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Circuit cutting, the decomposition of a quan-
tum circuit into independent partitions, has
become a promising avenue towards exper-
iments with larger quantum circuits in the
noisy-intermediate scale quantum (NISQ) era.
While previous work focused on cutting qubit
wires or two-qubit gates, in this work we in-
troduce a method for cutting multi-controlled
Z gates. We construct a decomposition and
prove the upper bound O(62K) on the associ-
ated sampling overhead, where K is the num-
ber of cuts in the circuit. This bound is inde-
pendent of the number of control qubits but
can be further reduced to O(4.52K) for the spe-
cial case of CCZ gates. Furthermore, we eval-
uate our proposal on IBM hardware and ex-
perimentally show noise resilience due to the
strong reduction of CNOT gates in the cut cir-
cuits.

1 Introduction
Quantum computing [1] in the noisy-intermediate
scale quantum (NISQ) era is limited by the strong im-
pact of noise and the small number of available qubits
[2]. As a result, current hardware is far from being
able to execute quantum algorithms with provable
quantum advantage, such as Shor’s [3] or Grover’s
[4] algorithm. To overcome these hardware restric-
tions to some extent, circuit-cutting techniques have
recently attracted a lot of attention. When scaling up
problem instances for the search of empirical quan-
tum advantage in quantum-machine learning tasks or
for the quantum approximate optimization algorithm
(QAOA) [5], these methods are expected to become
relevant tools and will likely be an inherent part of
near-term quantum software frameworks [6].

Consider a quantum circuit consisting of two par-
titions, only connected by a few wires or two-qubit
gates. By decomposing the identity channel, Peng et
al. [7] introduced wire cutting where a qubit line is cut
along the direction of time. This method was subse-
quently further investigated [8, 9, 10, 11] with respect
to the interplay between circuit cutting and noise
[12, 13, 14, 15], automatic allocation of classical and
quantum computational resources [16, 17] and com-
pilation [18]. Similarly, Mitarai and Fujii [19, 20, 21]
Christian Ufrecht: christian.ufrecht@iis.fraunhofer.de

Figure 1: Consider the quantum circuit shown on the left. It
is a circuit with five qubits represented by the horizontal lines,
also referred to as wires. Time evolution of the initial state is
illustrated by the white and grey boxes where time flows from
the left to the right. They represent quantum gates, that is,
unitary transformations on subsets of the qubits. The circuit
contains a single gate V that connects the two partitions A
and B that are otherwise independent. After decomposition
of the quantum channel corresponding to V , the circuit disin-
tegrates into a weighted sum over independent circuit pairs,
which contain quantum gates or measurements denoted by
FA

i and FB
i . Here, we employ the calligraphic notation oth-

erwise reserved for superoperators to indicate that the gate
or projectors are determined from the superoperator decom-
position. The result of the original circuit can be restored
by evaluating sequentially each of the circuits on possibly
smaller quantum devices. Note that the equality has to be
understood on the superoperator rather than on the gate
level.

proposed gate cutting, the direct decomposition of a
unitary channel corresponding to a two-qubit gate.
As in probabilistic error mitigation [22, 23, 24, 21]
the variance of the estimator for the quantity to be
measured increases [25] in case of a cut circuit. As a
consequence, all variants of circuit cutting come with
a constant κ, characterizing the sampling overhead,
the factor O(κ2) of more samples required to esti-
mate the decomposed circuit to the same accuracy as
the original one. If K cuts are performed, the sam-
pling overhead increases to O(κ2K). Of course, the
exponential overhead is in line with our expectation of
classical hardness for simulation of general quantum
circuits. Piveteau et al. [26] showed that this overhead
can be significantly reduced when a common decom-
position of several Bell states with subsequent gate
teleportation is performed. Ref. [26] also provides op-
timal decompositions for several important two-qubit
gate types based on the robustness of entanglement
measure [27]. A strong reduction of sampling over-
head can also be achieved for joint cutting of wires as
shown by Lowe et al. [28].

In this work, we provide explicit decompositions of
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Table 1: Overview of recent findings on CZ and wire cutting.
We contrast the sampling overhead for K cuts associated
with different methods and compare them to the main results
of the present work.

sampling overhead joint cutting

CZ gate O(32K) [20] O(4K) [26]

wire O(42K) [7] O(4K) [28]

CCZ gate O(4.52K) [this work] −

MCZ gate O(62K) [this work] −

multi-controlled Z (MCZ) gates with the help of ZX-
calculus, a tensor-network description for quantum
circuits. After explaining the ideas underlying gate-
cutting in more detail and comparing the sampling
overhead of different methods in Sec. 2, we prove the
main result of this article, the general decomposition
of an MCZ gate in Sec. 3 with the help of ZX calcu-
lus. In Sec. 4, we evaluate the sampling complexity
associated with the decomposition of an MCZ gate.
We show the upper bound κ = 6, which, remark-
ably, is independent of the number of control qubits.
For a CCZ gate, we find the smaller value κ = 4.5.
We conclude this article with experimental results on
the IBM Q system Ehningen discussed in Sec. 5. We
observe a strong reduction of the CNOT-gate count
in the cut circuits and, therefore, resilience to noise.
As a particular application of MCZ-gate cutting, we
anticipate its use in the alternating operator ansatz
[29, 30], a variant of the QAOA [5] algorithm for con-
strained optimization. Another promising application
is the simulation of MCZ gates connecting qubits far
apart on the hardware graph as done for two-qubit
gates in Refs. [20, 31].

