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A unifying formalism of generalized condi-
tional expectations (GCEs) for quantum me-
chanics has recently emerged, but its physi-
cal implications regarding the retrodiction of a
quantum observable remain controversial. To
address the controversy, here I offer opera-
tional meanings for a version of the GCEs
in the context of quantum parameter estima-
tion. When a quantum sensor is corrupted by
decoherence, the GCE is found to relate the
operator-valued optimal estimators before and
after the decoherence. Furthermore, the error
increase, or regret, caused by the decoherence
is shown to be equal to a divergence between
the two estimators. The real weak value as a
special case of the GCE plays the same role
in suboptimal estimation—its divergence from
the optimal estimator is precisely the regret
for not using the optimal measurement. For an
application of the GCE, I show that it enables
the use of dynamic programming for designing
a controller that minimizes the estimation er-
ror. For the frequentist setting, I show that
the GCE leads to a quantum Rao-Blackwell
theorem, which offers significant implications
for quantum metrology and thermal-light sens-
ing in particular. These results give the GCE
and the associated divergence a natural, useful,
and incontrovertible role in quantum decision
and control theory.

1 Introduction
The conditional expectation is an essential concept
in classical probability and statistics [1]. Given some
observed data in an experiment, the conditional ex-
pectation of a hidden random variable is the best ap-
proximation of the hidden variable in a least-squares
sense and thus plays a central role in Bayesian es-
timation theory [1, 2]. Another important applica-
tion is in the Rao-Blackwell theorem [3, 4], which
exploits the variance reduction property of the con-
ditional expectation to improve an estimator and has
found widespread uses in classical statistics [5, 6, 7].
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Many attempts have been made over the past few
decades to generalize the concept of conditional ex-
pectation for quantum mechanics [8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18]. Umegaki’s version for von Neu-
mann algebra may be the earliest [8]. His axiomatic
definition is so restrictive, however, that his condi-
tional expectation does not exist in many situations
[19, 12]; this existence problem has led Holevo to re-
mark that “conditional expectations play a less im-
portant part in quantum than in classical probability”
[19]. In quantum estimation theory, Personick [9] and
Belavkin and Grishanin [10] proposed an operator-
valued estimator that is optimal for Bayesian param-
eter estimation and can also be regarded as a quan-
tum conditional expectation. On the other hand, Ac-
cardi and Cecchini proposed yet another conditional
expectation for von Neumann algebra [11], which be-
came instrumental in Petz’s work on quantum suf-
ficient channels [12]. Many other investigations of
quantum conditional expectations can be found in the
literature on weak values [13, 14], quantum filtering
[20, 21, 22], quantum retrodiction [23, 24], and quan-
tum smoothing [25, 26, 27, 28, 29, 30, 16, 17, 18]. In
recent years, it has been recognized [16, 17, 18] that
many of these quantum conditional expectations can
be unified under a mathematical formalism of gen-
eralized conditional expectations (GCEs) [15]. The
GCE formalism can also be rigorously connected to
the concepts of quantum states over time and gener-
alized Bayes rules [31, 32], as shown by Parzygnat and
Fullwood [33].

Despite the mathematical progress, the GCEs have
provoked fierce debates regarding their physical mean-
ing and usefulness, especially when it comes to the
weak values [34, 35, 36, 37, 38, 39, 40]. The debates
center on two issues: whether it makes any sense to
estimate the value of a quantum observable in the past
(retrodiction) and whether the GCEs offer any use in
quantum metrology, where quantum sensors are used
to estimate classical parameters. This work addresses
both issues by demonstrating how a certain version
of the GCEs—of which the real weak value is a spe-
cial case—can play fundamental roles in quantum pa-
rameter estimation in both Bayesian and frequentist
settings.

When a quantum sensor suffers from decoherence,
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I show that the GCE relates the two Personick esti-
mators before and after the decoherence. Moreover,
the error increase due to the decoherence, henceforth
called the regret, is shown to be equal to a divergence
measure between the two estimators. By regarding
a suboptimal measurement as a decoherence process,
I show that the weak value is a special case of the
GCE and its divergence from the Personick estimator
is precisely the regret due to the measurement subop-
timality. For the frequentist setting, I also propose a
quantum Rao-Blackwell theorem based on the GCE.

These fundamental results lead to many signifi-
cant consequences in quantum metrology. To wit,
the Markovian nature of the GCE is shown to en-
able the use of dynamic programming [41] for opti-
mizing a measurement protocol, while Corollaries 1–6
in this work reveal the monotonicity of the Bayesian
error, the optimality of von Neumann measurements
in Bayesian and frequentist settings, the optimality of
symmetric estimators for symmetric states, the opti-
mality of direct-sum estimators for direct-sum states,
and the optimality of photon counting for certain
thermal states. A key feature of these optimality
results is that they are direct statements about the
mean-square errors and are valid for both biased and
unbiased estimators, unlike many results based on
Cramér-Rao-type bounds, which require heavy as-
sumptions about the estimators and the density op-
erators.

This paper is organized as follows. To set the stage
and make the paper self-contained, Sec. 2 reviews the
concept of GCEs, emphasizing their significance in
minimizing a divergence quantity between two op-
erators at different times [18]. Section 3 presents
some fundamental properties of the GCEs that are
key to their applications to quantum metrology, in-
cluding a chain rule (Theorem 1) that gives the GCEs
a Markovian property for a sequence of channels and
a Pythagorean theorem (Theorem 2) that gives the
divergence an additive property. Sections 4 and 5
present the core results of this work, namely, the ap-
plications of a version of the GCEs to quantum pa-
rameter estimation. This GCE follows a particular
operator ordering based on the Jordan product and is
shown to play a natural role in quantum estimation
theory.

Section 4 studies the role of the GCE in Bayesian
quantum parameter estimation, a topic that has re-
ceived renewed interest in recent years [42, 43, 44].
Within Sec. 4, Sec. 4.1 presents the general relations
between the Personick estimators for a sensor under
decoherence, Sec. 4.2 shows how they enable the use
of dynamic programming in quantum sensor measure-
ment design, and Sec. 4.3 discusses the special case of
the real weak value.

Section 5 switches to the frequentist setting and
presents the quantum Rao-Blackwell theorem, The-
orem 3, in Sec. 5.1. Sections 5.2–5.4 present some

significant consequences of the quantum theorem for
quantum metrology, while Sec. 5.5 discusses an appli-
cation of the theorem to thermal-light sensing.

Section 6 is the conclusion, listing some open prob-
lems. Appendix A discusses the complementary con-
cept of quantum prediction. Appendix B reviews the
classical conditional expectation to give the quantum
formalism a more familiar context. Appendix C gives
an explicit formula for the GCE for Gaussian systems.
Appendix D defines the von Neumann measurement.
Appendix E presents the dynamic-programming al-
gorithm. Appendix F justifies the name of Theo-
rem 3 by deriving the classical Rao-Blackwell theo-
rem from it. Appendix G discusses the differences
and relations between the Bayesian and frequentist
settings. Appendix H compares this work with some
prior works. Appendix I offers an alternative deriva-
tion of the quantum U-statistics, first introduced by
Guţă and Butucea [45], using Theorem 3. Appendix J
contains the more technical proofs.

2 Review of generalized conditional
expectations
This section follows Ref. [18] and Chap. 6 in Ref. [15].
Let O(H) be the space of bounded operators on a
Hilbert space H and ρ ∈ O(H) be a density operator.
Define an inner product between two operators A,B ∈
O(H) and a norm as

⟨B,A⟩ρ ≡ trB†EρA, ∥A∥ρ ≡
√

⟨A,A⟩ρ, (2.1)

where Eρ : O(H) → O(H) is a linear, self-adjoint, and
positive-semidefinite map with respect to the Hilbert-
Schmidt inner product

⟨B,A⟩HS ≡ trB†A. (2.2)

The weighted inner product ⟨·, ·⟩ρ is a generalization
of the inner product between two random variables in
classical probability theory [1]. Some desirable prop-
erties of E are1

EρA = ρA if ρ,A commute, (2.3)
Eρ(U†AU) = U† (

EUρU†A
)
U, (2.4)

Eρ1⊗ρ2(A1 ⊗A2) = (Eρ1A1) ⊗ (Eρ2A2)
if ρ1, A1 commute or ρ2, A2 commute, (2.5)

∥A1 ⊗ I2∥ρ ≤ ∥A1∥tr2 ρ, (2.6)

where A is any operator on H, U is any unitary op-
erator on H, ρj is any density operator on Hj , Hj is
any Hilbert space, Aj is any operator on Hj , Ij is the

1Equation (2.5) without the commutation condition is pro-
posed in Ref. [15] and repeated in Ref. [18], but it turns out to
be false for many operator products, including the Jordan prod-
uct, as pointed out by Ref. [33]. The results in Ref. [18] remain
correct if the commutation condition in Eq. (2.5) is imposed.
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identity operator on Hj , ρ in Eq. (2.6) is any den-
sity operator on H1 ⊗ H2, and trj denotes the partial
trace with respect to Hj . Examples of E that satisfy
Eqs. (2.3)–(2.6) include

EρA = 1
2 (ρA+Aρ) , (2.7)

EρA = ρA, (2.8)
EρA = √

ρA
√
ρ. (2.9)

In the following, I fix E to be a map that satisfies
Eqs. (2.3)–(2.6).

Let L2(ρ) be the completion of O(H) with re-
spect to the norm ∥·∥ρ, such that it becomes a
weighted Hilbert space for the operators. Each el-
ement of L2(ρ) is then an equivalence class of op-
erators with zero distance between them. If H is
infinite-dimensional, O(H) may not be complete and
L2(ρ) may include unbounded operators as well [46].
The infinite-dimensional case is much more compli-
cated to treat with rigor, so I consider only finite-
dimensional Hilbert spaces in the following for sim-
plicity, and assume that the results still hold for a cou-
ple of the infinite-dimensional problems studied later
in Appendix C and Sec. 5.5.

Definition 1. Let σ be a density operator on H1
and F : O(H1) → O(H2) be a completely positive,
trace preserving (CPTP) map that models a quan-
tum channel. Then the divergence between an opera-
tor A ∈ L2(σ) and another operator B ∈ L2(Fσ) is
defined as

Dσ,F (A,B) ≡ ∥A∥2
σ − 2 Re ⟨F∗B,A⟩σ + ∥B∥2

Fσ,
(2.10)

where Re denotes the real part and F∗ denotes the
Hilbert-Schmidt adjoint of F .

This divergence, introduced in Ref. [18], can be re-
lated to the more usual definition of distance in a
larger Hilbert space by considering the Stinespring
representation

Fσ = tr10 U(σ ⊗ τ)U†, (2.11)

where τ is a density operator on H2 ⊗ H0, H0 is some
auxiliary Hilbert space, U is a unitary operator on
H1 ⊗ H2 ⊗ H0 that models the evolution from time t
to time T ≥ t, and tr10 is the partial trace over H1
and H0. Let ρ = σ ⊗ τ and define the Heisenberg
pictures of A and B as

At ≡ A⊗ I2 ⊗ I0, BT ≡ U†(I1 ⊗B ⊗ I0)U. (2.12)

Then it can be shown that

Dσ,F (A,B) ≥ ∥At −BT ∥2
ρ, (2.13)

and the divergence is nonnegative. Furthermore, if
the E map obeys the stricter equality condition in
Eq. (2.6), then the equality in Eq. (2.13) holds, and
D is exactly the squared distance in the larger Hilbert
space.

Definition 2. Given a density operator σ, a CPTP
map F , and an E map that satisfies Eqs. (2.3)–(2.6),
the GCE F∗ : L2(σ) → L2(Fσ) of A ∈ L2(σ) is de-
fined as

F∗A ≡ arg min
B∈L2(Fσ)

Dσ,F (A,B), (2.14)

which leads to

⟨c,F∗A⟩Fσ = ⟨F∗c, A⟩σ ∀c ∈ L2(Fσ). (2.15)

More explicitly, F∗A is an equivalence class of opera-
tors that satisfy

EFσF∗A = FEσA. (2.16)

Equation (2.15) can be derived by assuming the
ansatz B = F∗A + ϵc with ϵ ∈ R, c ∈ L2(Fσ),
and minimizing D with respect to ϵ. Given an A,
the existence and uniqueness of F∗A as an element
of L2(Fσ) can be proved by viewing Eq. (2.15) as a
linear functional of c and applying the Riesz repre-
sentation theorem [47]. Equation (2.16) can also be
derived independently from a state-over-time formal-
ism [33]. With the GCE, the minimum divergence
becomes

Dσ,F (A,F∗A) = min
B∈L2(Fσ)

Dσ,F (A,B)

= ∥A∥2
σ − ∥F∗A∥2

Fσ. (2.17)

Note that the GCE map F∗ depends implicitly on
the E map and the prior state σ; the choice of E and
σ should be clear from the context in the following
and, when necessary, σ is stated explicitly in the su-
perscript as Fσ

∗ . Note also that Chap. 6 in Ref. [15]
writes Fσ

∗ as Fσ,x, where x denotes the E map being
used, while Ref. [18] writes Fσ

∗ as Fσ. Appendix A
presents more interesting formulas concerning F∗ and
F∗ that justify the new notations, while Appendix B
presents a brief and elementary review of the classical
conditional expectation to give the quantum formal-
ism a more familiar context.

