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The star-triangle relation plays an important role in the realm of exactly
solvable models, offering exact results for classical two-dimensional statistical
mechanical models. In this article, we construct integrable quantum circuits
using the star-triangle relation. Our construction relies on families of mutually
commuting two-parameter transfer matrices for statistical mechanical models
solved by the star-triangle relation, and differs from previously known construc-
tions based on Yang-Baxter integrable vertex models. At special value of the
spectral parameter, the transfer matrices are mapped into integrable quantum
circuits, for which infinite families of local conserved charges can be derived.
We demonstrate the construction by giving two examples of circuits acting on
a chain of Q−state qudits: Q-state Potts circuits, whose integrability has been
conjectured recently by Lotkov et al., and ZQ circuits, which are novel to our
knowledge. In the first example, we present for Q = 3 a connection to the
Zamolodchikov–Fateev 19-vertex model.

1 Introduction
Quantum circuits, built from a sequence of local operations acting on a system of qubits
(or, more generally, qudits), have attracted an increasing interest over the past few years.
First, they furnish a new playground for the investigation of many-body quantum physics,
in particular for the study of out-of-equilibrium phenomena [1–5]. Second, they can be
implemented in a quantum computer and form the building blocks of digital quantum
simulation [6, 7]. They can also be used to generate periodically-driven (Floquet) many-
body systems, leading to exotic new phases of matter [8–10].

For many-body systems governed by continuous Hamiltonian evolution, the existence of
integrable models has proven an invaluable tool in order to study physical properties both
at equilibrium [11–15], and out-of-equilibrium [16]. Quantum integrability usually refers
to one-dimensional quantum Hamiltonians related to exactly solvable two-dimensional sta-
tistical mechanical models through the transfer matrix formalism and the Yang–Baxter
equation, whose spectrum or correlation functions can typically be calculated exactly us-
ing tools such as the Bethe ansatz [13, 14]. Beyond the possibility of exact results that
it offers, integrability also comes with rich physical consequences. The existence of an
extensive number of conserved quantities in integrable models constrains their late-time
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relaxation, yielding new equilibrium states known as Generalized Gibbs Ensembles [17–19].
For inhomogeneous systems integrability also constrains the transport properties, leading
to Generalized Hydrodynamics [20, 21]. It has therefore quickly become a natural question,
whether one could similarly construct and study integrable models of quantum circuits,
corresponding to dynamical models for one-dimensional quantum systems with discrete
space and time.

It has long been known how to adapt the transfer matrix-mediated correspondence be-
tween integrable two-dimensional vertex models and quantum Hamiltonians to a circuit-like
geometry [22–25], in relation with the lattice regularisation of (1+1)-dimensional integrable
quantum field theories. In the recent years this fact has been used to construct integrable
Floquet dynamics [26–29], and recently the effect of integrability on the late-time relax-
ation of digital quantum simulations has also been investigated [30]. However, a systematic
understanding of the condition when quantum circuits can be solved using quantum inte-
grability is still missing. It is worth noting that most of the exact results obtained lately in
fact concern quantum circuits which are solvable while escaping the traditional framework
of Yang-Baxter integrability, namely, random [1–3] and dual-unitary circuits [4, 5]. There
are also other examples on how to use quantum circuits to study quantum integrability
that are different from our approach, see [31–36].

In this work, we describe the construction of integrable quantum circuits based on
Q-states spins with ZQ symmetry. Those arise as generalizations of the Ising model (corre-
sponding to Q = 2), and can be realized with Rydberg atoms [37, 38]. Furthermore, they
have very rich physical properties, relating to quantum phase transitions and parafermions
[39–41]. Our construction uses a framework analogous to that of [23], namely inhomoge-
neous transfer matrices are used to generate a circuit-like dynamics, however in contrast
with previous constructions the primary role for integrability is played here, rather than the
Yang–Baxter equation, by the closely related Star-Triangle Relation (STR) [12, 42, 43].
Using known solutions of the star-triangle relation for Q-state spins, we construct two-
parameter families of mutually commuting transfer matrices acting on a chain of L spins.
At some special value of their parameters the transfer matrices become the generator of
the circuit dynamics, while varying the parameters around their special value allows to
construct local charges which are conserved by the dynamics.

In practice, we focus in this work on two families of Q-states circuits, associated with
two families of solutions of the STR: the so-called Potts circuits, whose integrability was
conjectured in [44] (and for which the first few conserved charges were constructed by
hand), and the so-called ZQ circuits. The constructed circuits are in general interacting
yet solvable, as guaranteed by the STR, and therefore go beyond some known results for
driven Ising models that are solved using free fermionic techniques [45–48]. We would like
to emphasize that, while most of this work is concerned with some particular Q-states
models, our procedure works in principle for any solution of the Star-Triangle relation, and
could be used to construct more generic integrable quantum circuits.

The paper is organized as follows. In Section 2, we present some generic properties of the
Q-states quantum circuits constructed in this work, and how they can be seen as emerging
from the stroboscopic evolution of periodically driven (Floquet) systems. In Section 3, we
present a generic procedure to construct quantum circuits from two-dimensional statistical
mechanics model satisfying the Star-Triangle Relation. While this construction is not
specific to Q-states systems and could in principle be applied more generically, in the rest
of the paper we specify again to Q-states systems and construct two families of integrable
quantum circuits. The first family, studied in Section 4, is that of Q-states Potts circuits,
where the ZQ symmetry is enhanced to the symmetric group SQ. We construct integrable
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circuits from previously known SQ-symmetric solutions of the star-triangle relation [43],
and express the discrete time evolution operator as well as the conserved charges in terms
of generators of the affine Temperley-Lieb algebra [49]. The resulting dynamics is unitary,
and can be thought of as the Floquet dynamics of a quantum Potts Hamiltonian. It
recovers the circuit considered in [44], and we also point out an interesting connection with
the Zamolodchikov-Fateev 19-vertex model [50] and the Onsager algebra [51]. The second
family of models, which is the object of Section 5, is based on ZQ-symmetric solutions
of the star-triangle relation [52]. For Q = 3, the resulting circuit coincides with the S3-
symmetric circuit of the first family. For general Q > 3 however the constructed models
differ from the previous ones, in particular they are not unitary. For Q = 4, in particular,
a relation is found with the critical Ashkin-Teller model [53–55].

2 Q-states quantum circuits
Before discussing the general framework for constructing integrable quantum circuits through
the STR, which will be presented in Section 3, we start with a brief overview of the Q-states
circuits which will be constructed from explicit solutions in Sections 4 and 5.