2 Cutting a quantum gate
Consider a quantum circuit where the qubits are
grouped into two partitions A and B, only connected
by one possibly multi-qubit gate V as shown in Fig. 1.
Furthermore, assume the factorizing initial state ρ =
ρA ⊗ ρB and observable O = OA ⊗ OB where the su-
perscript labels the partition. These assumptions are,
for example, satisfied when all qubits are initialized
to |0⟩ and a Pauli string is measured. Circuit cutting,
also referred to as circuit decomposition, circuit frag-
mentation or circuit knitting, is the task of finding a
decomposition of the unitary channel V corresponding
to the gate V so that

V =
∑

i

aiFi (1)

where Fi(ρA⊗ρB) = FA
i (ρA)⊗FB

i (ρB) are local chan-
nels on the partitions A and B as shown in Fig. 1 and

ai are real expansion coefficients. For U1 correspond-
ing to UA

1 ⊗UB
1 and U2 corresponding to UA

2 ⊗UB
2 , this

decomposition allows us to determine the expectation
value of the observable as

⟨O⟩ = tr(OU2 ◦ V ◦ U1(ρ)) (2)

=
∑

i

aitr(OA ⊗ OBU2 ◦ Fi ◦ U1(ρA ⊗ ρB)) (3)

=
∑

i

ai⟨OA⟩i⟨OB⟩i . (4)

In Eq. (4) we denote by ⟨.⟩i the expectation value with
respect to the state on partition A and B, evolved by
FA

i and FB
i , respectively, that is

⟨Oα⟩i = tr(OαUα
2 ◦ Fα

i ◦ Uα
1 (ρα)) (5)

for α = A, B. If Fα
i are unitary channels or measure-

ment operations themselves, each term in the sum in
Eq. (4) can be evaluated on a quantum computer. In
the case of a more general quantum circuit, when all
gates connecting the two partitions are cut, they be-
come independent and the quantum circuits can be
evaluated sequentially on a smaller device. We em-
phasize that the term circuit cutting as used here
deals with decompositions of quantum circuits at the
level of superoperators, rather than at the level of
unitaries as in Ref. [32]. The output of a single ex-
perimental shot on a quantum computer is typically
a bitstring. The expectation value of an observable
is then obtained by a classical post-processing func-
tion on the bitstrings of multiple runs. Modeling the
outcome of each experimental run as i.i.d. random
variables, the number of required samples to achieve
a given additive error is determined via the variance
of the post-processing function. When a circuit is cut,
the variance of the modified estimator for ⟨O⟩ via
Eq. (4) increases. Consequently, more experimental
runs are required to estimate the result of the orig-
inal circuit to the same given additive error. More
specifically, this sampling overhead is exponential (in
the number of cuts). The parameter

κ =
∑

i

|ai| (6)

then quantifies the sampling overhead O(κ2) [25]. For
completeness, this scaling behavior is re-derived in
Appendix E. Eq. (1) is therefore optimal if the Fi are
chosen such that the 1-norm of the vector containing
the coefficients ai is minimal. For K cuts the sam-
pling overhead is O(κ2K), however, joint cutting of
multiple gates or wires leads to much smaller bounds
for some gate types [26, 28]. Tab. 1 summarizes re-
cent findings for cutting of CZ gates and wire cutting
and compares the sampling complexities to the main
results of the present work. In this work we cut multi-
qubit controlled Z gates and provide upper bounds for
κ. As we will explore in the next section, ZX calculus
is particularly suited for this task.

Accepted in Quantum 2023-09-25, click title to verify. Published under CC-BY 4.0. 2



3 ZX-calculus for circuit cutting
ZX calculus [33, 34] is a tensor-network representa-
tion for quantum circuits that together with powerful
transformation rules allows diagrammatic reasoning.
Since ZX-calculus has been reviewed elsewhere [35],
we will only introduce those diagram types and trans-
formation rules necessary for this article. The basic
diagrams are Z-spiders, defined as

m n = |0...0⟩︸ ︷︷ ︸
n

⟨0...0|︸ ︷︷ ︸
m

+eiα|1...1⟩⟨1...1| (7)

and X-spiders

m n = |+...+⟩︸ ︷︷ ︸
n

⟨+...+|︸ ︷︷ ︸
m

+eiα|−...−⟩⟨−...−| (8)

where |±⟩ = (|0⟩ ± |1⟩)/
√

2. For α = 0, the inset
is commonly disregarded. A third tensor, a so-called
H-box, is defined as

m n =
∑

(−1)i1·...·im·j1·...·jn |j1...jn⟩⟨i1...im|
(9)

where the sum runs over all i1, ..., im, j1, ..., jn ∈
{0, 1}. Spiders and H-boxes are therefore maps from
m- to (un-normalized) n-qubit states, signified by the
number of wires ending at the right and the left of the
diagrams. When representing ZX diagrams as matri-
ces, we will implicitly assume the computational basis.
Then, for example, an H-box is a matrix filled with
ones but a minus one in the lower right corner. H-
boxes can be viewed as generalized Hadamard gates
since

=
√

2 . (10)

As apparent from the definitions, spiders and H-boxes
correspond to symmetric tensors in all indices. Any
quantum circuit can be represented as a ZX diagram,
the reverse statement, however, is incorrect since a
ZX diagram not necessarily corresponds to a unitary
matrix. To obtain the Hermitian conjugate of a ZX
diagram, we move all wires ending at the left to the
right and those ending at the right to the left and
replace all angles with their negative values. In the
following we show how to use ZX calculus to decom-
pose the unitary channel corresponding to an MCZ
gate into a sum over unitary and measurement chan-
nels. Decomposing circuits into simpler parts using
ZX calculus has been done before in Refs. [36, 37].