Some examples are in order. Consider the unitary
channel

Fσ = UσU†, (2.18)

where U is a unitary operator on H1. A solution to
any GCE is

F∗A = UAU†, (2.19)

leading to Dσ,F (A,F∗A) = 0. Equation (2.19) is
called the Heisenberg representation in quantum com-
puting [48], and the GCEs can be regarded as gener-
alizations of the Heisenberg representation for open
systems.

With the root product given by Eq. (2.9), the GCE
becomes the Accardi-Cecchini GCE [11, 12], and its
Hilbert-Schmidt adjoint (F∗)∗ is known as the Petz
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recovery map, which is useful in quantum information
theory [49].

Appendix C presents another example where σ is a
Gaussian state, F is a Gaussian channel [50], and A is
a quadrature operator. Then the GCE in terms of the
Jordan product given by Eq. (2.7) and the associated
divergence turn out to have the same formulas as the
classical conditional expectation and its mean-square
error for the usual linear Gaussian model [51].

3 Fundamental properties
With Eqs. (2.15)–(2.17), it is straightforward to prove
the following crucial properties of the GCE:

Theorem 1 (Chain rule2; see Eq. (6.22) in Ref. [15]).
Let G : O(H2) → O(H3) be another CPTP map.
Then the GCE of the composite map GF is given by

(GF)σ
∗A = GFσ

∗ Fσ
∗ A, (3.1)

which can be abbreviated as

(GF)∗ = G∗F∗. (3.2)

In other words, the GCE for a chain of CPTP maps
is given by a chain of the GCEs associated with the
individual CPTP maps.

Theorem 2 (Pythagorean theorem). Given the two
CPTP maps F and G, the minimum divergences obey

Dσ,GF (A, (GF)∗A) = Dσ,F (A,F∗A)
+DFσ,G(F∗A,G∗F∗A). (3.3)

Proof. Use Eq. (2.17) and Theorem 1.

Figure 1 offers some diagrams that illustrate the
theorems.

Before moving on, I list two more properties of the
GCEs—their physical significance for generalizing the
Rao-Blackwell theorem [5] will be explained in Sec. 5.

Lemma 1 (Law of total expectation). For any A ∈
L2(σ),

trσA = ⟨I1, A⟩σ = ⟨I2,F∗A⟩Fσ = tr(Fσ)(F∗A).
(3.4)

Lemma 2. Let a be any complex number. Then

∥A− aI1∥2
σ = ∥F∗A− aI2∥2

Fσ +Dσ,F (A,F∗A).
(3.5)

See Appendix J for the proofs of Lemmas 1 and 2.
A map F∗ that satisfies Lemma 1 is also called a

coarse graining [12]. Whereas Petz’s definition re-
quires a coarse graining to be completely positive, the

2I follow Ref. [11] to call this property a chain rule. Note
that Ref. [15] calls it associativity, while Refs. [33, 52] call it
compositionality.

(a) (b)

(c)

Figure 1: (a) A diagram depicting the map of a density
operator σ through the CPTP maps F and then G. (b) A
diagram depicting the map of an observable A through the
GCE (GF)∗, or equivalently through the two GCEs F∗ and
then G∗, as per Theorem 1. (c) A diagram depicting the root
divergences between the operators as lengths of the sides of
a right triangle, as per Theorem 2. The subscripts of D are
omitted for brevity.

GCEs here need not be. If a in Lemma 2 is set as the
mean given by Eq. (3.4), then Lemma 2 says that the

generalized variance of F∗A given by ∥F∗A− aI2∥2
Fσ

cannot exceed that of A.

The mathematics of GCEs would be uncontrover-
sial if not for its physical implication: By defining a
divergence between two operators at different times,
a retrodiction of a hidden quantum observable A can
be given a risk measure and therefore a meaning in
the spirit of decision theory [2]. In other words, after
a channel F is applied, one can seek an observable B
that is the closest to A if the divergence is regarded as
a squared distance, and F∗A is the answer. It remains
an open and reasonable question, however, why the di-
vergence between two operators is an important quan-
tity. If At at time t does not commute with BT at a
later time in the Heisenberg picture, where At and BT

are defined by Eqs. (2.12), then Belavkin’s nondemo-
lition principle for their simultaneous measurability is
violated [20, 21, 39], no classical observer can access
the precise values of both, and the divergence does
not seem to have any obvious meaning to the classi-
cal world. Notably, Gough claims in Ref. [39] that a
retrodiction that violates the nondemolition principle
is “misapplying Bayes theorem,” “not possible,” and
“unwarranted.” Reference [38], the preprint version of
Ref. [39], goes even further in claiming that someone
who does not follow the principle may obtain “wholly
meaningless” answers and is “in a state of sin.” In
Ref. [40], James also claims that the principle should
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be observed for a quantum conditional expectation to
make sense. To show that a retrodiction can make
sense beyond the nondemolition principle, the next
sections offer natural scenarios in quantum metrology
that will give operational meanings to a GCE and the
associated divergence.

4 Bayesian quantum parameter esti-
mation

4.1 General results
Consider the typical setup of Bayesian quantum pa-
rameter estimation [9] depicted in Fig. 2(a). Let X be
a hidden classical random parameter with a countable
parameter space X and a prior probability distribu-
tion PX : X → [0, 1]. A quantum sensor is coupled
to X, such that its density operator conditioned on
X = x is ρx ∈ O(H2). A classical observer mea-
sures the quantum sensor, as modeled by a positive
operator-valued measure (POVM) M : ΣY → O(H2)
on a Borel space (Y,ΣY), where ΣY is the Borel
sigma-algebra of Y [46]. The observer uses the out-
come y ∈ Y to estimate the value of a real random
variable a : X → R. The problem can be framed in
the GCE formalism by writing

σ =
∑

x

PX(x) |x⟩ ⟨x| , A =
∑

x

a(x) |x⟩ ⟨x| ,

(4.1)

Fσ =
∑

x

ρx ⟨x|σ |x⟩ =
∑

x

ρxPX(x), (4.2)

where {|x⟩ : x ∈ X } is an orthonormal basis of H1
and the classical random variable a(X) is framed as
the hidden observable A discussed in Secs. 2 and 3. F
here is called a classical-quantum channel and has a
natural generalization in the infinite-dimensional case
[50].

random
variable

(a)

(b)

quantum
sensor measurement

decoherence

intermediate
time

final
time

time

outcome

random
variable

quantum
sensor measurement outcome

Figure 2: Some scenarios of Bayesian quantum parameter
estimation. See the main text for the definitions of the sym-
bols.

In the following, I consider only Hermitian oper-
ators (observables) and assume E to be the Jordan
product given by Eq. (2.7), such that all the opera-
tor Hilbert spaces are real, the equalities in Eqs. (2.6)
and (2.13) hold, and the GCE is in fact a projection
in the larger Hilbert space [15].

Suppose that a von Neumann measurement of an
observable B on H2 is performed, as defined in Ap-
pendix D, and the outcome is used as the estimator.
I call such a B an operator-valued estimator. The
mean-square estimation error averaged over the prior
is given by∑

x

PX(x)
∫

[b− a(x)]2 tr Π(db)ρx = Dσ,F (A,B),

(4.3)

where Π is the projection-valued measure of B. Equa-
tion (4.3) is precisely the divergence in Definition 1.
According to the seminal work of Personick [9], the
optimal operator-valued estimator is the GCE F∗A,
and the minimum error, hereafter called the Bayesian
error, is Dσ,F (A,F∗A). It can also be shown that the
von Neumann measurement of F∗A remains optimal
even if POVMs are considered (see Sec. VIII 1(d) in
Ref. [53], Appendix A in Ref. [43], or Corollary 2 be-
low).

Now suppose that a complication occurs in the ex-
periment, as depicted by Fig. 2(b): Before the mea-
surement can be performed, the sensor is further cor-
rupted by decoherence, as modeled by another CPTP
map G. The error of an operator-valued estimator B′

is now∑
x

PX(x)
∫

[b− a(x)]2 tr Π′(db)Gρx = Dσ,GF (A,B′),

(4.4)

where Π′ is the projection-valued measure of B′. The
Personick estimator after G is then B′ = (GF)∗A,
and the Bayesian error becomes Dσ,GF (A, (GF)∗A).
A fundamental fact is as follows.

Corollary 1 (Monotonicity of the Bayesian error).
The Bayesian error cannot decrease under decoher-
ence, viz.,

Dσ,GF (A, (GF)∗A) ≥ Dσ,F (A,F∗A) (4.5)

for the estimation problem modeled by Eqs. (4.1)–
(4.4).

Proof. Use Theorem 2 and the nonnegativity of D.

The scenario so far is standard and uncontroversial,
as A is effectively a classical random variable. Math-
ematically, At and (F∗A)T in the Heisenberg picture
commute (see Sec. IV F in Ref. [18]) and thus satisfy
the nondemolition principle; so do At and [(GF)∗A]T .
Physically, the principle implies that another classical
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observer can, in theory, access the precise value of A
in each trial, the estimates can be compared with the
true values by the classical observers after the trials,
andD is their expected error. The monotonicity given
by Corollary 1 is a noteworthy result, but unsurpris-
ing.

More can be said about the error increase, here-
after called the regret (to borrow a term from deci-
sion theory [2]). First of all, the chain rule in Theo-
rem 1 gives an operational meaning to the GCE G∗ as
the map that relates the intermediate Personick esti-
mator F∗A to the final (GF)∗A = G∗F∗A. In other
words, the final Personick estimator is equivalent to
a retrodiction of the intermediate F∗A, which is a
quantum observable. Second, the Pythagorean theo-
rem in Theorem 2 means that the regret caused by
the decoherence is precisely the divergence between
the intermediate and final estimators:

Dσ,GF (A, (GF)∗A) −Dσ,F (A,F∗A)
= DFσ,G(F∗A,G∗F∗A). (4.6)

The two divergences on the left-hand side have a
firm decision-theoretic meaning as estimation errors
because A is classical. It follows that, even though
the divergence on the right-hand side is between two
quantum observables, it also has a firm decision-
theoretic meaning as the regret—for being unable to
perform the optimal measurement and having to suf-
fer from the decoherence. As the regret concerns the
performances of the two estimators in separate exper-
iments, the estimators need not obey the nondemoli-
tion principle, which is a condition on two observables
to be simultaneously measurable in the same experi-
ment.

I stress that the regret is not a contrived concept
invented here solely to give an operational meaning to
the divergence—its classical version is an established
concept in information theory and Bayesian learning
[54, 55, 56, 57].

4.2 Dynamic programming
When the decoherence is modeled by a chain of CPTP
maps G = FN . . .F2, the final error is the sum of all
the incremental regrets along the way, viz.,

Dσ,GN
(A,GN∗A) =

N∑
n=1

Dn, (4.7)

Gn ≡ Fn . . .F2F1, (4.8)
Dn ≡ Dσn,Fn(An, An+1), (4.9)

σn+1 ≡ Gnσ = Fnσn, σ1 = σ, (4.10)
An+1 ≡ Gn∗A = Fn∗An, A1 = A,

(4.11)

where F1 = F for the parameter estimation problem,
so even the error at the first step D1 = Dσ,F (A,F∗A)
can be regarded as a regret. Every Dn, bar D1, is a

divergence between a quantum observable An and its
estimator An+1 that may not commute in the Heisen-
berg picture.

