Integrable Quantum Circuits from the Star-Triangle Relation

Yuan Miao1,2 and Eric Vernier3

1Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
2Galileo Galilei Institute for Theoretical Physics, INFN, Largo Enrico Fermi, 2, 50125 Firenze, Italy
3Laboratoire de Probabilités, Statistique et Modélisation CNRS - Univ. Paris Cité - Sorbonne Univ. Paris, France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The star-triangle relation plays an important role in the realm of exactly solvable models, offering exact results for classical two-dimensional statistical mechanical models. In this article, we construct integrable quantum circuits using the star-triangle relation. Our construction relies on families of mutually commuting two-parameter transfer matrices for statistical mechanical models solved by the star-triangle relation, and differs from previously known constructions based on Yang-Baxter integrable vertex models. At special value of the spectral parameter, the transfer matrices are mapped into integrable quantum circuits, for which infinite families of local conserved charges can be derived. We demonstrate the construction by giving two examples of circuits acting on a chain of $Q-$state qudits: $Q$-state Potts circuits, whose integrability has been conjectured recently by Lotkov et al., and $\mathbb{Z}_Q$ circuits, which are novel to our knowledge. In the first example, we present for $Q=3$ a connection to the Zamolodchikov-Fateev 19-vertex model.

► BibTeX data

► References

[1] Adam Nahum, Jonathan Ruhman, Sagar Vijay, and Jeongwan Haah. ``Quantum entanglement growth under random unitary dynamics''. Phys. Rev. X 7, 031016 (2017).

[2] Amos Chan, Andrea De Luca, and J. T. Chalker. ``Solution of a minimal model for many-body quantum chaos''. Phys. Rev. X 8, 041019 (2018).

[3] C. W. von Keyserlingk, Tibor Rakovszky, Frank Pollmann, and S. L. Sondhi. ``Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws''. Phys. Rev. X 8, 021013 (2018).

[4] Bruno Bertini, Pavel Kos, and Tomaz Prosen. ``Entanglement spreading in a minimal model of maximal many-body quantum chaos''. Phys. Rev. X 9, 021033 (2019).

[5] Lorenzo Piroli, Bruno Bertini, J. Ignacio Cirac, and Tomaz Prosen. ``Exact dynamics in dual-unitary quantum circuits''. Phys. Rev. B 101, 094304 (2020).

[6] Richard P. Feynman. ``Simulating physics with computers''. Int. J. Theor. Phys. 21, 467–488 (1982).

[7] I. M. Georgescu, S. Ashhab, and Franco Nori. ``Quantum simulation''. Rev. Mod. Phys. 86, 153–185 (2014).

[8] Jérôme Cayssol, Balázs Dóra, Ferenc Simon, and Roderich Moessner. ``Floquet topological insulators''. physica status solidi (RRL) – Rapid Research Letters 7, 101–108 (2013).

[9] Vedika Khemani, Achilleas Lazarides, Roderich Moessner, and S. L. Sondhi. ``Phase structure of driven quantum systems''. Phys. Rev. Lett. 116, 250401 (2016).

[10] Dominic V. Else, Bela Bauer, and Chetan Nayak. ``Floquet time crystals''. Phys. Rev. Lett. 117, 090402 (2016).

[11] H. A. Bethe. ``Zur Theorie der Metalle. i. Eigenwerte und Eigenfunktionen der linearen Atomkette''. Zeit. für Physik 71, 205 (1931).

[12] R. J. Baxter. ``Exactly solved models in statistical mechanics''. Academic Press. (1982).

[13] Michel Gaudin. ``The Bethe Wavefunction''. Cambridge University Press. (2014).

[14] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin. ``Quantum Inverse Scattering Method and Correlation Functions''. Cambridge University Press. (1993).

[15] Minoru Takahashi. ``Thermodynamics of one-dimensional solvable models''. Cambridge University Press. (1999).

[16] Pasquale Calabrese, Fabian H. L. Essler, and Giuseppe Mussardo. ``Introduction to ‘quantum integrability in out of equilibrium systems’''. J. Stat. Mech. 2016, 064001 (2016).

[17] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii. ``Thermalization and its mechanism for generic isolated quantum systems''. Nature 452, 854–858 (2008).

[18] Lev Vidmar and Marcos Rigol. ``Generalized gibbs ensemble in integrable lattice models''. J. Stat. Mech. 2016, 064007 (2016).

[19] Fabian H. L. Essler and Maurizio Fagotti. ``Quench dynamics and relaxation in isolated integrable quantum spin chains''. J. Stat. Mech. 2016, 064002 (2016).