One way to view those circuits is as stroboscopic (Floquet) evolution operators, moti-
vated by the known results on periodically driven Ising models [45–48]. Such circuits were
solved exactly by free fermionic techniques, and we consider in this work more generic
cases which are intrinsically interacting.

We therefore consider a chain of L consecutive Q-level spins (“qudits”), where Q is some
integer ≥ 2. The total Hilbert space is the tensor product of the local Q-level spins, i.e.
(CQ)⊗L. The quantum circuits that we study in this paper can be seen as a stroboscopic
(Floquet) evolution of time-dependent quantum Hamiltonian H(t) such that

H(t) =
{

H2, 0 ≤ t < τ,

H1, τ ≤ t < 2τ,
(1)

which is periodic in time, i.e. H(t + 2nτ) = H(t), n ∈ Z. Furthermore, we assume that
two parts H1 and H2 consist of terms acting on one or two consecutive sites of the Q-level
spins respectively,

H1 =
L∑

m=1
h(1)

m , H2 =
L∑

m=1
h(2)

m,m+1. (2)

Periodic boundary condition is used here (h(2)
L,L+1 = h(2)

L,1). We also assume that[
h(1)

m , h(1)
n

]
= 0,

[
h(2)

m,m+1, h(2)
n,n+1

]
= 0, ∀m, n. (3)

In this case, the Floquet evolution operator UF(τ) = P exp[
∫ 2τ

0 dtH(t)], describing the
stroboscopic time evolution of the time-dependent Hamiltonian H(t) 1, becomes

UF(τ) = exp (−iH1τ) exp (−iH2τ) = U1U2, (4)

Hence we can rewrite the stroboscopic time evolution UM
F (τ), for an integer M ∈ Z>0, as

a quantum circuit, as shown in Fig. 1. In particular, the stroboscopic time evolution of
the kicked Ising model [27, 44, 48] is of this type.

1We can equivalently use a “kicked” time dependent Hamiltonian that gives the same stroboscopic time
evolution. This will not change the quantum circuits that we study.
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Figure 1: Generic structure of the circuits considered in this paper. The discrete time evolution is
comprised of two steps, U1 which is the product of local one-site operations, and U2 which is the
product of two-site gates. The two-site gates commute with one another and can be multiplied in
arbitrary order. However, the two steps do not commute with each other, hence generating a non-
trivial dynamics.

Moreover, we would like to concentrate on models with a ZQ “clock” symmetry, which
generalizes the Z2 symmetry of the Ising model and connects with a number of interesting
physical realizations [37–41]. For this sake we introduce the local operators Xm, Zm

satisfying the following algebra

X†
m = XQ−1

m , Z†
m = ZQ−1

m XQ
m = ZQ

m = 1, XmZm = ωZmXm , (5)

where the Q-th root of unity ω = exp
(

2iπ
Q

)
, while operators acting on different spins

commute : XmZn = XnZm for m ̸= n (see Eq. (49) for an explicit representation).
Requiring the assumption (3), we focus on the cases where the Floquet evolution operator
UF = U1U2 is decomposed as

U1 =
L∏

j=1

Q−1∑
a=1

ua(Xj)a


U2 =

L∏
j=1

Q−1∑
a=1

va(Z†
jZj+1)a

 .

(6)

Written in the above form, the evolution generators U1 and U2 are manifestly ZQ-
symmetric, namely invariant under the operation Zj → ωZj , Xj → Xj applied simulta-
neously on all spins. Moreover, in all examples considered in the following they will turn
out to enjoy another symmetry encoded in the fact that uQ−a = ua and vQ−a = va for all
a, namely they are invariant under the charge conjugation operation Zj ↔ Z†

j , Xj ↔ X†
j .

For Q = 3, the Z3 symmetry and charge conjugation together generate a S3 symmetry
group. For Q ≥ 4 the ZQ (+ charge conjugation) and SQ symmetries cease to be equiva-
lent, and we will consider both types of models, invariant under the SQ and ZQ symmetry
respectively.
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Figure 2: Graphical illustration of the star-triangle relation (7).

Remarks. For generic choices of the parameters ua and va, the resulting quantum
circuits are not integrable (or exactly solvable). As we shall explain in the latter sections,
certain choices of the parameters ua and va will lead to the integrable quantum circuits
that commute with transfer matrices. One notable example is when ua = vb for arbitrary
a, b ∈ ZQ, which has been conjectured in [44]. We shall prove the conjecture in Sec. 4 and
provide a different example in Sec. 5. Another crucial remark is about the unitarity of
the Floquet evolution operator UF (or subsequently the operators U1 and U2). In fact,
arbitrary choices of the parameters ua and va will not lead to a unitary time evolution. An
exception occurs with the Potts circuits explained in Sec. 4, cf. (52).

3 Two-parameter transfer matrices from the Star-Triangle Relation
3.1 The Star-triangle relation
The star-triangle relation (STR) [12, 42, 43] is a powerful tool to solve 2-dimensional
statistical mechanical models exactly. Several renowned statistical mechanical models can
be solved by the STR, such as classical Ising model, classical (chiral) Potts models on a
square lattice, etc...

Generically, the star-triangle relation is defined for a statistical model of “heights”, or
“spins” taking values in some set S ⊂ Z. For the moment we do not need to specify
further the nature of S, but turning to explicit solutions of the star-triangle relation in
Sections 4 and 5, it will taken to be {1, . . . Q}, with Q some positive integer (in other terms
the heights are defined modulo Q). The heights sit at the vertices of a two-dimensional
lattice and the weight of a given height configuration is the product over all edges of a
function K(θ; i, j) of the adjacent heights i, j , where θ ∈ C is an additional parameter
called spectral parameter. The star-triangle relation then reads [12]∑

m∈S
K(θ1; i, m)K(θ2; j, m)K(θ3; k, m)

= f(θ1, θ2, θ3)K(π − θ1; j, k)K(π − θ2; k, i)K(π − θ3; i, j),
θ1 + θ2 + θ3 = π ,

(7)

where f(θ1, θ2, θ3) is some normalization function which does not depend on the heights
i, j, k. A pictorial illustration of (7) is given in Fig. 2.

In the following we will assume that the function K(θ; i, j) satisfies the following addi-
tional properties:

K(θ; i, j) = K(θ; i − j) = K(θ; j − i) , (8)
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Figure 3: Pictorial illustration of the R matrix of Eq. (10).