Suppose that the experimenter can choose the chan-
nels (F1, . . . ,FN ) from a set of options and would
like to find the optimal choice that minimizes the fi-
nal error. One example is the use of a programmable
photonic circuit [58] to measure light for sensing or
imaging. The Markovian nature of Eqs. (4.10)–(4.11)
and the additive nature of the final error given by
Eq. (4.7)—which originate from Theorems 1 and 2—
are precisely the conditions that make this optimal
control problem amenable to dynamic programming
[41], an algorithm that can reduce the computational
complexity substantially [59]. To be specific, let the
system state (in the context of control theory) at time
n be sn ≡ (σn, An). Then Eqs. (4.7)–(4.11) imply
that the state dynamics and the final error can be
expressed as

sn+1 = f(sn,Fn), (4.12)

Dσ,GN
=

N∑
n=1

g(sn,Fn) (4.13)

in terms of some functions f and g. Equations (4.12)
and (4.13) are now in the form of a Markov decision
process that is amenable to dynamic programming
for computing the optimal maps (F1, . . . ,FN ) among
the set of options to minimize the final error [41]; Ap-
pendix E describes the algorithm for the reader’s in-
formation. As dynamic programming is a cornerstone
of control theory, there exist a plethora of exact or
approximate methods to implement it, such as neu-
ral networks under the guise of reinforcement learning
[60].

4.3 Weak value
To elaborate on the operational meaning for the
weak value, which is a GCE of a quantum observ-
able given a prior state and a measurement outcome
[16, 17, 14, 18], let us return to the scenario depicted
by Fig. 2(a). Suppose, for mathematical simplicity,
that the outcome space Y is countable. The measure-
ment can be framed as a G map given by

Gτ =
∑

y

[trM(y)τ ] |y⟩ ⟨y| , (4.14)

where {|y⟩ : y ∈ Y} is an orthonormal basis of H3
and M is the POVM of a measurement that may not
be optimal. An estimator b : Y → R as a function
of the measurement outcome can be framed as the
observable

B =
∑

y

b(y) |y⟩ ⟨y| . (4.15)
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The GCE then leads to the optimal estimator

B = G∗F∗A, (4.16)

b(y) = trM(y)EFσF∗A

trM(y)Fσ = Re trM(y)(F∗A)(Fσ)
trM(y)Fσ .

(4.17)

The last expression in Eq. (4.17) is precisely the defi-
nition of the real weak value of F∗A given a prior state
Fσ and a measurement outcome y (see, for example,
Eq. (3.13) in Ref. [61], Eq. (10) in Ref. [62], or Eq. (5)
in Ref. [14]). Moreover, the divergence between the
ideal F∗A and the B associated with the weak value
is precisely the regret caused by the suboptimality of
the measurement M , as per Theorem 2. Hence, re-
gardless of how anomalous the weak value may seem,
it does have an operational role in parameter esti-
mation, and its divergence from the ideal F∗A has a
concrete decision-theoretic meaning as the regret for
not using the optimal measurement.

The preceding discussion also serves as a rough
proof of the following corollary, which is proved by
different methods in Sec. VIII 1(d) of Ref. [53] and
Appendix A of Ref. [43].

Corollary 2. No POVM can improve upon the
Bayesian error Dσ,F (A,F∗A) achieved by a von Neu-
mann measurement of F∗A.

Corollary 2 may be regarded as a consequence of
monotonicity, since any measurement with a count-
able set of outcomes can be framed as a CPTP G map
given by Eq. (4.14), and by Corollary 1, the error can-
not decrease. A POVM with a more general outcome
space can still be framed as a quantum-classical chan-
nel; see, for example, Theorem 2 in Ref. [63], but it
requires a mathematical framework far more complex
than what is necessary for this work. An easier proof
for general POVMs, to be presented in Appendix J,
is to use a later result in Sec. 5.

Note that the optimality of the weak value here
does not contradict Ref. [34], which shows that weak-
value amplification, a procedure that involves post-
selection (i.e., discarding some of the outcomes), is
suboptimal for metrology. Here, the weak value given
by Eq. (4.17) is used directly as an estimator with
any measurement outcome, and no postselection is
involved. Note also that the optimality is in the spe-
cific context of finding the best estimator after a given
measurement; it does not mean that any measurement
method that is heuristically inspired by the weak-
value concept, such as weak-value amplification, can
be optimal. In fact, by virtue of Corollary 2, such
methods can never outperform the optimal von Neu-
mann measurement.

5 A quantum Rao-Blackwell theorem
5.1 General result
In classical frequentist statistics, the Rao-Blackwell
theorem is among the most useful applications of the
conditional expectation [5, 6, 7]. Here I outline a
quantum generalization. Suppose that the quantum
sensor is modeled by a family of density operators
{ρx : x ∈ X } ⊂ O(H2), where the unknown parame-
ter x is now deterministic and there is no longer any
need to assume a countable parameter space X . A
parameter of interest a : X → R is to be estimated by
a Hermitian operator-valued estimator B ∈ L2(ρx),
which need not be unbiased or optimal in any sense.
The local mean-square error (MSE) upon a von Neu-
mann measurement of B, as a function of x ∈ X and
without being averaged over any prior, is given by

MSEx ≡
∫

[b− a(x)]2 tr Π(db)ρx = ∥B − a(x)I2∥2
ρx
,

(5.1)

where Π is the projection-valued measure of B and
the Jordan product is again assumed for E . With-
out the unbiased condition tr ρxB = a(x), the quan-
tum Cramér-Rao bounds commonly used in quantum
metrology [53, 15] do not apply to MSEx. There is no
longer any simple optimality criterion for an estima-
tor in this general setting, but one can still construct
a partial order of preference between estimators. Fol-
lowing classical statistics (see p. 48 in Ref. [5]), I say
that an operator-valued estimator B′ dominates an-
other estimator B if the error MSE′

x of the former
never exceeds the error MSEx of the latter for all
x ∈ X and can go strictly lower for some x. I call
an estimator admissible if it is dominated by none.

In classical frequentist statistics, there can be many
admissible estimators for one problem with no clear
winner among them, and it may be hard to even
prove that a given estimator is admissible. The Rao-
Blackwell theorem is then a valuable tool for improv-
ing estimators or for proofs regarding admissibility.
A quantum version of the theorem can be similarly
useful for quantum estimation problems.

To state the quantum theorem, suppose that the
quantum sensor goes through a channel modeled by
a CPTP map G : O(H2) → O(H3) and the GCE G∗B
in terms of ρx and the Jordan product is used as an
estimator. The error becomes

MSE′
x = ∥G∗B − a(x)I3∥2

Gρx
. (5.2)

Lemma 2 can now be used to prove the following.

Theorem 3 (Quantum Rao-Blackwell theorem). Let
{ρx : x ∈ X } be a family of density operators,
a : X → R be an unknown parameter, B be a Her-
mitian operator-valued estimator, and MSEx be the
local error at x ∈ X . If a channel G is applied and
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the GCE G∗B in terms of ρx and the Jordan product
does not depend on x, then the error MSE′

x of G∗B as
an estimator is lower by the amount

MSEx − MSE′
x = Dρx,G(B,G∗B). (5.3)

Proof. Subtract Eq. (5.2) from Eq. (5.1) and apply
Lemma 2.

For G to be realizable and G∗B to be a valid esti-
mator, both cannot depend on the unknown x. When
there are many operator solutions to G∗B that satisfy
Definition 2, any of the solutions can be the estimator
in Theorem 3 as long as it does not depend on x.

To demonstrate that Theorem 3 is indeed a
quantum generalization of the Rao-Blackwell the-
orem, Appendix F derives the classical theorem
from Theorem 3. As also shown in Appendix F,
a parameter-independent conditional expectation in
classical statistics can be obtained by conditioning
on a sufficient statistic. The conditional expecta-
tion can then be used to improve an estimator in
a process called Rao-Blackwellization [5]. Roughly
speaking, Rao-Blackwellization works by averaging
the estimator with respect to unnecessary parts of the
data, thereby reducing its variance. A quantum Rao-
Blackwellization, enabled by Theorem 3, can be simi-
larly useful for improving a quantum measurement if
one can find a channel G that satisfies the constant
GCE condition and gives a large divergence between
B and G∗B. As long as Dρx,G(B,G∗B) > 0 for some x,
the Rao-Blackwell estimator G∗B dominates the orig-
inal estimator B. The improvement stems from two
basic facts about the GCE: G∗B maintains the same
bias as that of B by virtue of Lemma 1, while the
variance of G∗B cannot exceed that of B by virtue
of Lemma 2. Roughly speaking, the quantum Rao-
Blackwell theorem works in the same way as the clas-
sical case by averaging the estimator with respect to
unnecessary degrees of freedom via the GCE, thereby
reducing its variance.

For the confused readers who wonder how a channel
increases the error in the Bayesian setting because of
monotonicity but reduces the error in the frequentist
setting because of the Rao-Blackwell theorem, Ap-
pendix G offers a clarification.

It is noteworthy that Sinha also proposed some
quantum Rao-Blackwell theorems recently [64], al-
though his versions impose stringent conditions on
the commutativity of the operators. Another rele-
vant prior work is Ref. [65] by  Luczak, which stud-
ies a concept of sufficiency in von Neumann alge-
bra for minimum-variance unbiased estimation but
also makes some stringent assumptions. These prior
works, while seminal and mathematically impressive,
have questionable relevance to quantum metrology
and are discussed in more detail in Appendix H.

Given the close relation between the Rao-Blackwell
theorem and the concept of sufficient statistics in the

classical case, it is natural to wonder if a similar rela-
tion exists between the quantum Rao-Blackwell theo-
rem here and the concept of sufficient channels defined
by Petz [12]. One equivalent condition for a channel G
to be sufficient in Petz’s definition is that the Accardi-
Cecchini GCE G∗ in terms of the root product given
by Eq. (2.9) does not depend on x. The GCE here,
on the other hand, is in terms of the Jordan product
so that it can be related to the parameter estimation
error. The relation between Petz’s sufficiency and the
constant GCE condition desired here is thus nontriv-
ial.

A trivial example that makes any GCE constant
and the channel sufficient in any sense is the unitary
channel given by Eqs. (2.18) and (2.19), as long as the
unitary operator there does not depend on x. Apply-
ing Theorem 3 to the unitary channel gives no error
reduction, however. In the following, I offer more use-
ful examples that both satisfy Petz’s sufficiency and
give the desired constant GCE condition.

5.2 A sufficient channel for tensor-product
states
Lemma 3. Let

ρx = σx ⊗ τ, Gρx = tr0 ρx = σx, (5.4)

where σx is a density operator on H1 and τ is an
auxiliary density operator on H0. A solution to any
GCE is

G∗B = tr0[(I1 ⊗ τ)B], (5.5)

which does not depend on x if τ does not.

See Appendix J for the proof.
A sufficient channel may be understood intuitively

as a channel that retains all information in the quan-
tum sensor about x. Then it makes sense that the
channel in Lemma 3 is sufficient, as it simply amounts
to discarding an independent ancilla that carries no
information about x. A significant implication of the
lemma is a more general version of Corollary 2 for the
local error as follows.

Corollary 3. Given any POVM M : ΣY → O(H2),
any estimator b : Y → R, and the resulting local error
MSEx, there exists a von Neumann measurement that
can perform at least as well for all x ∈ X .

Proof. Write the Naimark extension of the POVM as

trM(·)σx = tr Π′(·)(σx ⊗ τ), (5.6)

where σx and τ are defined in Lemma 3 and Π′ is a
projection-valued measure on H1 ⊗ H0. As shown in
Appendix D, the measurement and the data process-
ing by b can be framed as a von Neumann measure-
ment of B =

∫
b(y)Π′(dy) on the larger Hilbert space,

such that its error MSEx with respect to ρx = σx ⊗ τ
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is given by Eq. (5.1). Now assume the channel in
Lemma 3. A solution to G∗B is given by Eq. (5.5),
which does not depend on x. It follows from Theo-
rem 3 that the error MSE′

x achieved by a von Neu-
mann measurement of G∗B is at least as good as
MSEx for all x ∈ X .

Note that Corollary 3 is more general than Corol-
lary 2, since the former applies to the local errors
for all parameter values, not just the average errors
in the Bayesian case. A proof of Corollary 2 using
Corollary 3 is presented in Appendix J.

The corollaries imply that, in seeking an admissi-
ble estimator for estimating a real scalar parameter
under a mean-square-error criterion, it is sufficient to
consider only von Neumann measurements, and ran-
domization via an independent ancilla is not helpful
in both Bayesian and frequentist settings. For exam-
ple, optical amplification has been suggested to im-
prove astronomical measurements [66], but since opti-
cal amplification must involve an independent ancilla
[67, 68], Corollary 3 implies that there always exists
a von Neumann measurement that performs at least
as well.