[20] Olalla A. Castro-Alvaredo, Benjamin Doyon, and Takato Yoshimura. ``Emergent hydrodynamics in integrable quantum systems out of equilibrium''. Phys. Rev. X 6, 041065 (2016).

[21] Bruno Bertini, Mario Collura, Jacopo De Nardis, and Maurizio Fagotti. ``Transport in out-of-equilibrium $xxz$ chains: Exact profiles of charges and currents''. Phys. Rev. Lett. 117, 207201 (2016).

[22] C. Destri and H.J. de Vega. ``Light-cone lattices and the exact solution of chiral fermion and sigma models''. J. Phys. A 22, 1329–1353 (1989).

[23] C. Destri and H.J. de Vega. ``Bethe ansatz and quantum groups: the light-cone lattice approach (I). Six vertex and SOS models''. Nucl. Phys. B 374, 692–719 (1992).

[24] L. Faddeev and A. Yu. Volkov. ``Hirota equation as an example of an integrable symplectic map''. Lett. Math. Phys. 32, 125–135 (1994).

[25] N.Yu. Reshetikhin and H. Saleur. ``Lattice regularization of massive and massless integrable field theories''. Nucl. Phys. B 419, 507–528 (1994).

[26] Matthieu Vanicat, Lenart Zadnik, and Tomaz Prosen. ``Integrable trotterization: Local conservation laws and boundary driving''. Phys. Rev. Lett. 121, 030606 (2018).

[27] Vladimir Gritsev and Anatoli Polkovnikov. ``Integrable Floquet dynamics''. SciPost Phys. 2, 021 (2017).

[28] Yuan Miao, Vladimir Gritsev, and Denis V. Kurlov. ``The Floquet Baxterisation'' (2022). arXiv:2206.15142.

[29] Kazunobu Maruyoshi, Takuya Okuda, Juan William Pedersen, Ryo Suzuki, Masahito Yamazaki, and Yutaka Yoshida. ``Conserved charges in the quantum simulation of integrable spin chains''. J. Phys. A 56, 165301 (2023). arXiv:2208.00576.

[30] Eric Vernier, Bruno Bertini, Giuliano Giudici, and Lorenzo Piroli. ``Integrable digital quantum simulation: Generalized gibbs ensembles and trotter transitions''. Phys. Rev. Lett. 130, 260401 (2023).

[31] Rafael I. Nepomechie. ``Bethe ansatz on a quantum computer?''. Quantum Inf. Comput. 21, 255–265 (2021).

[32] John S. Van Dyke, George S. Barron, Nicholas J. Mayhall, Edwin Barnes, and Sophia E. Economou. ``Preparing Bethe Ansatz Eigenstates on a Quantum Computer''. PRX Quantum 2, 040329 (2021).

[33] Alejandro Sopena, Max Hunter Gordon, Diego García-Martín, Germán Sierra, and Esperanza López. ``Algebraic Bethe Circuits''. Quantum 6, 796 (2022).

[34] Karin Wittmann Wilsmann, Leandro H. Ymai, Arlei Prestes Tonel, Jon Links, and Angela Foerster. ``Control of tunneling in an atomtronic switching device''. Commun. Phys. 1 (2018).

[35] D. S. Grün, L. H. Ymai, K. Wittmann W., A. P. Tonel, A. Foerster, and J. Links. ``Integrable Atomtronic Interferometry''. Phys. Rev. Lett. 129, 020401 (2022).

[36] Daniel S. Grün, Karin Wittmann W., Leandro H. Ymai, Jon Links, and Angela Foerster. ``Protocol designs for NOON states''. Commun. Phys. 5 (2022).

[37] Rhine Samajdar, Soonwon Choi, Hannes Pichler, Mikhail D. Lukin, and Subir Sachdev. ``Numerical study of the chiral ${\mathbb{z}}_{3}$ quantum phase transition in one spatial dimension''. Physical Review A 98, 023614 (2018).

[38] Alexander Keesling, Ahmed Omran, Harry Levine, Hannes Bernien, Hannes Pichler, Soonwon Choi, Rhine Samajdar, Sylvain Schwartz, Pietro Silvi, Subir Sachdev, Peter Zoller, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. ``Quantum kibble–zurek mechanism and critical dynamics on a programmable rydberg simulator''. Nature 568, 207–211 (2019).

[39] Eduardo Fradkin and Leo P Kadanoff. ``Disorder variables and para-fermions in two-dimensional statistical mechanics''. Nucl. Phys. B 170, 1–15 (1980).

[40] Paul Fendley. ``Free parafermions''. J. Phys. A 47, 075001 (2014).