An MCZ gate enjoys a simple representation [38]

= (11)

in terms of an H-box with zero wires on the left
as shown in Appendix A. In matrix representation,

MCZ = diag(1, ..., 1, −1) and we will refer to the
number of qubits involved in the MCZ gate as the
order of the gate. Also note that there is no differ-
ence between the control and target qubits in an MCZ
gate. The decomposition constructed in this article is
based on the H-box fusion rule [38]

= 1
2 , (12)

proved in Appendix B for completeness.
Consequently, with Eq. (12) applied to Eq. (11),

the unitary channel action EMCZ(ρ) = MCZρMCZ†

corresponding to the MCZ gate of order n + m acting
on an arbitrary density matrix ρ, takes the form

EMCZ(ρ) = 1
4 . (13)

The two partitions (upper m qubits, lower n qubits)
are only connected by the tensor Q shaded in grey,
the un-normalized Choi operator of a Hadamard gate.
Next, we remove the two remaining connections be-
tween the partitions by a rank-one decomposition of Q
in terms of vectors factorizing over the two partitions

Q = =


1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1

 (14)

=
∑

i

ci . (15)

In Eq. (15) we introduced the diagrammatic notation
for a two-dimensional vector

v =
∑

j∈{0,1}

vj |j⟩ = =
( )†

(16)

where vj is the j-th component of v. Therefore, the
H-box fusion rule in Eq. (13) reduces the cutting of
an MCZ gate to the decomposition of a four-by-four
matrix. However, only vectors w(i) and u(i) are useful
whose contraction with the H-box results in channels
that can be evaluated on a quantum computer. In
Appendix C we prove the identities

=
√

2 (17)

for θ ∈ [0, 2π) and

= 2 (18)
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where P1...1 denotes the projector on |1...1⟩. The
identities Eq. (17) and Eq. (18) suggest w(i), u(i) ∈{ }

θ
for different values of θ. This choice

guarantees a decomposition consisting of unitary con-
trolled Z-rotation gates and projectors, which can be
evaluated by mid-circuit measurements. Next, we ex-
pand Q in the basis spanned by the Pauli matrices
and then substitute their spectral representation

(19)

(20)

(21)

and additionally the identity matrix in terms of the
eigenvectors of the Pauli Y matrix, that is I =
1/2 +1/2 . The choice of this expan-
sion basis leads to κ = 3 for the normalized version of
Q which can be shown to be optimal with the help of
the robustness of entanglement measure [26, 27]. Un-
fortunately, Eq. (19) contains the state , not cov-
ered by Eq. (17) and Eq. (18) and its contraction with
an H-box does not result in a valid quantum circuit.
We could simulate this operation by an MCZ gate on
an ancilla qubit initialized in and postselected on the
|+⟩ state [39], however, at the cost of one ancilla qubit
per partition and cut. We circumvent this issue by
substituting X = 1/2 +1/2 −
instead. By this substitution we lose optimality for
the decomposition of Q. But note that it is unknown
if an optimal decomposition of Q translates into an
optimal decomposition of the MCZ gate. While we
show only upper bounds, we observe in Sec. 4 the re-
duction of the general decomposition of an MCZ gate
for a CZ gate to the optimal one. With these consid-
erations in mind and defining Θ = {−π/2, 0, π/2, π},

we find

Q = I ⊗ I + Y ⊗ Y + Z ⊗ X + X ⊗ Z (22)

= 1
2

∑
θ∈Θ

αθ

− 1
2

∑
θ∈{0,π}

αθ

{
+

}
(23)

where αθ = −1 for θ = π and αθ = 1 otherwise. This
result leads to a general decomposition of the MCZ
gate by substituting Eq. (23) into Eq. (13) and then
contracting the vectors with the H-boxes with the help
of Eq. (17) and Eq. (18). Before we state the result-
ing decomposition explicitly, we rewrite the superop-
erator P1...1 corresponding to the projector P1...1 in
Appendix D with the result

2P1...1 = Z − P . (24)

Here, the operation Z abbreviates the sum over the
unitary channels corresponding to all combinations of
one-qubit identities and Z gates, that is for an n-qubit
state ρ

Z(ρ) = 1
2n

∑
k∈{0,1}n

Zk1 ⊗ ... ⊗ ZknρZk1 ⊗ ... ⊗ Zkn .

(25)
The second operation is P(ρ) =

∑
l ξlPlρPl where Pl

are the projectors on all elements of the computa-
tional basis and ξl = −1 for l = (1, ..., 1) as well as
ξl = 1 otherwise. We show in Appendix E how to
relate P to circuits with intermediate measurements.
Furthermore, we prove that circuits containing either
P or P1...1 have the same sampling complexity, but
introducing Z leads to gate cancellations in the final
decomposition. The consequence is a reduction of κ
in the final result.