The corollaries are reminiscent of a well known re-
sult saying that a von Neumann measurement of the
so-called symmetric logarithmic derivative (SLD) op-
erator can saturate the quantum Cramér-Rao bound
(see Sec. 6.4 in Ref. [15]). Note, however, that the
bound assumes unbiased estimators and the differen-
tiability of ρx, while the SLD measurement may be
a function of the unknown parameter and thus un-
realizable. The corollaries here, on the other hand,
are much more general and conclusive, as they apply
to arbitrary estimators and arbitrary families of den-
sity operators, while the von Neumann measurements
they offer are all parameter-independent.

Of course, one is often forced to use an ancilla in
practice, such as the optical probe in atomic metrol-
ogy [69] or optomechanics [70]. Then the divergence
offers a measure of regret in both Bayesian and fre-
quentist settings through Theorems 2 and 3. Con-
sider atomic metrology for an example [69]. Let ρx

be the parameter-dependent density operator of the
atoms on H1 and τ be the initial state of an optical
probe on H0. Then the state after the optical probing
can be expressed as U(ρx ⊗ τ)U†, where U is a uni-
tary operator on H1 ⊗ H0 that models the atom-light
interaction. If an optical measurement, modeled by
a projection-valued measure Π0 on H0, is performed
and the estimator in terms of the outcome y is b(y),
then the B observable in Lemma 3 and Corollary 3
can be expressed as

B =
∫
b(y)Π′(dy), Π′(·) = U† [I1 ⊗ Π0(·)]U, (5.7)

and MSEx is the error of this indirect measurement
of the atoms. The GCE G∗B, on the other hand,

is an atomic observable on H1, and MSE′
x is the er-

ror of the direct atomic measurement of G∗B. Then
Dρx,G(B,G∗B) = MSEx − MSE′

x can be regarded as
the regret due to the indirectness of the optical mea-
surement. The Bayesian setting can be studied simi-
larly.

5.3 A sufficient channel for symmetric states
Let {Uz : z ∈ Z} be a set of unitary operators on H2,
and suppose that ρx is invariant to all of them, viz.,

UzρxU
†
z = ρx ∀z ∈ Z. (5.8)

Examples include the symmetric states that are
invariant to any permutation of a tensor-powered
Hilbert space—to be discussed later—and optical
states with random phases that are invariant to any
phase modulation. ρx is also invariant to the random
unitary channel

Gρx =
∫
µ(dz)UzρxU

†
z = ρx (5.9)

for any probability measure µ on (Z,ΣZ). G is then a
sufficient channel in Petz’s sense, since another equiv-
alent condition for Petz’s sufficiency is the existence
of an x-independent CPTP map that recovers ρx from
Gρx [12]. It is straightforward to compute the GCEs.

Lemma 4. Given Eqs. (5.8) and (5.9), a solution to
any GCE is

G∗B =
∫
µ(dz)UzBU

†
z , (5.10)

which does not depend on x if {Uz} and µ do not.

See Appendix J for the proof.

Corollary 4. Given a family of states that are in-
variant to a set of unitaries {Uz}, any estimator
B ∈ L2(ρx), and the resulting local error MSEx, there
exists an averaged estimator given by Eq. (5.10) that
performs at least as well as B for all x ∈ X .

Proof. Use Lemma 4 and Theorem 3.

If Z is a group and {Uz} is a projective unitary
representation of the group that satisfies Uz′Uz =
ω(z′, z)Uz′z for a complex scalar ω with |ω| = 1 [46],
then the left Haar measure µ̃ on the group [1] plays a
special role, as the GCE with respect to it, written as

G̃∗B ≡
∫
µ̃(dz)UzBU

†
z , (5.11)

is invariant to any subsequent GCE for any random
unitary channel, in the sense that

G∗G̃∗B = G̃∗B (5.12)
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for any µ. The left Haar measure is thus the ultimate
choice that gives the highest error reduction in the
context of Corollary 4.

For a concrete example, let H2 = H⊗n
1 , π ∈ Sn be

a permutation function of (1, . . . , n), and Sn be the
permutation group. Define each unitary by [71]

Uπ(|ψ1⟩ ⊗ · · · ⊗ |ψn⟩) = |ψπ−11⟩ ⊗ · · · ⊗ |ψπ−1n⟩
(5.13)

for any {|ψj⟩ ∈ H1 : j = 1, . . . , n}. An operator in-
variant to all the permutation unitaries is called sym-
metric. Physically, a symmetric density operator cor-
responds to n indistinguishable systems. A common
example is ρx = σ⊗n

x , where σx is a density operator
on H1. The Haar measure is simply µ̃(π) = 1/n!, and
the corresponding GCE is

G̃∗B = 1
n!

∑
π

UπBU
†
π, (5.14)

which is a symmetrization. Furthermore, if one as-
sumes

B = C ⊗ I
⊗(n−m)
1 , C ∈ O(H⊗m

1 ), (5.15)

then Eq. (5.14) leads to the quantum U-statistics in-
troduced by Guţă and Butucea [45], as shown in Ap-
pendix I. The U-statistic is an unbiased estimator of
a(x) = tr ρxB = tr ρxG∗B. The simplest example is
when m = 1 and

G̃∗B = 1
n

n∑
l=1

I
⊗(l−1)
1 ⊗ C ⊗ I

⊗(n−l)
1 , (5.16)

which lowers the variance of B by a factor of n if
ρx = σ⊗n

x .

The derivation of the classical U-statistics by Rao-
Blackwellization is well known [72], and Corollary 4
is indeed the appropriate quantum generalization.

5.4 A sufficient channel for direct-sum states
Suppose now that {ρx : x ∈ X } is a family of density
operators on a direct sum of Hilbert spaces given by

H =
⊕
n∈N

Hn, (5.17)

and each ρx is given by the direct sum

ρx =
⊕
n∈N

σ(n)
x , (5.18)

where each σ
(n)
x is a positive-semidefinite operator on

Hn. A prominent example in optics is the multimode
thermal state, which will be discussed in Sec. 5.5. Let
Πn : H → Hn be the projection operator onto Hn.
Suppose that the Hilbert-space decomposition given

by Eq. (5.17) is parameter-independent, such that all
{Πn : n ∈ N } do not depend on x. Then the channel

Gρx =
⊕

n

ΠnρxΠn = ρx (5.19)

is sufficient in Petz’s sense. To compute the GCEs
with respect to Eqs. (5.18) and (5.19), I impose two
more properties on the E map given by

Eσ(1)⊕σ(2)(A1 ⊕A2) = (Eσ(1)A1) ⊕ (Eσ(2)A2) , (5.20)
Π1

(
Eσ(1)⊕σ(2)A

)
Π1 = Eσ(1)(Π1AΠ1) (5.21)

for any Aj ∈ O(Hj), any A ∈ O(H1 ⊕ H2), and any
density operator on H1 ⊕H2 in the form of σ(1) ⊕σ(2).
These properties are satisfied by the products given
by Eqs. (2.7)–(2.9) at least. Then the GCE has the
following solution.

Lemma 5. Given Eqs. (5.18) and (5.19) and as-
suming a GCE in terms of an E map that satisfies
Eqs. (5.20) and (5.21), a solution to the GCE is

G∗B =
⊕

n

ΠnBΠn, (5.22)

which does not depend on x if the projectors {Πn} do
not.

See Appendix J for the proof.
The quantum Rao-Blackwell theorem can now be

applied to Eqs. (5.18) and (5.19) to prove the follow-
ing.

Corollary 5. Assume that the Hilbert space can be
decomposed as Eq. (5.17) and the projectors {Πn :
H → Hn} do not depend on the unknown parameter
x. Given a density-operator family in the form of a di-
rect sum as per Eq. (5.18), any estimator B ∈ L2(ρx),
and the resulting local error MSEx, there exists an es-
timator G∗B given by Eq. (5.22), also in the form of
a direct sum, that performs at least as well as B for
all x ∈ X .

Proof. Use Lemma 5 and Theorem 3.

An example in optics is now in order.

5.5 Thermal-light sensing
A multimode thermal optical state can be expressed
as [73]

ρx =
∫
d2JαΦx(α) |α⟩ ⟨α| , (5.23)

α ≡

α1
...
αJ

 ∈ CJ , âj |α⟩ = αj |α⟩ , (5.24)

Φx(α) = 1
det(πΓx) exp

(
−α†Γ−1

x α
)
, (5.25)
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where |α⟩ is a coherent state, âj is the an-
nihilation operator for the jth mode, d2Jα ≡∏J

j=1 d(Reαj)d(Imαj), and Γx is the positive-definite
mutual coherence matrix. In thermal-light sensing
and imaging problems [74, 75, 76, 77, 78, 79], Γx is
assumed to depend on the unknown parameter x.

Let Hn be the n-photon Hilbert space. De-
fine a pure Fock state with photon numbers m =
(m1, . . . ,mJ) ∈ NJ

0 as

|m⟩ ≡

∏
j

(â†
j)mj√
mj !

 |0⟩ , (5.26)

where |0⟩ denotes the vacuum state. Let ∥m∥ ≡∑
j mj be the total photon number. Then {|m⟩ :

∥m∥ = n} is an orthonormal basis of Hn. In terms of
the Fock basis, each matrix element of ρx is given by

⟨m| ρx |l⟩ =
∫
d2JαΦx(α)

∏
j

e−|αj |2 α
mj

j (α∗
j )lj√

mj !lj !
.

(5.27)

The Gaussian moment theorem (see Eq. (1.6-33) in
Ref. [73]) implies that

⟨m| ρx |l⟩ = 0 if ∥m∥ ≠ ∥l∥, (5.28)

meaning that ρx can be decomposed in the direct-sum
form as

ρ =
∞⊕

n=0
σ(n)

x , (5.29)

σ(n)
x =

∑
m,l:∥m∥=∥l∥=n

⟨m| ρx |l⟩ |m⟩ ⟨l| , (5.30)

where each σ
(n)
x is an operator on Hn. Then trσ(n)

x

is the probability of having n photons in total and

σ
(n)
x / trσ(n)

x is the conditional n-photon state. The
projectors can be written as

Πn =
∑

m:∥m∥=n

|m⟩ ⟨m| . (5.31)

Ignoring the mathematical complications due to the
infinite-dimensional Hilbert space, Corollary 5 can
now be applied to Eq. (5.29).

If an estimator is constructed from a photon-
counting measurement with respect to any set of opti-
cal modes, it can be expressed in a Fock basis, which
commutes with all the projectors {Πn}. It follows
that the estimator is already in the direct-sum form
given by Eq. (5.22) and Corollary 5 offers no improve-
ment. On the other hand, notice that Eq. (5.22) must
commute with each projector Πn, viz.,

[G∗B,Πn] = 0 ∀n ∈ N . (5.32)

If an estimator does not commute with all {Πn}, such
as one obtained from homodyne detection, then the

estimator does not have the direct-sum form and has
the potential to be improved by the quantum Rao-
Blackwellization.

To introduce a more specific example, diagonalize
Γx in terms of a diagonal matrix Dx and a unitary
matrix Vx as

Γx = VxDxV
†

x , Djk,x = λj,xδjk, (5.33)

where δjk is the Kronecker delta and each λj,x is an
eigenvalue of Γx. I call {λj,x : j = 1, . . . , J} the spec-
trum of the thermal state. With the change of variable

β = V †
xα, (5.34)

Φx(α) = Φx(Vxβ) becomes separable in terms of β.
Define also a unitary operator Ûx by

Û†
xâjÛx =

∑
k

Vjk,xâk ≡ ĝj,x, (5.35)

such that |α⟩ = |Vxβ⟩ = Ûx |β⟩. ρx can then be ex-
pressed as

ρx =
∑
m

px(m) |m, g⟩ ⟨m, g| , (5.36)

where

px(m) =
∏

j

1
1 + λj,x

(
λj,x

1 + λj,x

)mj

(5.37)

is separable into a product of Bose-Einstein distribu-
tions and

|m, g⟩ ≡ Ûx |m⟩ =

∏
j

(ĝ†
j,x)mj√
mj !

 |0⟩ (5.38)

is a Fock state with respect to the optical modes de-
fined by Eq. (5.35). I call these optical modes the
eigenmodes of the thermal state. Now suppose that
only the spectrum {λj,x} depends on the unknown pa-
rameter x, while V , U , and thus {ĝj} do not, meaning
that the eigenmodes are fixed. This assumption ap-
plies to the thermometry problem studied in Ref. [75]
but does not apply to the stellar-interferometry prob-
lem studied in Ref. [74] or the subdiffraction-imaging
problem studied in Refs. [76, 77, 78, 79], because the
eigenmodes in the latter two cases vary with x. With
fixed eigenmodes, I can define a more fine-grained x-
independent projector as

Πm = |m, g⟩ ⟨m, g| , (5.39)

and apply Corollary 5 to Eq. (5.36). Plugging
Eq. (5.39) into Eq. (5.22) leads to the Rao-Blackwell
estimator

G∗B =
∑
m

⟨m, g|B |m, g⟩ |m, g⟩ ⟨m, g| , (5.40)

which can be implemented by counting the photons
in the eigenmodes and using ⟨m, g|B |m, g⟩ as the
estimator. Equation (5.40) then implies the following
corollary.
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Corollary 6. Suppose that a real scalar parameter
a(x) of the spectrum {λj,x} of a thermal-state family
is to be estimated and the eigenmodes are parameter-
independent. Given any measurement, any estimator,
and the resulting local error MSEx, there exists an
estimator with eigenmode photon counting that per-
forms at least as well for all x ∈ X .

