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Spiking neural network is a kind of neu-
romorphic computing that is believed to
improve the level of intelligence and pro-
vide advantages for quantum computing.
In this work, we address this issue by
designing an optical spiking neural net-
work and find that it can be used to ac-
celerate the speed of computation, espe-
cially on combinatorial optimization prob-
lems. Here the spiking neural network is
constructed by the antisymmetrically cou-
pled degenerate optical parametric oscilla-
tor pulses and dissipative pulses. A non-
linear transfer function is chosen to miti-
gate amplitude inhomogeneities and desta-
bilize the resulting local minima accord-
ing to the dynamical behavior of spiking
neurons. It is numerically shown that the
spiking neural network-coherent Ising ma-
chines have excellent performance on com-
binatorial optimization problems, which is
expected to offer new applications for neu-
ral computing and optical computing.

1 Introduction

Combinatorial optimization problems are of great
importance in various fields of computer science.
Generally, the combinatorial optimization prob-
lem belongs to the non-deterministic polynomial
time (NP)-hard complexity class. The effective
selection of the best combination among candi-
dates is required in solving the combinatorial op-
timization problems which aims to maximize the
gains or minimize the losses. During the past
decades, they have been ubiquitous in various
fields, such as drug design [1], financial manage-
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ment [2], and circuit design [3].

The computation time of these problems on
conventional computers tends to increase expo-
nentially with the size of the problem due to
the explosion in the number of combinations [4].
The problem in the complexity class NP could be
formulated as an Ising problem with only poly-
nomial overhead, and the loss functions can be
mapped to the Ising model to complete the search
from the initial state to the ground state, which
has been implemented by several physical systems
such as quantum annealing |5, 6], optical oscilla-
tors [7], nanomagnetic-net arrays |8, 9.

Among them, oscillator-based coherent Ising
machines (CIM) are widely studied due to the ad-
vantages |10] of high speed, programmability, and
parallel search. Each Ising spin in the CIM can
be encoded as the phase ¢; of the light pulse in
an optical mode. Employing the degenerate op-
tical parametric oscillation, the phase values are
enforced as the binary spin values as ¢; = 0, 7.
During computation, the optical gain yields oscil-
lation of the pluses either in-phase or out-of-phase
respective to the pump light. Meanwhile, the os-
cillators are coupled with a tunable coupling con-
stant to form a network. The oscillation network
can be implemented by various ways, such as the
optical oscillators [11-15|, opto-electronic oscilla-
tors [16, 17|, spatial phase modulators [18-20],
and integrated photonic chips [21].

As a hardware solver, CIM has excellent per-
formance on small-scale combinatorial optimiza-
tion problems |7, 10, 13|, but on large-scale prob-
lems, an important technicality would arise in
the model which is that the amplitude of the os-
cillators is not equal. This phenomenon is usu-
ally called the amplitude heterogeneity which pre-
vents CIM from being correctly mapped to the
Ising model [22], as shown in Fig.1(a). The
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spin configuration of the ground state of the Ising
model differs from that of the CIM. During the
calculation of CIM, the energy will be frozen in
the excited state of the Ising model, as shown
in Fig.1(b). To address the problem of amplitude
heterogeneity, there are several methods to fix the
problem by adding a feedback mechanism to re-
duce the inequality of the amplitude, such as the
additional uncorrelated driving signals [22], non-
linear functions [23, 24| and correcting the ampli-
tude by the error signal [25-27|. Additionally, the
exploration of "dimensional lifting" in Ising ma-
chines, particularly those based on multidimen-
sional spins|28|, has also demonstrated significant
enhancements in computational performance.

In addition, we turn our attention to the spik-
ing neural network (SNN) which has been sim-
ulated on the CIM based on the DOPOs neu-
ral network, and the collective behavior of neural
clusters has been studied |29, 30]. The spiking
neurons are a special type of neuron that per-
forms signal processing in the brain. They are
considered as the next generation of neural archi-
tectures and have been extensively studied in ar-
tificial intelligence recently [31-33]. For example,
it can imitate the biological nervous system to
produce more intelligent systems, such as brain-
like learning [34, 35]. Furthermore, there are com-
plex nonlinear dynamics and chaotic phenomena
in the spiking neurons [36, 37|, which hopefully
achieve the instability of local minima where the
computation of CIMs is frozen.