We now state the main result of this article, the
decomposition of an MCZ gate:

= 1
2 + 1

2 + 1
2

∑
j∈{0,1}

(−1)j

 +

 + 1
2

∑
j∈{0,1}

(−1)j

 − −

 (26)

Here, S = Rz(π/2) denotes an S gate and

= 1
2n

∑
i∈{0,1}n

(27)

symbolizes the operation Z in circuit form. The de-
composition shown here is for an MCZ gate of order
five and a cut after the third qubit line counting from
the top. We emphasize that since the derivation was
independent of the order of the MCZ gate and the
cutting location, the structure of the decomposition

in Eq. (26) remains unchanged for a cut at any posi-
tion and arbitrary order of the MCZ gate. Eq. (26)
has to be read in terms of channels. To evaluate a
quantum circuit containing an MCZ gate we have to
subsequently replace the gate by the gates and oper-
ations shown in Eq. (26).
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4 Sampling overhead
In this section we investigate the sampling overhead
associated with Eq. (26) for different orders of the
MCZ gate. The sampling overhead O(κ2) is char-
acterized by κ =

∑
i |ai| as stated in Eq. (6). We

re-derive this statement in detail in Appendix E. We
also consider operations such as P and show that
with regard to sampling overhead, this operation can
be treated in the same manner as a unitary channel.
With this insight, we are now in the position to deter-
mine κ for Eq. (26). Recalling the pre-factor 1/2n for
the 2n unitary circuits summarized by Z in Eq. (27),
we find for a general MCZ gate κ = 6. Remarkably,

this bound holds independently of the order of the
gate. In the right bracket of Eq. (26) the MCZj gate
is the identity gate for j = 0 and Z also contains the
identity gate but the prefactors have a different sign.
Consequently, summing these gates slightly reduces κ.
This reduction becomes more pronounced, the smaller
the order of the MCZ gate is but quickly approaches
κ = 6 for large order. Indeed, for a CZ gate, the right
bracket vanishes and we find κ = 3 which is known
to be optimal [26]. Similarly, a cut separating one
qubit line from a general MCZ gate results in κ = 5.
For a CCZ gate, we find κ = 4.5. Due to the impor-
tance of CCZ gates in quantum computing theory, its
decomposition is stated explicitly:

= 1
2 + 1

2 + 1
2

∑
j∈{0,1}

(−1)j

 +

 + 1
4

∑
j∈{0,1}

(−1)j

 − 2

 (28)

with the abbreviation

= 1
4

{
+ + −

}
. (29)

The sampling complexities derived above are summa-
rized in Tab. 2 together with known results on the
optimality of the decomposition.

Table 2: Sampling overhead for different order and cutting
positions for an MCZ gate. In addition, we state known
results on the optimality of the decomposition.

gate type κ optimality
CZ gate 3 optimal

[26]
CCZ gate 4.5 unknown
one qubit removed 5 unknown
general 6 unknown

5 Experiments on IBM Q
In this section, we show experimental results obtained
on the ibmq_ehningen system. We will find a strong
reduction of noise impact for the proposed cutting
scheme.

We first run numerical simulations to validate the
proposed MCZ cutting scheme. To this end, we gen-
erate a set of random 3, 4 and 5 qubit circuits with
one MCZ gate at the center of the circuit and two oth-
erwise independent partitions. For exemplary circuits
and a more detailed description of the circuit genera-
tion, see Supplemental Material. In all experiments,
we measure the Z ⊗ ... ⊗ Z Pauli string. For the cut
circuits, we allocate Ni = N |ai|/(2κ) samples to each
circuit pair labeled by i where N = 4κ2/ϵ2 bounds the

standard deviation by ϵ, see Eq. (68) in Appendix E.2.
For an uncut circuit, we allocate all N samples for
evaluation. We first calculate N = 1.44 × 106 and
N = 1.44×108 via Eq. (68), the number of repetitions
required to bound the standard deviation of expecta-
tion values of the cut circuit to within ϵ = 0.01 and
ϵ = 0.001. For fixed number of qubits we generate 5
random circuits and sample each circuit N times using
an ideal simulator. Repeating this process 20 times,
generates one hundred data points for each value of ϵ.

We now compare the distributions of the
expectation-value differences between the full (that
is uncut) and cut circuits for different values of ϵ. We

(1) (2) (3) (4)
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(3) (4)

0.0000

0.0005

1
Figure 2: Expectation value estimation error for random cir-
cuits with 5 qubits, containing an MCZ gate of order 5 in their
center: (1) Full circuit sampled for 1.44×106 repetitions, (2)
Proposed method sampled for 1.44 × 106 repetitions. As ex-
pected, the distribution of results becomes broader for the cut
circuits. (3) Full circuit sampled for 1.44 × 108 repetitions,
(4) Proposed method sampled for 1.44 × 108 repetitions. In
accordance with Eq. (68), a factor of hundred more sam-
ples increases the accuracy by approximately a factor of ten.
The values of the standard deviations in the figure are: (1):
8.3×10−4, (2): 2.7×10−3, (3) 8.4×10−5, (4): 2.4×10−4.
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Figure 3: Expectation value estimation of a parameterized
circuit containing a 5-qubit MCZ gate on a noisy simula-
tor. Comparison to Fig. 5 shows that the noisy simulation
strongly underestimates the influence of noise for sampling
the uncut circuit (orange triangles). For the simulations of
noise, qiskit’s noise model from ibmq_ehningen is used. The
noise model is updated based on current calibration and error
data in the cloud.

run simulations for 3,4 and 5 qubits and find almost
no difference in the standard deviations of the distri-
butions. This behavior is expected since κ is indepen-
dent from the order of the MCZ gate. Exemplarily,
Fig. 2 shows the distribution for random 5-qubit cir-
cuits.