Proof. Corollary 3 means that only von Neumann
measurements need to be considered. Any estima-
tor with any von Neumann measurement can be Rao-
Blackwellized to become Eq. (5.40), which can be
implemented by eigenmode photon counting. Corol-
lary 5 then guarantees that the MSE′

x achieved by
Eq. (5.40) can do at least as well for all x ∈ X .

In this example, the family of density operators
given by Eq. (5.36) and the G∗B given by Eq. (5.40)
happen to commute with one another, but the original
estimator B need not commute with the others, unlike
Sinha’s assumption in Ref. [64]; see Appendix H for
a brief discussion of his theory. Take homodyne de-
tection for example. An estimator constructed from
homodyne detection can be framed as

B = b(q̂), (5.41)

where q̂ is a vectoral quadrature operator that is a lin-
ear function of {âj}. Equation (5.41) does not com-
mute with Eq. (5.39) in general, but Corollary 6 still
applies to it.

To demonstrate the possible improvement through
an even more specific example, suppose that the spec-
trum is flat and a(x) = λj,x = x, the mean photon
number per mode, is the parameter of interest. With
homodyne detection, Eq. (5.41) is an unbiased esti-
mator of x if

B = 1
J

∑
j

q̂2
j − 1

2 , q̂j =
ĝj + ĝ†

j√
2

. (5.42)

The Rao-Blackwell estimator given by Eq. (5.40), on
the other hand, can be expressed as

G∗B = 1
J

∑
j

ĝ†
j ĝj . (5.43)

With the thermal state, it is straightforward to show
that

MSEx = 2
J

(
x+ 1

2

)2
, MSE′

x = 1
J

(
x2 + x

)
,

(5.44)

which are plotted in Fig. 3, demonstrating the domi-
nation of the Rao-Blackwell estimator.

Corollary 6 is reminiscent of the optimality of pho-
ton counting for thermometry proved in Ref. [75] in
terms of a quantum Cramér-Rao bound. Corollary 6
is more general because it applies directly to the local

Figure 3: Comparison of the mean-square error obtained by
homodyne detection (MSEx) and that by photon counting
(MSE′

x) in estimating the mean photon number per mode x
of a thermal state. The plot is in log-log scale, both axes are
dimensionless, and the errors are normalized with respect to
J , the number of optical modes. The improvement can be
regarded as a result of the quantum Rao-Blackwellization.

mean-square error of any biased or unbiased estima-
tor and allows the parametrization of the spectrum
{λj,x} and the parameter of interest a(x) to be gen-
eral. The superiority of photon counting over homo-
dyne detection for random displacement models has
also been noted in many other contexts [80, 81, 82, 83],
although those works, like Ref. [75], rely on the quan-
tum Cramér-Rao bound as well.

If the eigenmodes vary with x, as in the problems of
stellar interferometry [74] and subdiffraction imaging
[76, 77, 78, 79], then Eq. (5.40) may not be a valid es-
timator, because x is unknown and the measurement
may not be realizable. It is an interesting open ques-
tion whether the quantum Rao-Blackwell theorem can
offer any insight about those problems as well, beyond
the optimality of the direct-sum form in Corollary 5.
I speculate on two potential directions of future re-
search:

1. Even if the G∗ map may not be constant in gen-
eral, G∗B for a particular B may happen to be
constant and still a valid estimator.

2. Even if G∗B varies with x, Eq. (5.3) remains valid
and can be used as a lower bound on MSEx, in
which case MSEx ≥ MSE′

x is an oracle inequal-
ity. An estimator that approximates G∗B, via
an adaptive protocol for example [22], may still
enjoy an error close to MSE′

x.

6 Conclusion
This work cements the Jordan-product GCE and the
associated divergence as essential concepts in quan-
tum metrology. In the Bayesian setting, the GCE
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is found to relate the optimal estimators for a se-
quence of channels. In the frequentist setting, the
GCE is found to give a quantum Rao-Blackwell the-
orem, which can improve a quantum estimator in the
same manner as the classical version does and reveal
the optimal forms of the estimators in common sce-
narios. In both settings, the divergence is found to
play a significant role in determining the gap between
the estimation errors before and after a channel is
applied. Given these operational meanings, even the
purists [39, 40] can no longer dismiss the GCE and
the divergence as pointless concepts. For the more
open minds, the concepts have unveiled a new suite
of methods for the study of decoherence and the de-
sign of better measurements in quantum metrology.

Many open problems remain. First, it should be
possible to generalize the theory here rigorously for
infinite-dimensional Hilbert spaces. Second, it may
be possible to generalize the quantum Rao-Blackwell
theorem here for other convex loss functions beyond
the square loss, in the same manner as the classical
version [5] or Sinha’s versions [64]. Third, there may
be a deeper relation between Petz’s sufficiency and
the constant GCE condition desired here, beyond the
specific examples in this work. Fourth, there should
be no shortage of further interesting examples and ap-
plications of the theory here for quantum metrology.
Last but not the least, the strategy of using quan-
tum metrology to give operational meanings to GCEs
may be generalizable for other versions of GCEs and
other metrological tasks, such as multiparameter esti-
mation, thus expanding the fundamental role of GCEs
in both quantum metrology and quantum probability
theory.
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A Quantum prediction
In analogy with Eq. (2.14), F∗, the Hilbert-Schmidt
adjoint of the CPTP map F that models a channel,
obeys the following interesting formula for any E :

F∗B = arg min
A∈L2(σ)

Dσ,F (A,B). (A.1)

In other words, F∗ is the optimal prediction in the
same way F∗ is the optimal retrodiction. The nota-
tions of F∗ and F∗ also coincide with those of the
pullback and the pushforward in differential geome-
try [84], respectively, and indeed F∗ and F∗ behave
like those operations.

With the adjoint relation between F∗ and F∗ given
by Eq. (2.15) in terms of the weighted inner product,
F∗ can be shown to obey

EσF∗B = (F∗)∗EFσB, (A.2)

in analogy with Eq. (2.16), while the minimum diver-
gence in Eq. (A.1) can be expressed as

Dσ,F (F∗B,B) = min
A∈L2(σ)

Dσ,F (A,B)

= ∥B∥2
Fσ − ∥F∗B∥2

σ, (A.3)

in analogy with Eq. (2.17). The divergence given by
Eq. (2.10) can also be rewritten in a time-symmetric
form as

Dσ,F (A,B) = ⟨A− F∗B,A⟩σ + ⟨B − F∗A,B⟩Fσ .
(A.4)

Together with Eqs. (2.14)–(2.17), these formulas com-
plete a satisfying time-symmetric theory of quantum
inference.

B Classical conditional expectation
The classical concepts in this Appendix are all spe-
cial cases of the quantum concepts in Sec. 2 and Ap-
pendix A; see Table 1 for the correspondence.

Let X and Y be classical random variables with
countable sample spaces X and Y, respectively. Sup-
pose that X is generated at an earlier time than Y .
Let PX(x) be the probability distribution of X and
PY |X(y|x) be the probability distribution of Y condi-
tioned on X = x. The unconditional distribution of
Y is given by

PY (y) =
∑

x

PY |X(y|x)PX(x), (B.1)

which can be expressed as PY = FPX . The diver-
gence between two complex random variables a(X)
and b(Y ) can be defined as

DPX ,F (a, b) ≡
∑
x,y

|a(x) − b(y)|2PY |X(y|x)PX(x)

(B.2)
= ∥a∥2

PX
− 2 Re ⟨F∗b, a⟩PX

+ ∥b∥2
PY
,

(B.3)

where the inner product and the norm are defined in
Table 1 and F∗ is the adjoint of F with respect to the
unweighted inner product in Table 1, such that

(F∗b)(x) =
∑

y

b(y)PY |X(y|x). (B.4)

In other words, F∗b is the conditional expectation of
b(Y ) given X.

Let L2(P ) be the Hilbert space of random variables
in terms of the inner product ⟨·, ·⟩P defined in Table 1.
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Concept Quantum Classical
Prior state Density operator σ Probability distribution PX(x)
Channel CPTP map F

∑
x PY |X(y|x)(·)

Unweighted inner product Hilbert-Schmidt ⟨A,B⟩HS ≡
trA†B

⟨a, b⟩ ≡
∑

λ[a(λ)]∗b(λ)

Weighted inner product ⟨A,B⟩ρ ≡ trA†EρB ⟨a, b⟩P ≡
∑

λ[a(λ)]∗b(λ)P (λ)
Weighted norm ∥A∥ρ ≡

√
⟨A,A⟩ρ ∥a∥P ≡

√
⟨a, a⟩P

Divergence between variables Dσ,F (A,B) (Definition 1)
∑

x,y |a(x) − b(y)|2PXY (x, y)
Optimal prediction F∗ (Hilbert-Schmidt adjoint of F)

∑
y(·)PY |X(y|x)

Optimal retrodiction F∗ (Definition 2)
∑

x(·)PX|Y (x|y)

Table 1: Concepts in quantum inference and their classical versions.

The conditional expectation F∗b is the optimal pre-
dictor of b(Y ) as a function of X, viz.,

F∗b = arg min
a∈L2(PX )

DPX ,F (a, b). (B.5)

Similarly, the conditional expectation of a(X) given
Y is the optimal retrodictor of a(X) as a function of
Y , viz.,

F∗a = arg min
b∈L2(PY )

DPX ,F (a, b), (B.6)

(F∗a)(y) =
∑

x

a(x)PX|Y (x|y), (B.7)

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y) . (B.8)

Equation (B.8) is, of course, the Bayes theorem. It is
straightforward to show that the formulas presented
thus far are special cases of the quantum formulas in
Sec. 2 and Appendix A; this is done by assuming the
diagonal forms

σ =
∑

x

PX(x) |x⟩ ⟨x| , (B.9)

A =
∑

x

a(x) |x⟩ ⟨x| , (B.10)

Fσ =
∑
y,x

PY |X(y|x) ⟨x|σ |x⟩ |y⟩ ⟨y| , (B.11)

B =
∑

y

b(y) |y⟩ ⟨y| , (B.12)

where {|x⟩ : x ∈ X } is an orthonormal basis of H1
and {|y⟩ : y ∈ Y} is an orthonormal basis of H2.

Since the joint distribution PXY (x, y) =
PY |X(y|x)PX(x) is another probability distribu-
tion, Eq. (B.2) can be written as the squared
norm

DPX ,F (a, b) = ∥a− b∥2
PXY

, (B.13)

and since L2(PX) and L2(PY ) are subspaces of
L2(PXY ), the Hilbert projection theorem implies that
the conditional expectation is a projection, viz.,

F∗b = arg min
a∈L2(PX )

∥a− b∥2
PXY

= Π[b|L2(PX)], (B.14)

F∗a = arg min
b∈L2(PY )

∥a− b∥2
PXY

= Π[a|L2(PY )], (B.15)

where Π[u|V ] is the projection of a Hilbert-space ele-
ment u into a subspace V . In the quantum case, F∗

and F∗ are also projections into appropriate Hilbert
spaces if the equality condition in Eq. (2.13) holds.