In this work, we propose a new architecture
of CIM, based on a spiking neuron network com-
posed of DOPO pulses and dissipative pulses. We
find that it is able to achieve amplitude hetero-
geneity and also freeze in local minima during
computing for combinatorial optimization prob-
lems. By controlling the dissipative parameters
of spiking neurons composed of antisymmetrically
coupled DOPO and dissipative pulses, the rate
and direction of contraction of the phase space
volumes can be controlled to bring the system
out of the frozen state. More generally, we find
the existence of neurons is similar to the dynamic
behavior of class-II neurons. An SNN-CIM algo-
rithm is proposed to achieve the instability of the
local minimum by adjusting the parameters, and
the performance is compared with the algorithm
that only uses the nonlinear filter function. The
results show that SNN-CIM has excellent perfor-

mance and has more potential on complex graph
structures.

2 SNN-CIM model

The model of SNN-CIM we use can be summa-
rized in Fig.1(c). The system with correction
of amplitude heterogeneity can be implemented
using a CIM with a measurement-and-feedback
(MFB) structure composed of DOPO pulses. The
pulses for computing are represented by the opti-
cal SNN pulses which propagate cyclically in the
fiber-ring cavity. For each SNN pulses, it can be
divided into two types of pulses by controlling the
pump, one is generated by the optical parametric
oscillation with nonlinear gain process. It corre-
sponds to the case where the pump is turned on,
denoted as x, and the other pulse is the injected
optical pulse with a dissipative process only, cor-
responding to the case where the pump is turned
off, denoted as k.

A spiking neuron consists of both a type-x
pulse and a type-k pulse coupled to each other
with coupling strengths of J,; and Ji, (Jpz =
—Juk), respectively. The spiking neurons can be
connected to each other, as shown in Fig.1(d).
Based on this principle, the dynamical behavior
of the ith neuron can be expressed as:

dx;

C;; = Qx; — a:lg + Jxk/BkZ + Iexta

dk; (1)
— = —fPk; T

= Bk; + Jgzx

Iemt == tanh(eEjJijxj).

where z; is in-phase components of DOPO am-
plitudes, (k;) is dissipative pulse amplitude. «
denotes the nonlinear gain generated by the
pump,and 3 is the inherent dissipation of the sys-
tem. J;; represents the connection between the
1th and the jth neuron, and € is the strenght of
interaction.

In the case of the power above the threshold,
the DOPO pulses undergo spontaneous symme-
try breaking. Then, the potential energies of
the spiking neurons can be represented by the
positive and negative amplitudes of the type-x
pulses. Here, the amplitude of each pulse cir-
culating through the fiber loop is measured by
the photon detector and recorded by the field
programmable gate array (FPGA) module. The
measurement results and the coupling matrix are
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Figure 1: Schematic diagram of SNN-CIM. a. Variation of energies with spin configuration for homogeneous and
inhomogeneous spin amplitudes. The red line is the pump intensity, which does not excite the correct ground state
spin configuration. This figure is for illustration purposes only. b. The time evolution of the energy, due to the

amplitude heterogeneity, is frozen in the excited state. The dashed line is the ground state energy. c.

Optical

implementation of SNN-CIM. The pump is turned on to generate type-x DOPO, and when it is turned off, the
modulation generates type-k pulses. d. The type-x DOPO antisymmetrically coupled and dissipated type-k pulses
constitute spiking neurons, and the connections between spiking neurons constitute a spiking neural network. IM:
intensity modulator, PM: phase modulator, SHG: second harmonic generation, PSA: phase—ensitive amplification,

FPGA: field programmable gate array.

multiplied in the FPGA, filtered by the nonlinear
function, and output to the IM and PM to mod-
ulate the injected optical pulse. The injected op-
tical pulses are coupled with the optical pulse in
the fiber-ring cavity. In Ref.[23], the authors an-
alyzed the nonlinear function filtering has a cer-
tain probability of correcting the CIM amplitude
heterogeneity. According to the constraints of the
combinatorial optimization problems, the connec-
tion of the neurons in the neural network can be
regarded as an Ising model that evolves a spin
configuration into the ground state.