[41] Jason Alicea and Paul Fendley. ``Topological phases with parafermions: theory and blueprints''. Annual Review of Condensed Matter Physics 7, 119–139 (2016).

[42] Helen Au-Yang and Jacques HH Perk. ``Onsager's star-triangle equation: Master key to integrability''. In Integrable Systems in Quantum Field Theory and Statistical Mechanics. Pages 57–94. Elsevier (1989).

[43] S. V. Pokrovsky and Yu. A. Bashilov. ``Star-triangle relations in the exactly solvable statistical models''. Commun. Math. Phys. 84, 103–132 (1982).

[44] A. I. Lotkov, V. Gritsev, A. K. Fedorov, and D. V. Kurlov. ``Floquet integrability and long-range entanglement generation in the one-dimensional quantum potts model''. Phys. Rev. B 105, 144306 (2022).

[45] Qing-Jun Tong, Jun-Hong An, Jiangbin Gong, Hong-Gang Luo, and C. H. Oh. ``Generating many Majorana modes via periodic driving: A superconductor model''. Phys. Rev. B 87, 201109 (2013).

[46] Chong Chen, Jun-Hong An, Hong-Gang Luo, C. P. Sun, and C. H. Oh. ``Floquet control of quantum dissipation in spin chains''. Phys. Rev. A 91, 052122 (2015).

[47] Giancarlo Camilo and Daniel Teixeira. ``Complexity and Floquet dynamics: Nonequilibrium Ising phase transitions''. Phys. Rev. B 102, 174304 (2020).

[48] Neil J. Robinson, Isaac Pérez Castillo, and Edgar Guzmán-González. ``Quantum quench in a driven Ising chain''. Phys. Rev. B 103, L140407 (2021).

[49] H. N. V. Temperley and Elliott H. Lieb. ``Relations between the `percolation' and `colouring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the `percolation' problem''. Proc. R. Soc. Lond. A 322, 251–280 (1971).

[50] A. B. Zamolodchikov and V. A. Fateev. ``Model factorized S Matrix and an integrable Heisenberg chain with spin 1''. Sov. J. Nucl. Phys. 32, 298–303 (1980).

[51] Lars Onsager. ``Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition''. Phys. Rev. 65, 117–149 (1944).

[52] V.A. Fateev and A.B. Zamolodchikov. ``Self-dual solutions of the star-triangle relations in $\mathbf{Z}_N$-models''. Phys, Lett. A 92, 37–39 (1982).

[53] J. Ashkin and E. Teller. ``Statistics of Two-Dimensional Lattices with Four Components''. Phys. Rev. 64, 178–184 (1943).

[54] F C Alcaraz, M N Barber, M T Batchelor, R J Baxter, and G R W Quispel. ``Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models''. J. Phys. A 20, 6397–6409 (1987).

[55] Francisco C Alcaraz, Michael N Barber, and Murray T Batchelor. ``Conformal invariance, the XXZ chain and the operator content of two-dimensional critical systems''. Ann. Phys. 182, 280–343 (1988).

[56] R.J. Baxter, J.H.H. Perk, and H. Au-Yang. ``New solutions of the star-triangle relations for the chiral potts model''. Phys. Lett. A 128, 138–142 (1988).

[57] Yuan Miao, Jules Lamers, and Vincent Pasquier. ``On the Q operator and the spectrum of the XXZ model at root of unity''. SciPost Phys. 11, 67 (2021).

[58] Francisco C. Alcaraz and A. Lima Santos. ``Conservation laws for Z(N) symmetric quantum spin models and their exact ground state energies''. Nucl. Phys. B 275, 436–458 (1986).

[59] Giuseppe Albertini, Srinandan Dasmahapatra, and Barry M. McCoy. ``Spectrum and Completeness of the Integrable 3-State Potts Model: a Finite Size Study''. Int. J. Mod. Phys. A 07, 1–53 (1992).

[60] Yuan Miao. ``Generalised Onsager Algebra in Quantum Lattice Models''. SciPost Phys. 13, 070 (2022).

[61] Eric Vernier, Edward O'Brien, and Paul Fendley. ``Onsager symmetries in $U(1)$ -invariant clock models''. J. Stat. Mech. 2019, 043107 (2019).

[62] Lorenzo Piroli and Eric Vernier. ``Quasi-local conserved charges and spin transport in spin-1 integrable chains''. J. Stat. Mech. 2016, 053106 (2016).

[63] Petr P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin. ``Yang-baxter equation and representation theory: I''. Lett. Math. Phys. 5, 393–403 (1981).