While there exist solutions of the star-triangle relation which do not verify Eq. (8) the
latter is verified in many cases of physical relevance, and will be in particular for the
solutions of considered in this work. Furthermore, all solutions of the star-triangle relation
considered in this work allow for two special values of the spectral parameter, θ = 0, π, for
which the function K(θ, α, β) takes a particularly simple form :

K(0; i, j) = δi,j , K(π; i, j) = κ , ∀i, j ∈ S , (9)

where the parameter κ entering the second equation is independent of the indices α, β.

3.2 Two-parameter transfer matrices
From the star-triangle relation (7), we can construct a set of mutually commuting transfer
matrices, which can conveniently be recast as the row-to-row transfer matrices of a vertex
model. To achieve this, we follow the route of [56]. We start by grouping the interactions
along the edges surrounding a given “plaquette” into the following R matrix (see Figure 3)

Rab(λ, µ, ϕ) =
∑

i,j,k,l∈S
K(λ; l, j)K(π−λ−ϕ; j, k)K(µ; i, k)K(π−µ+ϕ; l, i)Ei,j

a ⊗Ek,l
b , (10)

where the Kronecker matrices Ei,j
a , Ek,l

b act in vector spaces a and b whose basis states are
indexed by the states in S.

As detailed in App. A.1, it can be shown using the star-triangle relation that the R
matrix obeys the Yang–Baxter equation

Rab(λ12, µ12, ϕ′)Rac(λ1, µ1, ϕ)Rbc(λ2, µ2, ϕ) = Rbc(λ2, µ2, ϕ)Rac(λ1, µ1, ϕ)Rab(λ12, µ12, ϕ′) ,
(11)

where
λ12 = λ1 − λ2, µ12 = µ1 − µ2, ϕ′ = ϕ + λ1 − µ1. (12)

The pictorial interpretation of the Yang–Baxter equation in terms of plaquettes is given in
Fig. 4.

Using the R matrix, we can group the weights of all plaquettes along a horizontal row of
the rotated square lattice into the following matrix product operator called transfer matrix

T(λ, µ, ϕ, {ζj}) = Tra

 L∏
j=1

Raj(λ − ζj , µ − ζj , ϕ)

 , (13)

where the trace Tra follows from the choice of periodic boundary conditions in the hori-
zontal direction, and where {ζj} are arbitrary spectral parameters, which can generically
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Figure 4: A diagrammatic description of the Yang–Baxter relation in (11). The spectral parameters are
ξ = π − λ1 + µ2 − ϕ, and ζ = π − µ1 + λ2 + ϕ.

taken to be inhomogeneous. In the literature, people usually consider the case with ϕ = 0
and inhomogeneities ζj = 0, which has been used as the transfer matrix for quantum Potts
chain or clock Hamiltonians [56]. In contrast, in the present case, we will need the param-
eter ϕ ̸= 0 to establish a connection with integrable quantum circuits. The transfer matrix
is depicted pictorially in Fig. 5, where our convention is that it transfer the heights of the
top row to the bottom row.

From the Yang–Baxter equation (11), it can be shown that the transfer matrices with
the same ϕ and inhomogeneities {ζj} but different horizontal spectral parameters λ, µ
commute :

[T(λ1, µ1, ϕ, {ζj}), T(λ2, µ2, ϕ, {ζj})] = 0, λ1, λ2, µ1, µ2 ∈ C . (14)

Therefore, we will often call these “two-parameter transfer matrices”, meaning that for a
given model ϕ and {ξj} are fixed while λ and µ are allowed to vary. In the remaining
part of the article, we will focus on the homogeneous case where all the ζj → 0, and will
therefore omit the latter from our notations.

From the star-triangle relation (7), the two-parameter transfer matrix satisfies a “self-
duality” relation, i.e.

T(λ, µ, ϕ) = T(µ − ϕ, λ + ϕ, ϕ). (15)
A diagrammatic derivation of the self-dual relation is demonstrated in Fig. 8 in App. A.2.

In addition, considering the product of two transfer matrices, and applying the star-
triangle relation (7), we have

T(λ1, µ1, ϕ)T(λ2, µ2, ϕ) = T(µ2 − ϕ, µ1, ϕ)T(λ1, λ2 + ϕ, ϕ). (16)

The proof is analogous to the “self-dual” property and the diagrammatic demonstration is
shown in Fig. 9 in App. A.3.

Combining with the “self-duality” of the transfer matrix (15), we show the factorisation
of the two-parameter transfer matrix,

T(λ1, µ1, ϕ)T(λ2, µ2, ϕ) = T(µ2 − ϕ, µ1, ϕ)T(λ1, λ2 + ϕ, ϕ)
= T(µ1 − ϕ, µ2, ϕ)T(λ2, λ1 + ϕ, ϕ)
= T(λ1, µ2, ϕ)T(λ2, µ1, ϕ).

(17)

Therefore, we define two operators Q(λ) and P(µ), such that

Q(λ) = T(λ, 0, ϕ), P(µ) = T(0, µ, ϕ)T−1(0, 0, ϕ). (18)
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We have assumed that T(0, 0) is invertible, which is the case for the examples below. The
two operators commute, i.e.

[Q(λ), Q(µ)] = [P(λ), P(µ)] = [Q(λ), P(µ)] = 0, ∀λ, µ ∈ C. (19)

In this way, the two-parameter transfer matrix is factorised into two parts,

T(λ, µ, ϕ) = Q(λ)P(µ), (20)

by using the factorisation property (17).
In the meantime, the self-duality implies

T(λ, µ, ϕ) = Q(µ − ϕ)P(λ + ϕ). (21)

We notice the resemblance to the two-parameter transfer matrix of the 6-vertex model at
root of unity, which can be used to construct Baxter’s Q operator [57].

3.3 Derivation of local commuting charges
When the function K(θ; i, j) satisfies

K(0; i, j) = δi,j ,

K(π − ϕ; i, j)K(π + ϕ; i, j) = f(ϕ), ∀i, j ∈ S,
(22)

as in the case of all examples considered below in Sections 4 and 5, we have

Ra,b(0, 0, ϕ) = f(ϕ)Pa,b, (23)

where the operator Pa,b is the permutation operator such that Pa,bOaPa,b = Ob.
In this case, the two-parameter transfer matrix becomes

T(0, 0, ϕ) = Tra

 L∏
j=1

Pa,j

 =
1∏

j=L−1
Pj,j+1 = G−1, (24)

where the operator G =
∏L−1

j=1 Pj,j+1 is the one site translation operator.
In this scenario,

Q(0) = G−1, P(0) = 1. (25)

and a family of mutually commuting local conserved charges can be constructed by taking
the logarithmic derivatives of the transfer matrix around the point λ = 0, µ = 0,

Im,n = ∂m
λ ∂n

µ log T(λ, µ, ϕ)
∣∣∣
λ=0,µ=0

, m, n ∈ Z>0. (26)

Due to the factorised form of the two-parameter transfer matrix (20), we have

Im,n = 0, m ̸= 0, n ̸= 0. (27)

There are therefore two sets of independent conserved quantities (when ϕ ̸= 0), namely

Im,0, I0,n, m, n ∈ Z>0. (28)

Note that when ϕ = 0, Im,0 = I0,m.