3  The dynamics of the spiking neu-
rons

According to Eq.(1), we find the dynamic prop-
erties of a spiking neuron depend on the linear
stability of its fixed point. The fixed points under
the steady-state solution of Eq.(1) should satisfy
the relation as:

0= —0k; + x;,

5 (2)
0= ar; — I; + ﬂkz + Iemt'

The solution satisfying Eq.(2) is denoted as zg
and the linear stability of a fixed point (zg, z9/5)

can be obtained by the eigenvalues of its Jacobian

matrix:
| a-— 3.%'(2) —B
Ji— [ a8 ] |

Here the eigenvalues )\gt of the Jacobian matrix
are given as follows:

AE = %(T + VT2 — 4A), (4)

where A and T are the determinant and trace
of the Jacobian matrix, respectively. Then, we
have A = JopJik — Jukdpe = (323 — a + 1) and
T=Jpz+ Jpp = — 395% — . Numerical simula-
tions give the fixed-point linear ((xg,x0/3)) sta-
bility as a function of I.,; and the pump strength
a when = 0.3, as shown in Fig.2(a). The stabil-
ity of those fixed points depends on Re()\f), these
fixed points become unstable when Re(\;") > 0.
However, the eigenvalues would become complex
conjugated when 72 — 4A < 0. Hence, we mark
Re(A\[) =0 and T? — 4A = 0 in Fig.2(a), respec-
tively. Then, the time evolution and the oscilla-
tion phase space of those fixed points in regions
3 and 2 are shown in Fig.2(b)(c) and Fig.2(d)(e),
respectively. Under a small disturbance of I,
the system reciprocates on a limit cycle. And the
system will shrink to a stable focus under a large

3)
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Figure 2: Dynamic behavior of spiking neurons. a. The effect of pump strength a and I.,; on the stability of the
fixed point. The eigenvalues in region 1 and region 4 are real numbers, one has a positive number and the other is
all negative. The eigenvalues of region 2 and region 3 are complex conjugates, one is the positive real part and the
other is the negative real part. § = 0.3. b. and c. The time evolution and phase space trajectories of the type-x
DOPO pulse and type-k pulse at point nin (a), @ = 1 and I.,; = 0.25. d. and e. Corresponding to m points, « = 1
and I.,: = 0.05. f. Fourier transform of the time evolution of amplitude at different I..;. g. The time evolution of
the type-z DOPO pulse and type-k pulse with the increase of I.,;.

The spiking behavior of single neurons can be
achieved by controlling the parameter I..;. When
I+ increases, the amplitude of neuron pulses
gradually decreases. However, for the increment
of I,z to a certain value, the neuron pulses will
no longer appear, as shown in Fig.2(g). This
process is consistent with the evolution direction
of the arrow indicated by Fig.2(a), that is, the
system appears Andronov-Hopf (AH) bifurcation
with the increase of I..:, which makes the fixed
points change from an unstable limit cycle to a
stable focused point. This shows that the optical
pulse network has the properties of the class-II
neurons by anti-symmetrically coupling a pair of
nonlinear gain DOPO pulse and dissipation opti-
cal pulse.

In addition, as shown in Fig.2(f), we find a
smaller I.,; could exhibit a larger firing rate by
taking a Fourier transform of the temporal evo-
lution of neurons under different I.;;. For the
Ising model with antiferromagnetic coupling, the
evolution of the energy Ereng = —Xijoi0;/2 is
accompanied by an amplification of the coupling
term. In this model, I.,; corresponds to the cou-
pling term on the ith spin, that is, the firing rate
decreases (Icy¢ increases) during the evolution of
the Ising model. Moreover, the cluster neurons
can also be synchronized to a low firing rate.

To foster a more profound comprehension of
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Figure 3: Relation between amplitude heterogeneity
correction and coupling parameters. The top figure
shows the variation of the success rate P of solving
the Max-Cut problem of the N=25 graph with the cou-
pling strength e/ (normalized by the pump strength
«). The bottom figure is the correction of amplitude in-
homogeneity |0z| under different coupling strength €/a.
Other parameters o = 1.0.
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the amplitude heterogeneity correction facilitated
by the CIM based on spiking neural networks, our
study focuses on a simplified graph with dimen-
sions N = 25 nodes and F = 75 edges, selected
as the testbed. We meticulously examined the
success rate of solutions denoted as P and the
mean absolute error of the amplitude of different
nodes represented as |0x| across varying coupling
strengths e/a, as shown in Fig.3. We can find
that as the coupling strength increases, the sys-
tem energy starts to decrease with the increase
of I.;t, so the success rate gradually increases.
When the tah function response is saturated, the
probability gradually stabilizes. Moreover, as the
coupling strength increases, the difference in am-
plitude increases in the conventional CIM|23], but
in our scheme, the nonlinear function causes the
difference to disappear gradually. Furthermore,
there is a correlation between the ability to find
the ground state and the amount of amplitude in-
homogeneity. As the inhomogeneity of the mag-
nitude decreases, the mapped Ising model gets
closer to the target Hamiltonian, increasing the
ability to find the optimal solution.