Because X is assumed to be generated earlier than
Y and experiments follow an arrow of time, it is more
straightforward to obtain PY |X by experiments than
PX|Y . This is the reason why one commonly assumes
that PY |X rather than PX|Y is known in an inference
problem, and the prediction formula in terms of PY |X
looks simpler than the retrodiction formula in terms
of the Bayes theorem. Probability theory in itself is
agnostic to the arrow of time, and if PX|Y is given
instead, the retrodiction formula would look simpler
and the prediction formula would require the Bayes
theorem. The same arrow of time is commonly as-
sumed in quantum theory, where the F map models
the evolution of a quantum system forward in time. It
is therefore unsurprising that the prediction map F∗

in terms of F also looks simpler than the retrodiction
map F∗ in terms of Eq. (2.16), which is a general-
ization of the Bayes theorem. If the map (F∗)∗ is
given instead, then the retrodiction map F∗ is simply
its Hilbert-Schmidt adjoint, while the prediction map
F∗ is given by the complicated Eq. (A.2).

C GCE for Gaussian systems
I first briefly review the theory of quantum Gaussian
systems, following Chap. 12 in Ref. [50]. Let H1 be
the Hilbert space for s bosonic modes. On H1, define
the canonical observables as

Q ≡
(
q1 p1 . . . qs ps

)⊤
, [qj , pk] = iδjk,

(C.1)

and the Weyl operator as

W (z) ≡ exp
(
iQ⊤z

)
, (C.2)

z ≡
(
x1 y1 . . . xs ys

)⊤ ∈ R2s, (C.3)

where ⊤ denotes the transpose. If σ is a Gaussian
state, its characteristic function can be expressed as

ϕ(z) ≡ trσW (z) = exp
(
im⊤z − 1

2z
⊤Σz

)
, (C.4)
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where m ∈ R2s is the mean vector and Σ ∈ R2s×2s

is the covariance matrix of the Gaussian state. Σ is
symmetric, positive-semidefinite, and must observe an
uncertainty relation that need not concern us here.

Similar to the preceding definitions, let H2 be the
Hilbert space for t bosonic modes and define Q̃ and
W̃ (ζ) as the canonical observables and the Weyl op-
erator on H2, respectively. If F : O(H1) → O(H2) is
a CPTP map that models a Gaussian channel, it can
be defined by

F∗W̃ (ζ) = f(ζ)W (F⊤ζ), (C.5)

f(ζ) = exp
(
il⊤ζ − 1

2ζ
⊤Rζ

)
, (C.6)

where F ∈ R2t×2s is a transition matrix, l ∈ R2t is the
mean displacement introduced by the channel, and
R ∈ R2s×2s is the channel covariance matrix. F and
R must obey a certain matrix inequality for the map
to be CPTP, but again the inequality need not con-
cern us here. With the Gaussian input state and the
Gaussian channel, the output state remains Gaussian
and its characteristic function is given by

ϕ̃(ζ) ≡ tr(Fσ)W̃ (ζ) = f(ζ)ϕ(F⊤ζ) (C.7)

= exp
(
im̃⊤ζ − 1

2ζ
⊤Σ̃ζ

)
, (C.8)

m̃ = Fm+ l, (C.9)
Σ̃ = FΣF⊤ +R. (C.10)

An explicit GCE formula can now be presented.

Proposition 1. Assume a Gaussian state defined by
Eq. (C.4), a Gaussian channel defined by Eqs. (C.5)
and (C.6), a quadrature operator given by

A = u⊤Q, u =
(
u1 . . . u2s

)⊤ ∈ R2s, (C.11)

and the E map given by the Jordan product in
Eq. (2.7). A solution to the GCE is

F∗A = u⊤ [
m+K

(
Q̃− Fm− l

)]
, (C.12)

K ≡ ΣF⊤ (
FΣF⊤ +R

)−1
, (C.13)

while the divergence is

Dσ,F (A,F∗A) = u⊤ (Σ −KFΣ)u. (C.14)

See Appendix J for the proof.
It is interesting to note that Eqs. (C.12)–(C.14)

are identical to the formulas for the classical condi-
tional expectation E(A|Y ) and its mean-square error
E{[E(A|Y ) − A]2} when A = u⊤X, Y = FX + Z,
and X ∼ N(m,Σ) and Z ∼ N(l, R) are independent
normal random variables [51]. Here, the canonical
observables Q and Q̃ play the roles of X and Y , re-
spectively. When F is a measurement map, similar
formulas have been derived in Refs. [25, 26, 27, 18]
and may be useful for studying waveform estimation
[42] beyond the stationary assumption.

D von Neumann measurement
Let B be a self-adjoint operator on a Hilbert space H.
Then B admits the spectral representation [85, 46]

B =
∫
bΠ(db) (D.1)

in terms of a projection-valued measure Π on the
Borel space (R,ΣR). A projection-valued measure,
also called an orthogonal resolution of identity, is a
POVM on (Y,ΣY) with the additional properties that
Π(C) for any C ∈ ΣY is a projection operator and
Π(C1)Π(C2) = 0 if C1 ∩C2 = ∅ [46]. The projection-
valued measure in Eq. (D.1) is unique to B in the
sense that no other projection-valued measure can
satisfy Eq. (D.1) for a given B. A von Neumann mea-
surement of B is defined as a measurement with the
projection-valued measure Π of B as the POVM.

If H is finite-dimensional, B has a finite number of
eigenvalues, and the spectral representation is much
simpler and can be written as

B =
∑

b∈ΛB

bΠ(b), (D.2)

where ΛB ⊂ R is the set of B’s eigenvalues and
{Π(b) : b ∈ ΛB} are projection operators that obey
Π(b)Π(c) = δbcΠ(b) and

∑
b Π(b) = I. The set of

outcomes can then be restricted to ΛB .
Consider now a converse situation, where the

POVM is given by a projection-valued measure Π′

on (Y,ΣY) and each outcome y ∈ Y is processed by
a function b : Y → R to produce a final outcome
b(y). The measurement Π′ together with the data
processing by b(y) can be interpreted as a von Neu-
mann measurement of

B =
∫
b(y)Π′(dy). (D.3)

This is because Eq. (D.3) can be expressed in the
spectral representation given by Eq. (D.1), with

Π(C) = Π′[b−1(C)], b−1(C) ≡ {y : b(y) ∈ C} ,
(D.4)

and the probability tr Π′[b−1(C)]ρ of each event C ∈
ΣR generated by (Π′, b) coincides with the probabil-
ity tr Π(C)ρ from a von Neumann measurement of
B. If Y is countable, then B =

∑
y b(y)Π′(y) can be

expressed as Eq. (D.2), with

ΛB = {b(y) : y ∈ Y} , Π(c) =
∑

y:b(y)=c

Π′(y). (D.5)

E The dynamic-programming algo-
rithm
The dynamic-programming algorithm is based on the
so-called principle of optimality for Markov decision
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processes. For the process given by Eqs. (4.12) and
(4.13), the principle states that, if (F̃1, . . . , F̃N ) are
the optimal “controls” that minimize the total “cost”
given by Eq. (4.13), then (F̃k, . . . , F̃N ) must also be
the optimal controls that minimize the “cost-to-go”
at time k, defined as

Jk ≡
N∑

n=k

g(sn,Fn). (E.1)

Based on this principle, the algorithm starts by choos-
ing the final control FN that minimizes the cost-to-go
JN = g(sN ,FN ). Let this minimum be

J̃N (sN ) ≡ min
FN

JN = min
FN

g(sN ,FN ). (E.2)

The optimal FN obtained this way is a function
F̃N (sN ) of the state sN . Next, write J̃N (sN ) =
J̃N [f(sN−1,FN−1)] using Eq. (4.12) and find the con-
trol FN−1 that minimizes the cost-to-go at time k =
N − 1, given by

J̃N−1(sN−1) ≡ min
(FN−1,FN )

JN−1 (E.3)

= min
FN−1

{
g(sN−1,FN−1)+

J̃N [f(sN−1,FN−1)]
}
. (E.4)

The optimal FN−1 is again a function F̃N−1(sN−1) of
the state sN−1. This procedure continues with

J̃k(sk) ≡ min
(Fk,...,FN )

Jk (E.5)

= min
Fk

{
g(sk,Fk) + J̃k+1 [f(sk,Fk)]

}
, (E.6)

F̃k(sk) = arg min
Fk

{. . . } (E.7)

for k = N − 2, N − 3, . . . until k = 1, when the com-
plete optimal control law (F̃1(s1), . . . , F̃N (sN )) has
been found and J̃1(s1) is the minimum total cost.

F Classical Rao-Blackwell theorem
To derive the classical Rao-Blackwell theorem from
the quantum theorem given by Theorem 3, assume
the diagonal forms

ρx =
∑

y

PY |X(y|x) |y⟩ ⟨y| , (F.1)

B =
∑

y

b(y) |y⟩ ⟨y| , (F.2)

Gρx =
∑
z,y

PZ|Y (z|y) ⟨y| ρx |y⟩ |z⟩ ⟨z| (F.3)

=
∑

z

PZ|X(z|x) |z⟩ ⟨z| , (F.4)

PZ|X(z|x) =
∑

y

PZ|Y (z|y)PY |X(y|x), (F.5)

where {|y⟩ : y ∈ Y} is an orthonormal basis of H2,
{|z⟩ : z ∈ Z} is an orthonormal basis of H3, X, Y , and
Z are classical variables, and PO|O′ is the probability
distribution of O conditioned on a value of O′. For
the estimation problem, X is the hidden parameter
fixed at X = x, Y is the observation, and Z is a
statistic generated from Y without knowing X, such
that PZ|Y,X(z|y, x) = PZ|Y (z|y). The parameter of
interest a(x) is assumed to be real for simplicity. The
local error given by Eq. (5.1) becomes

MSEx =
∑

y

[b(y) − a(x)]2 PY |X(y|x), (F.6)

which agrees with the classical definition. Equa-
tion (2.16) for the GCE G∗B becomes

EGρx
G∗B = GEρx

B, (F.7)

a solution of which is

G∗B =
∑

z

c(z, x) |z⟩ ⟨z| , (F.8)

c(z, x) =
∑

y

PY |Z,X(y|z, x)b(y), (F.9)

PY |Z,X(y|z, x) =
PZ|Y (z|y)PY |X(y|x)

PZ|X(z|x) . (F.10)

c(z, x) is the expectation of b(Y ) conditioned on Z = z
and X = x. If c(z, x) = c(z) does not depend on x,
then it is a valid estimator as a function of the statistic
Z, and its error as per Eq. (5.2) becomes

MSE′
x =

∑
z

[c(z) − a(x)]2 PZ|X(z|x). (F.11)

It follows from Theorem 3 and Eq. (2.17) that the
difference between Eqs. (F.6) and (F.11) is

MSEx − MSE′
x

=
∑

y

[b(y)]2PY |X(y|x) −
∑

z

[c(z)]2PZ|X(z|x),

(F.12)

which is nonnegative and coincides with a form of
the Rao-Blackwell theorem (see, for example, Prob-
lem 1.7.9 on p. 73 in Ref. [5]).
Z is called a sufficient statistic for the estimation

problem if the distribution PY |Z,X(y|z, x) given by
Eq. (F.10) does not depend on x [5]. Then Eq. (F.9)
also does not depend on x for any b(y) and is always
a valid estimator.

G Comparison of the Bayesian and fre-
quentist settings
Both the monotonicity of the Bayesian error given by
Corollary 1 and the error reduction due to the quan-
tum Rao-Blackwell theorem in Theorem 3 are unsur-
prising results given their classical origins, but they
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may be confusing in that they seem to say opposite
things about the effect of a channel. I offer a clarifi-
cation here.

First, note that the Bayesian setting concerns the
“global” error Dσ,F (A,B) only, whereas the frequen-
tist setting concerns the local error MSEx as a func-
tion of the unknown parameter x. The global error is
a cruder measure because it is only an average of the
local error given by

Dσ,F (A,B) =
∑

x

PX(x) MSEx, (G.1)

assuming Eqs. (4.3) and (5.1).

Second, the Bayesian results in Sec. 4, and Corol-
lary 1 in particular, concern only the estimators F∗A
and G∗F∗A that are optimal with respect to the global
error. Theorem 3 in the frequentist setting, on the
other hand, is about the local errors of an estima-
tor B and its Rao-Blackwellization G∗B, with no spe-
cial assumptions about the original estimator B. The
theorem also says nothing about whether the Rao-
Blackwell estimator is optimal in the global sense,
only that it is at least as good as the original.

Third, note that the Personick estimators consid-
ered in the Bayesian setting do not depend on the
unknown parameter and are naturally realizable, and
Corollary 1 applies to any channel. In the frequentist
setting, the channel and the Rao-Blackwell estimator
must be parameter-independent for the measurement
to be realizable, so there is a stringent requirement on
the G channel for the improvement to be realizable,
let alone significant.