Accepted in Quantum 2023-10-17, click title to verify. Published under CC-BY 4.0. 8



Figure 5: The two-parameter transfer matrix T (λ, µ, ϕ), transfering the heights of the top row
(a1, a2, . . .) to the bottom row (c1, c2, . . .).

3.4 Circuit geometry
In order to recover a circuit-like geometry, we introduce another way of decomposing the
two-parameter transfer matrix,

T(λ, µ, ϕ) = V(µ, ϕ)W(λ, ϕ) , (29)

where the matrices V(µ, ϕ) and W(λ, ϕ) encode the weights of the two lower (resp. upper)
edges of each plaquette, as illustrated in Fig. 5. More precisely, they have the following
matrix elements

Vc1,c2,···cL
b1,b2,···bL

(µ, ϕ) = K(µ; c1, b2)K(π − µ + ϕ; c2, b2) . . . K(µ; cL, b1)K(π − µ + ϕ; c1, b1) ,

(30)
Wb1,b2,···bL

a1,a2,···aL
(λ, ϕ) = K(π − λ − ϕ; b2, a1)K(λ; b2, a2) . . . K(π − λ − ϕ; b1, aL)K(λ; b1, a1) .

(31)

This decomposition is different from the factorisation (17), in particular

[W(λ1, ϕ), W(λ2, ϕ)] ̸= 0, [V(λ1, ϕ), V(λ2, ϕ)] ̸= 0, (32)

for generic λ1, λ2.
Let us now specify the spectral parameters to λ, µ = 0, ϕ. In this case, using the special

values (9) of the function K(. . . , a, b), we find :

Vc1,c2,···cL
b1,b2,···bL

(ϕ, ϕ) = κLK(ϕ; c1, b2) . . . K(ϕ; cL, b1) , (33)

Wb1,b2,···bL
a1,a2,···aL

(0, ϕ) = δb1,a1 . . . δbL,aL
K(π − ϕ; a2, a1) . . . K(π − ϕ; a1, aL) . (34)

We can therefore rewrite :

V(ϕ, ϕ) = G−1U1(ϕ), W(0, ϕ) = U2(ϕ), (35)

where G−1 is the inverse translation operator introduced in the previous section, and U1(ϕ)
and U2(ϕ) are products of single-site operators and double-site operators, respectively. The
transfer matrix can therefore be expressed as the generator of a discrete quantum circuit
dynamics,

T(0, ϕ, ϕ) = G−1U1(ϕ)U2(ϕ), (36)

with [
G−1, U1(ϕ)

]
=
[
G−1, U2(ϕ)

]
= 0, (37)
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Figure 6: Relation between the two-parameter transfer matrix and the integrable quantum circuit.

as shown in Fig. 6.
Defining the discrete time evolution operator

UF(ϕ) = U1(ϕ)U2(ϕ) = GT(0, ϕ, ϕ) , (38)

and using the fact that [G, T(λ, µ, ϕ)] = 0 for all λ, µ, we therefore see that UF(ϕ) com-
mutes with the two-parameter family of transfer matrices,

[UF(ϕ), T(λ, µ, ϕ)] = 0, λ, µ ∈ C, (39)

and therefore with the charges Im,0 and I0,n constructed in the previous section. In this
sense, it defines an integrable discrete dynamics. In the following two sections we will
demonstrate this construction using known families of solutions of the star-triangle relation,
associated respectively with the Q-state Potts model and the Fateev–Zamolodchikov ZQ

model.
Remark. Alternatively, if we set the inhomogeneities {ζj} to be staggered

ζ2m−1 = ζ1, ζ2m = ζ2, ∀m ∈ Z+, (40)

we can construct a different integrable quantum circuits with brick-wall structure, cf. Fig.
3 of [28], via the “Floquet Baxterisation” [28]. The procedure is described in details in Sec.
4 of [28].

4 Example: Q-state Potts circuits
We now move on to Q-states model, with Q some positive integer. Namely, we now specify
the generic exposition of Section 3 to statistical models where the set of allowed heights
at each site is S = {1, . . . Q}, and will derive from there quantum circuits of the form
discussed in Section 2. In this Section we focus on one of the most renowned examples,
that of the Q-state Potts model [12]. To begin with, we define the parameter η as√

Q = 2 cosh η. (41)

A qualitative feature separates the regimes Q ≤ 4 (for which the Potts model has a
second-order phase transition) and Q > 4 (for which this transition becomes first order),
which can be seen at the level of the parameter η[12] For Q = 2, 3 it is pure imaginary,
namely η = iπ

4 and η = iπ
6 respectively, while for Q ≥ 5, η ∈ R. The Q = 4 case

corresponding to η = 0 is special, as in this case the star-triangle relation becomes rational
instead of trigonometric (cf. (45)).
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4.1 Star-Triangle relation and two-parameter R matrix
The specificity of the Potts model is that it is invariant under the permutation group SQ of
internal indices, and a corresponding solution of the star-triangle equation has been found
under the form [12, 43]

KPotts(θ; a, b) = 1√
Q sin(η/i)

sin
(

ηθ

iπ

)
+ 1

sin(η/i) sin
(

η(π − θ)
iπ

)
δa,b. (42)

To be specific, we write down the explicit expressions of the solution (42) with Q =
2, 3, 4,

KPotts(θ; a, b) = sin
(

θ

4

)
+

√
2 sin

(
π − θ

4

)
δa,b, Q = 2; (43)

KPotts(θ; a, b) = 2√
3

sin
(

θ

6

)
+ 2 sin

(
π − θ

6

)
δa,b, Q = 3; (44)

KPotts(θ; a, b) = θ

2π
+
(

1 − θ

π

)
δa,b, Q = 4. (45)

Using the star-triangle relation, we construct the two-parameter R matrix in the manner
of (10), satisfying the Yang-Baxter relation (11). The two-parameter transfer matrix can
be constructed using (13). The solution (42) satisfies properties of the form (22), where

f(ϕ) =


4

Q(4−Q) sin
(

η(π−ϕ)
iπ

)
sin
(

η(π+ϕ)
iπ

)
for Q ̸= 4

(π−ϕ)(π+ϕ)
4π2 for Q = 4

(46)

Therefore, the R matrix (10) satisfies

Ra,b(0, 0, ϕ) = f(ϕ)Pa,b. (47)

When Q = 3, the normalisation factor becomes

Ra,b(0, 0, ϕ) = 2 cos(ϕ/3) − 1
3 Pa,b, (48)

which we will focus on later.
Remark. When parameter ϕ = 0, the two-parameter transfer matrix becomes the

transfer matrix of the 3-state Potts model [12, 58, 59].