In the figure, the white boxes are the interquartile
ranges and the bars denote the 5% and 95% quantiles.
Fig. 2(1) shows the distribution of the expectation val-
ues for the original uncut circuits. As expected, the
distribution becomes broader when we instead evalu-
ate the cut circuit in Fig. 2(2). Its standard deviation
is 0.0027, which is smaller than the chosen value of
ϵ = 0.01. The same effect is observed for ϵ = 0.001
shown in the plots in Fig. 2(3) and Fig. 2(4). Con-
sequently, a tighter version of Eq. (68) to bound the
variance might exist. To further validate the proposed
method on real quantum hardware and analyze the
impact of noise, we performed MCZ gate-cutting ex-
periments on the ibmq_ehningen [40] device. The
ibmq_ehningen device is a super-conducting qubit
type quantum hardware with a 27 qubit ibmq_falcon
processor. The native gate set on this hardware
consists of Rotational-Z, Pauli-X,

√
X, Identity, and

CNOT gates. For the experiments, we again gener-
ated a random circuit with one free parameter that
was scanned in the experiments. The maximum num-
ber of shots per job on the ibmq_ehningen device is
105 and the same was used for each data point, see
Supplemental Material for the explicit circuits and a
more detailed discussion of the experimental setup.
Fig. 4 shows the result for a three-qubit circuit con-
taining a CCZ gate. In the figure, the results obtained
by cutting the CCZ gate (green circles) lie slightly
closer to the exact curve (blue line) than the results
from the uncut circuit (orange triangles).
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Figure 4: Expectation value estimation of parameterized cir-
cuit containing a CCZ gate on ibmq_ehningen device. The
green circles, sampled from the cut circuits, seem to lie closer
to the exact result (blue line) than the result sampled from
the uncut circuit (orange triangles). However, more simu-
lations would be needed to verify that cutting a CCZ gate
leads to noise reduction for the circuit considered. The x-
axis shows the values of the free parameter in the circuit, see
Supplementary Material.
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Figure 5: Expectation value estimation of parameterized cir-
cuit containing a 5-qubit MCZ gate on the ibmq_ehningen
device. The green circles, sampled from the cut circuits, still
qualitatively match the exact result (blue line). The signal
sampled from the uncut circuit (orange triangles) is com-
pletely derogated due to the strong influence of noise.

Next, we repeated the experiment with a five-qubit
circuit containing an MCZ gate of order five. The re-
sult is shown in Fig. 5. From the figure, it is clear that
the influence of noise is extreme when executing the
transpiled version of the full circuit with an MCZ gate
of order five. The resulting expectation values were
nothing but a random output centered around zero.
However, the expectation value estimated using the
proposed method falls much closer to the expectation
values obtained by ideal simulation. This resilience to
noise can be attributed to the strong reduction of the
CNOT-gate count in the cut circuits. While, asymp-
totically, an MCZ gate of order n can be synthesized
with O(n) CNOT gates with one auxiliary qubit [41],
for small n the number of required CNOT gates in-
creases quickly. Consequently, cutting for example
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two qubits from an MCZ gate of order five reduces
the maximum number of CNOT gates in a circuit
to those required to synthesize a double-controlled S
gate. This reduction becomes even more pronounced
after compiling to topologically restricted hardware.
As a consequence, we observe a strong reduction of
noise impact. The maximum number of CNOT gates
present in the different circuits are shown in Tab. 3.
The number of CNOT gates might vary based on the
transpilation method used. However, we chose to pro-
ceed with the best transpiler offered by the hardware
manufacturer to validate our results. As most of the

Table 3: Number of CNOT gates present in the transpiled
version of the circuits shown in the Supplementary Material
(first column). After circuit cutting, the maximum number
of CNOT gates contained in one of the cut circuits reduces
considerably (second column).

gate type CNOT CNOT cut
CCZ gate 13 3
5-qubit MCZ 114 32

work in the literature is conducted via a simulator, we
extended our 5-qubit MCZ experiment shown above
to a noisy simulator. The results are shown in Fig. 3.
The proposed method still outperforms the full cir-
cuit execution even though the noise model provided
by the manufacturer does not accurately capture the
noise level exhibited by the real device.

6 Conclusion
In this work, we proposed an approach for cutting
multi-controlled Z gates by means of ZX-calculus
based on the H-box fusion rule. We derived the upper
bound κ = 6 on the sampling overhead that is inde-
pendent of the order of the gate. We validated the re-
sults on IBM hardware and found strong noise reduc-
tion due to the reduced amount of CNOT gates in the
cut circuit. We anticipate the generalization of our
method to multi-controlled rotation gates and exten-
sion to multi-qubit rotations. The optimality of the
decompositions constructed in this work at present
remains an open question.
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A Representation of an MCZ gate
In this appendix, we prove the representation of an
MCZ gate as stated in Eq. (11). We begin by intro-
ducing the diagrammatic notation of a general n-qubit
column vector v as

v =
2n−1∑
i=0

vi|i⟩ = =
( )†

. (30)

With this definition and the Z-spider

=
∑

j∈{0,1}

|j⟩⟨jj| , (31)

see Eq. (7), we obtain

=
( ∑

j∈{0,1}

|j⟩⟨jj|
)⊗n ∑

i∈{0,1}n

vi

n⊗
k=1

(I ⊗ |ik⟩)

(32)

=
∑

i

vi|i⟩⟨i| = diag(v) . (33)

To guarantee that the correct indices are contracted,
we inserted one-qubit identities I. Consequently,
Eq. (33) is proportional to a unitary matrix if all
elements of v have the same absolute value or to a
projector on a computational basis state if all but one
element of v are zero. We are now in the position to
prove Eq. (11) by setting

= = (1, ..., 1, −1)T (34)

where we recalled the definition of an H-box from
Eq. (9). Consequently, from Eq. (33), we find
diag(1, ..., 1, −1) for Eq. (11), the matrix representa-
tion of an MCZ gate.