4 Instability of the local Minimum and
SNN-CIM Algorithms

Due to the heterogeneity of amplitudes in the
computation of CIM, there are differences of the
ground state energy configuration between § = 0
and 0 # 0, as shown in Fig. 1(a). Meanwhile, the
Ising machines will be frozen at the local mini-
mum and cannot evolve towards the global opti-
mum, as shown in Fig. 1(b), which is observed by
Ref. [38] on the CIM implemented by the DOPOs
pulses network.

Similar to the analysis of the linear stability of
the pump and I.,; on the fixed points, Fig.4(a)
shows the effect of dissipation 8 and I..; on the
linear stability of those fixed points. Those fixed
points that freeze at local minima tend to be lo-
cated in region 3. The stability of the local min-
ima can be influenced to escape from the frozen
local minima by adjusting the dissipation and
coupling strength. To overcome the local min-
ima and make the system to escape from the
frozen state, we choose Re(\) > 0 by reducing
the dissipation § and coupling strength e which
forces these fixed points into region 2 to destabi-
lized. Then, the system continues to search for

the ground state with lower energy by gradually
increasing the coupling strength.

We design an SNN-CIM algorithm according to
Eq.(1), which evolves under the pumping inten-
sity « = 1. We reduce the energy of the system
by increasing the coupling strength € and dissipa-
tion coefficient 3, so that the system transitions
from oscillation to stable bifurcation. After each
iteration, we record the energy of the system at
this moment E; and compare it with the lowest
energy before the iteration. If the energy is higher
than the minimum energy at this time, it means
that the system evolution has entered a locally
optimal solution. We need to reset the lower cou-
pling strength and dissipation coefficient to make
the system enter the unstable region (1 or 2) to
re-oscillate to search for the optimal solution. Af-
ter repeating the above operations, after the to-
tal calculation time N;, SNN-CIM can give an
optimal solution or an acceptable suboptimal so-
lution. The selection of parameters 8 and € can
be adjusted according to the fixed point stabil-
ity of Fig.4(a). Here, we establish a step size of
h = 0.05, with an initial value of ¢ = 0 for the
coupling strength € and Sy = 0.3 for the dissipa-
tion strength 8. During each iteration, we incre-
ment € by 0.01h and 8 by 0.1A. In the event that
the energy E; does not exhibit a reduction during
the iteration process, the parameters € and § are
reset to their respective initial values.

To give an example of the algorithm, we ap-
ply the SNN-CIM algorithm to the MAX-CUT
problem of G1. We start with a graph, in which
some of the vertices are connected via edges. The
aim of the MAX-CUT problem is to group the
vertices into two types with the number of edges
as large as possible, whose mathematical expres-
sion is generally considered to be equivalent to
the Ising model as

1
edges = Z(Z Jij — Z JZ']'O'iO'j). (5)
©J i

In Fig.4(b), the time evolution of the type-z
DOPO and type-k pulses, the energy, and the
number of cuts of the system are given. Specif-
ically, if the energy is frozen in a local minima
state, we tend to reduce 5 which makes the sys-
tem unstable. Then, there is fluctuation of the
energy and the system continues to search for the
lower energy state. Finally, if the system energy
is higher than the lowest energy before this mo-
ment, as in Fig.4, the optimal solutions could be
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Figure 4: SNN-CIM solves the MAX-CUT problem of G1. a. The effect of 5 and I.;: on the stability of the fixed
point. The eigenvalues in region 1 and region 4 are real numbers, one has a positive number and the other is all
negative. The eigenvalues of region 2 and region 3 are complex conjugates, one is the positive real part and the other
is the negative real part. a = 1.0. b. Evolution of type-z DOPO pulse amplitude with calculation time. c. Evolution
of type-k pulse amplitude with calculation time. d. Energy and number of cuts as a function of computation time.
e. The coupling strengths € and the dissipation S as a function of computation time.

obtained as edges = 11624 near N; = 1350, af-
ter that the system will be unstable until another
lower energy is searched.

5 The performance of SNN-CIM Algo-
rithm on MAX-CUT Problem

Here in this part, we describe the performance of
the SNN-CIM algorithm on the Max-Cut prob-
lem and then compare it with other types of com-
puting devices such as those based on simulated
annealing and conventional CIM. We discuss the
performance of these investigated devices on dif-
ferent sizes of the Ising problems.