4.2 Quantum circuit
As anticipated in Section 2, a convenient way to express the circuit operators obtained
from the two-parameter transfer matrices is to introduce the Potts operators acting on the
physical Hilbert space

(
CQ
)⊗L

,

Xm = 1
⊗(m−1) ⊗

EQ,1
m +

Q−1∑
j=1

Ej,j+1
m

⊗ 1
⊗(L−m),

Zm = 1
⊗(m−1) ⊗

 Q∑
j=1

ωj−1Ej,j
m

⊗ 1
⊗(L−m),

(49)

where the Q-th root of unity ω = exp
(

2iπ
Q

)
. Those can be easily checked to satisfy the

algebra (5).
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Another sets of useful operators are the Potts representation of the affine Temperley–
Lieb algebra [12, 49, 60],

e2m−1 = 1√
Q

Q−1∑
a=0

Xa
m, e2m = 1√

Q

Q−1∑
a=0

(
Z†

mZm+1
)a

, (50)

which satisfy the following relations,

e2
m =

√
Qem, emem±1em = em, emen = enem, |m − n| ≥ 2, (51)

with periodic boundary condition e2L+1 = e1. Furthermore, these are manifestly hermi-
tian, e†

m = em.
Following the circuit construction of Section 3, it can be checked that in the present

case the operators U1(ϕ), U2(ϕ) take the form

UF(ϕ) = U1(ϕ)U2(ϕ),

U1(ϕ) =
L∏

m=1
exp (−iτe2m−1) =

L∏
m=1

(
1 + exp(−i

√
Qτ) − 1√
Q

e2m−1

)

=
L∏

m=1

exp(−i
√

Qτ) + Q − 1
Q

+ exp(−i
√

Qτ) − 1
Q

Q−1∑
a=1

Xa
m

 ,

U2(ϕ) =
L∏

m=1
exp (−iτe2m) =

L∏
m=1

(
1 + exp(−i

√
Qτ) − 1√
Q

e2m

)

=
L∏

m=1

exp(−i
√

Qτ) + Q − 1
Q

+ exp(−i
√

Qτ) − 1
Q

Q−1∑
a=1

(
Z†

mZm+1
)a

 ,

(52)

where the spectral parameter ϕ is related to the “period” τ by

exp(−i
√

Qτ) = 1 +
√

Q
sinh(ηϕ/π)

sinh
(
η(π − ϕ)/π

) . (53)

Note in particular that the Floquet evolution operator UF(ϕ) is of the same form as given
in eq. (6). It is uniquely defined by the value of ϕ modulo arbitrary shifts by 2iπ

η , or by
the value of τ modulo arbitrary shifts by 2π√

Q
. Furthermore, because of the hermiticity of

the generators em, the dynamics is unitary whenever τ ∈ R,

UF(ϕ)U†
F(ϕ) = 1, τ ∈ R, (54)

or equivalently the parameter ϕ must satisfy the following identity∣∣∣∣∣1 +
√

Q
sinh(ηϕ/π)

sinh
(
η(π − ϕ)/π

) ∣∣∣∣∣ = 1. (55)

The values of ϕ solving (55) are generally complex. However, for Q = 2 or Q = 3, some
real solutions of are of particular interest as they connect to known models.

For Q = 2, nontrivial real solutions to (55) are found as ϕ = ±2π, corresponding to
τ = π√

2 . In this case, the evolution operator UF(ϕ) commutes with the Hamiltonian

H =
2L∑

j=1
ej , (56)
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which coincides with the Hamiltonian of the spin-1/2 XX model up to unitary transforma-
tion.

Similarly, for Q = 3 nontrivial real solutions of (55) are found as ϕ = ±3π, cor-
responding to τ = π√

3 . At this value of τ , the circuit dynamics can be related to the
Zamolodchikov–Fateev 19-vertex model [50], as will be discussed in Sec. 4.4.

4.3 Local conserved charges
We follow the way of Section 3 to construct two sets of local charges commuting with the
circuit dynamics, Im,0 and I0,n, m, n ∈ Z>0. Using the normalisation of the R matrix (47),
we can express the first two charges as

I1,0 = 1
f(ϕ)

L∑
j=1

∂λRj,j+1(λ, 0, ϕ)Pj,j+1, I0,1 = 1
f(ϕ)

L∑
j=1

∂µRj,j+1(0, µ, ϕ)Pj,j+1. (57)

We find (see Appendix C for details)

I1,0 + I0,1 = 2
Q

(
Q1 + c1

)
, (58)

and
I1,0 − I0,1 = 2

Q

(
Q′

1 + c2
)
, (59)

where c1, c2 are constant and

Q1 =
2L∑

j=1
ej + i

2
√

Q
sin(

√
Qτ)(−1)j [ej , ej+1] − 1√

Q
sin2 (√Qτ

2
)

{ej , ej+1} , (60)

and

Q′
1 =

2L∑
j=1

− i sin(
√

Qτ)
2
√

Q
[ej , ej+1] + (−1)j sin2(

√
Qτ/2)√

Q
{ej , ej+1} . (61)

In [44], a set of conserved charges Q1, Q2, Q3 commuting with the dynamics (52) was
constructed in terms of the generators ej , by explicitly computing the commutation with
the evolution operator UF . Explicit expressions were given for Q1 and Q2, while the
expression of Q3 is more involved. It is easy to check that our charge Q1 given by (60)
coincides with the one given in [44]. Furthermore, we check that the charge (I2,0 − I0,2)
coincides with the charge Q2 of [44], up to a proportionality factor and constant. We
believe that, similarly, we could recover the charge Q3 of [44]. Therefore, our construction
recovers and extends the family of charges Qm proposed in [44], together with an additional
family Q′

m, given by the linear combination of the charges Im,0 and I0,m.
We now comment on the possibility to relate the discrete time evolution operator