B Proof of H-box fusion rule
We proof Eq. (12) from the right to the left. We
first define the joint indices i = (i1, ...im) and j =
(j1, ..., jn) as well as πi = Πm

k=1ik and πj = Πn
k=1jk.

We then find in Dirac notation with the indices a, b, a′
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and b′ running over {0, 1}, j ∈ {0, 1}n and i ∈ {0, 1}m∑
i,j,a,b

(−1)πia|i⟩⟨a| ⊗ (−1)πjb|j⟩⟨b|
∑
a′,b′

(−1)a′b′
|a′b′⟩

(35)

=
∑
i,j

∑
a,b

(−1)ab+πia+πjb|ij⟩ (36)

= 2
∑
i,j

(−1)πiπj |ij⟩ (37)

which is equivalent to the left-hand side of Eq. (12).
In the last step we recalled that πi, πj ∈ {0, 1} so that∑

a,b

(−1)ab+πia+πjb (38)

= (−1)−πiπj

∑
a,b

(−1)(a+πj)(b+πi) (39)

= 2(−1)πiπj . (40)

Alternatively, the H-box-fusion rule can be derived by
the Schmidt decomposition of the vector (1, ..., −1)T

representing the diagonal elements of the unitary cor-
responding to the MCZ gate.

C H-box identities
In this appendix, we prove Eq. (17) and Eq. (18). The
contraction of a single-qubit vector with an H-box is
readily calculated as

= (w0 + w1, ..., w0 + w1, w0 − w1)T

(41)

by matrix-vector multiplication. Consequently, mak-
ing use of Eq. (33), we find

= diag(w0 + w1, ..., w0 + w1, w0 − w1) .

(42)

Therefore, Eq. (42) is proportional to a unitary for
|w0 + w1| = |w0 − w1| and to a projector on the
state |1...1⟩ for w0 = −w1. In terms of spiders, these
two conditions are either satisfied for w = =√

2eiθ/2(cos[θ/2], −i sin[θ/2])T or for w = =
(1, −1)T . The former results in Eq. (17) and the latter
in Eq. (18).

D Rewriting the Projector
To prove Eq. (24), we first restate the definition of Z
from Eq. (25)

Z(ρ) = 1
2n

∑
k∈{0,1}n

Zk1 ⊗...⊗ZknρZk1 ⊗...⊗Zkn (43)

for an n-qubit state ρ. For a single-qubit state ρ1 we
note that∑

k∈{0,1}

Zkρ1Zk = 2
∑

j∈{0,1}

|j⟩⟨j|ρ1|j⟩⟨j| (44)

by substituting Z = |0⟩⟨0| − |1⟩⟨1| as well as I =
|0⟩⟨0|+ |1⟩⟨1| into the left-hand side of Eq. (44). Con-
sequently, by applying Eq. (44) iteratively, Eq. (43)
becomes

Z(ρ) =
∑

j∈{0,1}n

|j⟩⟨j|ρ|j⟩⟨j| . (45)

Finally, we rewrite Eq. (45) as

Z(ρ) =2|1...1⟩⟨1...1|ρ|1..1⟩⟨1..1| (46)

+
∑

j∈{0,1}n

βj |j⟩⟨j|ρ|j⟩⟨j| (47)

= 2P1...1(ρ) + P(ρ) (48)

where βj = −1 for j = (1, ..., 1) and βj = 1 otherwise,
which proves Eq. (24).

E Derivation of sample-complexity
overhead
This appendix investigates in more detail the sam-
pling overhead associated with evaluating a cut cir-
cuit, closely following Refs. [24, 7]. In Appendix E.1
we prove the statements on sampling overhead made
in the main text for the case where in each experimen-
tal run a circuit from the decomposition is sampled
from a probability distribution. Subsequently, in Ap-
pendix E.2 we bound the variance by pre-estimating
the expectation values of the partitioned circuits.

E.1 Sample complexity for circuit sampling
Consider an n-qubit quantum circuit. Assume the
initial state |0⟩⊗n and consider the post-processing
function f : {0, 1}n → [−1, 1] on the measured bit-
string s. Furthermore, assume that f(s) can be ef-
ficiently calculated classically. These definitions de-
scribe the computational model of Refs. [42, 7]. The
post-processing function gives rise to an observable O
via

O =
∑

s

f(s)Ps (49)

where Ps is the projector on the computational ba-
sis state corresponding to bitstring s. Conversely, for
instance, if the observable is a Pauli string, it can be
written in the above form by local diagonalization and
viewing the unitary diagonalization matrix as part of
the circuit. The goal of the quantum computation is
to approximate ⟨O⟩ to additive error ϵ with high prob-
ability for which we will define statistical estimators
in the following.
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Cutting a gate amounts to replacing its superopera-
tor by a decomposition as in Eq. (1). We first consider
the case where all Fi in the decomposition correspond
to unitary gates. With this substitution, we find