[64] Yuan Miao. ``Conjectures on Hidden Onsager Algebra Symmetries in Interacting Quantum Lattice Models''. SciPost Phys. 11, 66 (2021).

[65] Edward O'Brien, Eric Vernier, and Paul Fendley. ````Not-$A$'', representation symmetry-protected topological, and Potts phases in an ${S}_{3}$-invariant chain''. Phys. Rev. B 101, 235108 (2020).

[66] V.A. Fateev and A.B. Zamolodchikov. ``The exactly solvable case of a 2D lattice of plane rotators''. Phys. Lett. A 92, 35–36 (1982).

[67] Giuseppe Albertini. ``Bethe-ansatz type equations for the Fateev-Zamolodchikov spin model''. J. Phys. A 25, 1799–1813 (1992).

[68] Mahito Kohmoto, Marcel den Nijs, and Leo P. Kadanoff. ``Hamiltonian studies of the $d=2$ Ashkin-Teller model''. Phys. Rev. B 24, 5229–5241 (1981).

[69] G von Gehlen and V Rittenberg. ``The Ashkin-Teller quantum chain and conformal invariance''. J. Phys. A 20, 227–237 (1987).

[70] Vsevolod I. Yashin, Denis V. Kurlov, Aleksey K. Fedorov, and Vladimir Gritsev. ``Integrable Floquet systems related to logarithmic conformal field theory''. SciPost Phys. 14, 084 (2023). arXiv:2206.14277.

[71] Lucas Sá, Pedro Ribeiro, and Tomaž Prosen. ``Integrable nonunitary open quantum circuits''. Phys. Rev. B 103, 115132 (2021).

[72] Vladimir V. Bazhanov and Sergey M. Sergeev. ``An Ising-type formulation of the six-vertex model''. Nucl. Phys. B 986, 116055 (2023).

[73] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos. ``Universal Digital Quantum Simulation with Trapped Ions''. Science 334, 57–61 (2011).

[74] Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho, Sabrina Hong, Trent Huang, Ashley Huff, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Tanuj Khattar, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Joonho Lee, Kenny Lee, Aditya Locharla, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex Opremcak, Eric Ostby, Balint Pato, Andre Petukhov, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Yuan Su, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Boixo, Vadim Smelyanskiy, Anthony Megrant, Julian Kelly, Yu Chen, S. L. Sondhi, Roderich Moessner, Kostyantyn Kechedzhi, Vedika Khemani, and Pedram Roushan. ``Time-crystalline eigenstate order on a quantum processor''. Nature 601, 531–536 (2021).

[75] Jean-Sébastien Caux and Fabian H. L. Essler. ``Time Evolution of Local Observables After Quenching to an Integrable Model''. Phys. Rev. Lett. 110, 257203 (2013).

[76] Jean-Sébastien Caux. ``The Quench Action''. J. Stat. Mech. 2016, 064006 (2016).

[77] Lorenzo Piroli, Balázs Pozsgay, and Eric Vernier. ``What is an integrable quench?''. Nucl. Phys. B 925, 362–402 (2017).

[78] Yu-Kui Zhou. ``Fateev-Zamolodchikov and Kashiwara-Miwa models: boundary star-triangle relations and surface critical properties''. Nucl. Phys. B 487, 779–794 (1997).

[79] M. Yamanaka, Y. Hatsugai, and M. Kohmoto. ``Phase diagram of the S=1/​2 quantum spin chain with bond alternation''. Phys. Rev. B 48, 9555–9563 (1993).

[80] Masanori Yamanaka, Yasuhiro Hatsugai, and Mahito Kohmoto. ``Phase diagram of the Ashkin-Teller quantum spin chain''. Phys. Rev. B 50, 559–562 (1994).

[81] Naoyuki Shibata and Hosho Katsura. ``Dissipative quantum Ising chain as a non-Hermitian Ashkin-Teller model''. Phys. Rev. B 99, 224432 (2019).

Cited by

[1] W. K. Wittmann, L. H. Ymai, B. H. C. Barros, J. Links, and A. Foerster, "Controlling entanglement in a triple-well system of dipolar atoms", Physical Review A 108 3, 033313 (2023).

[2] Kohei Fukai, Raphael Kleinemühl, Balázs Pozsgay, and Eric Vernier, "On correlation functions in models related to the Temperley-Lieb algebra", arXiv:2309.07472, (2023).

[3] Philippe Suchsland, Roderich Moessner, and Pieter W. Claeys, "Krylov complexity and Trotter transitions in unitary circuit dynamics", arXiv:2308.03851, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2023-12-07 07:03:21). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2023-12-07 07:03:20).