In practice, the classical Rao-Blackwellization is
typically used to improve an initial estimator design
that is not expected to be optimal or even good in
any sense; the derivation of the U-statistics [72] is
a representative example. If the initial estimator is
already optimal in the Bayesian sense, then the Rao-
Blackwellization cannot offer any improvement almost
everywhere with respect to the prior PX .

Corollary 7. Assume the Bayesian problem specified
by Eqs. (4.1) and (4.2) and let B = Fσ

∗ A be the Per-
sonick estimator. If another CPTP map G is applied
and both G and the Rao-Blackwell estimator Gρx

∗ B in
Theorem 3 do not depend on x, then Gρx

∗ B is a so-
lution to the final Personick estimator GFσ

∗ B. More-
over, both the Bayesian error and the local error re-
main the same after the G channel, in the sense of

Dσ,F (A,Fσ
∗ A) =

∑
x

PX(x) MSEx =
∑

x

PX(x) MSE′
x

= Dσ,GF (A,GFσ
∗ Fσ

∗ A), (G.2)
MSEx = MSE′

x almost everywhere PX .
(G.3)

See Appendix J for the proof.

H Comparison with some prior works
Although Sinha’s formalism in Ref. [64] is applica-
ble to infinite dimensions and any convex loss func-
tion, he makes heavy assumptions about the com-
mutativity of all the involved operators. To explain,
consider his definition of a sufficient-statistic observ-
able S ∈ O(H2), which is key to his quantum Rao-
Blackwell theorems. Assuming that the spectrum of
S, denoted by ΛS ⊆ R, is countable for simplicity, S
can be expressed in the spectral representation

S =
∑

s∈ΛS

sΠs, (H.1)

where Π is a projection-valued measure. Consider any
observable B that commutes with S. By the spectral
theorem (see Chap. VII in Ref. [85]), B commutes
with all {Πs}, meaning that B can be expressed as

B =
∑

s

ΠsBΠs =
⊕

s

Bs, (H.2)

where Bs ∈ O(ΠsH2) is equal to ΠsBΠs on the sub-
space ΠsH2. Given a family of density operators
{ρx : x ∈ X }, Sinha defines a sufficient S by the exis-
tence of a positive function φ : ΛS × X → R+ and a
parameter-independent positive-semidefinite operator
σs ∈ O(ΠsH2) such that, for any B that commutes
with S,

tr ρxB =
∑

s

φ(s, x) trσsBs. (H.3)

Since Sinha considers only POVMs that commute
with S in his Rao-Blackwell theorems (see Theo-
rems 4.4 and 5.2 in Ref. [64]), Eq. (H.3) implies that
each ρx can be factorized as

ρx =
⊕

s

φ(s, x)σs, (H.4)

meaning that {ρx} all commute with S (see Re-
mark 3.3 in Ref. [64]). In fact, Eq. (H.4) also im-
plies that {ρx} commute with one another. Such as-
sumptions are extremely restrictive, as noncommuta-
tivity is precisely what distinguishes quantum proba-
bility theory from the classical version, and Sinha’s re-
strictions to it are simply unprecedented in quantum
metrology [53, 46, 15]. This work, on the other hand,
does not impose any commutativity requirements on
the operators. The key advance here is the use of
the GCE formalism in Secs. 2 and 3 that generalizes
classical probability theory from the ground level for
noncommuting operators, so that Sinha’s commuta-
tivity assumptions are never necessary.

Sinha also avoids any explicit use of quantum con-
ditional expectations (see Remark 5.3(i) in Ref. [64])
or even CPTP maps. The use of a GCE in this work,
on the other hand, makes Theorem 3 a more natu-
ral generalization of the classical theorem. As the
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conditional expectation is a standard and crucial step
in the classical Rao-Blackwellization, the GCE can
be similarly instrumental for the quantum case, as
demonstrated by the corollaries and examples in this
paper.

It is straightforward to show that a measurement of
Sinha’s sufficient-statistic observable is a special case
of a sufficient channel.

Proposition 2. Given Eqs. (H.2) and (H.4) and as-
suming the measurement map

Gρx =
∑

s

(tr ΠsρxΠs)Πs, (H.5)

which represents the state of the classical random vari-
able obtained by a measurement of S, a solution to any
GCE is

G∗B =
∑

s

trσsBs

trσs
Πs, (H.6)

which is independent of x.
See Appendix J for the proof.
Equation (H.6) is used implicitly in Sinha’s Rao-

Blackwell theorems and Theorem 3 here also applies
to it. Physically, Proposition 2 means that, when
the density operators are given by Eq. (H.4) and
the original estimator is given by Eq. (H.2), one can
measure the sufficient-statistic observable S given by
Eq. (H.1), and the Rao-Blackwell estimator as a func-
tion of the outcome s is (trσsBs)/ trσs.

Another relevant prior work is Ref. [65] by  Luczak,
which studies a concept of sufficiency in von Neumann
algebra for minimum-variance unbiased estimation in
Sec. 5 of Ref. [65]. His Theorem 5.1 states that a sub-
algebra with a special property called completeness is
sufficient for the estimation if and only if there exists
a constant GCE in terms of the Jordan product that
projects onto the subalgebra. He makes no commuta-
tivity assumptions like Sinha’s, but the completeness
assumption is unfortunately rather restrictive, as is
well known in classical statistics [5] and recognized
by  Luczak himself [65]. Even in classical statistics,
completeness is difficult to check, and not many mod-
els are known to satisfy it. It is unclear what quantum
models beyond the known classical cases can satisfy
the property. Theorem 3 here, on the other hand,
does not require the unbiasedness and completeness
assumptions.

Lastly, it is worth mentioning that Refs. [86, 87]
by Shmaya and Chefles concern a quantum general-
ization of another Blackwell theorem, which, to my
knowledge, has no relation to the Rao-Blackwell the-
orem, apart from Blackwell’s name being attached to
both.

I Quantum U-statistics
The goal here is to compute the GCE given by
Eq. (5.14) for an operator in the form of Eq. (5.15).

A few definitions are necessary before I can proceed.
Let

{e(u) : u ∈ U} (I.1)

be an orthonormal basis of O(H1) and

{E(u) ≡ e(u1) ⊗ · · · ⊗ e(un) : u ∈ Un} (I.2)

be an orthonormal basis of O(H⊗n
1 ), where u is a

column vector and the orthonormality relations are

⟨e(u), e(v)⟩HS = δuv, ⟨E(u), E(v)⟩HS = δuv. (I.3)

For example, one can assume the matrix units e(u) =
|u′⟩ ⟨u′′| with u = (u′, u′′). Any B ∈ O(H⊗n

1 ) can be
expressed as

B =
∑

u

B(u)E(u), B(u) = ⟨E(u), B⟩HS . (I.4)

Define the permutation matrix π̂ on a column vector
as

π̂jk ≡ δjπ(k), (π̂u)j = uπ−1j . (I.5)

Then

UπE(u)U†
π = E(π̂u), (I.6)

and the symmetrization map given by Eq. (5.11) be-
comes

1
n!

∑
π

UπBU
†
π = 1

n!
∑

π

∑
u

B(u)E(π̂u) (I.7)

=
∑

u

B̃(u)E(u), (I.8)

B̃(u) = 1
n!

∑
π

B(π̂u), (I.9)

which boils down to a symmetrization of B(u). In
general, a symmetric operator on H⊗m

1 is defined by

UπmCU
†
πm

= C, C(π̂mv) = C(v) ∀πm ∈ Sm.
(I.10)

Given any operator on H⊗m
1 , a symmetric version can

be obtained by applying the symmetrization map.
Define a projection matrix Πj : Un → Udim j by

Πju =

uj1
...

ujm

, (I.11)

where j = (j1, . . . , jm) ∈ Jm is a vector of indices
with 1 ≤ m ≤ n and Jm is the set of m-permutations
of {1, . . . , n} (ordered sampling without replacement).
Define also {j} for a j ∈ Jm as the vector of indices
sorted in ascending order and define the set of all such
vectors as

Km ≡ {k ∈ Jm : k = {k}} , (I.12)
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which is equivalent to the set of m-combinations
of {1, . . . , n} (unordered sampling without replace-
ment).

A formula for the symmetrization can now be pre-
sented.

Proposition 3. Suppose that B ∈ O(H⊗n
1 ) can be

decomposed as

B = C ⊗ C ′, (I.13)

where C ∈ O(H⊗m
1 ) applies to the first m Hilbert sub-

spaces in H⊗n
1 and C ′ ∈ O(H⊗(n−m)

1 ) applies to the
rest. Assume that both C and C ′ are symmetric. Then
the symmetrized B is given by

1
n!

∑
π

UπBU
†
π =

(
n
m

)−1 ∑
k∈Km

(C ⊗ C ′)k,

(C ⊗ C ′)k ≡
∑

u

C(Πku)C ′(Πk′u)E(u), (I.14)

where {E(u)} is an orthonormal basis of O(H⊗n
1 )

given by Eq. (I.2), C(v) and C ′(w) are the compo-
nents of C and C ′ with respect to the same basis, the
projection matrix Π is defined by Eq. (I.11), Km is
the m-combinations of {1, . . . , n}, and for each k, k′

is defined as the rest of the indices in {1, . . . , n}.
See Appendix J for the proof.
Each (C ⊗ C ′)k in Eqs. (I.14) is an application of

C on the m Hilbert subspaces in H⊗n
1 indexed by

k = (k1, . . . , km) and an application of C ′ on the other
n − m Hilbert subspaces. If C is not symmetric, it
can be symmetrized first before Proposition 3 is used.
This is because the left Haar measure is also the right
Haar measure for the permutation group, making the
symmetrization map invariant to any prior permuta-
tion as well. One is therefore free to symmetrize C in
C⊗C ′ first before the total symmetrization in Propo-
sition 3. The same goes for C ′. If B is in the general
form of ⊗nCn, Proposition 3 can be applied recur-
sively to produce a generalized multinomial form of
Eqs. (I.14).

Proposition 3 gives the quantum U-statistics in
Ref. [45] if Eq. (5.15), a special case of Eq. (I.13)

with C ′ = I
⊗(n−m)
1 , is assumed. The classical U-

statistics [5, 72] are obtained by assuming {e(u) =
|u⟩ ⟨u|}, where {|u⟩} is an orthonormal basis of H1,
and C ′(Πk′u) = 1, such that the estimator in terms
of the classical variable u becomes

B̃(u) =
(
n
m

)−1 ∑
k∈Km

C(Πku). (I.15)

J Proofs
Proof of Lemma 1. To prove the first and last equal-
ities in Eq. (3.4), write

⟨I1, A⟩σ = ⟨I1, EσA⟩HS = ⟨EσI1, A⟩HS
= ⟨σ,A⟩HS = trσA, (J.1)

where the self-adjoint property of Eσ and Eq. (2.3)
have been used. To prove the second equality in
Eq. (3.4), plug c = I2 into Eq. (2.15) and use the
unital property F∗I2 = I1.

Proof of Lemma 2. Write

∥A− aI1∥2
σ = ∥A∥2

σ − 2 Re [a∗ ⟨I1, A⟩σ] + |a|2,
(J.2)

∥F∗A− aI2∥2
Fσ = ∥F∗A∥2

Fσ − 2 Re [a∗ ⟨I2,F∗A⟩Fσ]
+ |a|2. (J.3)

Lemma 1 gives ⟨I1, A⟩σ = ⟨I2,F∗A⟩Fσ. Then
Eq. (J.2) minus Eq. (J.3) gives Eq. (3.5) via
Eq. (2.17).

Proof of Lemma 3. Equation (2.15) gives, for any c ∈
L2(σx),

⟨c,G∗B⟩σx
= ⟨G∗c,B⟩ρx

(J.4)

= tr
[
c† tr0 (Eσx⊗τB)

]
(J.5)

= tr
[
(c⊗ I0)†Eσx⊗τB

]
(J.6)

= ⟨c⊗ I0, Eσx⊗τB⟩HS (J.7)
= ⟨Eσx⊗τ (c⊗ I0), B⟩HS (J.8)
= ⟨(Eσxc) ⊗ (EτI0), B⟩HS (J.9)
= ⟨(Eσxc) ⊗ τ,B⟩HS (J.10)
= tr

{
[(Eσxc)† ⊗ τ ]B

}
(J.11)

= tr
{

(Eσxc)† tr0[(I1 ⊗ τ)B]
}

(J.12)
= ⟨Eσxc, tr0[(I1 ⊗ τ)B]⟩HS (J.13)
= ⟨c, tr0[(I1 ⊗ τ)B]⟩σx

, (J.14)

where the self-adjoint property of E and Eqs. (2.3) and
(2.5) have been used at various steps. Equation (J.14)
means that tr0[(I1 ⊗ τ)B] is a solution to the GCE
G∗B.