⟨O⟩ =
∑

i

ai⟨O⟩i =
∑
i,s

p(s|i)aif(s) (50)

where ⟨.⟩i denotes the expectation value with respect
to the state evolved by circuit i, containing Fi. More-
over, p(s|i) is the probability to measure bitstring s
given circuit i. To evaluate the result on a quantum
device, we sample i at each experimental run accord-
ing to the probability distribution

p(i) = |ai|/κ . (51)

We therefore define a random variable I that takes
values i with probability p(i) and the estimator [25]

f̂ = κ sign(aI)f(SI) (52)

where the random variable SI=i models the bitstring
outcomes of the circuit i. This estimator is unbiased
since

E(f̂) =
∑
i,s

p(s, i)κ sign(ai)f(s) (53)

=
∑
i,s

κ sign(ai)p(i)p(s|i)f(s) (54)

=
∑
i,s

aip(s|i)f(s) (55)

= ⟨O⟩ . (56)

Here, we substituted Eq. (51) into Eq. (54). The final
result is obtained by comparing Eq. (55) to Eq. (50).
The estimator for N shots is given by the sample mean
of Eq. (52). Thus, to estimate ⟨O⟩ to additive error ϵ
with probability 1−δ, Hoeffding’s inequality provides
the required number of experimental repetitions as

N ≥ 2κ2

ϵ2 ln
(

2
δ

)
(57)

where we used that |f̂ | ≤ κ. The number of samples
needed for the original circuit is obtained for κ = 1 in
Eq. (57) from which we infer the sampling overhead
O(κ2).

It is straightforward to generalize this derivation to
K cuts. In this case, the expectation value of the
observable is obtained as

⟨O⟩ =
∑

i1,...,iK

∑
s

p(s|i1, ..., iK)ai1 · ... · aiK
f(s) (58)

and the estimator for K cuts becomes

f̂ = κKsign(aI1) · ... · sign(aIK
)f(SI1,...,IK

) (59)

where we defined the independent random variables
I1,...,IK that determine the specific circuit to run.

To show equality between the expectation value of
Eq. (59) and Eq. (58), we follow Eq. (53) to Eq. (56)
and make use of the independence of I1,...,IK . Since
|f̂ | ≤ κK , Hoeffding’s inequality applied to the sam-
ple mean of Eq. (59), provides the bound O(κ2K) on
the sampling overhead. If the observable factorizes
over the partitions A and B of the original circuit,
the post-processing function factorizes as well, that is
f(s) = fA(sA)fB(sB) where sA and sB are the bit-
string results on partition A and B. If the initial state
factorizes and all gates connecting the two partitions
are cut, the partitioned circuits can be evaluated on
independent quantum computers or sequentially on
the same device.

We now turn to a quantum circuit that contains
projectors. Consider the map M consisting of a com-
plete set of projectors Pl and ξl ∈ [−1, 1] with

M(ρ) =
∑

l

ξlPlρPl (60)

for state ρ. This map is neither positive since ξl can
be smaller than zero, nor trace preserving since the
state in Eq. (60) is not normalized after the projection
and multiplied by ξl. Note that both P1...1 and P of
Eq. (24) are instances of M. For P1...1 we set ξl = 1
only for l = (1, ..., 1) and zero otherwise. On the other
hand for P we have ξl = −1 for l = (1, ..., 1) and ξl = 1
otherwise. Even though M does not correspond to a
physical time evolution, we can nevertheless estimate

χ = tr(OU ◦ M(ρ)) (61)

by repeated use of a quantum computer. In Eq. (61),
the density matrix ρ is the state right before the pro-
jectors and U is the unitary channel corresponding
to the unitary evolution U afterwards until the final
measurement. To estimate χ on a quantum computer,
we perform intermediate measurements, and sample
according to the estimator

f̂ = ξLf(S) (62)

where the random variable S describes the bitstring
outputs of the final measurements as before and the
random variable L models the outcomes of the in-
termediate measurements. According to Eq. (62) we
have to add −f(S) in the sample mean for f̂ if we
found the all-one state in the intermediate measure-
ment and f(S) otherwise. This estimator is unbiased
since

E(f̂) =
∑
s,l

p(s, l)ξlf(s) (63)

=
∑
s,l

ξl tr(PsUPlρPlU
†)f(s) (64)

=
∑

s

tr(PsU ◦ M(ρ))f(s) (65)

= χ . (66)
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The first line, Eq. (63), is the definition of the expec-
tation value and in Eq. (64) we substituted p(s, l) =
tr(PsUPlρPlU

†) [1]. In the final step, we identified
O =

∑
s f(s)Ps. The number of samples required

to determine χ to given additive error is again deter-
mined by Hoeffding’s inequality applied to the sample
mean of Eq. (62). Since |ξl| ≤ 1 by definition, Eq. (57)
remains unchanged when some of the circuits contain
projectors.

E.2 Sampling complexity by pre-estimating cir-
cuits
In Sec. 5, we show experimental results for a circuit
that disintegrates into two independent partitions A
and B. After cutting the single gate that connects
the two partitions, we have to evaluate

⟨O⟩ =
∑

i

ai⟨OA⟩i⟨OB⟩i . (67)

Rather than sampling a circuit pair i for each ex-
perimental run as discussed in Appendix E.1 we pre-
estimate the expectation values ⟨OA⟩i and ⟨OB⟩i for
all the circuits first and subsequently restore the re-
sult of the original circuit with the help of Eq. (67). In
the following, it is shown that the standard deviation
of Eq. (67) can be bounded by ϵ for a total number
of experimental runs

N ≥ 4κ2

ϵ2 (68)

where we allocate

Ni = 1
2

|ai|
κ

N (69)

samples to each circuit of circuit pair i to determine
the expectation values ⟨OA⟩i and ⟨OB⟩i. Note that
2

∑
i Ni = N . Next, we define the estimator

f̂ =
∑

i

aif̂
A
i f̂B

i (70)

where E(f̂A
i ) = ⟨OA⟩ and E(f̂B

i ) = ⟨OB⟩. Since f̂A
i

and f̂B
i are independent, this estimator is unbiased.