UF(τ) to some quantum Hamiltonian acting in continuous time. In Floquet systems,
what is commonly defined as the Floquet Hamiltonian HF is defined formally as UF(τ) =
exp(iτHF), and is not local. In contrast, one can define a local Hamiltonian by taking the
τ → 0 (Trotter) limit: this is nothing but the quantum Potts Hamiltonian H1 +H2, which
however does not commute with UF(τ) for generic τ . A third possibility is to use the
charges Qj , Q′

j defined above. Those are local operators (namely, sums of local densities),
they are furthermore hermitian, and by construction they commute with UF(τ). They
can therefore be considered as Hamiltonians generating some continuous time dynamics,
sharing the same integrals of motion as the Floquet dynamics generated by UF(τ). Let us
point that, in the τ → 0, all the Hamiltonians defined above (more precisely, the Floquet
Hamiltonian, the Potts Hamiltonian and the sum Q1 + Q′

1) become proportional to each
other.
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4.4 3-state Potts case and 19-vertex model
We now come back to the connection mentioned at the end of Section 4.2, between the
3-state Potts circuit with ϕ = 3π and the Zamolodchikov–Fateev 19-vertex model at root
of unity q = exp

(
iπ
3

)
[50, 61].

The Zamolodchikov–Fateev 19-vertex model [50, 62] can be obtained via transfer ma-
trix fusion of the 6-vertex model [63]. One of the conserved quantities (obtained via the
logarithmic derivative of the transfer matrix) is a spin-1 Hamiltonian, which can be consid-
ered as the integrable spin-1 generalisation of the spin-1/2 XXZ model. As in the spin-1/2
case the model is defined in terms of a complex parameter q relating to the underlying
quantum group Uq(sl2). At the “root of unity” points qN = ±1 it is conjectured to have a
hidden Onsager algebra symmetry [57, 64], which can be shown explicitly for q = exp

(
iπ
3

)
[61, 64].

Interestingly, the conserved quantities obtained from two-parameter transfer matrix
(20) consist of a subset of the generators of the Onsager algebra (up to a unitary transfor-
mation), which is not obvious at first sight.

To begin with, let us consider the following unitary transformation carried out by the
operator

U (3)
m = 1√

3

1 1 1
1 ω ω2

1 ω2 ω


m

, (62)

with the third root of unity ω = exp(2πi/3). The operator U (3)
m transfers the 3-state Potts

spin as follows,
U (3)

m XmU (3)
m

† = Z†
m, U (3)

m ZmU (3)
m

† = Xm. (63)

In addition, we need another unitary operator

Vm =

0 1 0
1 0 0
0 0 1

 = V†
m, V2

m = 1m. (64)

The 19-vertex model R matrix with q = exp
(

iπ
3

)
is obtained as a special case of the

two-parameter R matrix with ϕ = 3π depicted in Fig. 3 after the unitary transformation,

R̃a,b(λ, µ) = −VaVbU (3)
a U (3)

b Ra,b(λ, µ, ϕ = 3π)U (3)
a

†U (3)
b

†
VaVb. (65)

When µ = λ, we recover the renowned 19-vertex R matrix at root of unity q = exp(iπ/3)
[50],

R̃a,b(−λ, −λ) =



a(λ) 0 0 0 0 0 0 0 0
0 b(λ) 0 c(λ) 0 0 0 0 0
0 0 d(λ) 0 e(λ) 0 g 0 0
0 c(λ) 0 b(λ) 0 0 0 0 0
0 0 e(λ) 0 f(λ) 0 e(λ) 0 0
0 0 0 0 0 b(λ) 0 c(λ) 0
0 0 g 0 e(λ) 0 d(λ) 0 0
0 0 0 0 0 c(λ) 0 b(λ) 0
0 0 0 0 0 0 0 0 a(λ)


= R(λ), (66)
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where the coefficients are defined

a(λ) = [u + 1][u + 2] = 1
3

(
1 + 2 cos 2λ

3

)
,

b(λ) = [u][u + 1] = 1
3

(
1 − cos 2λ

3 +
√

3 sin 2λ

3

)
,

c(λ) = cos λ

3 + 1√
3

sin λ

3 , d(λ) = [u − 1][u] = 2
3 sin λ

3

(
sin λ

3 −
√

3 cos λ

3

)
,

e(λ) = [2][u] = 2√
3

sin λ

3 , f(λ) = b(λ) + [2] = 1
3

(
4 − cos 2λ

3 +
√

3 sin 2λ

3

)
,

g = [2] = 1, u = λ

π
,

(67)

with q-number defined as

[u] = qu − q−u

q − q−1 . (68)

Another intriguing fact is that the conserved quantities of the 19-vertex model at root
of unity q = exp(iπ/3) can be expressed in terms of the Temperley-Lieb algebra generators
[65]. To see this, we define the 19-vertex transfer matrix

T (λ) = Tra

 L∏
j=1

Ra,j(λ)

 , (69)

and the first local conserved quantity (“the spin-1 ZF Hamiltonian”) becomes

HZF = ∂λ log T (λ) = −
(
I1,0 + I0,1

)
, (70)

due to the factorisation property of the two-parameter transfer matrix (17).

HZF = −2
3VU (3)

[ 2L∑
m=1

(
em − 1√

3
{em, em+1} − 1

2
√

3

)]
U (3)†V, (71)

where the unitary transformations are

U (3) =
L∏

m=1
U (3)

m , V =
L∏

m=1
Vm. (72)

The ZF Hamiltonian at root of unity q = exp(iπ/3) can therefore be transformed into a
special case of (60) with Q = 3 and τ = π/

√
3. The Hamiltonian can be expressed in terms

of spin-1 operators as well in a compact way, as shown in App. B. More generally, the local
charges I0,m + Im,0 generated by T (λ) recover the local conserved charges of the ZF spin
1 Hamiltonian derived from the usual spin-1 transfer matrix, while the charges I0,m − Im,0
form a mutually commuting subset of the Onsager symmetry generators. This connection
is in fact part of a more general connection between solutions of the star-triangle equation
and higher-spin descendants of the six-vertex model, which is currently under investigation.

5 Example: ZQ circuits
Besides the Q-state Potts model, which possesses the SQ symmetry, there exist solutions
to the star-triangle relation (7) with ZQ symmetry [42]. The most renowned one has been
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originally derived by Fateev and Zamolodchikov [52, 66, 67], and takes the form

KFZ(θ; a, b) = 1, a − b = 0,

KFZ(θ; a, b) =
|a−b|−1∏

m=0

sin(πm
Q + θ

2Q)

sin(π(m+1)
Q − θ

2Q)
, a − b ̸= 0.