We chose the simulated annealing (SA) algo-
rithm and the SNN-CIM algorithm on the G1-
G21 graph of 800 nodes, and the G22-G42 graph
of 2000 nodes, and also compared the perfor-
mance with the conventional CIM and the CIM
with sigmoid function optimization in Ref.|23].

The performance of the computational results
are shown in Fig.5. Here we choose the relative
error AC' = 100(1 — C//Cop) of the optimal value
during 50 runs as the result, and Cy)) denotes the
best-known value reported in the literature. In
the 800 nodes problem, CIM with sigmoid func-
tion and SNN-CIM often find the solutions very
close to the optimal value, while the performance
of the SA and CIM are relatively poor. And, the
mean values of the relative errors of SNN-CIM
and CIM with sigmoid function in the optimal
value of G1-G21 are 0.3% and 0.4%, respectively.

The performance of SNN-CIM is slightly better
than that of CIM with a sigmoid function. Under
the more complex 2000-node problem, SNN-CIM
is significantly closer to the optimal value than
the other three algorithms. In addition, for more
complex problems with random connectivity and
non-uniform node degrees (G39,G40,G41,G42),
SNN-CIM with unstable local optima can also
achieve better computational performance. This
shows that SNN-CIM will have more potential in
more complex combinatorial optimization prob-
lems.

The computational performance of the SNN-
CIM algorithm on GSET is also shown in Table
1, which is compared with SA and CIM. We note
that the algorithm of SNN-CIM has an unparal-
leled advantage in computing time to find subop-
timal but adequate solutions for the application,
both in the time and accuracy of the solutions.
Based on the above analysis, our proposed SNN-
CIM has excellent performance on combinatorial
optimization problems.

6 Conclusion

In summary, we propose a spiking neural network
consisting of DOPO pulses and dissipative pulses.
We analyze the fixed points stability of a sin-
gle spiking neuron and investigate the dynamical
behavior under different I.,; through numerical
simulations. The neuron is in an unstable firing
state when the smaller coupling term acts as I¢y,
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Figure 5: Computational performance of the SNN-CIM algorithm on the MAX-CUT problem for a given problem. a.
Relative error of the optimal value of simulated annealing algorithm, CIM, CIM with sigmoid function, and SNN-CIM
for 50 runs on the MAX-CUT problem of a graph with 800 nodes. b. More complex 2000 node situation.

and the neuron pulse disappears with the increase
of the coupling term, corresponding to the AH
bifurcation process, simulating the class-II neu-
rons. Based on the properties of spiking neurons,
an SNN-CIM algorithm for solving combinatorial
optimization problems is proposed. By increasing
the coupling strength, the neuron cluster in the
firing state is bifurcated to search for the ground
state of the Ising model, and a nonlinear filter
function is used to eliminate the amplitude het-
erogeneity. For the local minimum point frozen
in the excited state during the filtering process, it
can be destabilized by adjusting the dissipation
parameter 3, so as to continuously search for the
ground state. We also compare the performance
of the SNN-CIM algorithm on combinatorial opti-
mization problems with SA, CIM, and CIM with
sigmoid function. The results show that SNN-
CIM has excellent performance on combinatorial
optimization problems, and has more potential
on more complex problems with random connec-
tivity and non-uniform node degrees.

In addition, the model can be implemented
by adding dissipative pulses to the existing CIM
based on the fiber ring cavity, which is expected
to improve its computational performance and
solve the problem of freezing in the excited state
during the calculation process. By using inte-
grated photonics direct coupling and high repe-
tition frequency lasers, it is expected to increase
the pulse firing rate and the number of neurons,
improve computing power, and provide a better
simulation platform for spiking neural networks.

Finally, the use of the sigmoid function for the
coupled term response in this model, which is
widely used in neural networks, creates an inter-
esting connection between CIM and neuromor-
phic computing, with the potential to excite the
research in the perceptron and pattern recogni-
tion of fiber-rings cavity based CIM.
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8 Data availability

The GSET instances used
for the tests are available at
https://web.stanford.edu/ yyye/yyye/Gset/.
The SA algorithm temperature adjust-
ment is based on a logarithmic function,

T = Tologa(1 + to/t). All programs are written
by Matlab and run on intel i7-10700F 2.9GHz.
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