary transformation to high accuracy on a given
system must automatically be an embezzler in the
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sense that it is almost catalytic [62]. We have left
the corresponding statement for the resource theory
of athermality as an open problem, see also [5] for
related considerations.

Here, we have restricted ourselves to systems de-
scribed by finite-dimensional Hilbert spaces. It would
be interesting to know whether similar results can
be derived for infinite dimensional systems. This
would allow for the treatment of unitary representa-
tions of non-compact and non-abelian groups, such as
the Galilean or Poincaré group, which are relevant for
treating reference frames for space-time localization
and orientation.

Note added. Results closely related to Theorem 5,
also using the quantitative information-disturbance
tradeoff as a proof-technique, have been previously de-
rived in the context of so-called “no-programming the-
orems” for quantum computers [26, 71] and for esti-
mating the fundamental energy costs of implementing
unitary gates on a quantum computer [14, 72] (where
the energy-source corresponds to the quantum refer-
ence frame in our formulation). We thank Yuxiang
Yang for making us aware of the close resemblance
between these results and ours after the first version
of this manuscript appeared as a preprint.
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A The rank-condition in Proposition 1
We here give the promised example of three pairs of Hermitian matrices (A(i), B(i)) such that every two pairs of
the matrices are jointly unitarily equivalent, but not all three of them at once, and at the same time there exist
three positive matrices with pairwise overlapping supports C(i) and a unitary U such that UA(i) ⊗ C(i)U† =
B(i) ⊗ C(i) for i = 1, 2, 3.

We first describe a general way to find such examples and then give an explicit example.
We will choose C(i) as

C(i) = |i⟩⟨i| + |i+ 1⟩⟨i+ 1|, (51)

where addition is modulo 3. Any product of the C(i) involving all the different i is zero. Therefore, all words
of the variables A(i) ⊗ C(i) where all the i are participating are traceless. Hence by Wiegmann’s theorem, as
long as every two pairs (A(i), B(i)) are unitarily equivalent, then the A(i) ⊗C(i) are jointly unitarily equivalent
to the B(i) ⊗ C(i).

So we are looking for matrices such that there exists unitaries U, V and W with

UA(i)U† = B(i), i = 1, 2 (52)
V A(i)V † = B(i), i = 2, 3 (53)
WA(i)W † = B(i), i = 3, 1, (54)

but we want that the Hermitian matrices A(i) and B(i) are not jointly unitarily equivalent for all i = 1, 2, 3.
For simplicity we choose U = 1 (this simply amounts to re-defining the B(i) so it does not limit the generality
of what follows). The above equations imply that

A(1) = WA(1)W † (55)
A(2) = V A(2)V (56)
A(3) = V †WA(3)W †V. (57)

Let us define Ũ = V †W , so that the equations read

[A(1),W ] = 0, [A(2), V ] = 0, [A(3), Ũ ] = 0 (58)

and

B(1) = A(1), B(2) = A(2), B(3) = V A(3)V †. (59)

By Wiegmann’s theorem, all we need now is two unitaries V,W and three Hermitian matrices A(i) fulfilling the
above conditions such that

Tr[B(1)B(2)B(3)] = Tr[A(1)A(2)V A(3)V †]
̸= Tr[A(1)A(2)A(3)]. (60)

An explicit such choice is as follows:

A(1) =

0 0 0
0 0 0
0 0 1

 , A(2) =

0 0 1
0 0 0
1 0 0

 , A(3) = i

 0
√

3 −
√

3
−

√
3 0

√
3√

3 −
√

3 0

 , (61)

V =

0 1 0
1 0 0
0 0 1

 , W =

0 0 1
0 1 0
1 0 0

 , (62)

which yields ∣∣∣Tr[B(1)B(2)B(3)] − Tr[A(1)A(2)A(3)]
∣∣∣ = 2

√
3. (63)
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