(73)

For Q = 3, (73) coincides with (42) up to normalisation factor. As pointed earlier, this
is due to the fact that the Z3 symmetry together with the charge conjugation symmetry
KFZ(θ; a, b) = KFZ(θ; b, a) generate the symmetric group S3, which is the symmetry of
the 3-states Potts model. In contrast, when Q ≥ 4, (73) and (42) become different. More
specifically, (73) with Q = 4 is related to a critical Ashkin–Teller model [53–55, 68, 69].
When Q = 4,

KFZ4(θ; a − b) =


1, a − b = 0,

sin(θ/8)
sin(π/4−θ/8) , |a − b| = 1 or 3,

tan(θ/8)
tan(π/4−θ/8) , |a − b| = 2.

(74)

The critical Ashkin-Teller Hamiltonian is obtained by considering the first local conserved
charge in the limit ϕ → 0, which is shown in Appendix D.

We focus on the Z4 circuit now. Similar to the Potts case, the Z4 circuit is built on
the Floquet evolution operator such that

UF(ϕ) = U1(ϕ)U2(ϕ), (75)

which is closely related to the two-parameter transfer matrix such that

T(0, ϕ, ϕ) = V(ϕ, ϕ)W(0, ϕ),

V(ϕ, ϕ) = G−1U1(ϕ) = U1(ϕ)G−1 = G−1
L∏

m=1
vm

W(0, ϕ) = U2(ϕ) =
L∏

m=1
wm,m+1,

(76)

where the local quantum gates are

vm = 1 + KFZ4(ϕ; 1)
(
Xm + X†

m

)
+ KFZ4(ϕ; 2)X2

m, (77)

wm,m+1 =1
4
(
1 + 2KFZ4(π − ϕ; 1) + KFZ4(π − ϕ; 2)

)
+

1
4
(
1 − KFZ4(π − ϕ; 2)

)(
Z†

mZm+1 + ZmZ†
m+1

)
+ 1

4
(
1 − 2KFZ4(π − ϕ; 1) + KFZ4(π − ϕ; 2)

)
Z2

mZ2
m+1.

(78)

The evolution operators U1(ϕ) and U2(ϕ) are of the generic form (6). However, unlike
the the Potts case (52), where there exist sets of ϕ as solutions to (53) that guarantee the
quantum circuits to be unitary, there is no ϕ that makes the quantum circuits (76) unitary,
except for the trivial cases when ϕ = 8nπ or ϕ = 4π + 8nπ after rescaling.

Even though the integrable quantum circuits obtained using the Fateev–Zamolodchikov
star-triangle relation are not unitary in general, the integrability has not been shown in
previous literature up to our knowledge, which could potentially be intriguing to study the
physical properties. Similar non-unitary integrable quantum circuits have been studied in
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[28, 70], closely related to the non-unitary conformal field theory. It would be interesting
to see if the ZQ circuits can be understood analogously, which we will not discuss in details
here. Sometimes the non-unitary integrable quantum circuits are also the completely posi-
tive trace-preserving (CPTP) maps [71], which has a closely relation to the open quantum
systems. It will be useful to investigate whether the non-unitary quantum circuits obtained
from the star-triangle relations are the CPTP maps, which we intend to study later.

6 Conclusion
In this article we studied the integrable structure of quantum circuits in the form of Fig.
1, which can be considered as the Floquet dynamics of a time-dependent Potts-like quan-
tum Hamiltonian. We used the renowned star-triangle relation to construct families of
two-parameter transfer matrices that commute with the Floquet evolution operator, un-
derlying the integrable structure. The quantum circuits are obtained by taking the spectral
parameters of the two-parameter transfer matrix to special values.

Compared to the known example of integrable quantum circuits of brick-wall type,
whose construction is based on Yang-Baxter integrable vertex models [22, 23, 26, 28], the
quantum circuits studied in this article indeed share a certain resemblance. However,
even though we have shown that the two-parameter transfer matrices can be formulated
as the row-to-row transfer matrices of certain vertex models in Sec. 3, the staggering of
spectral parameters leading to a circuit geometry takes place in our construction between
the internal parameters entering the definition of each R matrix, rather than between
odd and even sites of the vertex model as in the case in the brick-wall approach [22, 23,
26, 28]. This difference is what makes our construction new, and allows for a systematic
construction of new families of integrable quantum circuits based on solutions to the star-
triangle relations.

We would like to comment in particular on the recent work by Bazhanov and Sergeev
[72], where an alternative description of the six-vertex model was given, involving an un-
derlying spin model satisfying the star-triangle relation [72]. From there one might follow
a similar approach to that of the present work, namely constructing an integrable circuit
dynamics from an inhomogeneous two-row transfer matrix satisfying the star-triangle rela-
tion. Similar to the case reported in this article, we stress, however, that the corresponding
circuits are not equivalent to those constructed using a brick-wall “trotterization” of the
six-vertex model [22, 23, 26, 28]. The reason is again that the mapping described in [72]
assigns each site of the six-vertex model to a pair of sites of the underlying star-triangle
model. The staggering of spectral parameters which we use in our construction therefore
does not break the translation invariance of the underlying vertex model, moreover it needs
to be fine-tuned in order to be compatible with a six-vertex formulation.

In this work we focused on two families of Q-states quantum circuits. The first is
associated with the Q-states Potts model, for which we proved the conjectured integrability
using the star-triangle relation of the Potts model [43], and found an additional set of
conserved charges expressed in terms of Temperley–Lieb generators. In the case of 3-state
Potts, we presented a connection between the integrable quantum circuit and the integrable
19-vertex model [50], which is part of a larger connection currently under investigation.
The second family of circuits, dubbed ZQ circuits, results from the Fateev–Zamolodchikov
ZQ solution of the star-triangle relation [52], and yields a different integrable quantum
circuit that for Q = 4 is closely related to the critical Ashkin-Teller spin chain. Beyond
these two examples, our construction should work for more general solutions of the star-
triangle equation [42], and we leave the study of the corresponding circuits as an interesting
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perspective for future investigation.
There are still many aspects of the integrable quantum circuits in the form of Fig. 1

that need to be investigated. The first natural question deals with the spectrum of the
Floquet evolution operator, and whether it can be computed exactly using the toolbox of
integrability. For the various kinds of circuits considered in this work, we expect that this
can be achieved in a variety of ways. For the Potts circuits of Sec. 4, one could try a
similar approach to that of [59], where Bethe ansatz equations were obtained for the Q = 3
Potts model. A a more indirect, but effective way is to use the representation of these
models in terms of Temperley-Lieb algebra, amenable to a Bethe ansatz treatment due to
the six-vertex representation of the latter [12]. For the ZQ circuits of Section 5, one should
follow the approach of [67], where Bethe ansatz equations were obtained for ZQ invariant
models.