The variance of f̂ is calculated as

Var(f̂A
i f̂B

i ) (71)
= Var(f̂A

i )E[(f̂B
i )2] + Var(f̂B

i )[E(f̂A
i )]2 (72)

≤ Var(f̂A
i ) + Var(f̂B

i ) (73)

≤ 2
Ni

(74)

In Eq. (71) we first factorized the variance, valid for
independent random variables. Eq. (73) makes use
of the bounds E[(f̂B

i )2] ≤ 1 and |E(f̂A
i )| ≤ 1 since

|fA
i | ≤ 1 and |fB

i | ≤ 1. Finally, Var(f̂i) ≤ 1/Ni for

Ni independent samples. Consequently,

Var(f̂) =
∑

i

a2
i Var(f̂A

i f̂B
i ) (75)

≤ 2
∑

i

a2
i /Ni (76)

≤ ϵ2 (77)

using Eq. (70), Eq. (74) and Eq. (69).
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Supplementary material
In this supplemental material, we provide more details on our simulations and experiments on the
ibmq_ehningen system.

Random circuits
For our numerical simulations in Sec. V of the main article we generated a set of random circuits consisting of
about on average 30 single-qubit RX, RY and RZ rotations and 10 CNOT gates. We generated circuits with
3, 4, or 5 qubits with one MCZ gate in the center, accordingly, of order 3, 4, or 5. Two instances of these
circuits are shown in Fig. 6 and Fig. 7. In the 3-qubit circuits, one 1-qubit and one 2-qubit partition, and in the
5-qubit circuits one 2-qubit and one 3-qubit partition are only connected by the MCZ gate. For the numerical
evaluation, we choose the Pauli Z ⊗ ... ⊗ Z string as observable. For generating the random circuits, we impose
the constraint that the MCZ gate in the circuits should have a significant impact on the expectation value of the
observable in order to be able to resolve its influence on the result with the available number of experimental
runs. That is, the difference in the expectation value between a circuit with and without MCZ is chosen to
be greater than 0.2. A proof-of-concept implementation of MCZ-gate cutting for arbitrary order of the gate is
available on GitHub [43].
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Figure 6: Random three-qubit circuit with a CCZ gate at the center.
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Figure 7: Random five-qubit circuit with an MCZ gate of order five at the center.

Experiments on ibmq_ehningen
In this part of the supplemental material, we provide more details on the experimental setup. For the experiments
we (1) again generated a random 3-qubit circuit and a 5-qubit circuit with two partitions, only connected by a

Accepted in Quantum 2023-09-25, click title to verify. Published under CC-BY 4.0. 12

https://dx.doi.org/https://doi.org/10.4204/eptcs.287.2
https://dx.doi.org/https://doi.org/10.4204/eptcs.287.2
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.52.3457
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.52.3457
https://dx.doi.org/https://doi.org/10.1103/PhysRevX.6.021043
https://github.com/ChristianUfrecht/MCZgate_cutting
https://github.com/ChristianUfrecht/MCZgate_cutting
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.105.032620
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.105.032620


CCZ gate and an MCZ gate of order 5, respectively. The circuits are shown in Fig. 8 and Fig. 9. Subsequently,
we optimized the single-qubit rotation angles until the difference of the expectation values of a Pauli Z-string
Z ⊗ ... ⊗ Z with respect to the circuit with and without the MCZ gate was maximal. Finally, we added one free
parameter to the rotation angles of three single-qubit rotation gates, which were scanned in the experiments.
The parameter is denoted by psi in the circuits shown in Fig. 8 and Fig. 9. (2) We used the highest level of
optimization offered by the Qiskit API after transpiling the circuits to the native gate set and the hardware
graph of the ibmq_ehningen device. The highest level of optimization first searches for a layout that satisfies
all the 2-qubit gate connectivity to the hardware graph considering the qubits readout errors and gate fidelities.
Then the circuit is unrolled to the native gate set. Finally, optimizations in the form of commutative gate
cancellation and re-synthesis of two-qubit unitary blocks are performed. (3) 18 data points between [0, 2π] with
equal intervals were chosen for scanning the free parameter. (4) We used 105 shots per data point, the maximum
number of shots per job allowed by the ibmq_ehningen device. (5) All experiments were run with maximum
error mitigation offered by ibmq wherever possible. We used the TREX option for readout-error mitigation [44]
offered by Qiskit. (6) The ibmq_ehningen device can be characterized by the following parameters [40]: It is
a 27 qubit ibmq_falcon processor, whose connectivity graph is shown in Fig. 10. The noise parameters at the
time of our experiments were the following: Decoherence times: Average values T1 = 160 µs and T2 = 150 µs
with large fluctuations between the qubits. Single-qubit errors are of the order of 10−4 and CNOT-gate errors
of the order of 0.009.
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Figure 8: Circuit for the cutting of a CCZ gate.
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Figure 9: Circuit for the cutting of an MCZ gate of order 5.

Figure 10: Connectivity graph of ibmq_ehningen.
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