Proof of Corollary 2. Corollary 3 states that, given
the local error MSEx for any POVM M and any esti-
mator b, there exists an operator-valued estimator on
H2 with an error MSE′

x that satisfies MSEx ≥ MSE′
x

for all x ∈ X . The average error of (M, b) is then also
bounded as∑

x

PX(x) MSEx ≥
∑

x

PX(x) MSE′
x ≥ Dσ,F (A,F∗A),

(J.15)
where the last inequality follows from the optimality
of the Personick estimator F∗A among all observables
on H2, as per Definition 2.

Proof of Lemma 4.

GEρxB =
∫
µ(dz)Uz (EρxB)U†

z (J.16)

=
∫
µ(dz)EUzρxU†

z
(UzBU

†
z ) (J.17)

= Eρx

∫
µ(dz)UzBU

†
z , (J.18)
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where Eqs. (2.4) and (5.8) have been used. The in-
terchange of Eρx

and the Bochner integral is valid be-
cause Eρx

is a linear map on a finite-dimensional op-
erator space (more assumptions would be needed for
infinite-dimensional operator spaces; see Corollary 2
on p. 134 in Ref. [88]). By Eq. (2.16), Eq. (J.18) is
equal to EGρx

G∗B = Eρx
G∗B, resulting in a solution

to the GCE given by Eq. (5.10).

Proof of Lemma 5. Assuming Eq. (5.22) and using
Eq. (5.20), one obtains

Eρx
G∗B =

⊕
n

E
σ

(n)
x

(ΠnBΠn) , (J.19)

which is equal to

GEρx
B =

⊕
n

Πn (Eρx
B) Πn =

⊕
n

E
σ

(n)
x

(ΠnBΠn) ,

(J.20)

by virtue of Eq. (5.21). It follows that Eq. (5.22) is a
solution to the GCE, as per Eq. (2.16).

Note that Lemmas 1–5 apply to classes of GCEs
and not just the Jordan version. Note also that the
GCEs for any sequence of the channels can be com-
puted by chaining the individual GCEs in a manner
reminiscent of calculus.

Proof of Proposition 1. The GCE defined by
Eq. (2.16) can be solved by the operator Fourier
transform

tr (EFσF∗A) W̃ (ζ) = tr (FEσA) W̃ (ζ). (J.21)

The right-hand side can be expressed as

tr (FEσA) W̃ (ζ) = tr(EσA)F∗W̃ (ζ) (J.22)
= f(ζ) tr(EσA)W (F⊤ζ) (J.23)
= f(ζ)

[
−iu⊤∇ϕ(z)

]
z=F ⊤ζ

(J.24)

= u⊤ (
m+ iΣF⊤ζ

)
ϕ̃(ζ), (J.25)

where Eq. (J.23) has used the Gaussian-channel
definition given by Eq. (C.5), Eq. (J.24)
has used Eq. (5.4.43) in Ref. [46] with
∇ ≡

(
∂/∂x1 ∂/∂y1 . . . ∂/∂xs ∂/∂ys

)⊤,
and Eq. (J.25) has used the Gaussian ϕ(z) given by
Eq. (C.4) and the output ϕ̃(ζ) given by Eq. (C.7).
With similar steps and the ansatz

F∗A = v⊤Q̃+ c, v ∈ R2t, c ∈ R, (J.26)

the left-hand side of Eq. (J.21) can be expressed as

tr (EFσF∗A) W̃ (ζ) =
[
v⊤(m̃+ iΣ̃ζ) + c

]
ϕ̃(ζ),

(J.27)

where Eqs. (C.7) and (C.8) are assumed. Equating
Eq. (J.25) with Eq. (J.27) leads to

v⊤ = u⊤ΣF⊤Σ̃−1, (J.28)
c = u⊤m− v⊤m̃. (J.29)

Equations (J.28) and (J.29) can then be substituted
into Eq. (J.26) to give Eqs. (C.12) and (C.13) via
Eqs. (C.9) and (C.10).

To derive Eq. (C.14), use Lemmas 1 and 2 to write

a = trσA = tr(Fσ)(F∗A), (J.30)
Dσ,F (A,F∗A) = ∥A− aI1∥2

σ − ∥F∗A− aI2∥2
Fσ

(J.31)
= u⊤Σu− v⊤Σ̃v, (J.32)

where the last step has used the fact that A and F∗A
are both quadrature operators and their variances are
determined by the covariance matrices of the Gaus-
sian states. Substituting Eqs. (J.28) and (C.10) into
Eq. (J.32) leads to Eq. (C.14).

Proof of Corollary 7. Let c be any operator on H3.
By the definition of Gρx

∗ B given by Eq. (2.15),

⟨c,Gρx
∗ B⟩Gρx

= ⟨G∗c,B⟩ρx
∀x ∈ X . (J.33)

Taking the expectation of this equation with respect
to PX(x), one obtains∑

x

PX(x) ⟨c,Gρx
∗ B⟩Gρx

=
∑

x

PX(x) ⟨G∗c,B⟩ρx
,

(J.34)
⟨c,Gρx

∗ B⟩GFσ = ⟨G∗c,B⟩Fσ , (J.35)

where Eq. (J.35) has used the facts that c, B, G,
and Gρx

∗ B all do not depend on x, the trace and
G are linear, the Jordan product is bilinear, and∑

x PX(x)ρx = Fσ. Equation (J.35) means that
Gρx

∗ B satisfies the definition of the final Personick es-
timator GFσ

∗ B as per Eq. (2.15).
Equation (G.2) can be proved by combining the

monotonicity of the Bayesian error (Corollary 1) and
the quantum Rao-Blackwell theorem (Theorem 3).

Equation (G.3) can be proved by contradiction:
assume that there exists a x ∈ X with PX(x) >
0 such that MSEx > MSE′

x. Since MSEx ≥
MSE′

x by Theorem 3, the assumption would imply∑
x PX(x) MSEx >

∑
x PX(x) MSE′

x, which contra-
dicts Eq. (G.2). It follows that the assumption cannot
hold and one must have Eq. (G.3).

Proof of Proposition 2. Given Eq. (H.5), a solution to
any GCE is

G∗B =
∑

s

tr ΠsEρxBΠs

tr ΠsρxΠs
Πs. (J.36)

The numerator can be expressed as

tr ΠsEρxBΠs = ⟨Πs, EρxB⟩HS = ⟨EρxΠs, B⟩HS
(J.37)

= ⟨ρxΠs, B⟩HS = φ(s, x) trσsBs,
(J.38)

where the self-adjoint property of Eρx
, the commuta-

tivity between ρx and Πs, and Eqs. (2.3), (H.2), and
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(H.4) have been used at various steps. Similarly, the
denominator in Eq. (J.36) can be expressed as

tr ΠsρxΠs = φ(s, x) trσs. (J.39)

Equation (H.6) then follows.

Proof of Proposition 3. With Eq. (I.13), B(u) be-
comes

B(u) = C(Π[1,m]u)C ′(Π[m+1,n]u), (J.40)
[1,m] ≡ (1, . . . ,m), (J.41)

[m+ 1, n] ≡ (m+ 1, . . . , n). (J.42)

With the identity

Πj π̂u = Ππ−1ju, (J.43)

B(π̂u) in Eq. (I.9) becomes

B(π̂u) = C(Π[1,m]π̂u)C ′(Π[m+1,n]π̂u) (J.44)
= C(Ππ−1[1,m]u)C ′(Ππ−1[m+1,n]u). (J.45)

The symmetry of C and C ′ implies

C(Πju) = C(Π{j}u), ∀j ∈ Jm, (J.46)
C ′(Πju) = C ′(Π{j}u), ∀j ∈ Jn−m, (J.47)
B(π̂u) = C(Π{π−1[1,m]}u)C ′(Π{π−1[m+1,n]}u).

(J.48)

The n! summands in Eq. (I.9) with respect to π can
now be divided into subsets indexed by Eq. (I.12).
Each subset, indexed by a k ∈ Km, contains m!(n −
m)! terms all equal to C(Πku)C ′(Πk′u) with

k =
{
π−1[1,m]

}
, k′ =

{
π−1[m+ 1, n]

}
. (J.49)

The sum in Eq. (I.9) becomes

1
n!

∑
π

B(π̂u) =
(
n
m

)−1 ∑
k∈Km

C(Πku)C ′(Πk′u),

(J.50)

where
(
n
m

)
≡ n!/m!(n−m)! = |Km| is the binomial

coefficient. The proposition hence follows.
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duction to Hilbert Spaces with Applications. El-
sevier, Amsterdam, 2005.

[48] Daniel Gottesman. The Heisenberg represen-
tation of quantum computers. In S. P. Cor-
ney, R. Delbourgo, and P. D. Jarvis, editors,
Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in
Physics, page 32–43, Cambridge, MA, 1999. In-
ternational Press. URL https://arxiv.org/
quant-ph/9807006.

[49] Mark M. Wilde. Quantum Information Theory.
Cambridge University Press, Cambridge, Eng-
land, UK, February 2017. ISBN 978-1-10717616-
4. DOI: 10.1017/9781316809976.

[50] Alexander S. Holevo. Quantum Systems, Chan-
nels, Information. De Gruyter, Berlin, 2nd edi-
tion, July 2019. ISBN 978-3-11064249-0. DOI:
10.1515/9783110642490.

[51] Brian D. O. Anderson and John B. Moore. Op-
timal Filtering. Prentice-Hall, Englewood Cliffs,
1979.

[52] Arthur J. Parzygnat and Francesco Buscemi. Ax-
ioms for retrodiction: achieving time-reversal
symmetry with a prior. Quantum, 7:1013, May
2023. DOI: 10.22331/q-2023-05-23-1013.

[53] Carl W. Helstrom. Quantum Detection and Es-
timation Theory. Academic Press, New York,
1976. URL http://www.sciencedirect.com/
science/bookseries/00765392/123.

[54] Tsachy Weissman. The relationship between
causal and noncausal mismatched estimation
in continuous-time AWGN channels. IEEE
Transactions on Information Theory, 56(9):
4256–4273, August 2010. ISSN 1557-9654. DOI:
10.1109/TIT.2010.2054430.

[55] Yihong Wu and Sergio Verdu. Functional prop-
erties of minimum mean-square error and mutual
information. IEEE Transactions on Information
Theory, 58(3):1289–1301, November 2011. ISSN
1557-9654. DOI: 10.1109/TIT.2011.2174959.

[56] Mankei Tsang. Mismatched quantum filter-
ing and entropic information. In 2014 IEEE
International Symposium on Information The-
ory (ISIT), page 321–325, June 2014. DOI:
10.1109/ISIT.2014.6874847.

[57] Aolin Xu and Maxim Raginsky. Minimum
excess risk in Bayesian learning. IEEE
Transactions on Information Theory, 68(12):
7935–7955, May 2022. ISSN 1557-9654. DOI:
10.1109/TIT.2022.3176056.

[58] Wim Bogaerts, Daniel Pérez, José Capmany,
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[88] Kôsaku Yosida. Functional Analysis. Springer,
Berlin, 6th edition, 1995. ISBN 978-3-642-61859-
8. DOI: 10.1007/978-3-642-61859-8.

Accepted in Quantum 2023-10-26, click title to verify. Published under CC-BY 4.0. 25

https://doi.org/10.1103/PhysRevA.93.042121
https://doi.org/10.1103/PhysRevLett.129.240503
https://doi.org/10.1103/PhysRevLett.129.240503
https://doi.org/10.1038/s41534-023-00693-w
https://doi.org/10.1038/s41534-023-00693-w
https://doi.org/10.1103/PhysRevA.107.012611
https://doi.org/10.1007/978-0-387-21752-9
https://doi.org/10.1007/978-0-387-21752-9
https://www.springer.com/gp/book/9780387217529
https://www.springer.com/gp/book/9780387217529
https://doi.org/10.1088/0305-4470/38/44/008
https://doi.org/10.1088/0305-4470/38/44/008
https://doi.org/10.48550/arXiv.0907.0866
https://doi.org/10.48550/arXiv.0907.0866
https://doi.org/10.1007/978-3-642-61859-8