The next question would be studying the physical properties of quantum quenches in
the circuits. The time evolution from certain initial product states could potentially be
realised in recent experiments [73, 74] and the quantum integrability that we used can be
a useful tool [75, 76]. In the case of vertex models, by using the boundary Yang-Baxter
equations and a Wick rotation, the “integrable quenches” [77] are investigated, and it is
possible to obtain analytic results for the late-time steady states and various correlation
functions for certain initial states. The same approach has been studied in the integrable
brickwork quantum circuits setting recently [30]. We anticipate that similar “integrable
quenches” also exist in the star-triangle circuits using the boundary star-triangle relation
[78].

Moreover, the field theory limit of the quantum circuits is also interesting, since the
brick-wall quantum circuits are initially studied as the lattice regularisation of the field
theories [23, 25]. The generalisation of the brick-wall quantum circuits has been proposed
in [28], while it is not clear how it can be extended to the quantum circuits considered in
this article, cf. Fig. 1. All these questions remain to be studied and answered, which we
intend to do in future works.
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A Diagrammatic derivations of some formulae
A.1 Diagrammatic derivation of the Yang–Baxter relation
The Yang–Baxter relation of the R matrix (10) is proven directly from the star-triangle
relation (7). By first applying the star-triangle relation in the white triangle in between of
the coloured rectangular, the detailed derivation is summarised in Fig. 7.
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Figure 7: The proof of the Yang–Baxter relation (11) by recursively applying the star-triangle relation
(7).

A.2 Diagrammatic derivation of the self-dual relation

Figure 8: The proof of the “self-dual” property of the two-parameter transfer matrix (15).

We start with inserting an identity operator, which is decomposed into two parts, the red
line on the left and its inverse on the right, since we are assuming the periodic boundary
condition here. By pushing the operator to the left using the star-triangle relation (7),
the spectral parameters of the R matrix change accordingly, cf. Fig. 8. Eventually, the
operator cancels with its inverse on the right end, changing the spectral parameters of the
transfer matrix, i.e. the self-dual relation in (15).

A.3 Diagrammatic derivation of Eq. (16)

Figure 9: The proof of (16) in terms of diagrams.
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B Explicit form of spin-1 ZF Hamiltonian at root of unity
We follow the example of [61] and use the spin-1 sl2 operators

S+
m =

0 1 0
0 0 1
0 0 0


m

, S−
m =

0 0 0
1 0 0
0 1 0


m

(79)

to rewrite the spin-1 ZF Hamiltonian at root of unity q = exp(iπ/3), i.e.

HZF = 2
3
√

3

L∑
m=1

2∑
a=1

[
(−1)a(S+

mS−
m+1)a + (−1)a(S−

mS+
m+1)a + 1

3(1 + ω−a)Za
m + 1

3

]
, (80)

where Zm are the 3-state Potts operator in (49) and ω = exp(2iπ/3) is the third root of
unity.

C Local density of charges in Q-state Potts circuits
By directly calculating the local charge densities and expressing them in terms of the affine
TL generators, the local charge densities (57) become

1
f(ϕ)∂λRj,j+1(λ, 0, ϕ)Pj,j+1 = 1

Q

[
e2j−1 + e2j + 2i sin(

√
Qτ)

2
√

Q
[e2j−1, e2j ]

−2 sin2(
√

Qτ/2)√
Q

{e2j−1, e2j} − 2 + e−i
√

Qτ

√
Q

]
,

(81)

and

1
f(ϕ)∂µRj,j+1(0, µ, ϕ)Pj,j+1 = 1

Q

[
e2j + e2j+1 + 2i sin(

√
Qτ)

2
√

Q
[e2j , e2j+1]

−2 sin2(
√

Qτ/2)√
Q

{e2j , e2j+1} − 2 + ei
√

Qτ

√
Q

]
,

(82)

where we have used the relation between ϕ and τ (53).
By summing up the local density, and telescoping the sum, we arrive at

I1,0 + I0,1 = 2
Q

[( 2L∑
j=1

ej + (−1)j i sin(
√

Qτ)
2
√

Q
[ej , ej+1]

− sin2(
√

Qτ/2)√
Q

{ej , ej+1}
)

− 2 − cos(
√

Qτ)√
Q

L

]
,

(83)

and

I1,0 − I0,1 = 2
Q

[( 2L∑
j=1

− i sin(
√

Qτ)
2
√

Q
[ej , ej+1]

+ (−1)j sin2(
√

Qτ/2)√
Q

{ej , ej+1}
)

+ i sin(
√

Qτ)√
Q

L

]
.

(84)

The two constants in (58) and (59) thus are

c1 = −2 − cos(
√

Qτ)√
Q

L, c2 = i sin(
√

Qτ)√
Q

L. (85)
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D Explicit form of critical Ashkin-Teller model
In the limit ϕ → 0, the two sets of local charges from the two-parameter transfer matrix
coincide due to the self-duality (15),

ϕ = 0 ⇒ Im,0 = I0,m. (86)

In order to compare with the Ashkin-Teller Hamiltonian in the literature [54, 69], we
introduce the unitary transformation

U (4)
m = 1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


m

,

U (4) =
L∏

m=1
U (4)

m .

(87)

Therefore, the critical Ashkin-Teller Hamiltonian becomes

HAT =4
√

2U (4)I1,0U (4)† =
L∑

m=1

[
Zm + Z†

m + 1√
2

Z2
m

+X†
mXm+1 + XmX†

m+1 + 1√
2

X2
mX2

m+1 −
(
2 + 1√

2
)]

,

(88)

where Zm and Xm are 4-state Potts operators in (49).
The Ashkin-Teller Hamiltonian obtained here (88) belongs to only one point of the self-

dual critical line of the phase diagram [69]. In addition, the Hamiltonian might appear in
different guises in the literature. For instance, it is also possible to express the Hamiltonian
(88) as a spin-1/2 ladder [79, 80]. A non-Hermitian version of the Ashkin-Teller model has
been shown to be equivalent to the dissipative quantum Ising chain [81].
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